जनक फलन: Difference between revisions
(text) |
(text) |
||
| Line 158: | Line 158: | ||
{{Main|रैखिक पुनरावर्ती अनुक्रम}} | {{Main|रैखिक पुनरावर्ती अनुक्रम}} | ||
एक अनुक्रम के सामान्य जनक फलन को एक तर्कसंगत फलन (दो परिमित-डिग्री बहुपदों का अनुपात) के रूप में व्यक्त किया जा सकता है यदि और केवल यदि अनुक्रम निरंतर गुणांक के साथ एक [[रैखिक पुनरावर्ती अनुक्रम]] है; यह उपरोक्त उदाहरणों का सामान्यीकरण करता है। इसके विपरीत, बहुपदों के एक अंश द्वारा उत्पन्न प्रत्येक अनुक्रम निरंतर गुणांकों के साथ एक रैखिक पुनरावृत्ति को संतुष्ट करता है; ये गुणांक अंश भाजक बहुपद के गुणांक के समान हैं (इसलिए उन्हें सीधे पढ़ा जा सकता है)। इस अवलोकन से पता चलता है कि निरंतर गुणांक वाले रैखिक [[परिमित अंतर समीकरण]] द्वारा परिभाषित अनुक्रमों के कार्यों को उत्पन्न करने के लिए हल करना आसान है। यहाँ | एक अनुक्रम के सामान्य जनक फलन को एक तर्कसंगत फलन (दो परिमित-डिग्री बहुपदों का अनुपात) के रूप में व्यक्त किया जा सकता है यदि और केवल यदि अनुक्रम निरंतर गुणांक के साथ एक [[रैखिक पुनरावर्ती अनुक्रम]] है; यह उपरोक्त उदाहरणों का सामान्यीकरण करता है। इसके विपरीत, बहुपदों के एक अंश द्वारा उत्पन्न प्रत्येक अनुक्रम निरंतर गुणांकों के साथ एक रैखिक पुनरावृत्ति को संतुष्ट करता है; ये गुणांक अंश भाजक बहुपद के गुणांक के समान हैं (इसलिए उन्हें सीधे पढ़ा जा सकता है)। इस अवलोकन से पता चलता है कि निरंतर गुणांक वाले रैखिक [[परिमित अंतर समीकरण]] द्वारा परिभाषित अनुक्रमों के कार्यों को उत्पन्न करने के लिए हल करना आसान है। यहाँ प्रतिमानिकल उदाहरण फलन तकनीकों को उत्पन्न करके [[फाइबोनैचि संख्या]]ओं के लिए बिनेट के सूत्र को प्राप्त करना है। | ||
हम यह भी ध्यान देते हैं कि तर्कसंगत जनक फलनों का वर्ग निश्चित रूप से उन जनक फलनों से मेल खाता है जो प्रपत्र के अर्ध-बहुपद अनुक्रमों की गणना करते हैं <ref name="GFLECT">{{harvnb|Lando|2003|loc=§2.4}}</ref> | हम यह भी ध्यान देते हैं कि तर्कसंगत जनक फलनों का वर्ग निश्चित रूप से उन जनक फलनों से मेल खाता है जो प्रपत्र के अर्ध-बहुपद अनुक्रमों की गणना करते हैं <ref name="GFLECT">{{harvnb|Lando|2003|loc=§2.4}}</ref> | ||
| Line 177: | Line 177: | ||
<math display="block">\operatorname{diag}(F) = \sum_{n = 0}^\infty \binom{2n}{n} z^n = \frac{1}{\sqrt{1-4z}}. </math> | <math display="block">\operatorname{diag}(F) = \sum_{n = 0}^\infty \binom{2n}{n} z^n = \frac{1}{\sqrt{1-4z}}. </math> | ||
इस परिणाम की कई तरह से गणना की जाती है, जिसमें कॉची का अभिन्न सूत्र या [[समोच्च एकीकरण]], जटिल [[अवशेष (जटिल विश्लेषण)]] लेना, या दो चरों में औपचारिक घात श्रृंखला के प्रत्यक्ष | इस परिणाम की कई तरह से गणना की जाती है, जिसमें कॉची का अभिन्न सूत्र या [[समोच्च एकीकरण]], जटिल [[अवशेष (जटिल विश्लेषण)]] लेना, या दो चरों में औपचारिक घात श्रृंखला के प्रत्यक्ष क्रमभंग द्वारा सम्मिलित है। | ||
=== जनक फलन संचालन === | === जनक फलन संचालन === | ||
| Line 258: | Line 258: | ||
==== साथ काम करने के लिए सॉफ्टवेयर {{mvar|P}}-पुनरावर्ती अनुक्रम और होलोनोमिक जनक फलन ==== | ==== साथ काम करने के लिए सॉफ्टवेयर {{mvar|P}}-पुनरावर्ती अनुक्रम और होलोनोमिक जनक फलन ==== | ||
प्रसंस्करण और साथ काम करने के लिए उपकरण {{mvar|P}}- [[Mathematica|गणितीय]] में पुनरावर्ती अनुक्रम में [https://www.risc.jku.at/research/combinat/software/ RISC साहचर्य समूह कलन विधि संयोजन सॉफ्टवेयर] साइट पर गैर-वाणिज्यिक उपयोग के लिए प्रदान किए गए सॉफ़्टवेयर संकुल सम्मिलित हैं। अधिकांशतः बंद-स्रोत होने के बावजूद, इस सॉफ़्टवेयर सूट में विशेष रूप से घातशाली उपकरण इसके द्वारा प्रदान किए जाते हैं <code>'''अनुमान'''</code> अनुमान लगाने के लिए संकुल {{mvar|P}}- | प्रसंस्करण और साथ काम करने के लिए उपकरण {{mvar|P}}- [[Mathematica|गणितीय]] में पुनरावर्ती अनुक्रम में [https://www.risc.jku.at/research/combinat/software/ RISC साहचर्य समूह कलन विधि संयोजन सॉफ्टवेयर] साइट पर गैर-वाणिज्यिक उपयोग के लिए प्रदान किए गए सॉफ़्टवेयर संकुल सम्मिलित हैं। अधिकांशतः बंद-स्रोत होने के बावजूद, इस सॉफ़्टवेयर सूट में विशेष रूप से घातशाली उपकरण इसके द्वारा प्रदान किए जाते हैं <code>'''अनुमान'''</code> अनुमान लगाने के लिए संकुल {{mvar|P}}- स्वेच्छाचारी इनपुट अनुक्रमों के लिए पुनरावर्तन (प्रायोगिक गणित और अन्वेषण के लिए उपयोगी) और <code>'''सिग्मा'''</code> संकुल जो कई राशियों के लिए पी-पुनरावृत्ति खोजने में सक्षम है और बंद-रूप समाधानों के लिए हल करता है, {{mvar|P}}-पुनरावृत्ति सामान्यीकृत [[हार्मोनिक संख्या|सुसंगत संख्या]]ओं को सम्मिलित करती है।<ref>{{cite journal|last1=Schneider|first1=C.|title=प्रतीकात्मक योग कॉम्बिनेटरिक्स की सहायता करता है|journal=Sem. Lothar. Combin.|date=2007|volume=56|pages=1–36 |url=http://www.emis.de/journals/SLC/wpapers/s56schneider.html}}</ref> इस विशेष आरआईएससी साइट पर सूचीबद्ध अन्य संकुल विशेष रूप से होलोनोमिक जनक फलन के साथ काम करने के लिए लक्षित हैं। | ||
