सघन स्थान: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{redirect|सघनता}}
{{redirect|सघनता}}
{{Short description|Type of mathematical space}}
{{Short description|Type of mathematical space}}
[[File:Compact.svg|thumb|upright=1.6| यूक्लिडियन स्पेस के लिए कॉम्पैक्टनेस मानदंड के अनुसार, जैसा कि हेन-बोरेल प्रमेय में कहा गया है, अंतराल {{math|''A'' {{=}} (−∞, −2]}} सघन नहीं है क्योंकि यह परिबद्ध नहीं है। अंतराल {{math|''C'' {{=}} (2, 4)}}संहत नहीं है क्योंकि यह बंद नहीं है (किन्तु घिरा हुआ है)। अंतराल {{math|''B'' {{=}} [0, 1]}} संहत है क्योंकि यह बंद और परिबद्ध दोनों है]]
[[File:Compact.svg|thumb|upright=1.6| यूक्लिडियन स्पेस के लिए कॉम्पैक्टनेस मानदंड के अनुसार, जैसा कि हेन-बोरेल प्रमेय में कहा गया है, अंतराल {{math|''A'' {{=}} (−∞, −2]}} सघन नहीं है क्योंकि यह परिबद्ध नहीं है। अंतराल {{math|''C'' {{=}} (2, 4)}}संहत नहीं है क्योंकि यह बंद नहीं है (किन्तु घिरा हुआ है)। अंतराल {{math|''B'' {{=}} [0, 1]}} संहत है क्योंकि यह बंद और परिबद्ध दोनों है]]




गणित में, विशेष रूप से [[सामान्य टोपोलॉजी]] में, कॉम्पैक्टनेस गुण होती है जोकी [[ यूक्लिडियन स्थान |यूक्लिडियन स्थान]] के [[परिबद्ध सेट|परिबद्ध]] समुच्चय और बंधे हुए समुच्चय उपसमुच्चय की धारणा को सामान्य बनाने का प्रयास करती है।<ref>{{cite encyclopedia |title=सघनता|department=mathematics |encyclopedia=[[Encyclopaedia Britannica]] |lang=en |url=https://www.britannica.com/science/compactness |access-date=2019-11-25 |via=britannica.com}}</ref> विचार यह है कि कॉम्पैक्ट स्पेस में कोई पंक्चर या लापता समापन बिंदु नहीं होता है, इस प्रकार से , इसमें बिंदुओं की सभी सीमाएं (गणित) सम्मिलित होती हैं। उदाहरण के लिए, विवर्त   [[अंतराल (गणित)]] (0,1) सघन नहीं होगा क्योंकि इसमें 0 और 1 के सीमित मान सम्मिलित नहीं हैं, जबकि बंद अंतराल [0,1] सघन होगा। इसी प्रकार, परिमेय संख्याओं <math>\mathbb{Q}</math> कॉम्पैक्ट का स्थान नहीं है, क्योंकि इसमें [[अपरिमेय संख्या]]ओं और [[वास्तविक संख्या]]ओं <math>\mathbb{R}</math> कॉम्पैक्ट के स्थान के अनुरूप अनंत रूप से कई पंचर हैं भी नहीं है, क्योंकि इसमें दो सीमित मान <math>+\infty</math> और <math>-\infty</math> सम्मिलित नहीं हैं. चूँकि , विस्तारित वास्तविक संख्याएँ सघन होंगी, क्योंकि इसमें दोनों अनन्तताएँ सम्मिलित हैं। इस अनुमानी धारणा को स्पष्ट   बनाने के कई विधि हैं। ये विधि सामान्यतः [[मीट्रिक स्थान]] में सहमत होते हैं, जिससे अन्य [[टोपोलॉजिकल स्पेस]] में [[तार्किक तुल्यता]] नहीं हो सकते हैं।
 
गणित में, विशेष रूप से [[सामान्य टोपोलॉजी|'''सामान्य टोपोलॉजी''']] में, कॉम्पैक्टनेस गुण होती है जोकी [[ यूक्लिडियन स्थान |यूक्लिडियन स्थान]] के [[परिबद्ध सेट|परिबद्ध]] समुच्चय और बंधे हुए समुच्चय उपसमुच्चय की धारणा को सामान्य बनाने का प्रयास करती है।<ref>{{cite encyclopedia |title=सघनता|department=mathematics |encyclopedia=[[Encyclopaedia Britannica]] |lang=en |url=https://www.britannica.com/science/compactness |access-date=2019-11-25 |via=britannica.com}}</ref> विचार यह है कि कॉम्पैक्ट स्पेस में कोई पंक्चर या लापता समापन बिंदु नहीं होता है, इस प्रकार से , इसमें बिंदुओं की सभी सीमाएं (गणित) सम्मिलित होती हैं। उदाहरण के लिए, विवर्त [[अंतराल (गणित)]] (0,1) सघन नहीं होगा क्योंकि इसमें 0 और 1 के सीमित मान सम्मिलित नहीं हैं, जबकि बंद अंतराल [0,1] सघन होगा। इसी प्रकार, परिमेय संख्याओं <math>\mathbb{Q}</math> कॉम्पैक्ट का स्थान नहीं है, क्योंकि इसमें [[अपरिमेय संख्या]]ओं और [[वास्तविक संख्या]]ओं <math>\mathbb{R}</math> कॉम्पैक्ट के स्थान के अनुरूप अनंत रूप से कई पंचर हैं भी नहीं है, क्योंकि इसमें दो सीमित मान <math>+\infty</math> और <math>-\infty</math> सम्मिलित नहीं हैं. चूँकि , विस्तारित वास्तविक संख्याएँ सघन होंगी, क्योंकि इसमें दोनों अनन्तताएँ सम्मिलित हैं। इस अनुमानी धारणा को स्पष्ट बनाने के कई विधि हैं। ये विधि सामान्यतः [[मीट्रिक स्थान]] में सहमत होते हैं, जिससे अन्य [[टोपोलॉजिकल स्पेस]] में [[तार्किक तुल्यता]] नहीं हो सकते हैं।


ऐसा सामान्यीकरण यह है कि टोपोलॉजिकल स्पेस क्रमिक रूप से कॉम्पैक्ट होता है यदि स्पेस से सैंपल किए गए बिंदुओं के प्रत्येक अनंत अनुक्रम में अनंत परिणाम होता है जो स्पेस के किसी बिंदु पर परिवर्तित होता है।<ref>{{cite book |last=Engelking |first=Ryszard |year=1977 |title=सामान्य टोपोलॉजी|publisher=PWN |place=Warsaw, PL |pages=266 |oclc= |url= }}</ref>
ऐसा सामान्यीकरण यह है कि टोपोलॉजिकल स्पेस क्रमिक रूप से कॉम्पैक्ट होता है यदि स्पेस से सैंपल किए गए बिंदुओं के प्रत्येक अनंत अनुक्रम में अनंत परिणाम होता है जो स्पेस के किसी बिंदु पर परिवर्तित होता है।<ref>{{cite book |last=Engelking |first=Ryszard |year=1977 |title=सामान्य टोपोलॉजी|publisher=PWN |place=Warsaw, PL |pages=266 |oclc= |url= }}</ref>
Line 10: Line 11:
बोलजानो-वीयरस्ट्रैस प्रमेय में कहा गया है कि यूक्लिडियन स्पेस का उपसमुच्चय इस अनुक्रमिक अर्थ में कॉम्पैक्ट है यदि और केवल अगर यह बंद और घिरा हुआ है।
बोलजानो-वीयरस्ट्रैस प्रमेय में कहा गया है कि यूक्लिडियन स्पेस का उपसमुच्चय इस अनुक्रमिक अर्थ में कॉम्पैक्ट है यदि और केवल अगर यह बंद और घिरा हुआ है।


इस प्रकार, यदि कोई बंद [[इकाई अंतराल]] में {{math|[0, 1]}} अनंत अंक चुनता है , उनमें से कुछ बिंदु इच्छा अनुसार   से उस स्थान में कुछ वास्तविक संख्या के समीप आ जाएंगे।
इस प्रकार, यदि कोई बंद [[इकाई अंतराल]] में {{math|[0, 1]}} अनंत अंक चुनता है , उनमें से कुछ बिंदु इच्छा अनुसार से उस स्थान में कुछ वास्तविक संख्या के समीप आ जाएंगे।


इस प्रकार से उदाहरण के लिए, अनुक्रम में कुछ संख्याएँ {{nobr| {{sfrac|1|2}}, {{sfrac|4|5}}, {{sfrac|1|3}}, {{sfrac|5|6}}, {{sfrac|1|4}}, {{sfrac|6|7}}, ...}} 0 तक जमा होता है (जबकि अन्य 1 तक जमा होते हैं)।
इस प्रकार से उदाहरण के लिए, अनुक्रम में कुछ संख्याएँ {{nobr| {{sfrac|1|2}}, {{sfrac|4|5}}, {{sfrac|1|3}}, {{sfrac|5|6}}, {{sfrac|1|4}}, {{sfrac|6|7}}, ...}} 0 तक जमा होता है (जबकि अन्य 1 तक जमा होते हैं)।


चूँकि न तो 0 और न ही 1 विवर्त इकाई अंतराल के सदस्य {{math|(0, 1)}} हैं , बिंदुओं का वही समुच्चय इसके किसी भी बिंदु पर जमा नहीं होगा, इसलिए खुली इकाई अंतराल कॉम्पैक्ट नहीं है। यद्यपि यूक्लिडियन स्पेस के उपसमुच्चय (उपस्थान) कॉम्पैक्ट हो सकते हैं, संपूर्ण स्थान स्वयं कॉम्पैक्ट नहीं है, क्योंकि यह बाध्य नहीं है। <math>\mathbb{R}^1</math> (वास्तविक संख्या रेखा) उदाहरण के लिए, विचार कर रहे हैं, बिंदुओं का क्रम {{nobr| 0,  1,  2,  3, ...}} का कोई अनुवर्ती नहीं है जो किसी वास्तविक संख्या में परिवर्तित होता हो।
चूँकि न तो 0 और न ही 1 विवर्त इकाई अंतराल के सदस्य {{math|(0, 1)}} हैं , बिंदुओं का वही समुच्चय इसके किसी भी बिंदु पर जमा नहीं होगा, इसलिए खुली इकाई अंतराल कॉम्पैक्ट नहीं है। यद्यपि यूक्लिडियन स्पेस के उपसमुच्चय (उपस्थान) कॉम्पैक्ट हो सकते हैं, संपूर्ण स्थान स्वयं कॉम्पैक्ट नहीं है, क्योंकि यह बाध्य नहीं है। <math>\mathbb{R}^1</math> (वास्तविक संख्या रेखा) उदाहरण के लिए, विचार कर रहे हैं, बिंदुओं का क्रम {{nobr| 0,  1,  2,  3, ...}} का कोई अनुवर्ती नहीं है जो किसी वास्तविक संख्या में परिवर्तित होता हो।


कॉम्पैक्टनेस को औपचारिक रूप से 1906 में मौरिस फ्रेचेट द्वारा बोल्ज़ानो-वीयरस्ट्रैस प्रमेय को ज्यामितीय बिंदुओं के स्थानों से [[कार्य स्थान]] तक सामान्यीकृत करने के लिए प्रस्तुत किया गया था। अर्ज़ेला-अस्कोली प्रमेय और पीनो अस्तित्व प्रमेय शास्त्रीय विश्लेषण के लिए सघनता की इस धारणा के अनुप्रयोगों का उदाहरण देते हैं। इसके प्रारंभिक परिचय के बाद, सामान्य मीट्रिक स्थानों में अनुक्रमिक रूप [[क्रमिक रूप से संकुचित स्थान]] और सीमा बिंदु कॉम्पैक्टनेस सहित कॉम्पैक्टनेस की विभिन्न समकक्ष धारणाएं विकसित की गईं।<ref name=":0">{{cite web |title=अनुक्रमिक सघनता|series=MT&nbsp;4522 course lectures |volume=L22 |website=www-groups.mcs.st-andrews.ac.uk |url=http://www-groups.mcs.st-andrews.ac.uk/~john/MT4522/Lectures/L22.html |access-date=2019-11-25}}</ref> चूँकि , सामान्य टोपोलॉजिकल स्पेस में, कॉम्पैक्टनेस की ये धारणाएँ आवश्यक रूप से समतुल्य नहीं हैं। सबसे उपयोगी धारणा - और अयोग्य शब्द कॉम्पैक्टनेस की मानक परिभाषा - को विवर्त समुच्चय के परिमित परिवारों के अस्तित्व के संदर्भ में व्यक्त किया गया है जो स्पेस को [[कवर (टोपोलॉजी)]] इस अर्थ में करते हैं कि स्पेस का प्रत्येक बिंदु किसी न किसी समुच्चय में निहित है। परिवार। 1929 में [[पावेल अलेक्जेंड्रोव]] और [[पावेल उरीसोहन]] द्वारा प्रस्तुत की गई यह अधिक सूक्ष्म धारणा, सीमित स्थानों को [[परिमित सेट|परिमित समुच्च]] के सामान्यीकरण के रूप में प्रदर्शित करती है। ऐसे स्थानों में जो इस अर्थ में कॉम्पैक्ट होते हैं, [[स्थानीय संपत्ति|स्थानीय गुण]] रखने वाली जानकारी को साथ पैच करना सदैव संभव होता है - इस प्रकार से, प्रत्येक बिंदु के पड़ोस में - संबंधित वर्णन में जो पूरे स्थान में होते हैं, और कई प्रमेय इस चरित्र के होते हैं।
कॉम्पैक्टनेस को औपचारिक रूप से 1906 में मौरिस फ्रेचेट द्वारा बोल्ज़ानो-वीयरस्ट्रैस प्रमेय को ज्यामितीय बिंदुओं के स्थानों से [[कार्य स्थान]] तक सामान्यीकृत करने के लिए प्रस्तुत किया गया था। अर्ज़ेला-अस्कोली प्रमेय और पीनो अस्तित्व प्रमेय शास्त्रीय विश्लेषण के लिए सघनता की इस धारणा के अनुप्रयोगों का उदाहरण देते हैं। इसके प्रारंभिक परिचय के बाद, सामान्य मीट्रिक स्थानों में अनुक्रमिक रूप [[क्रमिक रूप से संकुचित स्थान]] और सीमा बिंदु कॉम्पैक्टनेस सहित कॉम्पैक्टनेस की विभिन्न समकक्ष धारणाएं विकसित की गईं।<ref name=":0">{{cite web |title=अनुक्रमिक सघनता|series=MT&nbsp;4522 course lectures |volume=L22 |website=www-groups.mcs.st-andrews.ac.uk |url=http://www-groups.mcs.st-andrews.ac.uk/~john/MT4522/Lectures/L22.html |access-date=2019-11-25}}</ref> चूँकि , सामान्य टोपोलॉजिकल स्पेस में, कॉम्पैक्टनेस की ये धारणाएँ आवश्यक रूप से समतुल्य नहीं हैं। सबसे उपयोगी धारणा - और अयोग्य शब्द कॉम्पैक्टनेस की मानक परिभाषा - को विवर्त समुच्चय के परिमित परिवारों के अस्तित्व के संदर्भ में व्यक्त किया गया है जो स्पेस को [[कवर (टोपोलॉजी)]] इस अर्थ में करते हैं कि स्पेस का प्रत्येक बिंदु किसी न किसी समुच्चय में निहित है। परिवार। 1929 में [[पावेल अलेक्जेंड्रोव]] और [[पावेल उरीसोहन]] द्वारा प्रस्तुत की गई यह अधिक सूक्ष्म धारणा, सीमित स्थानों को [[परिमित सेट|परिमित समुच्च]] के सामान्यीकरण के रूप में प्रदर्शित करती है। ऐसे स्थानों में जो इस अर्थ में कॉम्पैक्ट होते हैं, [[स्थानीय संपत्ति|स्थानीय गुण]] रखने वाली जानकारी को साथ पैच करना सदैव संभव होता है - इस प्रकार से, प्रत्येक बिंदु के पड़ोस में - संबंधित वर्णन में जो पूरे स्थान में होते हैं, और कई प्रमेय इस चरित्र के होते हैं।


'कॉम्पैक्ट समुच्चय' शब्द का प्रयोग कभी-कभी कॉम्पैक्ट स्पेस के पर्याय के रूप में किया जाता है, जिससे यह सदैव टोपोलॉजिकल स्पेस के समुच्चय की कॉम्पैक्टनेस को भी संदर्भित करता है।
'कॉम्पैक्ट समुच्चय' शब्द का प्रयोग कभी-कभी कॉम्पैक्ट स्पेस के पर्याय के रूप में किया जाता है, जिससे यह सदैव टोपोलॉजिकल स्पेस के समुच्चय की कॉम्पैक्टनेस को भी संदर्भित करता है।


==ऐतिहासिक विकास==
==ऐतिहासिक विकास==


इस प्रकार से 19वीं शताब्दी में, कई असमान गणितीय गुणों को समझा गया जिन्हें बाद में सघनता के परिणाम के रूप में देखा जाएगा। ओर, [[बर्नार्ड बोलजानो]] (1817) को पता था कि बिंदुओं के किसी भी बंधे हुए अनुक्रम (उदाहरण के लिए, रेखा या विमान में) का परिणाम होता है जो अंततः इच्छा अनुसार   से किसी अन्य बिंदु के समीप आना चाहिए, जिसे सीमा बिंदु कहा जाता है।  
इस प्रकार से 19वीं शताब्दी में, कई असमान गणितीय गुणों को समझा गया जिन्हें बाद में सघनता के परिणाम के रूप में देखा जाएगा। ओर, [[बर्नार्ड बोलजानो]] (1817) को पता था कि बिंदुओं के किसी भी बंधे हुए अनुक्रम (उदाहरण के लिए, रेखा या विमान में) का परिणाम होता है जो अंततः इच्छा अनुसार से किसी अन्य बिंदु के समीप आना चाहिए, जिसे सीमा बिंदु कहा जाता है।  


बोल्ज़ानो का प्रमाण [[द्विभाजन की विधि]] पर निर्भर करता था: अनुक्रम को अंतराल में रखा गया था जिसे फिर दो समान   भागों में विभाजित किया गया था, और अनुक्रम के अनंत रूप से कई पदों वाले भाग का चयन किया गया था।
बोल्ज़ानो का प्रमाण [[द्विभाजन की विधि]] पर निर्भर करता था: अनुक्रम को अंतराल में रखा गया था जिसे फिर दो समान भागों में विभाजित किया गया था, और अनुक्रम के अनंत रूप से कई पदों वाले भाग का चयन किया गया था।


