बानाच बीजगणित

From Vigyanwiki

गणित में, विशेष रूप से कार्यात्मक विश्लेषण में, स्टीफन बानाच के नाम पर बानाच बीजगणित वास्तविक संख्या या जटिल संख्याओं (या एक गैर-आर्किमिडीयन पूर्ण मानक क्षेत्र पर) पर एक सहयोगी बीजगणित है जो एक ही समय में एक बानाच स्थान भी है, अर्थात, एक मानक स्थान जो मानक से प्रेरित मीट्रिक में पूर्ण मीट्रिक स्थान है। मानक को पूरा करना आवश्यक है

यह सुनिश्चित करता है कि गुणन ऑपरेशन निरंतर कार्य (टोपोलॉजी) है।

एक बानाच बीजगणित को इकाईक कहा जाता है यदि इसमें गुणन के लिए एक पहचान तत्व होता है जिसका मानदंड है, और यदि इसका गुणन क्रमविनिमेय है तो इसे क्रमविनिमेय कहा जाता है। किसी भी बानाच बीजगणित A (तथापि इसमें कोई पहचान तत्व हो या नहीं) को एकल बानाच बीजगणित में आइसोमेट्री रूप से एम्बेड किया जा सकता है जिससे का एक संवृत सेट आदर्श (बीजगणित) बनाया जा सके। अधिकांश कोई यह मान लेता है कि विचाराधीन बीजगणित एकात्मक है: क्योंकि पर विचार करके और फिर परिणाम को मूल बीजगणित में लागू करके अधिकांश सिद्धांत विकसित कर सकता है। चूँकि, प्रत्येक समय ऐसा नहीं होता है। उदाहरण के लिए, कोई भी बिना पहचान के बानाच बीजगणित में सभी त्रिकोणमितीय फलनों को परिभाषित नहीं कर सकता है।

वास्तविक बानाच बीजगणित का सिद्धांत जटिल बानाच बीजगणित के सिद्धांत से बहुत भिन्न हो सकता है। उदाहरण के लिए, असतहीय जटिल बानाच बीजगणित के एक तत्व का स्पेक्ट्रम (कार्यात्मक विश्लेषण) कभी भी खाली नहीं हो सकता है, जबकि वास्तविक बानाच बीजगणित में यह कुछ तत्वों के लिए खाली हो सकता है।

बानाच बीजगणित को -एडिक संख्याओं के क्षेत्रों में भी परिभाषित किया जा सकता है। यह -एडिक विश्लेषण का भाग है।

उदाहरण

बानाच बीजगणित का प्रोटोटाइप उदाहरण है, जो स्थानीय रूप से कॉम्पैक्ट (हॉसडॉर्फ़ स्थान) स्थान पर (जटिल-मूल्यवान) निरंतर फलनों का स्थान जो अनंत पर लुप्त हो जाता है। इकाई है यदि और केवल यदि सघनता है। जटिल संयुग्मन समावेशन (गणित) है, वास्तव में C*-बीजगणित है। अधिक सामान्यतः, प्रत्येक C*-बीजगणित परिभाषा के अनुसार बानाच बीजगणित है।