<!--Depending on how in depth this article gets on the topic, there are many, many other examples of useful software tools that can be listed here or on this page in another section.--> | <!--Depending on how in depth this article gets on the topic, there are many, many other examples of useful software tools that can be listed here or on this page in another section.--> | ||
| Line 301: | Line 301: | ||
<math display="block">G(C_n; x) = \frac{1-\sqrt{1-4x}}{2x}.</math> | <math display="block">G(C_n; x) = \frac{1-\sqrt{1-4x}}{2x}.</math> | ||
{{math|1=''r'' = {{sfrac|1|4}}}}, {{math|1=''α'' = 1}}, {{math|1=''β'' = −{{sfrac|1|2}}}}, {{math|1=''A''(''x'') = {{sfrac|1|2}}}}, और {{math|1=''B''(''x'') = −{{sfrac|1|2}}}} के साथ, हम यह निष्कर्ष निकाल सकते हैं कि कैटलन | {{math|1=''r'' = {{sfrac|1|4}}}}, {{math|1=''α'' = 1}}, {{math|1=''β'' = −{{sfrac|1|2}}}}, {{math|1=''A''(''x'') = {{sfrac|1|2}}}}, और {{math|1=''B''(''x'') = −{{sfrac|1|2}}}} के साथ, हम यह निष्कर्ष निकाल सकते हैं कि कैटलन संख्याों के लिए, | ||
<math display="block">C_n \sim \frac{B(r)}{r^\alpha \Gamma(\beta)} \, n^{\beta-1} \left(\frac{1}{r} \right)^n = \frac{-\frac12}{\left(\frac14\right)^1 \Gamma\left(-\frac12\right)} \, n^{-\frac12-1} \left(\frac{1}{\,\frac14\,}\right)^n = \frac{4^n}{n^\frac32 \sqrt\pi}.</math> | <math display="block">C_n \sim \frac{B(r)}{r^\alpha \Gamma(\beta)} \, n^{\beta-1} \left(\frac{1}{r} \right)^n = \frac{-\frac12}{\left(\frac14\right)^1 \Gamma\left(-\frac12\right)} \, n^{-\frac12-1} \left(\frac{1}{\,\frac14\,}\right)^n = \frac{4^n}{n^\frac32 \sqrt\pi}.</math> | ||
| Line 449: | Line 449: | ||
===विभिन्न तकनीकें: राशियों का मूल्यांकन करना और कार्यों को उत्पन्न करने वाली अन्य समस्याओं से निपटना === | ===विभिन्न तकनीकें: राशियों का मूल्यांकन करना और कार्यों को उत्पन्न करने वाली अन्य समस्याओं से निपटना === | ||
==== उदाहरण 1: | ==== उदाहरण 1: सुसंगत संख्याओं के योग के लिए एक सूत्र ==== | ||
जनक फलन हमें योगों में | जनक फलन हमें योगों में क्रमभंग करने और योगों के बीच तत्समक स्थापित करने की कई विधियाँ प्रदान करते हैं। | ||
सबसे सरल स्तिथि तब | सबसे सरल स्तिथि तब होती है जब {{math|''s<sub>n</sub>'' {{=}} ∑{{su|b=''k'' {{=}} 0|p=''n''}} ''a<sub>k</sub>''}}. हम तब जानते हैं कि इसी सामान्य उत्पादन कार्यों के लिए {{math|''S''(''z'') {{=}} {{sfrac|''A''(''z'')|1 − ''z''}}}} है। | ||
उदाहरण के लिए, हम | उदाहरण के लिए, हम क्रमभंग कर सकते हैं | ||
<math display="block">s_n=\sum_{k=1}^{n} H_{k}\,,</math> | <math display="block">s_n=\sum_{k=1}^{n} H_{k}\,,</math> | ||
जहाँ {{math|''H<sub>k</sub>'' {{=}} 1 + {{sfrac|1|2}} + ⋯ + {{sfrac|1|''k''}}}} | जहाँ {{math|''H<sub>k</sub>'' {{=}} 1 + {{sfrac|1|2}} + ⋯ + {{sfrac|1|''k''}}}} सुसंगत संख्या हैं। मान लीजिये | ||
<math display="block">H(z) = \sum_{n = 1}^\infty{H_n z^n}</math> | <math display="block">H(z) = \sum_{n = 1}^\infty{H_n z^n}</math> | ||
सुसंगत संख्याओं का सामान्य जनन फलन हो। तब | |||
<math display="block">H(z) = \frac{1}{1-z}\sum_{n = 1}^\infty \frac{z^n}{n}\,,</math> | <math display="block">H(z) = \frac{1}{1-z}\sum_{n = 1}^\infty \frac{z^n}{n}\,,</math> | ||
और इस तरह | और इस तरह | ||
| Line 465: | Line 465: | ||
का उपयोग करते हुए | का उपयोग करते हुए | ||
<math display="block">\frac{1}{(1-z)^2} = \sum_{n = 0}^\infty (n+1)z^n\,,</math> | <math display="block">\frac{1}{(1-z)^2} = \sum_{n = 0}^\infty (n+1)z^n\,,</math> | ||
जनक फलन | जनक फलन अंश के साथ संवलन प्राप्त होता है | ||
<math display="block">s_n = \sum_{k = 1}^{n} \frac{n+1-k}{k} = (n+1)H_n - n\,,</math> | <math display="block">s_n = \sum_{k = 1}^{n} \frac{n+1-k}{k} = (n+1)H_n - n\,,</math> | ||
जिसे इस रूप में भी लिखा जा सकता है | जिसे इस रूप में भी लिखा जा सकता है | ||
| Line 473: | Line 473: | ||
==== उदाहरण 2: संशोधित द्विपद गुणांक योग और द्विपद रूपांतरण ==== | ==== उदाहरण 2: संशोधित द्विपद गुणांक योग और द्विपद रूपांतरण ==== | ||
एक | एक स्वेच्छाचारी अनुक्रम के लिए अनुक्रमों से संबंधित और योग में क्रमभंग करने के लिए जनक फलन का उपयोग करने का एक और उदाहरण {{math|⟨ ''f<sub>n</sub>'' ⟩}} है, हम योग के दो क्रमों को परिभाषित करते हैं | ||
<math display="block">\begin{align} | <math display="block">\begin{align} | ||
s_n &:= \sum_{m=0}^n \binom{n}{m} f_m 3^{n-m} \\[4px] | s_n &:= \sum_{m=0}^n \binom{n}{m} f_m 3^{n-m} \\[4px] | ||
\tilde{s}_n &:= \sum_{m=0}^n \binom{n}{m} (m+1)(m+2)(m+3) f_m 3^{n-m}\,, | \tilde{s}_n &:= \sum_{m=0}^n \binom{n}{m} (m+1)(m+2)(m+3) f_m 3^{n-m}\,, | ||