इस प्रकार से परिणामी छोटे अंतराल को छोटे और छोटे भागों में विभाजित करके प्रक्रिया को दोहराया जा सकता है - जब तक कि यह वांछित सीमा बिंदु पर बंद न हो जाए।
इस प्रकार से परिणामी छोटे अंतराल को छोटे और छोटे भागों में विभाजित करके प्रक्रिया को दोहराया जा सकता है - जब तक कि यह वांछित सीमा बिंदु पर बंद न हो जाए।
Line 32: Line 33:
चूँकि 1880 के दशक में, यह स्पष्ट हो गया कि बोलजानो-वीयरस्ट्रैस प्रमेय के समान परिणाम केवल संख्याओं या ज्यामितीय बिंदुओं के बजाय [[कार्य स्थान]] के लिए तैयार किए जा सकते हैं।
चूँकि 1880 के दशक में, यह स्पष्ट हो गया कि बोलजानो-वीयरस्ट्रैस प्रमेय के समान परिणाम केवल संख्याओं या ज्यामितीय बिंदुओं के बजाय [[कार्य स्थान]] के लिए तैयार किए जा सकते हैं।


कार्यों को सामान्यीकृत स्थान के बिंदुओं के रूप में मानने का विचार गिउलिओ एस्कोली और सेसारे अर्ज़ेला की जांच से जुड़ा है।<ref>{{harvnb|Kline|1990|loc=Chapter 46, §2}}</ref> उनकी जांच की परिणति, अर्ज़ेला-एस्कोली प्रमेय, निरंतर कार्यों के परिवारों के लिए बोल्ज़ानो-वीयरस्ट्रैस प्रमेय का सामान्यीकरण था, जिसका स्पष्ट   निष्कर्ष यह निकालना था कि उपयुक्त परिवार से कार्यों का समान अभिसरण अनुक्रम निकालना संभव था।  
कार्यों को सामान्यीकृत स्थान के बिंदुओं के रूप में मानने का विचार गिउलिओ एस्कोली और सेसारे अर्ज़ेला की जांच से जुड़ा है।<ref>{{harvnb|Kline|1990|loc=Chapter 46, §2}}</ref> उनकी जांच की परिणति, अर्ज़ेला-एस्कोली प्रमेय, निरंतर कार्यों के परिवारों के लिए बोल्ज़ानो-वीयरस्ट्रैस प्रमेय का सामान्यीकरण था, जिसका स्पष्ट निष्कर्ष यह निकालना था कि उपयुक्त परिवार से कार्यों का समान अभिसरण अनुक्रम निकालना संभव था।  


इस क्रम की एकसमान सीमा ने बोल्ज़ानो के सीमा बिंदु के समान ही भूमिका निभाई।
इस क्रम की एकसमान सीमा ने बोल्ज़ानो के सीमा बिंदु के समान ही भूमिका निभाई।


बीसवीं शताब्दी की प्रारंभ   में, [[डेविड हिल्बर्ट]] और [[एरहार्ड श्मिट]] द्वारा जांच के अनुसार, अर्ज़ेला और एस्कोली के समान परिणाम [[अभिन्न समीकरण]] के क्षेत्र में जमा होने लगे थे ।
बीसवीं शताब्दी की प्रारंभ में, [[डेविड हिल्बर्ट]] और [[एरहार्ड श्मिट]] द्वारा जांच के अनुसार, अर्ज़ेला और एस्कोली के समान परिणाम [[अभिन्न समीकरण]] के क्षेत्र में जमा होने लगे थे ।


इंटीग्रल समीकरणों के समाधान से आने वाले ग्रीन के कार्यों के निश्चित वर्ग के लिए, श्मिट ने दिखाया था कि आर्ज़ेला-एस्कोली प्रमेय के अनुरूप गुण [[माध्य अभिसरण]] के अर्थ में होती है - या अभिसरण जिसे बाद में [[ हिल्बर्ट स्थान |हिल्बर्ट स्थान]] कहा जाएगा।
इंटीग्रल समीकरणों के समाधान से आने वाले ग्रीन के कार्यों के निश्चित वर्ग के लिए, श्मिट ने दिखाया था कि आर्ज़ेला-एस्कोली प्रमेय के अनुरूप गुण [[माध्य अभिसरण]] के अर्थ में होती है - या अभिसरण जिसे बाद में [[ हिल्बर्ट स्थान |हिल्बर्ट स्थान]] कहा जाएगा।
Line 44: Line 45:
और यह मौरिस रेने फ़्रेचेट थे मौरिस फ़्रेचेट, जिन्होंने 1906 में, बोल्ज़ानो-वीयरस्ट्रैस गुण के सार को आसवित किया था और इस सामान्य घटना को संदर्भित करने के लिए कॉम्पैक्टनेस शब्द गढ़ा था (उन्होंने इस शब्द का उपयोग अपने 1904 के पेपर में पहले से ही किया था)<ref>Frechet, M. 1904. Generalisation d'un theorem de Weierstrass. Analyse Mathematique.</ref> जिसके फलस्वरूप प्रसिद्ध 1906 थीसिस सामने आई)।
और यह मौरिस रेने फ़्रेचेट थे मौरिस फ़्रेचेट, जिन्होंने 1906 में, बोल्ज़ानो-वीयरस्ट्रैस गुण के सार को आसवित किया था और इस सामान्य घटना को संदर्भित करने के लिए कॉम्पैक्टनेस शब्द गढ़ा था (उन्होंने इस शब्द का उपयोग अपने 1904 के पेपर में पहले से ही किया था)<ref>Frechet, M. 1904. Generalisation d'un theorem de Weierstrass. Analyse Mathematique.</ref> जिसके फलस्वरूप प्रसिद्ध 1906 थीसिस सामने आई)।


चूँकि , 19वीं शताब्दी के अंत में [[रैखिक सातत्य]] के अध्ययन से समग्रता की अलग धारणा भी धीरे-धीरे उभरी थी, जिसे विश्लेषण के कठोर सूत्रीकरण के लिए मौलिक माना गया था।
चूँकि , 19वीं शताब्दी के अंत में [[रैखिक सातत्य]] के अध्ययन से समग्रता की अलग धारणा भी धीरे-धीरे उभरी थी, जिसे विश्लेषण के कठोर सूत्रीकरण के लिए मौलिक माना गया था।


किन्तु 1870 में, [[एडवर्ड हेन]] ने दिखाया कि बंद और सीमित अंतराल पर परिभाषित सतत कार्य वास्तव में [[समान रूप से निरंतर]] था। प्रमाण के समय , उन्होंने लेम्मा का उपयोग किया कि छोटे विवर्त अंतरालों द्वारा अंतराल के किसी भी गणनीय कवर से, इनमें से सीमित संख्या का चयन करना संभव था जो इसे भी कवर करता था।
किन्तु 1870 में, [[एडवर्ड हेन]] ने दिखाया कि बंद और सीमित अंतराल पर परिभाषित सतत कार्य वास्तव में [[समान रूप से निरंतर]] था। प्रमाण के समय , उन्होंने लेम्मा का उपयोग किया कि छोटे विवर्त अंतरालों द्वारा अंतराल के किसी भी गणनीय कवर से, इनमें से सीमित संख्या का चयन करना संभव था जो इसे भी कवर करता था।


इस लेम्मा के महत्व को एमिल बोरेल (1895) द्वारा पहचाना गया था, और इसे पियरे कजिन (गणितज्ञ) (1895) और [[हेनरी लेबेस्गुए]] (1904) द्वारा अंतरालों के मनमाने संग्रह के लिए सामान्यीकृत किया गया था। हेन-बोरेल प्रमेय, जैसा कि परिणाम अब ज्ञात होते है, वास्तविक संख्याओं के बंद और बंधे हुए समुच्चयों के पास और विशेष गुण होते है।
इस लेम्मा के महत्व को एमिल बोरेल (1895) द्वारा पहचाना गया था, और इसे पियरे कजिन (गणितज्ञ) (1895) और [[हेनरी लेबेस्गुए]] (1904) द्वारा अंतरालों के मनमाने संग्रह के लिए सामान्यीकृत किया गया था। हेन-बोरेल प्रमेय, जैसा कि परिणाम अब ज्ञात होते है, वास्तविक संख्याओं के बंद और बंधे हुए समुच्चयों के पास और विशेष गुण होते है।


और यह गुण महत्वपूर्ण थी क्योंकि यह समुच्चय के पश्चात में स्थानीय गुण (जैसे किसी फलन की निरंतरता) से समुच्चय के बारे में वैश्विक जानकारी (जैसे किसी फलन की समान निरंतरता) तक पारित होने की अनुमति देती थी।
और यह गुण महत्वपूर्ण थी क्योंकि यह समुच्चय के पश्चात में स्थानीय गुण (जैसे किसी फलन की निरंतरता) से समुच्चय के बारे में वैश्विक जानकारी (जैसे किसी फलन की समान निरंतरता) तक पारित होने की अनुमति देती थी।


यह भावना व्यक्त की गई {{harvtxt|लेब्सग्यू|1904}}, जिन्होंने [[लेब्सग इंटीग्रल]] के विकास में भी इसका उपयोग किया।
यह भावना व्यक्त की गई {{harvtxt|लेब्सग्यू|1904}}, जिन्होंने [[लेब्सग इंटीग्रल]] के विकास में भी इसका उपयोग किया।
Line 56: Line 57:
अंततः, पावेल अलेक्जेंड्रोव और पावेल उरीसोहन के निर्देशन में [[ बिंदु-सेट टोपोलॉजी |बिंदु-समुच्चय टोपोलॉजी]] के रूसी स्कूल ने हेइन-बोरेल कॉम्पैक्टनेस को इस तरह से तैयार किया, जिसे टोपोलॉजिकल स्पेस की आधुनिक धारणा पर प्रयुक्त किया जा सके। {{harvtxt|अलेक्सान्द्रोव|उरीसोहन|1929}} ने दिखाया कि फ़्रेचेट के कारण कॉम्पैक्टनेस का पुराना संस्करण, जिसे अब (सापेक्ष) अनुक्रमिक कॉम्पैक्टनेस कहा जाता है, उचित परिस्थितियों [[अनुक्रमिक सघनता]] के उस संस्करण का अनुसरण करता है जिसे परिमित उपकवरों के अस्तित्व के संदर्भ में तैयार किया गया था।
अंततः, पावेल अलेक्जेंड्रोव और पावेल उरीसोहन के निर्देशन में [[ बिंदु-सेट टोपोलॉजी |बिंदु-समुच्चय टोपोलॉजी]] के रूसी स्कूल ने हेइन-बोरेल कॉम्पैक्टनेस को इस तरह से तैयार किया, जिसे टोपोलॉजिकल स्पेस की आधुनिक धारणा पर प्रयुक्त किया जा सके। {{harvtxt|अलेक्सान्द्रोव|उरीसोहन|1929}} ने दिखाया कि फ़्रेचेट के कारण कॉम्पैक्टनेस का पुराना संस्करण, जिसे अब (सापेक्ष) अनुक्रमिक कॉम्पैक्टनेस कहा जाता है, उचित परिस्थितियों [[अनुक्रमिक सघनता]] के उस संस्करण का अनुसरण करता है जिसे परिमित उपकवरों के अस्तित्व के संदर्भ में तैयार किया गया था।


यह कॉम्पैक्टनेस की धारणा थी जो प्रमुख बन गई, क्योंकि यह न केवल कठोर   गुण था, किन्तु इसे न्यूनतम अतिरिक्त तकनीकी मशीनरी के साथ अधिक सामान्य समुच्चयिंग में तैयार किया जा सकता था, क्योंकि यह केवल विवर्त समुच्चय की संरचना स्थान पर निर्भर थी।.
यह कॉम्पैक्टनेस की धारणा थी जो प्रमुख बन गई, क्योंकि यह न केवल कठोर गुण था, किन्तु इसे न्यूनतम अतिरिक्त तकनीकी मशीनरी के साथ अधिक सामान्य समुच्चयिंग में तैयार किया जा सकता था, क्योंकि यह केवल विवर्त समुच्चय की संरचना स्थान पर निर्भर थी।.
== मूल उदाहरण ==
== मूल उदाहरण ==


कोई भी [[परिमित स्थलाकृतिक स्थान]] सघन होता है; प्रत्येक बिंदु के लिए, उसमें उपस्थित विवर्त समुच्चय का चयन करके सीमित उपकवर प्राप्त किया जा सकता है। कॉम्पैक्ट {{closed-closed|0,1}}स्पेस का गैर-तुच्छ उदाहरण (बंद) इकाई अंतराल है वास्तविक संख्याओं का। यदि कोई इकाई अंतराल में अनंत संख्या में अलग-अलग बिंदु चुनता है, तो उस अंतराल में इन बिंदुओं के बीच कुछ [[संचय बिंदु]] होना चाहिए। उदाहरण के लिए, अनुक्रम के विषम संख्या वाले पद {{nowrap|1, 1/2, 1/3, 3/4, 1/5, 5/6, 1/7, 7/8, ...}} इच्छा अनुसार   से 0 के समीप पहुंच जाते हैं, जबकि सम-संख्या वाले इच्छा अनुसार   से 1 के समीप पहुंच जाते हैं। दिया गया उदाहरण अनुक्रम अंतराल की [[सीमा (टोपोलॉजी)]] बिंदुओं को सम्मिलित करने के महत्व को दर्शाता है, क्योंकि [[अनुक्रम की सीमा]] स्पेस में ही होनी चाहिए - वास्तविक संख्याओं का विवर्त   (या आधा विवर्त ) अंतराल सघन नहीं होता है।
कोई भी [[परिमित स्थलाकृतिक स्थान]] सघन होता है; प्रत्येक बिंदु के लिए, उसमें उपस्थित विवर्त समुच्चय का चयन करके सीमित उपकवर प्राप्त किया जा सकता है। कॉम्पैक्ट {{closed-closed|0,1}}स्पेस का गैर-तुच्छ उदाहरण (बंद) इकाई अंतराल है वास्तविक संख्याओं का। यदि कोई इकाई अंतराल में अनंत संख्या में अलग-अलग बिंदु चुनता है, तो उस अंतराल में इन बिंदुओं के बीच कुछ [[संचय बिंदु]] होना चाहिए। उदाहरण के लिए, अनुक्रम के विषम संख्या वाले पद {{nowrap|1, 1/2, 1/3, 3/4, 1/5, 5/6, 1/7, 7/8, ...}} इच्छा अनुसार से 0 के समीप पहुंच जाते हैं, जबकि सम-संख्या वाले इच्छा अनुसार से 1 के समीप पहुंच जाते हैं। दिया गया उदाहरण अनुक्रम अंतराल की [[सीमा (टोपोलॉजी)]] बिंदुओं को सम्मिलित करने के महत्व को दर्शाता है, क्योंकि [[अनुक्रम की सीमा]] स्पेस में ही होनी चाहिए - वास्तविक संख्याओं का विवर्त (या आधा विवर्त ) अंतराल सघन नहीं होता है।


यह भी महत्वपूर्ण है कि अंतराल को सीमित किया जाए, क्योंकि अंतराल {{closed-open|0,∞}} में, कोई अंकों का क्रम चुन सकता है {{nowrap|0, 1, 2, 3, ...}}, जिसका कोई भी उप-अनुक्रम अंततः इच्छा अनुसार   से किसी भी वास्तविक संख्या के समीप नहीं आता है।
यह भी महत्वपूर्ण है कि अंतराल को सीमित किया जाए, क्योंकि अंतराल {{closed-open|0,∞}} में, कोई अंकों का क्रम चुन सकता है {{nowrap|0, 1, 2, 3, ...}}, जिसका कोई भी उप-अनुक्रम अंततः इच्छा अनुसार से किसी भी वास्तविक संख्या के समीप नहीं आता है।


इस प्रकार से दो आयामों में, बंद [[डिस्क (गणित)]] कॉम्पैक्ट होती है क्योंकि डिस्क से लिए गए किसी भी अनंत संख्या में बिंदुओं के लिए, उन बिंदुओं के कुछ उपसमुच्चय को इच्छा अनुसार   से या तो डिस्क के अन्दर बिंदु या सीमा पर बिंदु के समीप आना चाहिए। चूँकि , विवर्त डिस्क कॉम्पैक्ट नहीं होती है, क्योंकि बिंदुओं का क्रम सीमा की ओर बढ़ सकता है - आंतरिक भाग में किसी भी बिंदु के इच्छा अनुसार   से समीप आए बिना। इसी प्रकार , व्रत्त सघन होते हैं, जिससे व्रत्त में बिंदु नहीं होता है क्योंकि बिंदुओं का क्रम अभी भी लुप्त बिंदु की ओर बढ़ सकता है, जिससे स्पेस के अन्दर किसी भी बिंदु के इच्छा अनुसार   से समीप नहीं आ सकता है। रेखाएं और समतल सघन नहीं होते हैं, क्योंकि कोई भी व्यक्ति किसी भी बिंदु तक पहुंचे बिना किसी भी दिशा में समान दूरी वाले बिंदुओं का समुच्चय ले सकता है।
इस प्रकार से दो आयामों में, बंद [[डिस्क (गणित)]] कॉम्पैक्ट होती है क्योंकि डिस्क से लिए गए किसी भी अनंत संख्या में बिंदुओं के लिए, उन बिंदुओं के कुछ उपसमुच्चय को इच्छा अनुसार से या तो डिस्क के अन्दर बिंदु या सीमा पर बिंदु के समीप आना चाहिए। चूँकि , विवर्त डिस्क कॉम्पैक्ट नहीं होती है, क्योंकि बिंदुओं का क्रम सीमा की ओर बढ़ सकता है - आंतरिक भाग में किसी भी बिंदु के इच्छा अनुसार से समीप आए बिना। इसी प्रकार , व्रत्त सघन होते हैं, जिससे व्रत्त में बिंदु नहीं होता है क्योंकि बिंदुओं का क्रम अभी भी लुप्त बिंदु की ओर बढ़ सकता है, जिससे स्पेस के अन्दर किसी भी बिंदु के इच्छा अनुसार से समीप नहीं आ सकता है। रेखाएं और समतल सघन नहीं होते हैं, क्योंकि कोई भी व्यक्ति किसी भी बिंदु तक पहुंचे बिना किसी भी दिशा में समान दूरी वाले बिंदुओं का समुच्चय ले सकता है।


== परिभाषाएँ ==
== परिभाषाएँ ==
Line 73: Line 74:
सघनता की विभिन्न समतुल्य धारणाएँ, जैसे अनुक्रमिक सघनता और सीमा बिंदु सघनता, सामान्य मीट्रिक स्थानों में विकसित की जा सकती हैं।<ref name=":0" />
सघनता की विभिन्न समतुल्य धारणाएँ, जैसे अनुक्रमिक सघनता और सीमा बिंदु सघनता, सामान्य मीट्रिक स्थानों में विकसित की जा सकती हैं।<ref name=":0" />


इसके विपरीत, कॉम्पैक्टनेस की विभिन्न धारणाएं सामान्य टोपोलॉजिकल स्पेस में समतुल्य नहीं हैं, और कॉम्पैक्टनेस की सबसे उपयोगी धारणा - जिसे मूल रूप से बायोकॉम्पैक्टनेस कहा जाता है - जो विवर्त समुच्चय से युक्त कवर (टोपोलॉजी) का उपयोग करके परिभाषित किया गया है (नीचे विवर्त कवर परिभाषा देखें)।
इसके विपरीत, कॉम्पैक्टनेस की विभिन्न धारणाएं सामान्य टोपोलॉजिकल स्पेस में समतुल्य नहीं हैं, और कॉम्पैक्टनेस की सबसे उपयोगी धारणा - जिसे मूल रूप से बायोकॉम्पैक्टनेस कहा जाता है - जो विवर्त समुच्चय से युक्त कवर (टोपोलॉजी) का उपयोग करके परिभाषित किया गया है (नीचे विवर्त कवर परिभाषा देखें)।