  • वास्तविक (या सम्मिश्र) संख्याओं का समुच्चय बानाच बीजगणित है जिसका मान निरपेक्ष मान द्वारा दिया जाता है।
  • सभी वास्तविक या जटिल का सेट -द्वारा- मैट्रिक्स (गणित) इकाई बीजगणित बानाच बीजगणित बन जाता है यदि हम इसे उप-गुणक मैट्रिक्स मानदंड से लैस करते हैं।
  • मानक के साथ बानाच स्पेस (या ) बनाएं और गुणन को घटकवार परिभाषित करें:
  • चतुर्भुज 4-आयामी वास्तविक बानाच बीजगणित बनाते हैं, जिसमें मानदंड चतुर्भुजों के निरपेक्ष मान द्वारा दिए जाते हैं।
  • किसी सेट पर परिभाषित सभी सीमित वास्तविक या जटिल-मूल्यवान फलनों का बीजगणित (बिंदुवार गुणन और सर्वोच्च मानदंड के साथ) यूनिटल बानाच बीजगणित है।
  • कुछ स्थानीय रूप स्थानीय रूप से कॉम्पैक्ट स्थान पर सभी बंधे हुए निरंतर फलन (टोपोलॉजी) के वास्तविक या जटिल-मूल्य वाले फलन का बीजगणित (फिर से बिंदुवार संचालन और सर्वोच्च मानदंड के साथ) बानाच बीजगणित है।
  • बानाच स्पेस पर सभी निरंतर रैखिक परिवर्तन का बीजगणित (गुणन के रूप में कार्यात्मक संरचना और मानक के रूप में ऑपरेटर मानदंड के साथ) एक यूनिटल बानाच बीजगणित है। पर सभी कॉम्पैक्ट ऑपरेटरों का सेट एक बानाच बीजगणित और संवृत आदर्श है। यदि है तो यह बिना पहचान के है।[1]
  • यदि स्थानीय रूप से कॉम्पैक्ट हॉसडॉर्फ अंतरिक्ष टोपोलॉजिकल समूह है और इसका Haar माप है, तो पर सभी -अभिन्न फलनों का बानाच स्पेस के लिए कनवल्शन के अनुसार बानाच बीजगणित बन जाता है [2]
  • समान बीजगणित: एक बानाच बीजगणित जो सर्वोच्च मानदंड के साथ जटिल बीजगणित का एक उप-बीजगणित है और इसमें स्थिरांक सम्मिलित हैं और (जो कॉम्पैक्ट हॉसडॉर्फ स्थान होना चाहिए) के बिंदुओं को अलग करता है।
  • प्राकृतिक बैनाच फलन बीजगणित: एक समान बीजगणित जिसके सभी वर्ण के बिंदुओं पर मूल्यांकन हैं।
  • C*-बीजगणित: बानाच बीजगणित जो कुछ हिल्बर्ट स्थान पर परिबद्ध संचालकों के बीजगणित का संवृत *-उपबीजगणित है।
  • बीजगणित को मापें: बैनाच बीजगणित जिसमें कुछ स्थानीय रूप से कॉम्पैक्ट समूह पर सभी रेडॉन माप सम्मिलित होते हैं, जहां दो उपायों का उत्पाद कन्वोल्यूशन माप द्वारा दिया जाता है।[2]
  • चतुर्भुज का बीजगणित वास्तविक बानाच बीजगणित है, किन्तु यह जटिल बीजगणित नहीं है (और इसलिए जटिल बानाच बीजगणित नहीं है) इसका सरल कारण यह है कि चतुर्भुज का केंद्र वास्तविक संख्याएँ हैं, जिनमें जटिल संख्याओं की प्रतिलिपि नहीं हो सकती है।
  • एफ़िनॉइड बीजगणित गैर-आर्किमिडीयन क्षेत्र पर निश्चित प्रकार का बानाच बीजगणित है। एफ़िनॉइड बीजगणित कठोर विश्लेषणात्मक स्थान में मूल निर्माण खंड हैं।

गुण

कई प्राथमिक कार्य जो शक्ति श्रृंखला के माध्यम से परिभाषित किए गए हैं, उन्हें किसी भी यूनिटल बानाच बीजगणित में परिभाषित किया जा सकता है; उदाहरणों में घातांकीय फलन और त्रिकोणमितीय फलन, और सामान्यतः कोई भी संपूर्ण फलन सम्मिलित हैं। (विशेष रूप से, घातीय मानचित्र का उपयोग अमूर्त सूचकांक समूहों को परिभाषित करने के लिए किया जा सकता है।) ज्यामितीय श्रृंखला का सूत्र सामान्य इकाई बानाच बीजगणित में मान्य रहता है। द्विपद प्रमेय बानाच बीजगणित के दो आने वाले तत्वों के लिए भी मान्य है।

किसी भी यूनिटल बानाच बीजगणित में व्युत्क्रमणीय तत्वों का सेट विवृत सेट है, और इस सेट पर व्युत्क्रम संचालन निरंतर (और इसलिए होमोमोर्फिज्म है) होता है, जिससे यह गुणन के अनुसार टोपोलॉजिकल समूह बना सके।[3]

यदि बानाच बीजगणित में इकाई है, तो कम्यूटेटर (रिंग सिद्धांत) नहीं हो सकता; अर्थात्, किसी भी के लिए हैं। ऐसा इसलिए है क्योंकि संभवतः को छोड़कर और का स्पेक्ट्रम (कार्यात्मक विश्लेषण) समान है।

ऊपर दिए गए उदाहरणों में दिए गए फलनों के विभिन्न बीजगणित में वास्तविक जैसे बीजगणित के मानक उदाहरणों से बहुत अलग गुण हैं। उदाहरण के लिए:

  • प्रत्येक वास्तविक बानाच बीजगणित जो कि विभाजन बीजगणित है, वास्तविक, संकुल, या चतुर्भुज के समरूपी है। इसलिए, एकमात्र जटिल बानाच बीजगणित जो विभाजन बीजगणित है, वह कॉम्प्लेक्स है। (इसे गेलफैंड-मज़ूर प्रमेय के रूप में जाना जाता है।)
  • प्रत्येक इकाई वास्तविक बानाच बीजगणित जिसमें कोई शून्य विभाजक नहीं है, और जिसमें प्रत्येक प्रमुख आदर्श संवृत सेट है, वास्तविक, कॉम्प्लेक्स या चतुर्भुज के लिए आइसोमोर्फिक है।[4]
  • प्रत्येक क्रमविनिमेय वास्तविक इकाई नोथेरियन रिंग बानाच बीजगणित जिसमें कोई शून्य विभाजक नहीं है, वास्तविक या जटिल संख्याओं के लिए समरूपी है।
  • प्रत्येक क्रमविनिमेय वास्तविक इकाई नोथेरियन बानाच बीजगणित (संभवतः शून्य भाजक वाला) परिमित-आयामी है।
  • बानाच बीजगणित में स्थायी रूप से एकवचन तत्व शून्य के टोपोलॉजिकल विभाजक होते हैं, अर्थात, बानाच बीजगणित के विस्तार पर विचार करते हुए, कुछ तत्व जो दिए गए बीजगणित में एकवचन होते हैं, उनके पास बानाच बीजगणित विस्तार में एक गुणक व्युत्क्रम तत्व होता है। में शून्य के टोपोलॉजिकल विभाजक के किसी भी बानाच विस्तार में स्थायी रूप से एकवचन होते हैं।


वर्णक्रमीय सिद्धांत

जटिल क्षेत्र पर यूनिटल बानाच बीजगणित वर्णक्रमीय सिद्धांत विकसित करने के लिए एक सामान्य सेटिंग प्रदान करते हैं। द्वारा दर्शाए गए तत्व के स्पेक्ट्रम में वे सभी जटिल अदिश (गणित) सम्मिलित हैं, जैसे कि में व्युत्क्रम नहीं है। किसी भी तत्व का स्पेक्ट्रम त्रिज्या के साथ में बंद डिस्क का एक बंद उपसमुच्चय है। और केंद्र और इस प्रकार कॉम्पैक्ट स्थान है। इसके अतिरिक्त, तत्व का स्पेक्ट्रम गैर-रिक्त है और वर्णक्रमीय त्रिज्या सूत्र को संतुष्ट करता है:


को देखते हुए, होलोमोर्फिक कार्यात्मक कैलकुलस के निकट में किसी भी फलन होलोमोर्फिक फलन के लिए को परिभाषित करने की अनुमति देता है। इसके अतिरिक्त, वर्णक्रमीय मानचित्रण प्रमेय मानता है:[5]


जब बानाच बीजगणित एक जटिल बानाच स्पेस (उदाहरण के लिए, वर्ग मैट्रिक्स का बीजगणित) पर बंधे रैखिक ऑपरेटरों का बीजगणित है, तो में स्पेक्ट्रम की धारणा ऑपरेटर सिद्धांत में सामान्य के साथ मेल खाती है। के लिए (कॉम्पैक्ट हॉसडॉर्फ स्पेस के साथ), कोई यह देख सकता है:

सामान्य तत्व का आदर्श C*-बीजगणित का वर्णक्रमीय त्रिज्या से मेल खाता है। यह सामान्य ऑपरेटरों के लिए समान तथ्य का सामान्यीकरण करता है।

मान लीजिये कि जटिल इकाई बानाच बीजगणित बनें जिसमें प्रत्येक गैर-शून्य तत्व हो व्युत्क्रमणीय (विभाजन बीजगणित) है। प्रत्येक एक के लिए वहाँ है जैसे कि

व्युत्क्रम (क्योंकि का स्पेक्ट्रम खाली नहीं है) नहीं है इसलिए यह बीजगणित स्वाभाविक रूप से समरूपी (गेलफैंड-मज़ूर प्रमेय का जटिल स्थिति) है।