\end{align}</math> | \end{align}</math> | ||
सभी | सभी {{math|''n'' ≥ 0}} के लिए, और पहले के संदर्भ में दूसरे योग को व्यक्त करना चाहते हैं। हम कार्यों को उत्पन्न करके एक दृष्टिकोण का सुझाव देते हैं। | ||
सबसे पहले, हम पहली राशि के लिए जनक फलन लिखने के लिए [[द्विपद परिवर्तन]] का उपयोग करते हैं | सबसे पहले, हम पहली राशि के लिए जनक फलन लिखने के लिए [[द्विपद परिवर्तन]] का उपयोग करते हैं | ||
<math display="block">S(z) = \frac{1}{1-3z} F\left(\frac{z}{1-3z}\right). </math> | <math display="block">S(z) = \frac{1}{1-3z} F\left(\frac{z}{1-3z}\right). </math> | ||
{{math|⟨ (''n'' + 1)(''n'' + 2)(''n'' + 3) ''f<sub>n</sub>'' ⟩}} अनुक्रम के लिए जनक फलन के बाद से निम्न द्वारा दिया गया है | |||
<math display="block">6 F(z) + 18z F'(z) + 9z^2 F''(z) + z^3 F'''(z)</math> | <math display="block">6 F(z) + 18z F'(z) + 9z^2 F''(z) + z^3 F'''(z)</math> | ||
हम ऊपर परिभाषित दूसरी राशि के लिए जनक फलन को | हम ऊपर परिभाषित दूसरी राशि के लिए जनक फलन को निम्न स्वरुप में लिख सकते हैं | ||
<math display="block">\tilde{S}(z) = \frac{6}{(1-3z)} F\left(\frac{z}{1-3z}\right)+\frac{18z}{(1-3z)^2} F'\left(\frac{z}{1-3z}\right)+\frac{9z^2}{(1-3z)^3} F''\left(\frac{z}{1-3z}\right)+\frac{z^3}{(1-3z)^4} F'''\left(\frac{z}{1-3z}\right). </math> | <math display="block">\tilde{S}(z) = \frac{6}{(1-3z)} F\left(\frac{z}{1-3z}\right)+\frac{18z}{(1-3z)^2} F'\left(\frac{z}{1-3z}\right)+\frac{9z^2}{(1-3z)^3} F''\left(\frac{z}{1-3z}\right)+\frac{z^3}{(1-3z)^4} F'''\left(\frac{z}{1-3z}\right). </math> | ||
विशेष रूप से, हम इस संशोधित योग उत्पन्न करने वाले फलन को | विशेष रूप से, हम इस संशोधित योग उत्पन्न करने वाले फलन को निम्न रूप में लिख सकते हैं | ||
<math display="block">a(z) \cdot S(z) + b(z) \cdot z S'(z) + c(z) \cdot z^2 S''(z) + d(z) \cdot z^3 S'''(z), </math> | <math display="block">a(z) \cdot S(z) + b(z) \cdot z S'(z) + c(z) \cdot z^2 S''(z) + d(z) \cdot z^3 S'''(z), </math> | ||
{{math|''a''(''z'') {{=}} 6(1 − 3''z'')<sup>3</sup>}} के लिए , {{math|''b''(''z'') {{=}} 18(1 − 3''z'')<sup>3</sup>}}, {{math|''c''(''z'') {{=}} 9(1 − 3''z'')<sup>3</sup>}}, और {{math|''d''(''z'') {{=}} (1 − 3''z'')<sup>3</sup>}}, जहाँ {{math|(1 − 3''z'')<sup>3</sup> {{=}} 1 − 9''z'' + 27''z''<sup>2</sup> − 27''z''<sup>3</sup>}}. | |||
अंत में, यह इस प्रकार है कि हम निम्नलिखित रूप में पहली योग के माध्यम से दूसरी योग व्यक्त कर सकते हैं: | अंत में, यह इस प्रकार है कि हम निम्नलिखित रूप में पहली योग के माध्यम से दूसरी योग व्यक्त कर सकते हैं: | ||
| Line 499: | Line 499: | ||
==== उदाहरण 3: परस्पर पुनरावर्ती अनुक्रमों के लिए कार्य उत्पन्न करना ==== | ==== उदाहरण 3: परस्पर पुनरावर्ती अनुक्रमों के लिए कार्य उत्पन्न करना ==== | ||
इस उदाहरण में, हम | इस उदाहरण में, हम गणित की धारा 7.3 में दिए गए एक जनक फलन उदाहरण को सुधारते हैं (फलन श्रृंखला उत्पन्न करने के सुंदर चित्रों के लिए समान संदर्भ का अनुभाग 7.1 भी देखें)। विशेष रूप से, मान लीजिए कि हम 3-दर-एन आयत को अचिह्नित 2-दर-1 दूरगामी टुकड़ों के साथ टाइल करने के तरीकों की कुल संख्या (अन चिह्नित) की खोज करते हैं। सहायक अनुक्रम, अन, को पूर्ण आयत के 3-दर-एन आयत-ऋण-कोने वाले खंड को आच्छादित करने के तरीकों की संख्या के रूप में परिभाषित किया जाना चाहिए।। हम इन परिभाषाओं का उपयोग {{math|''U<sub>n</sub>''}} के लिए बंद-रूप अभिव्यक्ति सूत्र के लिए करना चाहते हैं लंबवत बनाम क्षैतिज डोमिनोज़ की स्तिथि को संभालने के लिए इस परिभाषा को और अधिक तोड़े बिना। ध्यान दें कि हमारे दो अनुक्रमों के लिए सामान्य जनक फलन श्रृंखला के अनुरूप हैं | ||
<math display="block">\begin{align} | <math display="block">\begin{align} | ||
| Line 505: | Line 505: | ||
V(z) = z + 4z^3 + 15 z^5 + 56 z^7 + \cdots. | V(z) = z + 4z^3 + 15 z^5 + 56 z^7 + \cdots. | ||
\end{align}</math> | \end{align}</math> | ||
यदि हम संभावित | यदि हम संभावित समाकृति पर विचार करते हैं जो 3-बाय-{{mvar|n}} के बाएं किनारे से प्रारम्भ किया जा सकता है आयत, हम निम्नलिखित पारस्परिक रूप से निर्भर, या पारस्परिक रूप से पुनरावर्ती, हमारे दो अनुक्रमों के लिए पुनरावृत्ति संबंधों को व्यक्त करने में सक्षम हैं जब {{math|''n'' ≥ 2}} ऊपर के रूप {{math|''U''<sub>0</sub> {{=}} 1}}, {{math|''U''<sub>1</sub> {{=}} 0}}, {{math|''V''<sub>0</sub> {{=}} 0}}, और {{math|''V''<sub>1</sub> {{=}} 1}} में परिभाषित किया गया है : | ||
<math display="block">\begin{align} | <math display="block">\begin{align} | ||
U_n & = 2 V_{n-1} + U_{n-2} \\ | U_n & = 2 V_{n-1} + U_{n-2} \\ | ||
V_n & = U_{n-1} + V_{n-2}. | V_n & = U_{n-1} + V_{n-2}. | ||
\end{align}</math> | \end{align}</math> | ||