कॉम्पैक्टनेस का यह रूप यूक्लिडियन स्पेस के बंद और बंधे उपसमुच्चय के लिए मान्य है, जिसे हेइन-बोरेल प्रमेय के रूप में जाना जाता है।
कॉम्पैक्टनेस का यह रूप यूक्लिडियन स्पेस के बंद और बंधे उपसमुच्चय के लिए मान्य है, जिसे हेइन-बोरेल प्रमेय के रूप में जाना जाता है।


कॉम्पैक्टनेस, जब इस विधि से परिभाषित की जाती है, तो सदैव किसी को वह जानकारी लेने की अनुमति मिलती है जो स्थानीय गुण के रूप में जानी जाती है - स्पेस के प्रत्येक बिंदु के [[पड़ोस (गणित)|प्रतिवेश (गणित)]] में - और इसे उस जानकारी तक विस्तारित करने के लिए जो पूरे स्पेस में विश्व स्तर पर उपस्थित है।
कॉम्पैक्टनेस, जब इस विधि से परिभाषित की जाती है, तो सदैव किसी को वह जानकारी लेने की अनुमति मिलती है जो स्थानीय गुण के रूप में जानी जाती है - स्पेस के प्रत्येक बिंदु के [[पड़ोस (गणित)|प्रतिवेश (गणित)]] में - और इसे उस जानकारी तक विस्तारित करने के लिए जो पूरे स्पेस में विश्व स्तर पर उपस्थित है।


इस घटना का उदाहरण डिरिचलेट का प्रमेय है, जिस पर इसे मूल रूप से हेइन द्वारा प्रयुक्त किया गया था, कि कॉम्पैक्ट अंतराल पर निरंतर कार्य समान रूप से निरंतर होता है; यहां, निरंतरता फलन की स्थानीय गुण है, और समान निरंतरता संबंधित वैश्विक गुण है।
इस घटना का उदाहरण डिरिचलेट का प्रमेय है, जिस पर इसे मूल रूप से हेइन द्वारा प्रयुक्त किया गया था, कि कॉम्पैक्ट अंतराल पर निरंतर कार्य समान रूप से निरंतर होता है; यहां, निरंतरता फलन की स्थानीय गुण है, और समान निरंतरता संबंधित वैश्विक गुण है।


===विवर्त कवर परिभाषा===
===विवर्त कवर परिभाषा===


औपचारिक रूप से, टोपोलॉजिकल स्पेस {{mvar|X}} को कॉम्पैक्ट कहा जाता है यदि प्रत्येक विवर्त   कवर {{mvar|X}} में सीमित समुच्चय [[ छिपाना |छिपाना]] है।<ref>{{cite web |title=कॉम्पैक्ट स्पेस|last=Weisstein |first=Eric W. |website=mathworld.wolfram.com |lang=en |url=http://mathworld.wolfram.com/CompactSpace.html |access-date=2019-11-25}}</ref> अर्थात्, यदि ''X'' के खुले उपसमुच्चय के प्रत्येक संग्रह ''C'' के लिए ''X'' संहत है
औपचारिक रूप से, टोपोलॉजिकल स्पेस {{mvar|X}} को कॉम्पैक्ट कहा जाता है यदि प्रत्येक विवर्त कवर {{mvar|X}} में सीमित समुच्चय [[ छिपाना |छिपाना]] है।<ref>{{cite web |title=कॉम्पैक्ट स्पेस|last=Weisstein |first=Eric W. |website=mathworld.wolfram.com |lang=en |url=http://mathworld.wolfram.com/CompactSpace.html |access-date=2019-11-25}}</ref> अर्थात्, यदि ''X'' के खुले उपसमुच्चय के प्रत्येक संग्रह ''C'' के लिए ''X'' संहत है


:<math>X = \bigcup_{x \in C}x</math>,
:<math>X = \bigcup_{x \in C}x</math>,
Line 90: Line 91:


:<math>X = \bigcup_{x \in F} x\ .</math>
:<math>X = \bigcup_{x \in F} x\ .</math>
गणित की कुछ शाखाएँ जैसे कि [[बीजगणितीय ज्यामिति]], सामान्यतः [[निकोलस बॉर्बकी]] के फ्रांसीसी स्कूल से प्रभावित होती हैं, सामान्य धारणा के लिए अर्ध-कॉम्पैक्ट शब्द का उपयोग करती हैं, और टोपोलॉजिकल रिक्त स्थान के लिए कॉम्पैक्ट शब्द को आरक्षित करती हैं जो [[हॉसडॉर्फ़ स्थान]] और अर्ध-कॉम्पैक्ट दोनों हैं।
गणित की कुछ शाखाएँ जैसे कि [[बीजगणितीय ज्यामिति]], सामान्यतः [[निकोलस बॉर्बकी]] के फ्रांसीसी स्कूल से प्रभावित होती हैं, सामान्य धारणा के लिए अर्ध-कॉम्पैक्ट शब्द का उपयोग करती हैं, और टोपोलॉजिकल रिक्त स्थान के लिए कॉम्पैक्ट शब्द को आरक्षित करती हैं जो [[हॉसडॉर्फ़ स्थान]] और अर्ध-कॉम्पैक्ट दोनों हैं।


इस प्रकार से एक कॉम्पैक्ट समुच्चय को कभी-कभी कॉम्पैक्टम, बहुवचन कॉम्पेक्टा के रूप में जाना जाता है।
इस प्रकार से एक कॉम्पैक्ट समुच्चय को कभी-कभी कॉम्पैक्टम, बहुवचन कॉम्पेक्टा के रूप में जाना जाता है।
Line 104: Line 105:


:<math>K \subseteq \bigcup_{c \in F} c\ .</math>
:<math>K \subseteq \bigcup_{c \in F} c\ .</math>
कॉम्पैक्टनेस एक "टोपोलॉजिकल" संपत्ति है। अर्थात्, यदि <math>K \subset Z \subset Y</math>, उपसमुच्चय {{mvar|Z}} के साथ सबस्पेस टोपोलॉजी से सुसज्जित है, तो {{mvar|K}}, {{mvar|Z}} में कॉम्पैक्ट है यदि और केवल यदि {{mvar|K}}, {{mvar|Y}} में कॉम्पैक्ट है।
कॉम्पैक्टनेस एक "टोपोलॉजिकल" संपत्ति है। अर्थात्, यदि <math>K \subset Z \subset Y</math>, उपसमुच्चय {{mvar|Z}} के साथ सबस्पेस टोपोलॉजी से सुसज्जित है, तो {{mvar|K}}, {{mvar|Z}} में कॉम्पैक्ट है यदि और केवल यदि {{mvar|K}}, {{mvar|Y}} में कॉम्पैक्ट है।


=== लक्षण वर्णन ===
=== लक्षण वर्णन ===


अगर {{mvar|X}} टोपोलॉजिकल स्पेस है तो निम्नलिखित समकक्ष हैं:
अगर {{mvar|X}} टोपोलॉजिकल स्पेस है तो निम्नलिखित समकक्ष हैं:
# {{mvar|X}} सघन है; इस प्रकार से ,{{mvar|X}} हर विवर्त   कवर का सीमित उपकवर है।
# {{mvar|X}} सघन है; इस प्रकार से ,{{mvar|X}} हर विवर्त कवर का सीमित उपकवर है।
# {{mvar|X}} का उप-आधार इस प्रकार है कि उप-आधार के सदस्यों द्वारा स्पेस के प्रत्येक आवरण में परिमित उप-आधार होता है (अलेक्जेंडर का उप-आधार प्रमेय)।
# {{mvar|X}} का उप-आधार इस प्रकार है कि उप-आधार के सदस्यों द्वारा स्पेस के प्रत्येक आवरण में परिमित उप-आधार होता है (अलेक्जेंडर का उप-आधार प्रमेय)।
# {{mvar|X}} लिंडेलोफ स्थान है लिंडेलोफ और [[गणनीय रूप से सघन]]{{sfn | Howes | 1995 | pp=xxvi-xxviii}}
# {{mvar|X}} लिंडेलोफ स्थान है लिंडेलोफ और [[गणनीय रूप से सघन]]{{sfn | Howes | 1995 | pp=xxvi-xxviii}}
# बंद उपसमुच्चय का कोई भी संग्रह [[परिमित प्रतिच्छेदन संपत्ति|परिमित प्रतिच्छेदन गुण]] के साथ {{mvar|X}} गैर-रिक्त प्रतिच्छेदन है।
# बंद उपसमुच्चय का कोई भी संग्रह [[परिमित प्रतिच्छेदन संपत्ति|परिमित प्रतिच्छेदन गुण]] के साथ {{mvar|X}} गैर-रिक्त प्रतिच्छेदन है।
# {{mvar|X}} पर प्रत्येक [[नेट (गणित)]] चालू   में अभिसरण सबनेट है (प्रमाण के लिए नेट (गणित) पर आलेख देखें)।
# {{mvar|X}} पर प्रत्येक [[नेट (गणित)]] चालू में अभिसरण सबनेट है (प्रमाण के लिए नेट (गणित) पर आलेख देखें)।
# {{mvar|X}} टोपोलॉजी में प्रत्येक फ़िल्टर चालू है में अभिसरण शोधन है।
# {{mvar|X}} टोपोलॉजी में प्रत्येक फ़िल्टर चालू है में अभिसरण शोधन है।
#{{mvar|X}} पर प्रत्येक नेट ऑन का क्लस्टर बिंदु है।
#{{mvar|X}} पर प्रत्येक नेट ऑन का क्लस्टर बिंदु है।
# प्रत्येक फ़िल्टर चालू {{mvar|X}} का क्लस्टर बिंदु है।
# प्रत्येक फ़िल्टर चालू {{mvar|X}} का क्लस्टर बिंदु है।
# {{mvar|X}} पर प्रत्येक [[ अल्ट्राफिल्टर (सेट सिद्धांत) |अल्ट्राफिल्टर (समुच्चय सिद्धांत)]] चालू कम से कम बिंदु पर एकत्रित होता है।
# {{mvar|X}} पर प्रत्येक [[ अल्ट्राफिल्टर (सेट सिद्धांत) |अल्ट्राफिल्टर (समुच्चय सिद्धांत)]] चालू कम से कम बिंदु पर एकत्रित होता है।
# {{mvar|X}} पर प्रत्येक अनंत उपसमुच्चय का [[पूर्ण संचय बिंदु]] है।<ref>{{harvnb|Kelley|1955|p=163}}</ref>
# {{mvar|X}} पर प्रत्येक अनंत उपसमुच्चय का [[पूर्ण संचय बिंदु]] है।<ref>{{harvnb|Kelley|1955|p=163}}</ref>
# प्रत्येक टोपोलॉजिकल स्पेस {{mvar|Y}},के लिए प्रक्षेपण <math>X \times Y \to Y</math> बंद मैपिंग है<ref name="Bourbaki">{{harvnb|Bourbaki|2007|loc=§ 10.2. Theorem&nbsp;1, Corollary&nbsp;1.}}</ref> ([[उचित मानचित्र]] देखें)।
# प्रत्येक टोपोलॉजिकल स्पेस {{mvar|Y}},के लिए प्रक्षेपण <math>X \times Y \to Y</math> बंद मैपिंग है<ref name="Bourbaki">{{harvnb|Bourbaki|2007|loc=§ 10.2. Theorem&nbsp;1, Corollary&nbsp;1.}}</ref> ([[उचित मानचित्र]] देखें)।


अतः बोर्बाकी कॉम्पैक्ट स्पेस (अर्ध-कॉम्पैक्ट स्पेस) को टोपोलॉजिकल स्पेस के रूप में परिभाषित करता है जहां प्रत्येक फ़िल्टर में क्लस्टर पॉइंट होता है (इस प्रकार से , उपरोक्त में 8)।<ref name="BourbakiDefinition">{{harvnb|Bourbaki|2007|loc=§&nbsp;9.1. Definition&nbsp;1.}}</ref>
अतः बोर्बाकी कॉम्पैक्ट स्पेस (अर्ध-कॉम्पैक्ट स्पेस) को टोपोलॉजिकल स्पेस के रूप में परिभाषित करता है जहां प्रत्येक फ़िल्टर में क्लस्टर पॉइंट होता है (इस प्रकार से , उपरोक्त में 8)।<ref name="BourbakiDefinition">{{harvnb|Bourbaki|2007|loc=§&nbsp;9.1. Definition&nbsp;1.}}</ref>
==== यूक्लिडियन स्पेस ====
==== यूक्लिडियन स्पेस ====


किसी भी उपसमुच्चय {{mvar|A}} के लिए यूक्लिडियन स्पेस {{mvar|A}},का सघन है यदि और केवल यदि यह बंद समुच्चय और परिबद्ध समुच्चय है; यह हेइन-बोरेल प्रमेय है।
किसी भी उपसमुच्चय {{mvar|A}} के लिए यूक्लिडियन स्पेस {{mvar|A}},का सघन है यदि और केवल यदि यह बंद समुच्चय और परिबद्ध समुच्चय है; यह हेइन-बोरेल प्रमेय है।


चूंकि यूक्लिडियन स्पेस मीट्रिक स्पेस है, अगले उपधारा की शर्तें इसके सभी उपसमुच्चयों पर भी प्रयुक्त होती हैं।
चूंकि यूक्लिडियन स्पेस मीट्रिक स्पेस है, अगले उपधारा की शर्तें इसके सभी उपसमुच्चयों पर भी प्रयुक्त होती हैं।


सभी समतुल्य स्थितियों में, व्यवहार में यह सत्यापित करना सबसे सरल है कि उपसमुच्चय बंद और परिबद्ध है, उदाहरण के लिए, बंद अंतराल (गणित) या बंद {{mvar|n}}-गेंद अंतराल के लिए ।
सभी समतुल्य स्थितियों में, व्यवहार में यह सत्यापित करना सबसे सरल है कि उपसमुच्चय बंद और परिबद्ध है, उदाहरण के लिए, बंद अंतराल (गणित) या बंद {{mvar|n}}-गेंद अंतराल के लिए ।


==== मीट्रिक रिक्त स्थान ====
==== मीट्रिक रिक्त स्थान ====
Line 134: Line 135:
किसी भी मीट्रिक स्थान के लिए {{math|(''X'', ''d'')}}, निम्नलिखित समकक्ष हैं ([[गणनीय विकल्प]] मानते हुए):
किसी भी मीट्रिक स्थान के लिए {{math|(''X'', ''d'')}}, निम्नलिखित समकक्ष हैं ([[गणनीय विकल्प]] मानते हुए):
# {{math|(''X'', ''d'')}} सघन है.
# {{math|(''X'', ''d'')}} सघन है.
# {{math|(''X'', ''d'')}} [[पूर्णता (टोपोलॉजी)]] है और पूर्ण रूप से घिरा हुआ है (यह समान स्थानों के लिए कॉम्पैक्टनेस के समान   भी है)।<ref>{{harvnb|Arkhangel'skii|Fedorchuk|1990|loc=Theorem&nbsp;5.3.7}}</ref>
# {{math|(''X'', ''d'')}} [[पूर्णता (टोपोलॉजी)]] है और पूर्ण रूप से घिरा हुआ है (यह समान स्थानों के लिए कॉम्पैक्टनेस के समान भी है)।<ref>{{harvnb|Arkhangel'skii|Fedorchuk|1990|loc=Theorem&nbsp;5.3.7}}</ref>
# {{math|(''X'', ''d'')}} क्रमिक रूप से सघन है; अर्थात्, {{mvar|X}} प्रत्येक क्रम में में अभिसरण अनुवर्ती है जिसकी सीमा अंदर है {{mvar|X}} (यह [[प्रथम-गणनीय]] समान स्थानों के लिए कॉम्पैक्टनेस के समान   भी है)।
# {{math|(''X'', ''d'')}} क्रमिक रूप से सघन है; अर्थात्, {{mvar|X}} प्रत्येक क्रम में में अभिसरण अनुवर्ती है जिसकी सीमा अंदर है {{mvar|X}} (यह [[प्रथम-गणनीय]] समान स्थानों के लिए कॉम्पैक्टनेस के समान भी है)।
# {{math|(''X'', ''d'')}} सीमा बिंदु कॉम्पैक्ट है (जिसे कमजोर रूप से गणनीय कॉम्पैक्ट भी कहा जाता है); अर्थात्, {{mvar|X}} प्रत्येक अनंत उपसमुच्चय {{mvar|X}} में समुच्चय का कम से कम सीमा बिंदु होता है .
# {{math|(''X'', ''d'')}} सीमा बिंदु कॉम्पैक्ट है (जिसे कमजोर रूप से गणनीय कॉम्पैक्ट भी कहा जाता है); अर्थात्, {{mvar|X}} प्रत्येक अनंत उपसमुच्चय {{mvar|X}} में समुच्चय का कम से कम सीमा बिंदु होता है .
# {{math|(''X'', ''d'')}} गणनीय रूप से सघन है; अर्थात् {{mvar|X}}, प्रत्येक गणनीय विवर्त   आवरण का सीमित उपकवर है।
# {{math|(''X'', ''d'')}} गणनीय रूप से सघन है; अर्थात् {{mvar|X}}, प्रत्येक गणनीय विवर्त आवरण का सीमित उपकवर है।
# {{math|(''X'', ''d'')}} [[कैंटर सेट|कैंटर]] समुच्चय से सतत फलन की छवि है।<ref>{{harvnb|Willard|1970}} Theorem&nbsp;30.7.</ref>
# {{math|(''X'', ''d'')}} [[कैंटर सेट|कैंटर]] समुच्चय से सतत फलन की छवि है।<ref>{{harvnb|Willard|1970}} Theorem&nbsp;30.7.</ref>
# {{math|(''X'', ''d'')}} गैर-रिक्त बंद उपसमुच्चय {{math|''S''<sub>1</sub> ⊇ ''S''<sub>2</sub> ⊇ ...}} का प्रत्येक घटता हुआ नेस्टेड अनुक्रम में में गैर-रिक्त प्रतिच्छेदन है।
# {{math|(''X'', ''d'')}} गैर-रिक्त बंद उपसमुच्चय {{math|''S''<sub>1</sub> ⊇ ''S''<sub>2</sub> ⊇ ...}} का प्रत्येक घटता हुआ नेस्टेड अनुक्रम में में गैर-रिक्त प्रतिच्छेदन है।
# {{math|(''X'', ''d'')}} उचित विवर्त उपसमुच्चय {{math|''S''<sub>1</sub> ⊆ ''S''<sub>2</sub> ⊆ ...}} का हर बढ़ता हुआ नेस्टेड अनुक्रम में {{mvar|X}} कवर करने में विफल रहता है .
# {{math|(''X'', ''d'')}} उचित विवर्त उपसमुच्चय {{math|''S''<sub>1</sub> ⊆ ''S''<sub>2</sub> ⊆ ...}} का हर बढ़ता हुआ नेस्टेड अनुक्रम में {{mvar|X}} कवर करने में विफल रहता है .