आदर्श और कैरेक्टर

मान लीजिये कि इकाई क्रमविनिमेय बानाच बीजगणित बनें। तब से फिर इकाई के साथ क्रमविनिमेय वलय है, जिसका प्रत्येक गैर-उलटा तत्व है के कुछ अधिकतम आदर्श से संबंधित है। अधिकतम आदर्श के बाद से में बन्द है, बानाच बीजगणित है जो क्षेत्र है, और यह गेलफैंड-मज़ूर प्रमेय से निम्नानुसार है कि के सभी अधिकतम आदर्शों के सेट और से तक सभी गैर-शून्य समरूपताओं के सेट के बीच एक आपत्ति है। सेट को का "स्ट्रक्चर स्पेस" या "कैरेक्टर स्पेस" कहा जाता है, और इसके सदस्यों को "कैरेक्टर" कहा जाता है।

एक वर्ण पर एक रैखिक कार्यात्मक है जो एक ही समय में गुणक है, और को संतुष्ट करता है। प्रत्येक वर्ण से तक स्वचालित रूप से निरंतर होता है, क्योंकि किसी वर्ण का कर्नेल एक अधिकतम आदर्श होता है, जो बंद होता है। इसके अतिरिक्त, एक वर्ण का मानदंड (अर्थात, ऑपरेटर मानदंड) एक है। पर बिंदुवार अभिसरण की टोपोलॉजी से सुसज्जित (अर्थात, की कमजोर-* टोपोलॉजी से प्रेरित टोपोलॉजी), कैरेक्टर स्पेस, एक हॉसडॉर्फ कॉम्पैक्ट स्पेस है।

किसी के लिए

जहाँ गेलफैंड का प्रतिनिधित्व है इस प्रकार परिभाषित: से सतत कार्य है को द्वारा दिए गए का स्पेक्ट्रम उपरोक्त सूत्र में, बीजगणित के तत्व के रूप में स्पेक्ट्रम है कॉम्पैक्ट स्पेस पर जटिल निरंतर फलनों का स्पष्ट रूप से,
बीजगणित के रूप में, इकाई क्रमविनिमेय बानाच बीजगणित अर्धसरल बीजगणित है (अर्थात्, इसका जैकबसन कट्टरपंथी शून्य है) यदि और केवल यदि इसके गेलफैंड प्रतिनिधित्व में सतहीय कर्नेल है। ऐसे बीजगणित का महत्वपूर्ण उदाहरण क्रमविनिमेय C*-बीजगणित है। अर्थात्, जब क्रमविनिमेय इकाई C*-बीजगणित है, गेलफैंड प्रतिनिधित्व तब सममितीय *-समरूपता और हैं।[lower-alpha 1]

बनाच *-बीजगणित

बानाच *-बीजगणित मानचित्र के साथ सम्मिश्र संख्याओं के क्षेत्र पर बानाच बीजगणित है जिसमें निम्नलिखित गुण हैं:

  1. सभी के लिए (इसलिए माप इनवोलुशन (गणित) है)।
  2. सभी के लिए।
  3. हरएक के लिए और हर यहाँ, के जटिल संयुग्म को दर्शाता है।
  4. सभी के लिए

दूसरे शब्दों में, एक बानाच *-बीजगणित, के ऊपर एक बानाच बीजगणित है जो कि एक *-बीजगणित भी है।

अधिकांश प्राकृतिक उदाहरणों में, किसी का यह भी मानना ​​है कि इन्वोल्यूशन आइसोमेट्री है, अर्थात,

कुछ लेखक इस सममितीय गुण को बानाच *-बीजगणित की परिभाषा में सम्मिलित करते हैं।

बानाच *-बीजगणित संतोषजनक C*-बीजगणित है।

यह भी देखें

टिप्पणियाँ

  1. Proof: Since every element of a commutative C*-algebra is normal, the Gelfand representation is isometric; in particular, it is injective and its image is closed. But the image of the Gelfand representation is dense by the Stone–Weierstrass theorem.


संदर्भ

  1. Conway 1990, Example VII.1.8.
  2. 2.0 2.1 Conway 1990, Example VII.1.9.
  3. Conway 1990, Theorem VII.2.2.
  4. García, Miguel Cabrera; Palacios, Angel Rodríguez (1995). "गेलफ़ैंड-मज़ूर-कप्लांस्की प्रमेय का एक नया सरल प्रमाण". Proceedings of the American Mathematical Society. 123 (9): 2663–2666. doi:10.2307/2160559. ISSN 0002-9939. JSTOR 2160559.
  5. Takesaki 1979, Proposition 2.8.