चूँकि हमारे पास वह सभी पूर्णांकों | चूँकि हमारे पास वह सभी पूर्णांकों {{math|''m'' ≥ 0}} के लिए है, इंडेक्स-स्थानान्तरित जनक फलन संतुष्ट करते हैं{{noteTag|Incidentally, we also have a corresponding formula when {{math|''m'' < 0}} given by | ||
<math display="block">\sum_{n = 0}^\infty g_{n+m} z^n = \frac{G(z) - g_0 -g_1 z - \cdots - g_{m-1} z^{m-1}}{z^m}\,.</math>}} | <math display="block">\sum_{n = 0}^\infty g_{n+m} z^n = \frac{G(z) - g_0 -g_1 z - \cdots - g_{m-1} z^{m-1}}{z^m}\,.</math>}} | ||
<math display="block">z^m G(z) = \sum_{n = m}^\infty g_{n-m} z^n\,,</math> | <math display="block">z^m G(z) = \sum_{n = m}^\infty g_{n-m} z^n\,,</math> | ||
| Line 522: | Line 522: | ||
इस प्रकार पिछले समीकरण में जनक फलन के दूसरे आंशिक भिन्न विस्तार से उत्पन्न अनुक्रम का बीजगणितीय सरलीकरण करके, हम पाते हैं कि {{math|''U''<sub>2''n'' + 1</sub> ≡ 0}} ओर वो | इस प्रकार पिछले समीकरण में जनक फलन के दूसरे आंशिक भिन्न विस्तार से उत्पन्न अनुक्रम का बीजगणितीय सरलीकरण करके, हम पाते हैं कि {{math|''U''<sub>2''n'' + 1</sub> ≡ 0}} ओर वो | ||
<math display="block">U_{2n} = \left\lceil \frac{\left(2+\sqrt{3}\right)^n}{3-\sqrt{3}} \right\rceil\,, </math> | <math display="block">U_{2n} = \left\lceil \frac{\left(2+\sqrt{3}\right)^n}{3-\sqrt{3}} \right\rceil\,, </math> | ||
सभी पूर्णांकों के लिए {{math|''n'' ≥ 0}}. हम यह भी ध्यान देते हैं कि फाइबोनैचि संख्याओं के लिए दूसरे क्रम के पुनरावर्तन संबंध पर लागू वही स्थानान्तरित जनक फलन तकनीक पहले से ही | सभी पूर्णांकों के लिए {{math|''n'' ≥ 0}}. हम यह भी ध्यान देते हैं कि फाइबोनैचि संख्याओं के लिए दूसरे क्रम के पुनरावर्तन संबंध पर लागू वही स्थानान्तरित जनक फलन तकनीक पहले से ही आच्छादित किए गए एक चर में [[पुनरावृत्ति संबंध]]ों को हल करने के लिए जनक फलन का उपयोग करने का प्रतिमान उदाहरण है, या कम से कम उपखंड में संकेत दिया गया है। ऊपर दिए गए [[तर्कसंगत कार्य]]। | ||
===संक्रमण (कॉची उत्पाद)=== | ===संक्रमण (कॉची उत्पाद)=== | ||
दो औपचारिक घात श्रृंखलाओं में शर्तों का एक असतत संवलन जनक फलन के उत्पाद को मूल अनुक्रम शब्दों के एक निश्चित योग की गणना करने वाले जनक फलन में बदल देता है (कॉची उत्पाद देखें)। | '''दो औपचारिक घात श्रृंखलाओं में शर्तों का एक असतत संवलन''' जनक फलन के उत्पाद को मूल अनुक्रम शब्दों के एक निश्चित योग की गणना करने वाले जनक फलन में बदल देता है (कॉची उत्पाद देखें)। | ||
#विचार करना {{math|''A''(''z'')}} और {{math|''B''(''z'')}} साधारण जनक फलन हैं। <math display="block">C(z) = A(z)B(z) \Leftrightarrow [z^n]C(z) = \sum_{k=0}^{n}{a_k b_{n-k}}</math> | #विचार करना {{math|''A''(''z'')}} और {{math|''B''(''z'')}} साधारण जनक फलन हैं। <math display="block">C(z) = A(z)B(z) \Leftrightarrow [z^n]C(z) = \sum_{k=0}^{n}{a_k b_{n-k}}</math> | ||
| Line 540: | Line 540: | ||
==== उदाहरण: [[कैटलन नंबर]]ों के लिए जनक फलन ==== | ==== उदाहरण: [[कैटलन नंबर|कैटलन संख्या]]ों के लिए जनक फलन ==== | ||
एक उदाहरण जहां जनक फलन के संवलन उपयोगी होते हैं, हमें कैटलन | एक उदाहरण जहां जनक फलन के संवलन उपयोगी होते हैं, हमें कैटलन संख्याों के लिए सामान्य जनक फलन का प्रतिनिधित्व करने वाले एक विशिष्ट संवृत रूप फलन के लिए हल करने की अनुमति देता है, {{math|''C<sub>n</sub>''}}. विशेष रूप से, इस अनुक्रम में उत्पाद में कोष्ठक सम्मिलित करने के तरीकों की संख्या के रूप में मिश्रित व्याख्या है {{math|''x''<sub>0</sub> · ''x''<sub>1</sub> ·⋯· ''x<sub>n</sub>''}} ताकि गुणा का क्रम पूरी तरह निर्दिष्ट हो। उदाहरण के लिए, {{math|''C''<sub>2</sub> {{=}} 2}} जो दो भावों से मेल खाता है {{math|''x''<sub>0</sub> · (''x''<sub>1</sub> · ''x''<sub>2</sub>)}} और {{math|(''x''<sub>0</sub> · ''x''<sub>1</sub>) · ''x''<sub>2</sub>}}. यह इस प्रकार है कि अनुक्रम द्वारा दिए गए पुनरावृत्ति संबंध को संतुष्ट करता है | ||
<math display="block">C_n = \sum_{k=0}^{n-1} C_k C_{n-1-k} + \delta_{n,0} = C_0 C_{n-1} + C_1 C_{n-2} + \cdots + C_{n-1} C_0 + \delta_{n,0}\,,\quad n \geq 0\,, </math> | <math display="block">C_n = \sum_{k=0}^{n-1} C_k C_{n-1-k} + \delta_{n,0} = C_0 C_{n-1} + C_1 C_{n-2} + \cdots + C_{n-1} C_0 + \delta_{n,0}\,,\quad n \geq 0\,, </math> | ||
और इसी तरह एक संबंधित संकेंद्रित जनक फलन है, {{math|''C''(''z'')}}, संतुष्टि देने वाला | और इसी तरह एक संबंधित संकेंद्रित जनक फलन है, {{math|''C''(''z'')}}, संतुष्टि देने वाला | ||
| Line 626: | Line 626: | ||
पहली तरह की स्टर्लिंग संख्या# परिमित उत्पादों द्वारा उत्पन्न स्टर्लिंग संख्याओं पर अनुरूपता | पहली तरह की स्टर्लिंग संख्या# परिमित उत्पादों द्वारा उत्पन्न स्टर्लिंग संख्याओं पर अनुरूपता | ||
<math display="block">S_n(x) := \sum_{k=0}^n \begin{bmatrix} n \\ k \end{bmatrix} x^k = x(x+1)(x+2) \cdots (x+n-1)\,,\quad n \geq 1\,, </math> | <math display="block">S_n(x) := \sum_{k=0}^n \begin{bmatrix} n \\ k \end{bmatrix} x^k = x(x+1)(x+2) \cdots (x+n-1)\,,\quad n \geq 1\,, </math> | ||