एक कॉम्पैक्ट मीट्रिक स्थान {{math|(''X'', ''d'')}} निम्नलिखित गुणों को भी संतुष्ट करता है:
एक कॉम्पैक्ट मीट्रिक स्थान {{math|(''X'', ''d'')}} निम्नलिखित गुणों को भी संतुष्ट करता है:
# लेबेस्ग्यू की संख्या प्रमेयिका: प्रत्येक विवर्त आवरण के लिए {{mvar|X}}, वहां संख्या {{nowrap|''δ'' > 0}} उपस्थित है ऐसा कि प्रत्येक उपसमुच्चय {{mvar|X}} व्यास का < {{mvar|δ}} कवर के कुछ सदस्य में निहित है।
# लेबेस्ग्यू की संख्या प्रमेयिका: प्रत्येक विवर्त आवरण के लिए {{mvar|X}}, वहां संख्या {{nowrap|''δ'' > 0}} उपस्थित है ऐसा कि प्रत्येक उपसमुच्चय {{mvar|X}} व्यास का < {{mvar|δ}} कवर के कुछ सदस्य में निहित है।
# {{math|(''X'', ''d'')}} [[द्वितीय-गणनीय स्थान]] है द्वितीय-गणनीय, पृथक्करणीय स्थान और लिंडेलोफ़ स्थान|लिंडेलोफ़ - ये तीन स्थितियाँ मीट्रिक रिक्त स्थान के लिए समतुल्य हैं। इसका उलट सत्य नहीं है; उदाहरण के लिए, गणनीय असतत स्थान इन तीन नियमो को पूरा करता है, जिससे कॉम्पैक्ट नहीं है।
# {{math|(''X'', ''d'')}} [[द्वितीय-गणनीय स्थान]] है द्वितीय-गणनीय, पृथक्करणीय स्थान और लिंडेलोफ़ स्थान|लिंडेलोफ़ - ये तीन स्थितियाँ मीट्रिक रिक्त स्थान के लिए समतुल्य हैं। इसका उलट सत्य नहीं है; उदाहरण के लिए, गणनीय असतत स्थान इन तीन नियमो को पूरा करता है, जिससे कॉम्पैक्ट नहीं है।
# ({{mvar|X}} {{mvar|d}})बंद और घिरा हुआ है किसी भी मीट्रिक स्थान के समुच्चय के रूप में जिसका प्रतिबंधित मीट्रिक है . गैर-यूक्लिडियन स्थान के लिए इसका विपरीत विफल हो सकता है; जैसे [[असतत मीट्रिक]] से सुसज्जित वास्तविक रेखा बंद और परिबद्ध है जिससे कॉम्पैक्ट नहीं है, क्योंकि स्पेस के सभी [[सिंगलटन (गणित)]] का संग्रह विवर्त   आवरण है जो किसी परिमित उपकवर को स्वीकार नहीं करता है। यह पूर्ण है जिससे पूर्ण रूप से सीमित नहीं है।
# ({{mvar|X}} {{mvar|d}})बंद और घिरा हुआ है किसी भी मीट्रिक स्थान के समुच्चय के रूप में जिसका प्रतिबंधित मीट्रिक है . गैर-यूक्लिडियन स्थान के लिए इसका विपरीत विफल हो सकता है; जैसे [[असतत मीट्रिक]] से सुसज्जित वास्तविक रेखा बंद और परिबद्ध है जिससे कॉम्पैक्ट नहीं है, क्योंकि स्पेस के सभी [[सिंगलटन (गणित)]] का संग्रह विवर्त आवरण है जो किसी परिमित उपकवर को स्वीकार नहीं करता है। यह पूर्ण है जिससे पूर्ण रूप से सीमित नहीं है।


==== आदेशित स्थान ====
==== आदेशित स्थान ====


एक आदेशित स्थान के लिए {{math|(''X'', <)}} (इस प्रकार से ऑर्डर टोपोलॉजी से सुसज्जित पूरी तरह से ऑर्डर किया गया समुच्चय), निम्नलिखित समकक्ष हैं:
एक आदेशित स्थान के लिए {{math|(''X'', <)}} (इस प्रकार से ऑर्डर टोपोलॉजी से सुसज्जित पूरी तरह से ऑर्डर किया गया समुच्चय), निम्नलिखित समकक्ष हैं:
# {{math|(''X'', <)}} सघन है.
# {{math|(''X'', <)}} सघन है.
# {{mvar|X}} प्रत्येक उपसमुच्चय {{mvar|X}} में सर्वोच्च (अर्थात न्यूनतम ऊपरी सीमा) है.
# {{mvar|X}} प्रत्येक उपसमुच्चय {{mvar|X}} में सर्वोच्च (अर्थात न्यूनतम ऊपरी सीमा) है.
Line 157: Line 158:
इन नियमो में से किसी को संतुष्ट करने वाला व्यवस्थित स्थान पूर्ण जाली कहलाता है।
इन नियमो में से किसी को संतुष्ट करने वाला व्यवस्थित स्थान पूर्ण जाली कहलाता है।


इसके अतिरिक्त , निम्नलिखित सभी ऑर्डर किए गए स्थानों के लिए {{math|(''X'', <)}} समतुल्य हैं , और (गणनीय विकल्प मानते हुए) जब भी सत्य होते हैं {{math|(''X'', <)}} सघन है. (सामान्यतः संवाद विफल हो जाती है यदि {{math|(''X'', <)}} भी मेट्रिज़ेबल नहीं है।):
इसके अतिरिक्त , निम्नलिखित सभी ऑर्डर किए गए स्थानों के लिए {{math|(''X'', <)}} समतुल्य हैं , और (गणनीय विकल्प मानते हुए) जब भी सत्य होते हैं {{math|(''X'', <)}} सघन है. (सामान्यतः संवाद विफल हो जाती है यदि {{math|(''X'', <)}} भी मेट्रिज़ेबल नहीं है।):
# प्रत्येक क्रम में {{math|(''X'', <)}} में अनुवर्ती है जो {{math|(''X'', <)}} अभिसरण करता है .
# प्रत्येक क्रम में {{math|(''X'', <)}} में अनुवर्ती है जो {{math|(''X'', <)}} अभिसरण करता है .
# प्रत्येक {{mvar|X}} के मोनोटोन में क्रम बढ़ता जा रहा है {{mvar|X}} में अद्वितीय सीमा तक अभिसरण होता है .
# प्रत्येक {{mvar|X}} के मोनोटोन में क्रम बढ़ता जा रहा है {{mvar|X}} में अद्वितीय सीमा तक अभिसरण होता है .
# प्रत्येक {{mvar|X}} के मोनोटोन घटते क्रम में {{mvar|X}} में अद्वितीय सीमा तक अभिसरण होता है .
# प्रत्येक {{mvar|X}} के मोनोटोन घटते क्रम में {{mvar|X}} में अद्वितीय सीमा तक अभिसरण होता है .
# गैर-रिक्त बंद उपसमुच्चय {{mvar|S}}<sub>1</sub> ⊇ {{mvar|S}}<sub>2</sub> ⊇ ...का प्रत्येक घटता हुआ नेस्टेड अनुक्रम {{math|(''X'', <)}} में में गैर-रिक्त प्रतिच्छेदन है।
# गैर-रिक्त बंद उपसमुच्चय {{mvar|S}}<sub>1</sub> ⊇ {{mvar|S}}<sub>2</sub> ⊇ ...का प्रत्येक घटता हुआ नेस्टेड अनुक्रम {{math|(''X'', <)}} में में गैर-रिक्त प्रतिच्छेदन है।
# {{math|(''X'', <)}} उचित विवर्त उपसमुच्चय {{mvar|X}} का हर बढ़ता हुआ नेस्टेड अनुक्रम {{mvar|S}}<sub>1</sub> ⊆ {{mvar|S}}<sub>2</sub> ⊆...में कवर करने में विफल रहता है .
# {{math|(''X'', <)}} उचित विवर्त उपसमुच्चय {{mvar|X}} का हर बढ़ता हुआ नेस्टेड अनुक्रम {{mvar|S}}<sub>1</sub> ⊆ {{mvar|S}}<sub>2</sub> ⊆...में कवर करने में विफल रहता है .


==== सतत कार्यों द्वारा विशेषता ====
==== सतत कार्यों द्वारा विशेषता ====
Line 170: Line 171:
प्रत्येक के लिए {{math|''p'' ∈ ''X''}}, मूल्यांकन मानचित्र <math>\operatorname{ev}_p\colon C(X)\to \mathbb{R}</math> द्वारा दिए गए {{math|1=ev<sub>''p''</sub>(''f'') = ''f''(''p'')}} वलय समरूपता है।
प्रत्येक के लिए {{math|''p'' ∈ ''X''}}, मूल्यांकन मानचित्र <math>\operatorname{ev}_p\colon C(X)\to \mathbb{R}</math> द्वारा दिए गए {{math|1=ev<sub>''p''</sub>(''f'') = ''f''(''p'')}} वलय समरूपता है।


ईवीपी का [[कर्नेल (बीजगणित)]] एक [[अधिकतम आदर्श]] है, क्योंकि अवशेष क्षेत्र {{nowrap|{{math|C(''X'')/ker ev<sub>''p''</sub>}}}} [[प्रथम समरूपता प्रमेय]] के अनुसार वास्तविक संख्याओं का क्षेत्र है।
ईवीपी का [[कर्नेल (बीजगणित)]] एक [[अधिकतम आदर्श]] है, क्योंकि अवशेष क्षेत्र {{nowrap|{{math|C(''X'')/ker ev<sub>''p''</sub>}}}} [[प्रथम समरूपता प्रमेय]] के अनुसार वास्तविक संख्याओं का क्षेत्र है।


एक टोपोलॉजिकल स्पेस {{mvar|X}} [[ छद्मकॉम्पैक्ट स्थान |छद्मकॉम्पैक्ट स्थान]] है यदि और केवल यदि प्रत्येक अधिकतम आदर्श में {{math|C(''X'')}} में अवशेष फ़ील्ड में वास्तविक संख्याएँ हैं।
एक टोपोलॉजिकल स्पेस {{mvar|X}} [[ छद्मकॉम्पैक्ट स्थान |छद्मकॉम्पैक्ट स्थान]] है यदि और केवल यदि प्रत्येक अधिकतम आदर्श में {{math|C(''X'')}} में अवशेष फ़ील्ड में वास्तविक संख्याएँ हैं।


पूरी तरह से नियमित स्थानों के लिए, यह मूल्यांकन समरूपता के कर्नेल होने वाले प्रत्येक अधिकतम आदर्श के समान   है।<ref>{{harvnb|Gillman|Jerison|1976|loc=§5.6}}</ref> चूँकि , ऐसे छद्मकॉम्पैक्ट स्थान हैं जो कॉम्पैक्ट नहीं हैं।
पूरी तरह से नियमित स्थानों के लिए, यह मूल्यांकन समरूपता के कर्नेल होने वाले प्रत्येक अधिकतम आदर्श के समान है।<ref>{{harvnb|Gillman|Jerison|1976|loc=§5.6}}</ref> चूँकि , ऐसे छद्मकॉम्पैक्ट स्थान हैं जो कॉम्पैक्ट नहीं हैं।


सामान्य तौर पर, गैर-छद्मकॉम्पैक्ट स्थानों के लिए {{math|C(''X'')}} में सदैव अधिकतम आदर्श ''m'' होते हैं जैसे कि अवशेष क्षेत्र ''{{math|C(''X'')/''m''}}'' एक (गैर-([[गैर-आर्किमिडीयन क्षेत्र]]) [[अतियथार्थवादी क्षेत्र]] है।
सामान्य तौर पर, गैर-छद्मकॉम्पैक्ट स्थानों के लिए {{math|C(''X'')}} में सदैव अधिकतम आदर्श ''m'' होते हैं जैसे कि अवशेष क्षेत्र ''{{math|C(''X'')/''m''}}'' एक (गैर-([[गैर-आर्किमिडीयन क्षेत्र]]) [[अतियथार्थवादी क्षेत्र]] है।


गैर-मानक विश्लेषण की रूपरेखा कॉम्पैक्टनेस के निम्नलिखित वैकल्पिक लक्षण वर्णन की अनुमति देती है:<ref>{{harvnb|Robinson|1996|loc=Theorem&nbsp;4.1.13}}</ref> टोपोलॉजिकल स्पेस {{mvar|X}}, {{math|''x''<sub>0</sub>}}) सघन है यदि और केवल यदि प्रत्येक बिंदु {{mvar|x}} प्राकृतिक विस्तार का {{math|''*X''}} बिंदु से अतिसूक्ष्म है {{math|''x''<sub>0</sub>}} का {{mvar|X}} (ज्यादा ठीक, {{mvar|x}} के मोनैड (गैर-मानक विश्लेषण) में निहित है.
गैर-मानक विश्लेषण की रूपरेखा कॉम्पैक्टनेस के निम्नलिखित वैकल्पिक लक्षण वर्णन की अनुमति देती है:<ref>{{harvnb|Robinson|1996|loc=Theorem&nbsp;4.1.13}}</ref> टोपोलॉजिकल स्पेस {{mvar|X}}, {{math|''x''<sub>0</sub>}}) सघन है यदि और केवल यदि प्रत्येक बिंदु {{mvar|x}} प्राकृतिक विस्तार का {{math|''*X''}} बिंदु से अतिसूक्ष्म है {{math|''x''<sub>0</sub>}} का {{mvar|X}} (ज्यादा ठीक, {{mvar|x}} के मोनैड (गैर-मानक विश्लेषण) में निहित है.
Line 182: Line 183:
==== अतिवास्तविक परिभाषा ====
==== अतिवास्तविक परिभाषा ====


एक स्थान {{mvar|X}} सघन है यदि इसकी अतिवास्तविक संख्या है {{math|''*X''}} (उदाहरण के लिए, [[अल्ट्रापावर निर्माण]] द्वारा निर्मित) में वह गुण है जो प्रत्येक बिंदु {{math|''*X''}} का है किसी बिंदु {{math|''X'' ⊂ ''*X''}} के असीम रूप से समीप है .
एक स्थान {{mvar|X}} सघन है यदि इसकी अतिवास्तविक संख्या है {{math|''*X''}} (उदाहरण के लिए, [[अल्ट्रापावर निर्माण]] द्वारा निर्मित) में वह गुण है जो प्रत्येक बिंदु {{math|''*X''}} का है किसी बिंदु {{math|''X'' ⊂ ''*X''}} के असीम रूप से समीप है .


उदाहरण के लिए, विवर्त   वास्तविक अंतराल {{nowrap|{{math|''X'' {{=}} (0, 1)}}}} सघन नहीं है क्योंकि यह अतियथार्थवादी विस्तार है {{math|*(0,1)}} में इनफिनिटिमल्स सम्मिलित हैं, जो 0 के असीम रूप से समीप हैं, जो कि बिंदु {{mvar|X}} नहीं है .
उदाहरण के लिए, विवर्त वास्तविक अंतराल {{nowrap|{{math|''X'' {{=}} (0, 1)}}}} सघन नहीं है क्योंकि यह अतियथार्थवादी विस्तार है {{math|*(0,1)}} में इनफिनिटिमल्स सम्मिलित हैं, जो 0 के असीम रूप से समीप हैं, जो कि बिंदु {{mvar|X}} नहीं है .