Wilf के स्टॉक रेफरेंस उत्पन्निंगफंक्शनोलॉजी की धारा 4.6 में उनके जनक फलन के गुणों से सख्ती से प्राप्त इन | Wilf के स्टॉक रेफरेंस उत्पन्निंगफंक्शनोलॉजी की धारा 4.6 में उनके जनक फलन के गुणों से सख्ती से प्राप्त इन संख्याों के लिए सर्वांगसमता का अवलोकन प्रदान करता है। | ||
हम मूल तर्क को दोहराते हैं और ध्यान देते हैं कि जब मॉडुलो 2 को कम करता है, तो ये परिमित उत्पाद जनक फलन प्रत्येक को संतुष्ट करते हैं | हम मूल तर्क को दोहराते हैं और ध्यान देते हैं कि जब मॉडुलो 2 को कम करता है, तो ये परिमित उत्पाद जनक फलन प्रत्येक को संतुष्ट करते हैं | ||
| Line 663: | Line 663: | ||
p(25m+24) & \equiv 0 \pmod{5^2}\,. | p(25m+24) & \equiv 0 \pmod{5^2}\,. | ||
\end{align}</math> | \end{align}</math> | ||
हम दिखाते हैं कि ऊपर सूचीबद्ध इन सर्वांगसमताओं में से पहले का अत्यधिक प्रारंभिक प्रमाण देने के लिए औपचारिक घात श्रृंखला के लिए जनक फलन और सर्वांगसमता के | हम दिखाते हैं कि ऊपर सूचीबद्ध इन सर्वांगसमताओं में से पहले का अत्यधिक प्रारंभिक प्रमाण देने के लिए औपचारिक घात श्रृंखला के लिए जनक फलन और सर्वांगसमता के क्रमभंग का उपयोग कैसे करें। | ||
सबसे पहले, हम देखते हैं कि द्विपद गुणांक जनक फलन में | सबसे पहले, हम देखते हैं कि द्विपद गुणांक जनक फलन में | ||
| Line 744: | Line 744: | ||
* क्रम {{math|''n''! · ''f<sub>n</sub>''(''x'')}} द्विपद प्रकार का है | * क्रम {{math|''n''! · ''f<sub>n</sub>''(''x'')}} द्विपद प्रकार का है | ||
* अनुक्रम के विशेष मूल्यों में सम्मिलित हैं {{math|''f<sub>n</sub>''(1) {{=}} [''z<sup>n</sup>''] ''F''(''z'')}} और {{math|''f<sub>n</sub>''(0) {{=}} ''δ''<sub>''n'',0</sub>}}, और | * अनुक्रम के विशेष मूल्यों में सम्मिलित हैं {{math|''f<sub>n</sub>''(1) {{=}} [''z<sup>n</sup>''] ''F''(''z'')}} और {{math|''f<sub>n</sub>''(0) {{=}} ''δ''<sub>''n'',0</sub>}}, और | ||
* | * स्वेच्छाचारी (निश्चित) के लिए {{math|''x'', ''y'', ''t'' ∈ ℂ}}, ये बहुपद रूप के संवलन सिद्धांतों को संतुष्ट करते हैं | ||
<math display="block">\begin{align} | <math display="block">\begin{align} | ||
f_n(x+y) & = \sum_{k=0}^n f_k(x) f_{n-k}(y) \\ | f_n(x+y) & = \sum_{k=0}^n f_k(x) f_{n-k}(y) \\ | ||
| Line 755: | Line 755: | ||
जहाँ {{math|𝓕<sub>''t''</sub>(''z'')}} परोक्ष रूप से रूप के एक [[कार्यात्मक समीकरण]] द्वारा परिभाषित किया गया है {{math|𝓕<sub>''t''</sub>(''z'') {{=}} ''F''(''x''𝓕<sub>''t''</sub>(''z'')<sup>''t''</sup>)}}. इसके अलावा, हम मैट्रिक्स विधियों (संदर्भ के अनुसार) का उपयोग यह साबित करने के लिए कर सकते हैं कि दो दृढ़ बहुपद अनुक्रम दिए गए हैं, {{math|⟨ ''f<sub>n</sub>''(''x'') ⟩}} और {{math|⟨ ''g<sub>n</sub>''(''x'') ⟩}}, संबंधित संबंधित उत्पादन कार्यों के साथ, {{math|''F''(''z'')<sup>''x''</sup>}} और {{math|''G''(''z'')<sup>''x''</sup>}}, फिर मनमानी के लिए {{mvar|t}} हमारी सर्वसमिका है | जहाँ {{math|𝓕<sub>''t''</sub>(''z'')}} परोक्ष रूप से रूप के एक [[कार्यात्मक समीकरण]] द्वारा परिभाषित किया गया है {{math|𝓕<sub>''t''</sub>(''z'') {{=}} ''F''(''x''𝓕<sub>''t''</sub>(''z'')<sup>''t''</sup>)}}. इसके अलावा, हम मैट्रिक्स विधियों (संदर्भ के अनुसार) का उपयोग यह साबित करने के लिए कर सकते हैं कि दो दृढ़ बहुपद अनुक्रम दिए गए हैं, {{math|⟨ ''f<sub>n</sub>''(''x'') ⟩}} और {{math|⟨ ''g<sub>n</sub>''(''x'') ⟩}}, संबंधित संबंधित उत्पादन कार्यों के साथ, {{math|''F''(''z'')<sup>''x''</sup>}} और {{math|''G''(''z'')<sup>''x''</sup>}}, फिर मनमानी के लिए {{mvar|t}} हमारी सर्वसमिका है | ||
<math display="block">\left[z^n\right] \left(G(z) F\left(z G(z)^t\right)\right)^x = \sum_{k=0}^n F_k(x) G_{n-k}(x+tk). </math> | <math display="block">\left[z^n\right] \left(G(z) F\left(z G(z)^t\right)\right)^x = \sum_{k=0}^n F_k(x) G_{n-k}(x+tk). </math> | ||
दृढ़ बहुपद अनुक्रमों के उदाहरणों में द्विपद घात श्रृंखला सम्मिलित है, {{math|𝓑<sub>''t''</sub>(''z'') {{=}} 1 + ''z''𝓑<sub>''t''</sub>(''z'')<sup>''t''</sup>}}, तथाकथित पेड़ बहुपद, [[बेल नंबर]], {{math|''B''(''n'')}}, [[लैगुएरे बहुपद]], और [[स्टर्लिंग बहुपद]]। | दृढ़ बहुपद अनुक्रमों के उदाहरणों में द्विपद घात श्रृंखला सम्मिलित है, {{math|𝓑<sub>''t''</sub>(''z'') {{=}} 1 + ''z''𝓑<sub>''t''</sub>(''z'')<sup>''t''</sup>}}, तथाकथित पेड़ बहुपद, [[बेल नंबर|बेल संख्या]], {{math|''B''(''n'')}}, [[लैगुएरे बहुपद]], और [[स्टर्लिंग बहुपद]]। | ||
=== विशेष जनक फलन की तालिकाएँ === | === विशेष जनक फलन की तालिकाएँ === | ||
Revision as of 04:13, 17 March 2023
This article may be too long to read and navigate comfortably. (July 2022) |
गणित में, एक जनक फलन संख्याओं के एक अनंत अनुक्रम को एक औपचारिक घात श्रृंखला के गुणांक के रूप में मानकर कूटलेखन करने का एक तरीका (an) है। इस श्रृंखला को अनुक्रम का जनक फलन कहा जाता है। एक साधारण श्रृंखला के विपरीत, अभिसारी श्रृंखला के लिए औपचारिक घात श्रृंखला की आवश्यकता नहीं होती है: जनक फलन को वस्तुतः एक फलन (गणित) के रूप में नहीं माना जाता है, और चर एक अनिश्चित (चर) रहता है। सामान्य रेखीय पुनरावर्तन समस्या को हल करने के लिए 1730 में अब्राहम डी मोइवरे द्वारा जनक फलन को पहली बार प्रस्तुत किया गया था।[1] संख्याओं के अनंत बहु-आयामी सरणियों के बारे में जानकारी को सांकेतिक करने के लिए, एक से अधिक अनिश्चित में औपचारिक घात श्रृंखला का सामान्यीकरण किया जा सकता है।
विभिन्न प्रकार के जनक फलन हैं, जिनमें साधारण जनक फलन, घातांकी जनक फलन, लैम्बर्ट शृंखला, बेल शृंखला और डिरिचलेट शृंखला सम्मिलित हैं; परिभाषाएँ और उदाहरण नीचे दिए गए हैं। सिद्धांत रूप में प्रत्येक अनुक्रम में प्रत्येक प्रकार का एक जनक फलन होता है (सिवाय इसके कि लैम्बर्ट और डिरिचलेट श्रृंखला को 0 के स्थान पर 1 पर प्रारम्भ करने के लिए सूचकांक की आवश्यकता होती है), लेकिन जिस आसानी से उन्हें संभाला जा सकता है वह काफी भिन्न हो सकता है। विशेष जनक फलन, यदि कोई हो, जो किसी दिए गए संदर्भ में सबसे अधिक उपयोगी है, अनुक्रम की प्रकृति और संबोधित की जा रही समस्या के विवरण पर निर्भर करेगा।
औपचारिक श्रृंखला के लिए परिभाषित संचालन से जुड़े कुछ अभिव्यक्ति द्वारा उत्पन्न कार्यों को प्रायः बंद-रूप अभिव्यक्ति (श्रृंखला के स्थान पर) में व्यक्त किया जाता है। इन भावों को अनिश्चित के संदर्भ में x के संबंध में अंकगणितीय संचालन, भेदभाव सम्मिलित हो सकता हैx और संरचना के साथ (यानी, प्रतिस्थापन) अन्य जनक फलन; चूंकि इन कार्यों को कार्यों के लिए भी परिभाषित किया गया है, परिणाम एक कार्य की तरह दिखता हैx. वस्तुतः, बंद रूप की अभिव्यक्ति को प्रायः एक ऐसे फलन के रूप में व्याख्या किया जा सकता है जिसका मूल्यांकन (पर्याप्त रूप से छोटे) ठोस मूल्यों पर किया जा सकता है x, और जिसकी श्रृंखला विस्तार के रूप में औपचारिक श्रृंखला है; यह पदनाम जनक फलनों की व्याख्या करता है। हालाँकि, इस तरह की व्याख्या संभव नहीं है, क्योंकि एक गैर-संख्यात्मक मान के लिए प्रतिस्थापित किए जाने पर अभिसारी श्रृंखला देने के लिए औपचारिक श्रृंखला की आवश्यकता नहीं होती है।x. साथ ही, वे सभी व्यंजक नहीं हैं जो के फलन के रूप में अर्थपूर्ण हैंx अर्थपूर्ण हैं क्योंकि अभिव्यक्तियाँ औपचारिक श्रृंखला को निर्दिष्ट करती हैं; उदाहरण के लिए, की नकारात्मक और भिन्नात्मक घातयाँx ऐसे कार्यों के उदाहरण हैं जिनके पास संबंधित औपचारिक घात श्रृंखला नहीं है।
किसी फलन के डोमेन से कोडोमेन तक मैपिंग के औपचारिक अर्थ में जनक फलन फलन नहीं हैं। जनक फलन को कभी-कभी उत्पन्निंग शृंखला कहा जाता है,[2] इसमें शब्दों की एक श्रृंखला को शब्द गुणांकों के अनुक्रम का जनक कहा जा सकता है।
परिभाषाएँ
'जनक फलन एक उपकरण है जो कुछ हद तक एक बैग के समान होता है। बहुत सी छोटी वस्तुओं को अलग-अलग ले जाने के स्थान पर, जो लज्जाजनक हो सकता है, हम उन सभी को एक बैग में रख देते हैं, और फिर हमारे पास ले जाने के लिए केवल एक ही वस्तु होती है, बैग.
— जॉर्ज पोल्या, गणित और विश्वसनीय तर्क (1954)
एक जनक फलन एक अलगनी है जिस पर हम प्रदर्शन के लिए संख्याओं का एक क्रम लटकाते हैं.
— हर्बर्ट विल्फ, जनकफंक्शनोलॉजी (1994)
साधारण जनक फलन (OF)
अनुक्रम का सामान्य जनक फलन an है
अगर an एक असतत यादृच्छिक चर का प्रायिकता द्रव्यमान कार्य है, तो इसके साधारण जनन फलन को प्रायिकता-उत्पन्न करने वाला फलन कहा जाता है।
साधारण जनक फलन को कई सूचकांकों के साथ सरणियों के लिए सामान्यीकृत किया जा सकता है। उदाहरण के लिए, द्वि-आयामी सरणी का सामान्य जनक फलन am,n (जहाँ n और m प्राकृतिक संख्याएँ हैं) है
घातीय जनक फलन (ईजीएफ)
किसी अनुक्रम का चरघातांकी जनन फलन an है
पोइसन जनक फलन
एक अनुक्रम का पोइसन जनक फलन an है
लैम्बर्ट श्रृंखला
अनुक्रम की लैम्बर्ट श्रृंखला an है
लैम्बर्ट श्रृंखला में तालिका n 1 से प्रारम्भ होता है, 0 से नहीं, क्योंकि पहला पद अन्यथा अपरिभाषित होगा।
बेल श्रृंखला
एक क्रम की बेल श्रृंखला an एक अनिश्चित दोनों के संदर्भ में एक अभिव्यक्ति x है और एक प्रधान p निम्न द्वारा दिया गया है[4]
डिरिचलेट श्रृंखला जनक फलन (डीजीएफ)
औपचारिक डिरिचलेट श्रृंखला को प्रायः उत्पादक कार्यों के रूप में वर्गीकृत किया जाता है, हालांकि वे कठोरता से औपचारिक घात श्रृंखला नहीं हैं। डिरिचलेट श्रृंखला एक अनुक्रम का कार्य an उत्पन्न करती है[5]
बहुपद अनुक्रम जनक फलन
जनक फलन के विचार को अन्य वस्तुओं के अनुक्रमों तक बढ़ाया जा सकता है। इस प्रकार, उदाहरण के लिए, द्विपद प्रकार के बहुपद अनुक्रम द्वारा उत्पन्न होते हैं
साधारण उत्पादन कार्य
सरल अनुक्रम जनक फलन के उदाहरण
बहुपद साधारण जनक फलन की एक विशेष स्तिथि है, जो परिमित अनुक्रमों के अनुरूप है, या समतुल्य अनुक्रम जो एक निश्चित बिंदु के बाद गायब हो जाते हैं। ये इस मायने में महत्वपूर्ण हैं कि कई परिमित अनुक्रमों को जनक फलन के रूप में उपयोगी रूप से व्याख्यायित किया जा सकता है, जैसे कि पॉइनकेयर बहुपद और अन्य।