==पर्याप्त स्थितियाँ==
==पर्याप्त स्थितियाँ==
Line 190: Line 191:
*संहत स्थान का बंद उपसमुच्चय संहत होता है।<ref>{{harvnb|Arkhangel'skii|Fedorchuk|1990|loc=Theorem 5.2.3}}</ref>
*संहत स्थान का बंद उपसमुच्चय संहत होता है।<ref>{{harvnb|Arkhangel'skii|Fedorchuk|1990|loc=Theorem 5.2.3}}</ref>
* सघन समुच्चयों का परिमित संघ (समुच्चय सिद्धांत) सघन होता है।
* सघन समुच्चयों का परिमित संघ (समुच्चय सिद्धांत) सघन होता है।
* एक कॉम्पैक्ट स्पेस की सतत फलन (टोपोलॉजी) छवि कॉम्पैक्ट होती है।<ref>{{harvnb|Arkhangel'skii|Fedorchuk|1990|loc=Theorem 5.2.2}}</ref>
* एक कॉम्पैक्ट स्पेस की सतत फलन (टोपोलॉजी) छवि कॉम्पैक्ट होती है।<ref>{{harvnb|Arkhangel'skii|Fedorchuk|1990|loc=Theorem 5.2.2}}</ref>
* हॉसडॉर्फ स्थान के कॉम्पैक्ट उपसमुच्चय के किसी भी गैर-रिक्त संग्रह का प्रतिच्छेदन कॉम्पैक्ट (और बंद) है;
* हॉसडॉर्फ स्थान के कॉम्पैक्ट उपसमुच्चय के किसी भी गैर-रिक्त संग्रह का प्रतिच्छेदन कॉम्पैक्ट (और बंद) है;
** अगर {{mvar|X}} हॉसडॉर्फ नहीं है तो दो कॉम्पैक्ट उपसमुच्चय का प्रतिच्छेदन कॉम्पैक्ट होने में विफल हो सकता है (उदाहरण के लिए फ़ुटनोट देखें)।{{efn|
** अगर {{mvar|X}} हॉसडॉर्फ नहीं है तो दो कॉम्पैक्ट उपसमुच्चय का प्रतिच्छेदन कॉम्पैक्ट होने में विफल हो सकता है (उदाहरण के लिए फ़ुटनोट देखें)।{{efn|
Let {{math|1=''X'' = {''a'', ''b''} &cup; <math>\mathbb{N}</math>}}, {{math|1=''U'' = {''a''} &cup; <math>\mathbb{N}</math>}}, and {{math|1=''V'' = {''b''} &cup; <math>\mathbb{N}</math>}}. Endow {{math|X}} with the topology generated by the following basic open sets: every subset of <math>\mathbb{N}</math> is open; the only open sets containing {{mvar|a}} are {{mvar|X}} and {{mvar|U}}; and the only open sets containing {{mvar|b}} are {{mvar|X}} and {{mvar|V}}. Then {{mvar|U}} and {{mvar|V}} are both compact subsets but their intersection, which is <math>\mathbb{N}</math>, is not compact. Note that both {{mvar|U}} and {{mvar|V}} are compact open subsets, neither one of which is closed.
Let {{math|1=''X'' = {''a'', ''b''} &cup; <math>\mathbb{N}</math>}}, {{math|1=''U'' = {''a''} &cup; <math>\mathbb{N}</math>}}, and {{math|1=''V'' = {''b''} &cup; <math>\mathbb{N}</math>}}. Endow {{math|X}} with the topology generated by the following basic open sets: every subset of <math>\mathbb{N}</math> is open; the only open sets containing {{mvar|a}} are {{mvar|X}} and {{mvar|U}}; and the only open sets containing {{mvar|b}} are {{mvar|X}} and {{mvar|V}}. Then {{mvar|U}} and {{mvar|V}} are both compact subsets but their intersection, which is <math>\mathbb{N}</math>, is not compact. Note that both {{mvar|U}} and {{mvar|V}} are compact open subsets, neither one of which is closed.
}}
}}
* कॉम्पैक्ट स्पेस के किसी भी संग्रह की [[उत्पाद टोपोलॉजी]] कॉम्पैक्ट होती है। (यह टाइकोनोफ़ का प्रमेय है, जो पसंद के स्वयंसिद्ध के समान   है।)
* कॉम्पैक्ट स्पेस के किसी भी संग्रह की [[उत्पाद टोपोलॉजी]] कॉम्पैक्ट होती है। (यह टाइकोनोफ़ का प्रमेय है, जो पसंद के स्वयंसिद्ध के समान है।)
* एक [[मेट्रिज़ेबल स्थान]] में, उपसमुच्चय कॉम्पैक्ट होता है यदि और केवल यदि यह क्रमिक रूप से कॉम्पैक्ट होता है (गणनीय विकल्प के सिद्धांत को मानते हुए)
* एक [[मेट्रिज़ेबल स्थान]] में, उपसमुच्चय कॉम्पैक्ट होता है यदि और केवल यदि यह क्रमिक रूप से कॉम्पैक्ट होता है (गणनीय विकल्प के सिद्धांत को मानते हुए)
* किसी भी टोपोलॉजी से युक्त परिमित समुच्चय कॉम्पैक्ट होता है।
* किसी भी टोपोलॉजी से युक्त परिमित समुच्चय कॉम्पैक्ट होता है।
Line 208: Line 209:
Let {{mvar|X}} be the set of non-negative integers. We endow {{mvar|X}} with the [[particular point topology]] by defining a subset {{math|''U'' ⊆ ''X''}} to be open if and only if {{math|0 ∈ ''U''}}. Then {{math|1=''S'' := {0}<!---->}} is compact, the closure of {{mvar|S}} is all of {{mvar|X}}, but {{mvar|X}} is not compact since the collection of open subsets {{math|{<!---->{0, ''x''} : ''x'' ∈ ''X''}<!---->}} does not have a finite subcover.
Let {{mvar|X}} be the set of non-negative integers. We endow {{mvar|X}} with the [[particular point topology]] by defining a subset {{math|''U'' ⊆ ''X''}} to be open if and only if {{math|0 ∈ ''U''}}. Then {{math|1=''S'' := {0}<!---->}} is compact, the closure of {{mvar|S}} is all of {{mvar|X}}, but {{mvar|X}} is not compact since the collection of open subsets {{math|{<!---->{0, ''x''} : ''x'' ∈ ''X''}<!---->}} does not have a finite subcover.
}}
}}
* किसी भी [[टोपोलॉजिकल वेक्टर स्पेस]] (टीवीएस) में, कॉम्पैक्ट उपसमुच्चय पूर्ण स्पेस होता है। चूँकि , प्रत्येक गैर-हॉसडॉर्फ टीवीएस में कॉम्पैक्ट (और इस प्रकार पूर्ण) उपसमुच्चय होते हैं जो बंद नहीं होते हैं।
* किसी भी [[टोपोलॉजिकल वेक्टर स्पेस]] (टीवीएस) में, कॉम्पैक्ट उपसमुच्चय पूर्ण स्पेस होता है। चूँकि , प्रत्येक गैर-हॉसडॉर्फ टीवीएस में कॉम्पैक्ट (और इस प्रकार पूर्ण) उपसमुच्चय होते हैं जो बंद नहीं होते हैं।
* अगर {{mvar|A}} और {{mvar|B}} हॉसडॉर्फ स्पेस के असंयुक्त कॉम्पैक्ट उपसमुच्चय हैं {{mvar|X}}, तो वहां असंयुक्त विवर्त समुच्चय उपस्थित हैं {{mvar|U}} और {{mvar|V}} में {{mvar|X}} ऐसा है कि {{math|''A'' ⊆ ''U''}} और {{math|''B'' ⊆ ''V''}}.
* अगर {{mvar|A}} और {{mvar|B}} हॉसडॉर्फ स्पेस के असंयुक्त कॉम्पैक्ट उपसमुच्चय हैं {{mvar|X}}, तो वहां असंयुक्त विवर्त समुच्चय उपस्थित हैं {{mvar|U}} और {{mvar|V}} में {{mvar|X}} ऐसा है कि {{math|''A'' ⊆ ''U''}} और {{math|''B'' ⊆ ''V''}}.
* एक सघन स्थान से हॉसडॉर्फ स्पेस में निरंतर प्रक्षेपण [[होमियोमोर्फिज्म]] है।
* एक सघन स्थान से हॉसडॉर्फ स्पेस में निरंतर प्रक्षेपण [[होमियोमोर्फिज्म]] है।
* एक कॉम्पैक्ट हॉसडॉर्फ स्थान [[सामान्य स्थान]] और [[नियमित स्थान]] है।
* एक कॉम्पैक्ट हॉसडॉर्फ स्थान [[सामान्य स्थान]] और [[नियमित स्थान]] है।
Line 217: Line 218:
=== फ़ंक्शंस और कॉम्पैक्ट स्पेस ===
=== फ़ंक्शंस और कॉम्पैक्ट स्पेस ===


चूंकि कॉम्पैक्ट स्पेस की निरंतर फलन (टोपोलॉजी) छवि कॉम्पैक्ट होती है, ऐसे स्थानों के लिए [[चरम मूल्य प्रमेय|अत्यधिक मूल्य प्रमेय]] प्रयुक्त होता है: गैर-रिक्त कॉम्पैक्ट स्पेस पर निरंतर वास्तविक-मूल्यवान फलन ऊपर से घिरा होता है और अपने सर्वोच्च को प्राप्त करता है।<ref>{{harvnb|Arkhangel'skii|Fedorchuk|1990|loc=Corollary 5.2.1}}</ref> (थोड़ा अधिक सामान्यतः, यह ऊपरी अर्ध-निरंतर फलन के लिए सच है।) उपरोक्त कथनों के विपरीत, उचित मानचित्र के तहत कॉम्पैक्ट स्थान की पूर्व-छवि कॉम्पैक्ट है।
चूंकि कॉम्पैक्ट स्पेस की निरंतर फलन (टोपोलॉजी) छवि कॉम्पैक्ट होती है, ऐसे स्थानों के लिए [[चरम मूल्य प्रमेय|अत्यधिक मूल्य प्रमेय]] प्रयुक्त होता है: गैर-रिक्त कॉम्पैक्ट स्पेस पर निरंतर वास्तविक-मूल्यवान फलन ऊपर से घिरा होता है और अपने सर्वोच्च को प्राप्त करता है।<ref>{{harvnb|Arkhangel'skii|Fedorchuk|1990|loc=Corollary 5.2.1}}</ref> (थोड़ा अधिक सामान्यतः, यह ऊपरी अर्ध-निरंतर फलन के लिए सच है।) उपरोक्त कथनों के विपरीत, उचित मानचित्र के तहत कॉम्पैक्ट स्थान की पूर्व-छवि कॉम्पैक्ट है।


=== संघनन ===
=== संघनन ===


हर टोपोलॉजिकल स्पेस {{mvar|X}} कॉम्पैक्ट स्पेस का विवर्त   [[सघन टोपोलॉजिकल उपस्थान]] है जिसमें अधिकतम बिंदु {{mvar|X}} से अधिक होता है , कॉम्पेक्टिफिकेशन (गणित) द्वारा|अलेक्जेंड्रॉफ़ एक-बिंदु कॉम्पेक्टिफिकेशन।
हर टोपोलॉजिकल स्पेस {{mvar|X}} कॉम्पैक्ट स्पेस का विवर्त [[सघन टोपोलॉजिकल उपस्थान]] है जिसमें अधिकतम बिंदु {{mvar|X}} से अधिक होता है , कॉम्पेक्टिफिकेशन (गणित) द्वारा|अलेक्जेंड्रॉफ़ एक-बिंदु कॉम्पेक्टिफिकेशन।
एक ही निर्माण से, प्रत्येक स्थानीय रूप [[स्थानीय रूप से सघन]] हॉसडॉर्फ स्थान {{mvar|X}} कॉम्पैक्ट हॉसडॉर्फ स्पेस का विवर्त   सघन उपस्थान है जिसमें अधिकतम बिंदु {{mvar|X}} से अधिक है .
एक ही निर्माण से, प्रत्येक स्थानीय रूप [[स्थानीय रूप से सघन]] हॉसडॉर्फ स्थान {{mvar|X}} कॉम्पैक्ट हॉसडॉर्फ स्पेस का विवर्त सघन उपस्थान है जिसमें अधिकतम बिंदु {{mvar|X}} से अधिक है .


=== ऑर्डर किए गए कॉम्पैक्ट स्पेस ===
=== ऑर्डर किए गए कॉम्पैक्ट स्पेस ===
Line 230: Line 231:
होने देना {{mvar|X}} [[ऑर्डर टोपोलॉजी]] से संपन्न [[कुल ऑर्डर]] समुच्चय बनें।
होने देना {{mvar|X}} [[ऑर्डर टोपोलॉजी]] से संपन्न [[कुल ऑर्डर]] समुच्चय बनें।


तब {{mvar|X}} सघन है यदि और केवल यदि {{mvar|X}} [[पूर्ण जाली]] है (इस प्रकार से सभी उपसमुच्चय में सुप्रीमा और इन्फिमा है)।<ref>{{harvnb|Steen|Seebach|1995|p=67}}</ref>
तब {{mvar|X}} सघन है यदि और केवल यदि {{mvar|X}} [[पूर्ण जाली]] है (इस प्रकार से सभी उपसमुच्चय में सुप्रीमा और इन्फिमा है)।<ref>{{harvnb|Steen|Seebach|1995|p=67}}</ref>
== उदाहरण ==
== उदाहरण ==


* [[खाली सेट|खाली]] समुच्चय सहित कोई भी परिमित टोपोलॉजिकल स्पेस कॉम्पैक्ट होता है। अधिक सामान्यतः , [[परिमित टोपोलॉजी]] (केवल सीमित रूप से कई विवर्त समुच्चय) वाला कोई भी स्थान कॉम्पैक्ट होता है; इसमें विशेष रूप से [[तुच्छ टोपोलॉजी]] सम्मिलित है।
* [[खाली सेट|खाली]] समुच्चय सहित कोई भी परिमित टोपोलॉजिकल स्पेस कॉम्पैक्ट होता है। अधिक सामान्यतः , [[परिमित टोपोलॉजी]] (केवल सीमित रूप से कई विवर्त समुच्चय) वाला कोई भी स्थान कॉम्पैक्ट होता है; इसमें विशेष रूप से [[तुच्छ टोपोलॉजी]] सम्मिलित है।
* [[सहपरिमित टोपोलॉजी]] वाला कोई भी स्थान कॉम्पैक्ट होता है।
* [[सहपरिमित टोपोलॉजी]] वाला कोई भी स्थान कॉम्पैक्ट होता है।
* किसी भी स्थानीय रूप से कॉम्पैक्ट हॉसडॉर्फ़ स्थान को [[अलेक्जेंड्रोफ़ एक-बिंदु संघनन]] के माध्यम से, इसमें बिंदु जोड़कर कॉम्पैक्ट स्थान में बदल दिया जा सकता है। का एक-बिंदु संघनन <math>\mathbb{R}</math> वृत्त के लिए {{math|'''S'''<sup>1</sup>}}   समरूपी है ; {{math|'''S'''<sup>2</sup>}} का एक-बिंदु संघनन <math>\mathbb{R}^2</math> व्रत्त के लिए समरूपी है . एक-बिंदु कॉम्पेक्टिफिकेशन का उपयोग करके, कोई भी सरल से गैर-हॉसडॉर्फ़ स्थान से प्रारंभ करके, कॉम्पैक्ट रिक्त स्थान का निर्माण कर सकता है जो हॉसडॉर्फ़ नहीं हैं।
* किसी भी स्थानीय रूप से कॉम्पैक्ट हॉसडॉर्फ़ स्थान को [[अलेक्जेंड्रोफ़ एक-बिंदु संघनन]] के माध्यम से, इसमें बिंदु जोड़कर कॉम्पैक्ट स्थान में बदल दिया जा सकता है। का एक-बिंदु संघनन <math>\mathbb{R}</math> वृत्त के लिए {{math|'''S'''<sup>1</sup>}} समरूपी है ; {{math|'''S'''<sup>2</sup>}} का एक-बिंदु संघनन <math>\mathbb{R}^2</math> व्रत्त के लिए समरूपी है . एक-बिंदु कॉम्पेक्टिफिकेशन का उपयोग करके, कोई भी सरल से गैर-हॉसडॉर्फ़ स्थान से प्रारंभ करके, कॉम्पैक्ट रिक्त स्थान का निर्माण कर सकता है जो हॉसडॉर्फ़ नहीं हैं।
* किसी भी पूर्णतः व्यवस्थित समुच्चय पर दायां क्रम टोपोलॉजी या [[बायां क्रम टोपोलॉजी]] कॉम्पैक्ट है। विशेष रूप से, सिएरपिंस्की स्थान कॉम्पैक्ट है।
* किसी भी पूर्णतः व्यवस्थित समुच्चय पर दायां क्रम टोपोलॉजी या [[बायां क्रम टोपोलॉजी]] कॉम्पैक्ट है। विशेष रूप से, सिएरपिंस्की स्थान कॉम्पैक्ट है।
* अनंत बिंदुओं वाला कोई भी [[पृथक स्थान]] संहत नहीं होता। स्पेस के सभी सिंगलटन (गणित) का संग्रह विवर्त   आवरण है जो किसी परिमित उपकवर को स्वीकार नहीं करता है। परिमित असतत स्थान सघन होते हैं।
* अनंत बिंदुओं वाला कोई भी [[पृथक स्थान]] संहत नहीं होता। स्पेस के सभी सिंगलटन (गणित) का संग्रह विवर्त आवरण है जो किसी परिमित उपकवर को स्वीकार नहीं करता है। परिमित असतत स्थान सघन होते हैं।
* <math>\mathbb{R}</math> में [[निचली सीमा टोपोलॉजी]] को ध्यान में रखते हुए, कोई भी असंख्य समुच्चय कॉम्पैक्ट नहीं है।
* <math>\mathbb{R}</math> में [[निचली सीमा टोपोलॉजी]] को ध्यान में रखते हुए, कोई भी असंख्य समुच्चय कॉम्पैक्ट नहीं है।
* असंख्य समुच्चय पर [[सहगणनीय टोपोलॉजी]] में, कोई भी अनंत समुच्चय कॉम्पैक्ट नहीं होता है। पिछले उदाहरण की तरह, संपूर्ण स्थान स्थानीय रूप से कॉम्पैक्ट नहीं है जिससे फिर भी लिंडेलोफ़ स्पेस|लिंडेलोफ़ है।
* असंख्य समुच्चय पर [[सहगणनीय टोपोलॉजी]] में, कोई भी अनंत समुच्चय कॉम्पैक्ट नहीं होता है। पिछले उदाहरण की तरह, संपूर्ण स्थान स्थानीय रूप से कॉम्पैक्ट नहीं है जिससे फिर भी लिंडेलोफ़ स्पेस|लिंडेलोफ़ है।
* बंद इकाई अंतराल {{math|{{closed-closed|0, 1}}}} सघन है. यह हेन-बोरेल प्रमेय से अनुसरण करता है। विवर्त   अंतराल {{open-open|0, 1}} कॉम्पैक्ट नहीं है: विवर्त   कवर <math display="inline">\left( \frac{1}{n}, 1 - \frac{1}{n} \right)</math> के लिए {{math|1={{mvar|n}} = 3, 4, ... }} में कोई परिमित उपकवर नहीं है। इसी प्रकार, बंद अंतराल में परिमेय संख्याओं का समुच्चय {{closed-closed|0,1}} सघन नहीं है: अंतरालों में परिमेय संख्याओं का समुच्चय <math display="inline">\left[0, \frac{1}{\pi} - \frac{1}{n}\right]\text{ and }\left[\frac{1}{\pi} + \frac{1}{n}, 1\right]</math> [0, 1] में सभी तर्कसंगतताओं को सम्मिलित करें {{math|1={{mvar|n}} = 4, 5, ... }} जिससे इस कवर में कोई सीमित सबकवर नहीं है। यहां, समुच्चय उप-स्थान टोपोलॉजी में विवर्त हैं, भले ही वे उप-समूह के <math>\mathbb{R}</math> रूप में विवर्त नहीं हैं.
* बंद इकाई अंतराल {{math|{{closed-closed|0, 1}}}} सघन है. यह हेन-बोरेल प्रमेय से अनुसरण करता है। विवर्त अंतराल {{open-open|0, 1}} कॉम्पैक्ट नहीं है: विवर्त कवर <math display="inline">\left( \frac{1}{n}, 1 - \frac{1}{n} \right)</math> के लिए {{math|1={{mvar|n}} = 3, 4, ... }} में कोई परिमित उपकवर नहीं है। इसी प्रकार, बंद अंतराल में परिमेय संख्याओं का समुच्चय {{closed-closed|0,1}} सघन नहीं है: अंतरालों में परिमेय संख्याओं का समुच्चय <math display="inline">\left[0, \frac{1}{\pi} - \frac{1}{n}\right]\text{ and }\left[\frac{1}{\pi} + \frac{1}{n}, 1\right]</math> [0, 1] में सभी तर्कसंगतताओं को सम्मिलित करें {{math|1={{mvar|n}} = 4, 5, ... }} जिससे इस कवर में कोई सीमित सबकवर नहीं है। यहां, समुच्चय उप-स्थान टोपोलॉजी में विवर्त हैं, भले ही वे उप-समूह के <math>\mathbb{R}</math> रूप में विवर्त नहीं हैं.
* समुच्चय <math>\mathbb{R}</math> सभी वास्तविक संख्याओं का संहत नहीं है क्योंकि इसमें विवर्त अंतरालों का आवरण होता है जिसमें कोई परिमित उपआवरण नहीं होता है। उदाहरण के लिए, अंतराल {{math|{{open-open|{{mvar|n}} − 1, {{mvar|n}} + 1}} }}, कहाँ {{mvar|n}} सभी पूर्णांक मान लेता है {{math|'''Z'''}}, ढकना <math>\mathbb{R}</math> जिससे कोई सीमित उपकवर नहीं है.
* समुच्चय <math>\mathbb{R}</math> सभी वास्तविक संख्याओं का संहत नहीं है क्योंकि इसमें विवर्त अंतरालों का आवरण होता है जिसमें कोई परिमित उपआवरण नहीं होता है। उदाहरण के लिए, अंतराल {{math|{{open-open|{{mvar|n}} − 1, {{mvar|n}} + 1}} }}, कहाँ {{mvar|n}} सभी पूर्णांक मान लेता है {{math|'''Z'''}}, ढकना <math>\mathbb{R}</math> जिससे कोई सीमित उपकवर नहीं है.
* दूसरी ओर, अनुरूप टोपोलॉजी ले जाने वाली [[विस्तारित वास्तविक संख्या रेखा]] कॉम्पैक्ट है; ध्यान दें कि ऊपर वर्णित कवर कभी भी अनंत बिंदुओं तक नहीं पहुंचेगा और इस प्रकार विस्तारित वास्तविक रेखा को कवर नहीं करेगा। वास्तव में, समुच्चय में प्रत्येक अनन्तता को उसकी संबंधित इकाई में मैप करने और प्रत्येक वास्तविक संख्या को उसके चिह्न के लिए अंतराल के सकारात्मक भाग में अद्वितीय संख्या से गुणा करने की होमोमोर्फिज्म है, जिसके परिणामस्वरूप विभाजित होने पर इसका पूर्ण मान प्राप्त होता है। माइनस स्वयं, और चूंकि होमोमोर्फिज्म कवर को संरक्षित करता है, हेन-बोरेल गुण का अनुमान लगाया जा सकता है।
* दूसरी ओर, अनुरूप टोपोलॉजी ले जाने वाली [[विस्तारित वास्तविक संख्या रेखा]] कॉम्पैक्ट है; ध्यान दें कि ऊपर वर्णित कवर कभी भी अनंत बिंदुओं तक नहीं पहुंचेगा और इस प्रकार विस्तारित वास्तविक रेखा को कवर नहीं करेगा। वास्तव में, समुच्चय में प्रत्येक अनन्तता को उसकी संबंधित इकाई में मैप करने और प्रत्येक वास्तविक संख्या को उसके चिह्न के लिए अंतराल के सकारात्मक भाग में अद्वितीय संख्या से गुणा करने की होमोमोर्फिज्म है, जिसके परिणामस्वरूप विभाजित होने पर इसका पूर्ण मान प्राप्त होता है। माइनस स्वयं, और चूंकि होमोमोर्फिज्म कवर को संरक्षित करता है, हेन-बोरेल गुण का अनुमान लगाया जा सकता है।
* प्रत्येक [[प्राकृतिक संख्या]] के लिए {{mvar|n}}, n-क्षेत्र|{{mvar|n}}-गोला सघन है. फिर से हेइन-बोरेल प्रमेय से, किसी भी परिमित-आयामी मानक वेक्टर स्थान की [[बंद इकाई गेंद]] कॉम्पैक्ट होती है। यह अनंत आयामों के लिए सत्य नहीं है; वास्तव में, मानक वेक्टर स्थान परिमित-आयामी होता है यदि और केवल तभी जब इसकी बंद इकाई गेंद कॉम्पैक्ट हो।
* प्रत्येक [[प्राकृतिक संख्या]] के लिए {{mvar|n}}, n-क्षेत्र|{{mvar|n}}-गोला सघन है. फिर से हेइन-बोरेल प्रमेय से, किसी भी परिमित-आयामी मानक वेक्टर स्थान की [[बंद इकाई गेंद]] कॉम्पैक्ट होती है। यह अनंत आयामों के लिए सत्य नहीं है; वास्तव में, मानक वेक्टर स्थान परिमित-आयामी होता है यदि और केवल तभी जब इसकी बंद इकाई गेंद कॉम्पैक्ट हो।
Line 254: Line 255:
* [[ऑर्थोगोनल समूह]] जैसे [[टोपोलॉजिकल समूह]] कॉम्पैक्ट होते हैं, जबकि [[सामान्य रैखिक समूह]] जैसे समूह नहीं होते हैं।
* [[ऑर्थोगोनल समूह]] जैसे [[टोपोलॉजिकल समूह]] कॉम्पैक्ट होते हैं, जबकि [[सामान्य रैखिक समूह]] जैसे समूह नहीं होते हैं।
*चूंकि पी-एडिक संख्याएं {{mvar|p}}-एडीआईसी पूर्णांक कैंटर समुच्चय के [[होम्योमॉर्फिक]] हैं, वे कॉम्पैक्ट समुच्चय बनाते हैं।
*चूंकि पी-एडिक संख्याएं {{mvar|p}}-एडीआईसी पूर्णांक कैंटर समुच्चय के [[होम्योमॉर्फिक]] हैं, वे कॉम्पैक्ट समुच्चय बनाते हैं।
* [[ज़ारिस्की टोपोलॉजी]] (अर्थात, सभी प्रमुख आदर्शों का समुच्चय) के साथ किसी भी [[ क्रमविनिमेय वलय |क्रमविनिमेय वलय]] के रिंग का स्पेक्ट्रम कॉम्पैक्ट होता है, जिससे हॉसडॉर्फ स्पेस कभी नहीं (तुच्छ स्थितियों को छोड़कर)। बीजगणितीय ज्यामिति में, ऐसे टोपोलॉजिकल रिक्त स्थान अर्ध-कॉम्पैक्ट [[योजना (गणित)]] के उदाहरण हैं, अर्ध टोपोलॉजी की गैर-हॉसडॉर्फ प्रकृति का संदर्भ देते हैं।
* [[ज़ारिस्की टोपोलॉजी]] (अर्थात, सभी प्रमुख आदर्शों का समुच्चय) के साथ किसी भी [[ क्रमविनिमेय वलय |क्रमविनिमेय वलय]] के रिंग का स्पेक्ट्रम कॉम्पैक्ट होता है, जिससे हॉसडॉर्फ स्पेस कभी नहीं (तुच्छ स्थितियों को छोड़कर)। बीजगणितीय ज्यामिति में, ऐसे टोपोलॉजिकल रिक्त स्थान अर्ध-कॉम्पैक्ट [[योजना (गणित)]] के उदाहरण हैं, अर्ध टोपोलॉजी की गैर-हॉसडॉर्फ प्रकृति का संदर्भ देते हैं।
* [[बूलियन बीजगणित का स्पेक्ट्रम]] कॉम्पैक्ट है, तथ्य जो स्टोन प्रतिनिधित्व प्रमेय का भाग है। पत्थर के स्थान, कॉम्पैक्ट पूरी तरह से अलग किए गए स्थान हॉसडॉर्फ स्थान, अमूर्त ढांचे का निर्माण करते हैं जिसमें इन स्पेक्ट्रा का अध्ययन किया जाता है। ऐसे स्थान [[अनंत समूह]] के अध्ययन में भी उपयोगी होते हैं।
* [[बूलियन बीजगणित का स्पेक्ट्रम]] कॉम्पैक्ट है, तथ्य जो स्टोन प्रतिनिधित्व प्रमेय का भाग है। पत्थर के स्थान, कॉम्पैक्ट पूरी तरह से अलग किए गए स्थान हॉसडॉर्फ स्थान, अमूर्त ढांचे का निर्माण करते हैं जिसमें इन स्पेक्ट्रा का अध्ययन किया जाता है। ऐसे स्थान [[अनंत समूह]] के अध्ययन में भी उपयोगी होते हैं।
* क्रमविनिमेय इकाई [[बानाच बीजगणित]] का [[संरचना स्थान]] कॉम्पैक्ट हॉसडॉर्फ स्थान है।
* क्रमविनिमेय इकाई [[बानाच बीजगणित]] का [[संरचना स्थान]] कॉम्पैक्ट हॉसडॉर्फ स्थान है।