एक मौलिक जनक फलन निरंतर अनुक्रम 1, 1, 1, 1, 1, 1, 1, 1, 1, ..., का है जिसका साधारण जनक फलन गुणोत्तर श्रेणी है
अन्य अनुक्रमों के साधारण जनक फलन के लिए भाव आसानी से इस एक से प्राप्त किए जाते हैं। उदाहरण के लिए, प्रतिस्थापन x → ax ज्यामितीय प्रगति के लिए जनक फलन 1, a, a2, a3, ...देता है किसी भी स्थिरांक a के लिए :
2) है, ताकि
k} दूसरी तरह की स्टर्लिंग संख्या और जहां जनक फलन को दर्शाता है
तर्कसंगत कार्य
एक अनुक्रम के सामान्य जनक फलन को एक तर्कसंगत फलन (दो परिमित-डिग्री बहुपदों का अनुपात) के रूप में व्यक्त किया जा सकता है यदि और केवल यदि अनुक्रम निरंतर गुणांक के साथ एक रैखिक पुनरावर्ती अनुक्रम है; यह उपरोक्त उदाहरणों का सामान्यीकरण करता है। इसके विपरीत, बहुपदों के एक अंश द्वारा उत्पन्न प्रत्येक अनुक्रम निरंतर गुणांकों के साथ एक रैखिक पुनरावृत्ति को संतुष्ट करता है; ये गुणांक अंश भाजक बहुपद के गुणांक के समान हैं (इसलिए उन्हें सीधे पढ़ा जा सकता है)। इस अवलोकन से पता चलता है कि निरंतर गुणांक वाले रैखिक परिमित अंतर समीकरण द्वारा परिभाषित अनुक्रमों के कार्यों को उत्पन्न करने के लिए हल करना आसान है। यहाँ प्रतिमानिकल उदाहरण फलन तकनीकों को उत्पन्न करके फाइबोनैचि संख्याओं के लिए बिनेट के सूत्र को प्राप्त करना है।
हम यह भी ध्यान देते हैं कि तर्कसंगत जनक फलनों का वर्ग निश्चित रूप से उन जनक फलनों से मेल खाता है जो प्रपत्र के अर्ध-बहुपद अनुक्रमों की गणना करते हैं [11]
सामान्यतः, जनक फलन रूपांतरण हैडमार्ड उत्पाद और तर्कसंगत फलन के विकर्ण जनक फलन का उत्पादन करते हैं। इसी प्रकार यदि
जनक फलन संचालन
गुणन से संवलन मिलता है
साधारण जनक फलन का गुणन अनुक्रमों के असतत संवलन (कॉची उत्पाद) का उत्पादन करता है। उदाहरण के लिए, संचयी योग का क्रम (थोड़ा अधिक सामान्य यूलर-मैकलॉरिन सूत्र की तुलना में)
अनुक्रम सूचकांक स्थानांतरण
पूर्णांकों m ≥ 1 के लिए, हमारे पास स्थानान्तरित किए गए अनुक्रम परिवर्ती की गणना करने वाले संशोधित जनक फलन के लिए निम्नलिखित ⟨ gn − m ⟩ और ⟨ gn + m ⟩ दो समान सर्वसमिका हैं। क्रमश:
सृजन कार्यों का विभेदीकरण और एकीकरण
हमारे पास जनक फलन के पहले व्युत्पन्न और इसके अभिन्न अंग के लिए निम्नलिखित संबंधित घात श्रृंखला विस्तार हैं:
अनुक्रमों की अंकगणितीय प्रगति की गणना करना
इस खंड में हम अनुक्रम {fan + b} की गणना करने वाले कार्यों को उत्पन्न करने के सूत्र देते हैं, एक सामान्य जनक फलन F(z) दिया गया है जहाँ a, b ∈ ℕ, a ≥ 2, और 0 ≤ b < a (जनक फलन रूपांतरण देखें)। a = 2 के लिए, यह केवल सम और विषम कार्यों (यानी, सम और विषम घातयों) में एक फलन का परिचित अपघटन है:
P-पुनरावर्ती अनुक्रम और होलोनोमिक जनक फलन
परिभाषाएं
एक औपचारिक घात श्रृंखला (या फलन) F(z) को होलोनोमिक कहा जाता है यदि यह फॉर्म के रैखिक अंतर समीकरण को संतुष्ट करता है[15]
चूंकि पिछले समीकरण में आवश्यकता पड़ने पर हम हर (डिनोमिनेटर) को स्पष्ट कर सकते हैं, हम मान सकते हैं कि फलन, ci(z) में z बहुपद हैं। इस प्रकार हम एक समतुल्य स्थिति देख सकते हैं कि एक जनन फलन होलोनोमिक है यदि इसके गुणांक a P-रूप की पुनरावृत्ति को संतुष्ट करते हैं
उदाहरण
कार्य ez, log z, cos z, arcsin z, √1 + z, डिलोगरिथ्म फलन Li2(z), सामान्यीकृत हाइपरज्यामितीय कार्य pFq(...; ...; z) और घात श्रेणी द्वारा परिभाषित कार्य
इसके उदाहरण P-होलोनोमिक जनक फलन के साथ पुनरावर्ती अनुक्रम fn ≔ 1/n + 1 (2n
n) और fn ≔ 2n/n2 + 1 में सम्मिलित हैं जहां अनुक्रम जैसे √n और log n नहीं हैं P-उनके संबंधित उत्पादन कार्यों में विलक्षणताओं की प्रकृति के कारण पुनरावर्ती। इसी तरह, असीम रूप से कई विलक्षणताओं के साथ कार्य करता है जैसे tan z, sec z, और गामा फलन |Γ(z) होलोनोमिक कार्य नहीं हैं।
साथ काम करने के लिए सॉफ्टवेयर P-पुनरावर्ती अनुक्रम और होलोनोमिक जनक फलन
प्रसंस्करण और साथ काम करने के लिए उपकरण P- गणितीय में पुनरावर्ती अनुक्रम में RISC साहचर्य समूह कलन विधि संयोजन सॉफ्टवेयर साइट पर गैर-वाणिज्यिक उपयोग के लिए प्रदान किए गए सॉफ़्टवेयर संकुल सम्मिलित हैं। अधिकांशतः बंद-स्रोत होने के बावजूद, इस सॉफ़्टवेयर सूट में विशेष रूप से घातशाली उपकरण इसके द्वारा प्रदान किए जाते हैं अनुमान अनुमान लगाने के लिए संकुल P- स्वेच्छाचारी इनपुट अनुक्रमों के लिए पुनरावर्तन (प्रायोगिक गणित और अन्वेषण के लिए उपयोगी) और सिग्मा संकुल जो कई राशियों के लिए पी-पुनरावृत्ति खोजने में सक्षम है और बंद-रूप समाधानों के लिए हल करता है, P-पुनरावृत्ति सामान्यीकृत सुसंगत संख्याओं को सम्मिलित करती है।[16] इस विशेष आरआईएससी साइट पर सूचीबद्ध अन्य संकुल विशेष रूप से होलोनोमिक जनक फलन के साथ काम करने के लिए लक्षित हैं।
असतत-समय फूरियर रूपांतरण से संबंध
जब श्रृंखला निरपेक्ष अभिसरण,
अनुक्रम की स्पर्शोन्मुख वृद्धि
कलन में, प्रायः घात श्रृंखला के गुणांकों की वृद्धि दर का उपयोग घात श्रृंखला के लिए अभिसरण की त्रिज्या निकालने के लिए किया जा सकता है। उल्टा भी धारण कर सकता है; अंतर्निहित अनुक्रम के अनंतस्पर्शी विश्लेषण को निकालने के लिए प्रायः जनक फलन के अभिसरण के त्रिज्या का उपयोग किया जा सकता है।