Revision as of 14:38, 6 July 2023

File:Compact.svg
यूक्लिडियन स्पेस के लिए कॉम्पैक्टनेस मानदंड के अनुसार, जैसा कि हेन-बोरेल प्रमेय में कहा गया है, अंतराल A = (−∞, −2] सघन नहीं है क्योंकि यह परिबद्ध नहीं है। अंतराल C = (2, 4)संहत नहीं है क्योंकि यह बंद नहीं है (किन्तु घिरा हुआ है)। अंतराल B = [0, 1] संहत है क्योंकि यह बंद और परिबद्ध दोनों है


गणित में, विशेष रूप से सामान्य टोपोलॉजी में, कॉम्पैक्टनेस गुण होती है जोकी यूक्लिडियन स्थान के परिबद्ध समुच्चय और बंधे हुए समुच्चय उपसमुच्चय की धारणा को सामान्य बनाने का प्रयास करती है।[1] विचार यह है कि कॉम्पैक्ट स्पेस में कोई पंक्चर या लापता समापन बिंदु नहीं होता है, इस प्रकार से , इसमें बिंदुओं की सभी सीमाएं (गणित) सम्मिलित होती हैं। उदाहरण के लिए, विवर्त अंतराल (गणित) (0,1) सघन नहीं होगा क्योंकि इसमें 0 और 1 के सीमित मान सम्मिलित नहीं हैं, जबकि बंद अंतराल [0,1] सघन होगा। इसी प्रकार, परिमेय संख्याओं कॉम्पैक्ट का स्थान नहीं है, क्योंकि इसमें अपरिमेय संख्याओं और वास्तविक संख्याओं कॉम्पैक्ट के स्थान के अनुरूप अनंत रूप से कई पंचर हैं भी नहीं है, क्योंकि इसमें दो सीमित मान और सम्मिलित नहीं हैं. चूँकि , विस्तारित वास्तविक संख्याएँ सघन होंगी, क्योंकि इसमें दोनों अनन्तताएँ सम्मिलित हैं। इस अनुमानी धारणा को स्पष्ट बनाने के कई विधि हैं। ये विधि सामान्यतः मीट्रिक स्थान में सहमत होते हैं, जिससे अन्य टोपोलॉजिकल स्पेस में तार्किक तुल्यता नहीं हो सकते हैं।

ऐसा सामान्यीकरण यह है कि टोपोलॉजिकल स्पेस क्रमिक रूप से कॉम्पैक्ट होता है यदि स्पेस से सैंपल किए गए बिंदुओं के प्रत्येक अनंत अनुक्रम में अनंत परिणाम होता है जो स्पेस के किसी बिंदु पर परिवर्तित होता है।[2]

बोलजानो-वीयरस्ट्रैस प्रमेय में कहा गया है कि यूक्लिडियन स्पेस का उपसमुच्चय इस अनुक्रमिक अर्थ में कॉम्पैक्ट है यदि और केवल अगर यह बंद और घिरा हुआ है।

इस प्रकार, यदि कोई बंद इकाई अंतराल में [0, 1] अनंत अंक चुनता है , उनमें से कुछ बिंदु इच्छा अनुसार से उस स्थान में कुछ वास्तविक संख्या के समीप आ जाएंगे।

इस प्रकार से उदाहरण के लिए, अनुक्रम में कुछ संख्याएँ 1/2, 4/5, 1/3, 5/6, 1/4, 6/7, ... 0 तक जमा होता है (जबकि अन्य 1 तक जमा होते हैं)।

चूँकि न तो 0 और न ही 1 विवर्त इकाई अंतराल के सदस्य (0, 1) हैं , बिंदुओं का वही समुच्चय इसके किसी भी बिंदु पर जमा नहीं होगा, इसलिए खुली इकाई अंतराल कॉम्पैक्ट नहीं है। यद्यपि यूक्लिडियन स्पेस के उपसमुच्चय (उपस्थान) कॉम्पैक्ट हो सकते हैं, संपूर्ण स्थान स्वयं कॉम्पैक्ट नहीं है, क्योंकि यह बाध्य नहीं है। (वास्तविक संख्या रेखा) उदाहरण के लिए, विचार कर रहे हैं, बिंदुओं का क्रम 0,  1,  2,  3, ... का कोई अनुवर्ती नहीं है जो किसी वास्तविक संख्या में परिवर्तित होता हो।

कॉम्पैक्टनेस को औपचारिक रूप से 1906 में मौरिस फ्रेचेट द्वारा बोल्ज़ानो-वीयरस्ट्रैस प्रमेय को ज्यामितीय बिंदुओं के स्थानों से कार्य स्थान तक सामान्यीकृत करने के लिए प्रस्तुत किया गया था। अर्ज़ेला-अस्कोली प्रमेय और पीनो अस्तित्व प्रमेय शास्त्रीय विश्लेषण के लिए सघनता की इस धारणा के अनुप्रयोगों का उदाहरण देते हैं। इसके प्रारंभिक परिचय के बाद, सामान्य मीट्रिक स्थानों में अनुक्रमिक रूप क्रमिक रूप से संकुचित स्थान और सीमा बिंदु कॉम्पैक्टनेस सहित कॉम्पैक्टनेस की विभिन्न समकक्ष धारणाएं विकसित की गईं।[3] चूँकि , सामान्य टोपोलॉजिकल स्पेस में, कॉम्पैक्टनेस की ये धारणाएँ आवश्यक रूप से समतुल्य नहीं हैं। सबसे उपयोगी धारणा - और अयोग्य शब्द कॉम्पैक्टनेस की मानक परिभाषा - को विवर्त समुच्चय के परिमित परिवारों के अस्तित्व के संदर्भ में व्यक्त किया गया है जो स्पेस को कवर (टोपोलॉजी) इस अर्थ में करते हैं कि स्पेस का प्रत्येक बिंदु किसी न किसी समुच्चय में निहित है। परिवार। 1929 में पावेल अलेक्जेंड्रोव और पावेल उरीसोहन द्वारा प्रस्तुत की गई यह अधिक सूक्ष्म धारणा, सीमित स्थानों को परिमित समुच्च के सामान्यीकरण के रूप में प्रदर्शित करती है। ऐसे स्थानों में जो इस अर्थ में कॉम्पैक्ट होते हैं, स्थानीय गुण रखने वाली जानकारी को साथ पैच करना सदैव संभव होता है - इस प्रकार से, प्रत्येक बिंदु के पड़ोस में - संबंधित वर्णन में जो पूरे स्थान में होते हैं, और कई प्रमेय इस चरित्र के होते हैं।

'कॉम्पैक्ट समुच्चय' शब्द का प्रयोग कभी-कभी कॉम्पैक्ट स्पेस के पर्याय के रूप में किया जाता है, जिससे यह सदैव टोपोलॉजिकल स्पेस के समुच्चय की कॉम्पैक्टनेस को भी संदर्भित करता है।

ऐतिहासिक विकास

इस प्रकार से 19वीं शताब्दी में, कई असमान गणितीय गुणों को समझा गया जिन्हें बाद में सघनता के परिणाम के रूप में देखा जाएगा। ओर, बर्नार्ड बोलजानो (1817) को पता था कि बिंदुओं के किसी भी बंधे हुए अनुक्रम (उदाहरण के लिए, रेखा या विमान में) का परिणाम होता है जो अंततः इच्छा अनुसार से किसी अन्य बिंदु के समीप आना चाहिए, जिसे सीमा बिंदु कहा जाता है।

बोल्ज़ानो का प्रमाण द्विभाजन की विधि पर निर्भर करता था: अनुक्रम को अंतराल में रखा गया था जिसे फिर दो समान भागों में विभाजित किया गया था, और अनुक्रम के अनंत रूप से कई पदों वाले भाग का चयन किया गया था।

इस प्रकार से परिणामी छोटे अंतराल को छोटे और छोटे भागों में विभाजित करके प्रक्रिया को दोहराया जा सकता है - जब तक कि यह वांछित सीमा बिंदु पर बंद न हो जाए।

किन्तु बोलजानो-वीयरस्ट्रैस प्रमेय का पूरा महत्व बोलजानो की प्रमेय, और इसकी प्रमाण की विधि, लगभग 50 साल बाद तक सामने नहीं आई जब इसे कार्ल वीयरस्ट्रैस द्वारा फिर से खोजा गया था ।[4]

चूँकि 1880 के दशक में, यह स्पष्ट हो गया कि बोलजानो-वीयरस्ट्रैस प्रमेय के समान परिणाम केवल संख्याओं या ज्यामितीय बिंदुओं के बजाय कार्य स्थान के लिए तैयार किए जा सकते हैं।

कार्यों को सामान्यीकृत स्थान के बिंदुओं के रूप में मानने का विचार गिउलिओ एस्कोली और सेसारे अर्ज़ेला की जांच से जुड़ा है।[5] उनकी जांच की परिणति, अर्ज़ेला-एस्कोली प्रमेय, निरंतर कार्यों के परिवारों के लिए बोल्ज़ानो-वीयरस्ट्रैस प्रमेय का सामान्यीकरण था, जिसका स्पष्ट निष्कर्ष यह निकालना था कि उपयुक्त परिवार से कार्यों का समान अभिसरण अनुक्रम निकालना संभव था।

इस क्रम की एकसमान सीमा ने बोल्ज़ानो के सीमा बिंदु के समान ही भूमिका निभाई।

बीसवीं शताब्दी की प्रारंभ में, डेविड हिल्बर्ट और एरहार्ड श्मिट द्वारा जांच के अनुसार, अर्ज़ेला और एस्कोली के समान परिणाम अभिन्न समीकरण के क्षेत्र में जमा होने लगे थे ।

इंटीग्रल समीकरणों के समाधान से आने वाले ग्रीन के कार्यों के निश्चित वर्ग के लिए, श्मिट ने दिखाया था कि आर्ज़ेला-एस्कोली प्रमेय के अनुरूप गुण माध्य अभिसरण के अर्थ में होती है - या अभिसरण जिसे बाद में हिल्बर्ट स्थान कहा जाएगा।

इसने अंततः कॉम्पैक्ट स्पेस की सामान्य धारणा की शाखा के रूप में कॉम्पैक्ट ऑपरेटर की धारणा को जन्म दिया।

और यह मौरिस रेने फ़्रेचेट थे मौरिस फ़्रेचेट, जिन्होंने 1906 में, बोल्ज़ानो-वीयरस्ट्रैस गुण के सार को आसवित किया था और इस सामान्य घटना को संदर्भित करने के लिए कॉम्पैक्टनेस शब्द गढ़ा था (उन्होंने इस शब्द का उपयोग अपने 1904 के पेपर में पहले से ही किया था)[6] जिसके फलस्वरूप प्रसिद्ध 1906 थीसिस सामने आई)।

चूँकि , 19वीं शताब्दी के अंत में रैखिक सातत्य के अध्ययन से समग्रता की अलग धारणा भी धीरे-धीरे उभरी थी, जिसे विश्लेषण के कठोर सूत्रीकरण के लिए मौलिक माना गया था।

किन्तु 1870 में, एडवर्ड हेन ने दिखाया कि बंद और सीमित अंतराल पर परिभाषित सतत कार्य वास्तव में समान रूप से निरंतर था। प्रमाण के समय , उन्होंने लेम्मा का उपयोग किया कि छोटे विवर्त अंतरालों द्वारा अंतराल के किसी भी गणनीय कवर से, इनमें से सीमित संख्या का चयन करना संभव था जो इसे भी कवर करता था।

इस लेम्मा के महत्व को एमिल बोरेल (1895) द्वारा पहचाना गया था, और इसे पियरे कजिन (गणितज्ञ) (1895) और हेनरी लेबेस्गुए (1904) द्वारा अंतरालों के मनमाने संग्रह के लिए सामान्यीकृत किया गया था। हेन-बोरेल प्रमेय, जैसा कि परिणाम अब ज्ञात होते है, वास्तविक संख्याओं के बंद और बंधे हुए समुच्चयों के पास और विशेष गुण होते है।

और यह गुण महत्वपूर्ण थी क्योंकि यह समुच्चय के पश्चात में स्थानीय गुण (जैसे किसी फलन की निरंतरता) से समुच्चय के बारे में वैश्विक जानकारी (जैसे किसी फलन की समान निरंतरता) तक पारित होने की अनुमति देती थी।

यह भावना व्यक्त की गई लेब्सग्यू (1904), जिन्होंने लेब्सग इंटीग्रल के विकास में भी इसका उपयोग किया।

अंततः, पावेल अलेक्जेंड्रोव और पावेल उरीसोहन के निर्देशन में बिंदु-समुच्चय टोपोलॉजी के रूसी स्कूल ने हेइन-बोरेल कॉम्पैक्टनेस को इस तरह से तैयार किया, जिसे टोपोलॉजिकल स्पेस की आधुनिक धारणा पर प्रयुक्त किया जा सके। अलेक्सान्द्रोव & उरीसोहन (1929) ने दिखाया कि फ़्रेचेट के कारण कॉम्पैक्टनेस का पुराना संस्करण, जिसे अब (सापेक्ष) अनुक्रमिक कॉम्पैक्टनेस कहा जाता है, उचित परिस्थितियों अनुक्रमिक सघनता के उस संस्करण का अनुसरण करता है जिसे परिमित उपकवरों के अस्तित्व के संदर्भ में तैयार किया गया था।

यह कॉम्पैक्टनेस की धारणा थी जो प्रमुख बन गई, क्योंकि यह न केवल कठोर गुण था, किन्तु इसे न्यूनतम अतिरिक्त तकनीकी मशीनरी के साथ अधिक सामान्य समुच्चयिंग में तैयार किया जा सकता था, क्योंकि यह केवल विवर्त समुच्चय की संरचना स्थान पर निर्भर थी।.

मूल उदाहरण

कोई भी परिमित स्थलाकृतिक स्थान सघन होता है; प्रत्येक बिंदु के लिए, उसमें उपस्थित विवर्त समुच्चय का चयन करके सीमित उपकवर प्राप्त किया जा सकता है। कॉम्पैक्ट [0,1]स्पेस का गैर-तुच्छ उदाहरण (बंद) इकाई अंतराल है वास्तविक संख्याओं का। यदि कोई इकाई अंतराल में अनंत संख्या में अलग-अलग बिंदु चुनता है, तो उस अंतराल में इन बिंदुओं के बीच कुछ संचय बिंदु होना चाहिए। उदाहरण के लिए, अनुक्रम के विषम संख्या वाले पद 1, 1/2, 1/3, 3/4, 1/5, 5/6, 1/7, 7/8, ... इच्छा अनुसार से 0 के समीप पहुंच जाते हैं, जबकि सम-संख्या वाले इच्छा अनुसार से 1 के समीप पहुंच जाते हैं। दिया गया उदाहरण अनुक्रम अंतराल की सीमा (टोपोलॉजी) बिंदुओं को सम्मिलित करने के महत्व को दर्शाता है, क्योंकि अनुक्रम की सीमा स्पेस में ही होनी चाहिए - वास्तविक संख्याओं का विवर्त (या आधा विवर्त ) अंतराल सघन नहीं होता है।

यह भी महत्वपूर्ण है कि अंतराल को सीमित किया जाए, क्योंकि अंतराल [0,∞) में, कोई अंकों का क्रम चुन सकता है 0, 1, 2, 3, ..., जिसका कोई भी उप-अनुक्रम अंततः इच्छा अनुसार से किसी भी वास्तविक संख्या के समीप नहीं आता है।

इस प्रकार से दो आयामों में, बंद डिस्क (गणित) कॉम्पैक्ट होती है क्योंकि डिस्क से लिए गए किसी भी अनंत संख्या में बिंदुओं के लिए, उन बिंदुओं के कुछ उपसमुच्चय को इच्छा अनुसार से या तो डिस्क के अन्दर बिंदु या सीमा पर बिंदु के समीप आना चाहिए। चूँकि , विवर्त डिस्क कॉम्पैक्ट नहीं होती है, क्योंकि बिंदुओं का क्रम सीमा की ओर बढ़ सकता है - आंतरिक भाग में किसी भी बिंदु के इच्छा अनुसार से समीप आए बिना। इसी प्रकार , व्रत्त सघन होते हैं, जिससे व्रत्त में बिंदु नहीं होता है क्योंकि बिंदुओं का क्रम अभी भी लुप्त बिंदु की ओर बढ़ सकता है, जिससे स्पेस के अन्दर किसी भी बिंदु के इच्छा अनुसार से समीप नहीं आ सकता है। रेखाएं और समतल सघन नहीं होते हैं, क्योंकि कोई भी व्यक्ति किसी भी बिंदु तक पहुंचे बिना किसी भी दिशा में समान दूरी वाले बिंदुओं का समुच्चय ले सकता है।

परिभाषाएँ

व्यापकता के स्तर के आधार पर सघनता की विभिन्न परिभाषाएँ प्रयुक्त हो सकती हैं।

विशेष रूप से यूक्लिडियन स्पेस के उपसमुच्चय को कॉम्पैक्ट कहा जाता है यदि यह बंद समुच्चय और घिरा हुआ समुच्चय है। बोल्ज़ानो-वीयरस्ट्रैस प्रमेय द्वारा इसका तात्पर्य यह है कि समुच्चय से किसी भी अनंत अनुक्रम (गणित) का परिणाम होता है जो समुच्चय में बिंदु पर परिवर्तित होता है।

सघनता की विभिन्न समतुल्य धारणाएँ, जैसे अनुक्रमिक सघनता और सीमा बिंदु सघनता, सामान्य मीट्रिक स्थानों में विकसित की जा सकती हैं।[3]

इसके विपरीत, कॉम्पैक्टनेस की विभिन्न धारणाएं सामान्य टोपोलॉजिकल स्पेस में समतुल्य नहीं हैं, और कॉम्पैक्टनेस की सबसे उपयोगी धारणा - जिसे मूल रूप से बायोकॉम्पैक्टनेस कहा जाता है - जो विवर्त समुच्चय से युक्त कवर (टोपोलॉजी) का उपयोग करके परिभाषित किया गया है (नीचे विवर्त कवर परिभाषा देखें)।

कॉम्पैक्टनेस का यह रूप यूक्लिडियन स्पेस के बंद और बंधे उपसमुच्चय के लिए मान्य है, जिसे हेइन-बोरेल प्रमेय के रूप में जाना जाता है।

कॉम्पैक्टनेस, जब इस विधि से परिभाषित की जाती है, तो सदैव किसी को वह जानकारी लेने की अनुमति मिलती है जो स्थानीय गुण के रूप में जानी जाती है - स्पेस के प्रत्येक बिंदु के प्रतिवेश (गणित) में - और इसे उस जानकारी तक विस्तारित करने के लिए जो पूरे स्पेस में विश्व स्तर पर उपस्थित है।

इस घटना का उदाहरण डिरिचलेट का प्रमेय है, जिस पर इसे मूल रूप से हेइन द्वारा प्रयुक्त किया गया था, कि कॉम्पैक्ट अंतराल पर निरंतर कार्य समान रूप से निरंतर होता है; यहां, निरंतरता फलन की स्थानीय गुण है, और समान निरंतरता संबंधित वैश्विक गुण है।

विवर्त कवर परिभाषा

औपचारिक रूप से, टोपोलॉजिकल स्पेस X को कॉम्पैक्ट कहा जाता है यदि प्रत्येक विवर्त कवर X में सीमित समुच्चय छिपाना है।[7] अर्थात्, यदि X के खुले उपसमुच्चय के प्रत्येक संग्रह C के लिए X संहत है

,

एक परिमित उपसंग्रह F ⊆ C ऐसा है

गणित की कुछ शाखाएँ जैसे कि बीजगणितीय ज्यामिति, सामान्यतः निकोलस बॉर्बकी के फ्रांसीसी स्कूल से प्रभावित होती हैं, सामान्य धारणा के लिए अर्ध-कॉम्पैक्ट शब्द का उपयोग करती हैं, और टोपोलॉजिकल रिक्त स्थान के लिए कॉम्पैक्ट शब्द को आरक्षित करती हैं जो हॉसडॉर्फ़ स्थान और अर्ध-कॉम्पैक्ट दोनों हैं।

इस प्रकार से एक कॉम्पैक्ट समुच्चय को कभी-कभी कॉम्पैक्टम, बहुवचन कॉम्पेक्टा के रूप में जाना जाता है।

उपसमूहों की सघनता

उपसमुच्चय K टोपोलॉजिकल स्पेस का X को कॉम्पैक्ट कहा जाता है यदि यह सबस्पेस (सबस्पेस टोपोलॉजी में) के रूप में कॉम्पैक्ट है।

है, यदि X के खुले उपसमुच्चय के प्रत्येक मनमाने संग्रह C के लिए K संहत है

एक सीमित उपसंग्रह है FC ऐसा है कि

कॉम्पैक्टनेस एक "टोपोलॉजिकल" संपत्ति है। अर्थात्, यदि , उपसमुच्चय Z के साथ सबस्पेस टोपोलॉजी से सुसज्जित है, तो K, Z में कॉम्पैक्ट है यदि और केवल यदि K, Y में कॉम्पैक्ट है।

लक्षण वर्णन

अगर X टोपोलॉजिकल स्पेस है तो निम्नलिखित समकक्ष हैं:

  1. X सघन है; इस प्रकार से ,X हर विवर्त कवर का सीमित उपकवर है।
  2. X का उप-आधार इस प्रकार है कि उप-आधार के सदस्यों द्वारा स्पेस के प्रत्येक आवरण में परिमित उप-आधार होता है (अलेक्जेंडर का उप-आधार प्रमेय)।
  3. X लिंडेलोफ स्थान है लिंडेलोफ और गणनीय रूप से सघन[8]
  4. बंद उपसमुच्चय का कोई भी संग्रह परिमित प्रतिच्छेदन गुण के साथ X गैर-रिक्त प्रतिच्छेदन है।
  5. X पर प्रत्येक नेट (गणित) चालू में अभिसरण सबनेट है (प्रमाण के लिए नेट (गणित) पर आलेख देखें)।
  6. X टोपोलॉजी में प्रत्येक फ़िल्टर चालू है में अभिसरण शोधन है।
  7. X पर प्रत्येक नेट ऑन का क्लस्टर बिंदु है।
  8. प्रत्येक फ़िल्टर चालू X का क्लस्टर बिंदु है।
  9. X पर प्रत्येक अल्ट्राफिल्टर (समुच्चय सिद्धांत) चालू कम से कम बिंदु पर एकत्रित होता है।
  10. X पर प्रत्येक अनंत उपसमुच्चय का पूर्ण संचय बिंदु है।[9]
  11. प्रत्येक टोपोलॉजिकल स्पेस Y,के लिए प्रक्षेपण बंद मैपिंग है[10] (उचित मानचित्र देखें)।

अतः बोर्बाकी कॉम्पैक्ट स्पेस (अर्ध-कॉम्पैक्ट स्पेस) को टोपोलॉजिकल स्पेस के रूप में परिभाषित करता है जहां प्रत्येक फ़िल्टर में क्लस्टर पॉइंट होता है (इस प्रकार से , उपरोक्त में 8)।[11]

यूक्लिडियन स्पेस

किसी भी उपसमुच्चय A के लिए यूक्लिडियन स्पेस A,का सघन है यदि और केवल यदि यह बंद समुच्चय और परिबद्ध समुच्चय है; यह हेइन-बोरेल प्रमेय है।

चूंकि यूक्लिडियन स्पेस मीट्रिक स्पेस है, अगले उपधारा की शर्तें इसके सभी उपसमुच्चयों पर भी प्रयुक्त होती हैं।

सभी समतुल्य स्थितियों में, व्यवहार में यह सत्यापित करना सबसे सरल है कि उपसमुच्चय बंद और परिबद्ध है, उदाहरण के लिए, बंद अंतराल (गणित) या बंद n-गेंद अंतराल के लिए ।

मीट्रिक रिक्त स्थान

किसी भी मीट्रिक स्थान के लिए (X, d), निम्नलिखित समकक्ष हैं (गणनीय विकल्प मानते हुए):

  1. (X, d) सघन है.
  2. (X, d) पूर्णता (टोपोलॉजी) है और पूर्ण रूप से घिरा हुआ है (यह समान स्थानों के लिए कॉम्पैक्टनेस के समान भी है)।[12]
  3. (X, d) क्रमिक रूप से सघन है; अर्थात्, X प्रत्येक क्रम में में अभिसरण अनुवर्ती है जिसकी सीमा अंदर है X (यह प्रथम-गणनीय समान स्थानों के लिए कॉम्पैक्टनेस के समान भी है)।
  4. (X, d) सीमा बिंदु कॉम्पैक्ट है (जिसे कमजोर रूप से गणनीय कॉम्पैक्ट भी कहा जाता है); अर्थात्, X प्रत्येक अनंत उपसमुच्चय X में समुच्चय का कम से कम सीमा बिंदु होता है .
  5. (X, d) गणनीय रूप से सघन है; अर्थात् X, प्रत्येक गणनीय विवर्त आवरण का सीमित उपकवर है।
  6. (X, d) कैंटर समुच्चय से सतत फलन की छवि है।[13]
  7. (X, d) गैर-रिक्त बंद उपसमुच्चय S1S2 ⊇ ... का प्रत्येक घटता हुआ नेस्टेड अनुक्रम में में गैर-रिक्त प्रतिच्छेदन है।
  8. (X, d) उचित विवर्त उपसमुच्चय S1S2 ⊆ ... का हर बढ़ता हुआ नेस्टेड अनुक्रम में X कवर करने में विफल रहता है .

एक कॉम्पैक्ट मीट्रिक स्थान (X, d) निम्नलिखित गुणों को भी संतुष्ट करता है:

  1. लेबेस्ग्यू की संख्या प्रमेयिका: प्रत्येक विवर्त आवरण के लिए X, वहां संख्या δ > 0 उपस्थित है ऐसा कि प्रत्येक उपसमुच्चय X व्यास का < δ कवर के कुछ सदस्य में निहित है।
  2. (X, d) द्वितीय-गणनीय स्थान है द्वितीय-गणनीय, पृथक्करणीय स्थान और लिंडेलोफ़ स्थान|लिंडेलोफ़ - ये तीन स्थितियाँ मीट्रिक रिक्त स्थान के लिए समतुल्य हैं। इसका उलट सत्य नहीं है; उदाहरण के लिए, गणनीय असतत स्थान इन तीन नियमो को पूरा करता है, जिससे कॉम्पैक्ट नहीं है।
  3. (X d)बंद और घिरा हुआ है किसी भी मीट्रिक स्थान के समुच्चय के रूप में जिसका प्रतिबंधित मीट्रिक है . गैर-यूक्लिडियन स्थान के लिए इसका विपरीत विफल हो सकता है; जैसे असतत मीट्रिक से सुसज्जित वास्तविक रेखा बंद और परिबद्ध है जिससे कॉम्पैक्ट नहीं है, क्योंकि स्पेस के सभी सिंगलटन (गणित) का संग्रह विवर्त आवरण है जो किसी परिमित उपकवर को स्वीकार नहीं करता है। यह पूर्ण है जिससे पूर्ण रूप से सीमित नहीं है।

आदेशित स्थान

एक आदेशित स्थान के लिए (X, <) (इस प्रकार से ऑर्डर टोपोलॉजी से सुसज्जित पूरी तरह से ऑर्डर किया गया समुच्चय), निम्नलिखित समकक्ष हैं:

  1. (X, <) सघन है.
  2. X प्रत्येक उपसमुच्चय X में सर्वोच्च (अर्थात न्यूनतम ऊपरी सीमा) है.
  3. X प्रत्येक उपसमुच्चय X में अनंत (अर्थात सबसे बड़ी निचली सीमा) है.
  4. प्रत्येक गैर-रिक्त बंद उपसमुच्चय X में अधिकतम और न्यूनतम तत्व है।

इन नियमो में से किसी को संतुष्ट करने वाला व्यवस्थित स्थान पूर्ण जाली कहलाता है।

इसके अतिरिक्त , निम्नलिखित सभी ऑर्डर किए गए स्थानों के लिए (X, <) समतुल्य हैं , और (गणनीय विकल्प मानते हुए) जब भी सत्य होते हैं (X, <) सघन है. (सामान्यतः संवाद विफल हो जाती है यदि (X, <) भी मेट्रिज़ेबल नहीं है।):

  1. प्रत्येक क्रम में (X, <) में अनुवर्ती है जो (X, <) अभिसरण करता है .
  2. प्रत्येक X के मोनोटोन में क्रम बढ़ता जा रहा है X में अद्वितीय सीमा तक अभिसरण होता है .
  3. प्रत्येक X के मोनोटोन घटते क्रम में X में अद्वितीय सीमा तक अभिसरण होता है .
  4. गैर-रिक्त बंद उपसमुच्चय S1S2 ⊇ ...का प्रत्येक घटता हुआ नेस्टेड अनुक्रम (X, <) में में गैर-रिक्त प्रतिच्छेदन है।
  5. (X, <) उचित विवर्त उपसमुच्चय X का हर बढ़ता हुआ नेस्टेड अनुक्रम S1S2 ⊆...में कवर करने में विफल रहता है .

सतत कार्यों द्वारा विशेषता

मान लीजिए कि X एक टोपोलॉजिकल स्पेस है और C(X) X पर वास्तविक निरंतर कार्यों का वलय है.

प्रत्येक के लिए pX, मूल्यांकन मानचित्र द्वारा दिए गए evp(f) = f(p) वलय समरूपता है।

ईवीपी का कर्नेल (बीजगणित) एक अधिकतम आदर्श है, क्योंकि अवशेष क्षेत्र C(X)/ker evp प्रथम समरूपता प्रमेय के अनुसार वास्तविक संख्याओं का क्षेत्र है।

एक टोपोलॉजिकल स्पेस X छद्मकॉम्पैक्ट स्थान है यदि और केवल यदि प्रत्येक अधिकतम आदर्श में C(X) में अवशेष फ़ील्ड में वास्तविक संख्याएँ हैं।

पूरी तरह से नियमित स्थानों के लिए, यह मूल्यांकन समरूपता के कर्नेल होने वाले प्रत्येक अधिकतम आदर्श के समान है।[14] चूँकि , ऐसे छद्मकॉम्पैक्ट स्थान हैं जो कॉम्पैक्ट नहीं हैं।

सामान्य तौर पर, गैर-छद्मकॉम्पैक्ट स्थानों के लिए C(X) में सदैव अधिकतम आदर्श m होते हैं जैसे कि अवशेष क्षेत्र C(X)/m एक (गैर-(गैर-आर्किमिडीयन क्षेत्र) अतियथार्थवादी क्षेत्र है।

गैर-मानक विश्लेषण की रूपरेखा कॉम्पैक्टनेस के निम्नलिखित वैकल्पिक लक्षण वर्णन की अनुमति देती है:[15] टोपोलॉजिकल स्पेस X, x0) सघन है यदि और केवल यदि प्रत्येक बिंदु x प्राकृतिक विस्तार का *X बिंदु से अतिसूक्ष्म है x0 का X (ज्यादा ठीक, x के मोनैड (गैर-मानक विश्लेषण) में निहित है.

अतिवास्तविक परिभाषा

एक स्थान X सघन है यदि इसकी अतिवास्तविक संख्या है *X (उदाहरण के लिए, अल्ट्रापावर निर्माण द्वारा निर्मित) में वह गुण है जो प्रत्येक बिंदु *X का है किसी बिंदु X*X के असीम रूप से समीप है .

उदाहरण के लिए, विवर्त वास्तविक अंतराल X = (0, 1) सघन नहीं है क्योंकि यह अतियथार्थवादी विस्तार है *(0,1) में इनफिनिटिमल्स सम्मिलित हैं, जो 0 के असीम रूप से समीप हैं, जो कि बिंदु X नहीं है .

पर्याप्त स्थितियाँ

  • संहत स्थान का बंद उपसमुच्चय संहत होता है।[16]
  • सघन समुच्चयों का परिमित संघ (समुच्चय सिद्धांत) सघन होता है।
  • एक कॉम्पैक्ट स्पेस की सतत फलन (टोपोलॉजी) छवि कॉम्पैक्ट होती है।[17]
  • हॉसडॉर्फ स्थान के कॉम्पैक्ट उपसमुच्चय के किसी भी गैर-रिक्त संग्रह का प्रतिच्छेदन कॉम्पैक्ट (और बंद) है;
    • अगर X हॉसडॉर्फ नहीं है तो दो कॉम्पैक्ट उपसमुच्चय का प्रतिच्छेदन कॉम्पैक्ट होने में विफल हो सकता है (उदाहरण के लिए फ़ुटनोट देखें)।[lower-alpha 1]
  • कॉम्पैक्ट स्पेस के किसी भी संग्रह की उत्पाद टोपोलॉजी कॉम्पैक्ट होती है। (यह टाइकोनोफ़ का प्रमेय है, जो पसंद के स्वयंसिद्ध के समान है।)
  • एक मेट्रिज़ेबल स्थान में, उपसमुच्चय कॉम्पैक्ट होता है यदि और केवल यदि यह क्रमिक रूप से कॉम्पैक्ट होता है (गणनीय विकल्प के सिद्धांत को मानते हुए)
  • किसी भी टोपोलॉजी से युक्त परिमित समुच्चय कॉम्पैक्ट होता है।

सघन स्थानों के गुण

  • हॉसडॉर्फ़ स्थान का संक्षिप्त उपसमुच्चय X बन्द है।
    • अगर X हॉसडॉर्फ़ नहीं है तो इसका संक्षिप्त उपसमुच्चय है X का बंद उपसमुच्चय बनने में विफल हो सकता है X (उदाहरण के लिए फ़ुटनोट देखें)।[lower-alpha 2]
    • अगर X हॉसडॉर्फ नहीं है तो कॉम्पैक्ट समुच्चय का बंद होना कॉम्पैक्ट होने में विफल हो सकता है (उदाहरण के लिए फ़ुटनोट देखें)।[lower-alpha 3]
  • किसी भी टोपोलॉजिकल वेक्टर स्पेस (टीवीएस) में, कॉम्पैक्ट उपसमुच्चय पूर्ण स्पेस होता है। चूँकि , प्रत्येक गैर-हॉसडॉर्फ टीवीएस में कॉम्पैक्ट (और इस प्रकार पूर्ण) उपसमुच्चय होते हैं जो बंद नहीं होते हैं।
  • अगर A और B हॉसडॉर्फ स्पेस के असंयुक्त कॉम्पैक्ट उपसमुच्चय हैं X, तो वहां असंयुक्त विवर्त समुच्चय उपस्थित हैं U और V में X ऐसा है कि AU और BV.
  • एक सघन स्थान से हॉसडॉर्फ स्पेस में निरंतर प्रक्षेपण होमियोमोर्फिज्म है।
  • एक कॉम्पैक्ट हॉसडॉर्फ स्थान सामान्य स्थान और नियमित स्थान है।
  • यदि कोई स्थान X कॉम्पैक्ट और हॉसडॉर्फ है, फिर कोई उत्तम टोपोलॉजी नहीं है X कॉम्पैक्ट है और इसमें कोई मोटे टोपोलॉजी नहीं है X हॉसडॉर्फ है।
  • यदि मीट्रिक स्थान का उपसमुच्चय (X, d) कॉम्पैक्ट है तो यह d-बाउंड है।

फ़ंक्शंस और कॉम्पैक्ट स्पेस

चूंकि कॉम्पैक्ट स्पेस की निरंतर फलन (टोपोलॉजी) छवि कॉम्पैक्ट होती है, ऐसे स्थानों के लिए अत्यधिक मूल्य प्रमेय प्रयुक्त होता है: गैर-रिक्त कॉम्पैक्ट स्पेस पर निरंतर वास्तविक-मूल्यवान फलन ऊपर से घिरा होता है और अपने सर्वोच्च को प्राप्त करता है।[18] (थोड़ा अधिक सामान्यतः, यह ऊपरी अर्ध-निरंतर फलन के लिए सच है।) उपरोक्त कथनों के विपरीत, उचित मानचित्र के तहत कॉम्पैक्ट स्थान की पूर्व-छवि कॉम्पैक्ट है।

संघनन

हर टोपोलॉजिकल स्पेस X कॉम्पैक्ट स्पेस का विवर्त सघन टोपोलॉजिकल उपस्थान है जिसमें अधिकतम बिंदु X से अधिक होता है , कॉम्पेक्टिफिकेशन (गणित) द्वारा|अलेक्जेंड्रॉफ़ एक-बिंदु कॉम्पेक्टिफिकेशन। एक ही निर्माण से, प्रत्येक स्थानीय रूप स्थानीय रूप से सघन हॉसडॉर्फ स्थान X कॉम्पैक्ट हॉसडॉर्फ स्पेस का विवर्त सघन उपस्थान है जिसमें अधिकतम बिंदु X से अधिक है .

ऑर्डर किए गए कॉम्पैक्ट स्पेस

वास्तविक संख्याओं के गैर-रिक्त कॉम्पैक्ट उपसमुच्चय में सबसे बड़ा तत्व और सबसे छोटा तत्व होता है।

होने देना X ऑर्डर टोपोलॉजी से संपन्न कुल ऑर्डर समुच्चय बनें।

तब X सघन है यदि और केवल यदि X पूर्ण जाली है (इस प्रकार से सभी उपसमुच्चय में सुप्रीमा और इन्फिमा है)।[19]

उदाहरण

  • खाली समुच्चय सहित कोई भी परिमित टोपोलॉजिकल स्पेस कॉम्पैक्ट होता है। अधिक सामान्यतः , परिमित टोपोलॉजी (केवल सीमित रूप से कई विवर्त समुच्चय) वाला कोई भी स्थान कॉम्पैक्ट होता है; इसमें विशेष रूप से तुच्छ टोपोलॉजी सम्मिलित है।
  • सहपरिमित टोपोलॉजी वाला कोई भी स्थान कॉम्पैक्ट होता है।
  • किसी भी स्थानीय रूप से कॉम्पैक्ट हॉसडॉर्फ़ स्थान को अलेक्जेंड्रोफ़ एक-बिंदु संघनन के माध्यम से, इसमें बिंदु जोड़कर कॉम्पैक्ट स्थान में बदल दिया जा सकता है। का एक-बिंदु संघनन वृत्त के लिए S1 समरूपी है ; S2 का एक-बिंदु संघनन व्रत्त के लिए समरूपी है . एक-बिंदु कॉम्पेक्टिफिकेशन का उपयोग करके, कोई भी सरल से गैर-हॉसडॉर्फ़ स्थान से प्रारंभ करके, कॉम्पैक्ट रिक्त स्थान का निर्माण कर सकता है जो हॉसडॉर्फ़ नहीं हैं।
  • किसी भी पूर्णतः व्यवस्थित समुच्चय पर दायां क्रम टोपोलॉजी या बायां क्रम टोपोलॉजी कॉम्पैक्ट है। विशेष रूप से, सिएरपिंस्की स्थान कॉम्पैक्ट है।
  • अनंत बिंदुओं वाला कोई भी पृथक स्थान संहत नहीं होता। स्पेस के सभी सिंगलटन (गणित) का संग्रह विवर्त आवरण है जो किसी परिमित उपकवर को स्वीकार नहीं करता है। परिमित असतत स्थान सघन होते हैं।
  • में निचली सीमा टोपोलॉजी को ध्यान में रखते हुए, कोई भी असंख्य समुच्चय कॉम्पैक्ट नहीं है।
  • असंख्य समुच्चय पर सहगणनीय टोपोलॉजी में, कोई भी अनंत समुच्चय कॉम्पैक्ट नहीं होता है। पिछले उदाहरण की तरह, संपूर्ण स्थान स्थानीय रूप से कॉम्पैक्ट नहीं है जिससे फिर भी लिंडेलोफ़ स्पेस|लिंडेलोफ़ है।
  • बंद इकाई अंतराल [0, 1] सघन है. यह हेन-बोरेल प्रमेय से अनुसरण करता है। विवर्त अंतराल (0, 1) कॉम्पैक्ट नहीं है: विवर्त कवर के लिए n = 3, 4, ...  में कोई परिमित उपकवर नहीं है। इसी प्रकार, बंद अंतराल में परिमेय संख्याओं का समुच्चय [0,1] सघन नहीं है: अंतरालों में परिमेय संख्याओं का समुच्चय [0, 1] में सभी तर्कसंगतताओं को सम्मिलित करें n = 4, 5, ...  जिससे इस कवर में कोई सीमित सबकवर नहीं है। यहां, समुच्चय उप-स्थान टोपोलॉजी में विवर्त हैं, भले ही वे उप-समूह के रूप में विवर्त नहीं हैं.
  • समुच्चय सभी वास्तविक संख्याओं का संहत नहीं है क्योंकि इसमें विवर्त अंतरालों का आवरण होता है जिसमें कोई परिमित उपआवरण नहीं होता है। उदाहरण के लिए, अंतराल (n − 1, n + 1), कहाँ n सभी पूर्णांक मान लेता है Z, ढकना जिससे कोई सीमित उपकवर नहीं है.
  • दूसरी ओर, अनुरूप टोपोलॉजी ले जाने वाली विस्तारित वास्तविक संख्या रेखा कॉम्पैक्ट है; ध्यान दें कि ऊपर वर्णित कवर कभी भी अनंत बिंदुओं तक नहीं पहुंचेगा और इस प्रकार विस्तारित वास्तविक रेखा को कवर नहीं करेगा। वास्तव में, समुच्चय में प्रत्येक अनन्तता को उसकी संबंधित इकाई में मैप करने और प्रत्येक वास्तविक संख्या को उसके चिह्न के लिए अंतराल के सकारात्मक भाग में अद्वितीय संख्या से गुणा करने की होमोमोर्फिज्म है, जिसके परिणामस्वरूप विभाजित होने पर इसका पूर्ण मान प्राप्त होता है। माइनस स्वयं, और चूंकि होमोमोर्फिज्म कवर को संरक्षित करता है, हेन-बोरेल गुण का अनुमान लगाया जा सकता है।
  • प्रत्येक प्राकृतिक संख्या के लिए n, n-क्षेत्र|n-गोला सघन है. फिर से हेइन-बोरेल प्रमेय से, किसी भी परिमित-आयामी मानक वेक्टर स्थान की बंद इकाई गेंद कॉम्पैक्ट होती है। यह अनंत आयामों के लिए सत्य नहीं है; वास्तव में, मानक वेक्टर स्थान परिमित-आयामी होता है यदि और केवल तभी जब इसकी बंद इकाई गेंद कॉम्पैक्ट हो।
  • दूसरी ओर, मानक स्थान के दोहरे की बंद इकाई गेंद कमजोर-* टोपोलॉजी के लिए कॉम्पैक्ट है। (अलाओग्लू का प्रमेय)
  • कैंटर समुच्चय कॉम्पैक्ट है। वास्तव में, प्रत्येक कॉम्पैक्ट मीट्रिक स्थान कैंटर समुच्चय की सतत छवि है।
  • समुच्चय पर विचार करें K सभी कार्यों का f : → [0, 1] वास्तविक संख्या रेखा से बंद इकाई अंतराल तक, और टोपोलॉजी को परिभाषित करें K ताकि क्रम में K की ओर अभिसरण होता है fK अगर और केवल अगर की ओर अभिमुख हो जाता है f(x) सभी वास्तविक संख्याओं के लिए x. ऐसी केवल टोपोलॉजी है; इसे बिंदुवार अभिसरण की टोपोलॉजी या उत्पाद टोपोलॉजी कहा जाता है। तब K कॉम्पैक्ट टोपोलॉजिकल स्पेस है; यह टाइकोनोफ़ प्रमेय से अनुसरण करता है।
  • समुच्चय पर विचार करें K सभी कार्यों का f : [0, 1] → [0, 1] लिप्सचिट्ज़ स्थिति को संतुष्ट करना |f(x) − f(y)| ≤ |x − y| सभी के लिए xy ∈ [0,1]. पर विचार करें Kसमान अभिसरण से प्रेरित मीट्रिक फिर अर्ज़ेला एस्कोली प्रमेय द्वारा स्पेस K सघन है.
  • बनच स्थान पर किसी भी बंधे हुए रैखिक ऑपरेटर के ऑपरेटर का स्पेक्ट्रम जटिल संख्याओं का गैर-रिक्त कॉम्पैक्ट उपसमुच्चय है . इसके विपरीत, कोई भी कॉम्पैक्ट उपसमुच्चय कुछ परिबद्ध रैखिक ऑपरेटर के स्पेक्ट्रम के रूप में, इस तरह से उत्पन्न होता है। उदाहरण के लिए, हिल्बर्ट स्पेस अनुक्रम space#ℓp space| पर विकर्ण ऑपरेटरका कोई भी कॉम्पैक्ट गैररिक्त उपसमुच्चय हो सकता है स्पेक्ट्रम के रूप में.

बीजगणितीय उदाहरण

  • ऑर्थोगोनल समूह जैसे टोपोलॉजिकल समूह कॉम्पैक्ट होते हैं, जबकि सामान्य रैखिक समूह जैसे समूह नहीं होते हैं।
  • चूंकि पी-एडिक संख्याएं p-एडीआईसी पूर्णांक कैंटर समुच्चय के होम्योमॉर्फिक हैं, वे कॉम्पैक्ट समुच्चय बनाते हैं।
  • ज़ारिस्की टोपोलॉजी (अर्थात, सभी प्रमुख आदर्शों का समुच्चय) के साथ किसी भी क्रमविनिमेय वलय के रिंग का स्पेक्ट्रम कॉम्पैक्ट होता है, जिससे हॉसडॉर्फ स्पेस कभी नहीं (तुच्छ स्थितियों को छोड़कर)। बीजगणितीय ज्यामिति में, ऐसे टोपोलॉजिकल रिक्त स्थान अर्ध-कॉम्पैक्ट योजना (गणित) के उदाहरण हैं, अर्ध टोपोलॉजी की गैर-हॉसडॉर्फ प्रकृति का संदर्भ देते हैं।
  • बूलियन बीजगणित का स्पेक्ट्रम कॉम्पैक्ट है, तथ्य जो स्टोन प्रतिनिधित्व प्रमेय का भाग है। पत्थर के स्थान, कॉम्पैक्ट पूरी तरह से अलग किए गए स्थान हॉसडॉर्फ स्थान, अमूर्त ढांचे का निर्माण करते हैं जिसमें इन स्पेक्ट्रा का अध्ययन किया जाता है। ऐसे स्थान अनंत समूह के अध्ययन में भी उपयोगी होते हैं।
  • क्रमविनिमेय इकाई बानाच बीजगणित का संरचना स्थान कॉम्पैक्ट हॉसडॉर्फ स्थान है।
  • हिल्बर्ट क्यूब कॉम्पैक्ट है, जो फिर से टाइकोनोफ़ के प्रमेय का परिणाम है।
  • एक अनंत समूह (जैसे गैलोज़ समूह) सघन होता है।

यह भी देखें

टिप्पणियाँ

  1. Let X = {a, b} ∪ , U = {a} ∪ , and V = {b} ∪ . Endow X with the topology generated by the following basic open sets: every subset of is open; the only open sets containing a are X and U; and the only open sets containing b are X and V. Then U and V are both compact subsets but their intersection, which is , is not compact. Note that both U and V are compact open subsets, neither one of which is closed.
  2. Let X = {a, b} and endow X with the topology {X, ∅, {a}}. Then {a} is a compact set but it is not closed.
  3. Let X be the set of non-negative integers. We endow X with the particular point topology by defining a subset UX to be open if and only if 0 ∈ U. Then S := {0} is compact, the closure of S is all of X, but X is not compact since the collection of open subsets {{0, x} : xX} does not have a finite subcover.

संदर्भ

  1. "सघनता". Encyclopaedia Britannica. mathematics (in English). Retrieved 2019-11-25 – via britannica.com.
  2. Engelking, Ryszard (1977). सामान्य टोपोलॉजी. Warsaw, PL: PWN. p. 266.
  3. 3.0 3.1 "अनुक्रमिक सघनता". www-groups.mcs.st-andrews.ac.uk. MT 4522 course lectures. Retrieved 2019-11-25.
  4. Kline 1990, pp. 952–953; Boyer & Merzbach 1991, p. 561
  5. Kline 1990, Chapter 46, §2
  6. Frechet, M. 1904. Generalisation d'un theorem de Weierstrass. Analyse Mathematique.
  7. Weisstein, Eric W. "कॉम्पैक्ट स्पेस". mathworld.wolfram.com (in English). Retrieved 2019-11-25.
  8. Howes 1995, pp. xxvi–xxviii.
  9. Kelley 1955, p. 163
  10. Bourbaki 2007, § 10.2. Theorem 1, Corollary 1.
  11. Bourbaki 2007, § 9.1. Definition 1.
  12. Arkhangel'skii & Fedorchuk 1990, Theorem 5.3.7
  13. Willard 1970 Theorem 30.7.
  14. Gillman & Jerison 1976, §5.6
  15. Robinson 1996, Theorem 4.1.13
  16. Arkhangel'skii & Fedorchuk 1990, Theorem 5.2.3
  17. Arkhangel'skii & Fedorchuk 1990, Theorem 5.2.2
  18. Arkhangel'skii & Fedorchuk 1990, Corollary 5.2.1
  19. Steen & Seebach 1995, p. 67

ग्रन्थसूची


बाहरी संबंध


This article incorporates material from Examples of compact spaces on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.