उदाहरण के लिए, यदि कोई सामान्य जनक फलन G(an; x) जिसके अभिसरण की परिमित त्रिज्या r है, निम्न रूप में लिखा जा सकता है
प्रायः इस दृष्टिकोण को एक स्पर्शोन्मुख श्रृंखला में कई शब्द उत्पन्न करने के लिए an पुनरावृत्त किया जा सकता है। विशेष रूप से,
घातीय जनक फलन के लिए समान स्पर्शोन्मुख विश्लेषण संभव है; एक घातीय जनक फलन के साथ, यह an/n! है जो इन स्पर्शोन्मुख सूत्रों के अनुसार बढ़ता है। सामान्यतः, यदि एक अनुक्रम का जनक फलन माइनस दूसरे अनुक्रम के जनक फलन में अभिसरण का त्रिज्या होता है जो व्यक्तिगत जनक फलन के अभिसरण के त्रिज्या से बड़ा होता है तो दो अनुक्रमों में एक ही स्पर्शोन्मुख वृद्धि होती है।
वर्गों के अनुक्रम की स्पर्शोन्मुख वृद्धि
जैसा कि ऊपर व्युत्पन्न किया गया है, वर्गों के अनुक्रम के लिए सामान्य जनक फलन है
कैटलन संख्या की स्पर्शोन्मुख वृद्धि
कैटलन संख्या ों के लिए सामान्य जनक फलन है
द्विचर और बहुभिन्नरूपी जनक फलन
कोई भी कई सूचकांकों के साथ सरणियों के लिए कई चर में जनक फलन को परिभाषित कर सकता है। इन्हें बहुभिन्नरूपी जनक फलन या, कभी-कभी, अति जनक फलन कहा जाता है। दो चरों के लिए, इन्हें प्रायः द्विभाजित जनक फलन कहा जाता है।
उदाहरण के लिए, चूंकि (1 + x)n एक निश्चित के लिए द्विपद गुणांक के लिए सामान्य जनक फलन n है, कोई एक द्विभाजित जनक फलन के लिए पूछ सकता है जो सभी k और n के लिए द्विपद गुणांक (n
k) उत्पन्न करता है। ऐसा करने के लिए विचार करें (1 + x)n स्वयं में एक अनुक्रम के रूप में n, और इसमें जनक फलन खोजें y जिसमें ये अनुक्रम मान गुणांक के रूप में हैं। चूंकि an के लिए जनक फलन है
निरंतर अंशों द्वारा प्रतिनिधित्व (जैकोबी-प्रकारJ-अंश)
परिभाषाएँ
(औपचारिक) जैकोबी-प्रकार और स्टिल्टजेस-प्रकार सामान्यीकृत निरंतर अंश का विस्तार (J-भिन्न औरS-भिन्न, क्रमशः) जिसका h परिमेय अभिसरण सटीकता के क्रम का प्रतिनिधित्व करता है। 2h-आदेश सटीक घात श्रृंखला कई विशेष एक और दो-चर अनुक्रमों के लिए सामान्यतः अलग-अलग सामान्य उत्पादन कार्यों को व्यक्त करने का एक और तरीका है। जैकोबी-प्रकार के निरंतर अंशों का विशेष रूप (J-अंश) निम्नलिखित समीकरण के रूप में विस्तारित हैं और इसके संबंध में अगली संगत घात श्रृंखला विस्तार z है। कुछ विशिष्ट, अनुप्रयोग-निर्भर घटक अनुक्रमों के लिए, {abi} और {ci}, जहाँ z ≠ 0 नीचे दिए गए दूसरे घात श्रृंखला विस्तार में औपचारिक चर को दर्शाता है:[17]
h वें अभिसरण कार्यों के गुण
h ≥ 0 के लिए (हालांकि अभ्यास में जब h ≥ 2), हम h वें परिमेय अभिसरण को अनंत J-अंश में परिभाषित कर सकते हैं , J[∞](z), द्वारा विस्तारित
गैर-प्रतीकात्मक के लिए, जब h ≥ 2 है तब मापदण्ड अनुक्रम {abi}और {ci} के विकल्पों का निर्धारण करें , अर्थात्, जब ये अनुक्रम q, x, या R जैसे सहायक मापदण्ड पर निहित रूप से निर्भर नहीं करते हैं, जैसा कि नीचे दी गई तालिका में दिए गए उदाहरणों में है।
उदाहरण
अगली तालिका संगणनात्मक रूप से पाए गए घटक अनुक्रमों के लिए संवृत रूप सिद्धांतों के उदाहरण प्रदान करती है (और बाद में उद्धृत संदर्भों में सही साबित हुई[18]) निर्धारित अनुक्रमों की कई विशेष स्तिथियों में, jn, के सामान्य विस्तार द्वारा उत्पन्न J-अंश पहले उपखंड में परिभाषित किए गए हैं। यहाँ हम 0 < |a|, |b|, |q| परिभाषित करते हैं <1 और पैरामीटर आर, α ∈ ℤ+ और x को इन विस्तारों के संबंध में अनिश्चित होना चाहिए, जहां इन के विस्तार से निर्धारित अनुक्रमों की गणना की जाती है J-अंशों को q-पोचममेर प्रतीक के संदर्भ में परिभाषित किया गया है q-पोचममेर प्रतीक, पोखमर प्रतीक और द्विपद गुणांक।
जैकोबी-प्रकार की परिभाषा के अनुरूप इन श्रृंखलाओं के अभिसरण की त्रिज्या J-ऊपर दिए गए अंश सामान्य रूप से इन अनुक्रमों के सामान्य उत्पादन कार्यों को परिभाषित करने वाली संबंधित घात श्रृंखला विस्तार से भिन्न होते हैं।
उदाहरण
वर्ग संख्याओं an = n2 के अनुक्रम के लिए फलन उत्पन्न करना है:
साधारण जनक फलन
घातीय जनक फलन
लैम्बर्ट श्रृंखला
लैम्बर्ट श्रृंखला सर्वसमिका के उदाहरण के रूप में लैम्बर्ट श्रृंखला में नहीं दी गई है, हम दिखा सकते हैं कि |x|, |xq| < 1 के लिए हमारे पास निम्न है [19]
बेल श्रृंखला
डिरिचलेट श्रृंखला जनक फलन
क्रम ak एक डिरिचलेट श्रृंखला ़ जनक फलन (DGF) द्वारा उत्पन्न होता है:
बहुभिन्नरूपी जनन कार्य
निर्दिष्ट पंक्ति और स्तंभ योग के साथ गैर-नकारात्मक पूर्णांकों की आकस्मिक तालिकाओं की संख्या की गणना करते समय बहुभिन्नरूपी जनक फलन व्यवहार में उत्पन्न होते हैं। मान लीजिए तालिका में r पंक्तियाँ और c कॉलम है; t1, t2 ... tr पंक्ति योग हैं और s1, s2 ... sc स्तंभ योग हैं फिर, आई. जे. गुड के अनुसार,[20] ऐसी तालिकाओं की संख्या का गुणांक है
अनुप्रयोग
विभिन्न तकनीकें: राशियों का मूल्यांकन करना और कार्यों को उत्पन्न करने वाली अन्य समस्याओं से निपटना
उदाहरण 1: सुसंगत संख्याओं के योग के लिए एक सूत्र
जनक फलन हमें योगों में क्रमभंग करने और योगों के बीच तत्समक स्थापित करने की कई विधियाँ प्रदान करते हैं।
सबसे सरल स्तिथि तब होती है जब sn = ∑n
k = 0 ak. हम तब जानते हैं कि इसी सामान्य उत्पादन कार्यों के लिए S(z) = A(z)/1 − z है।
उदाहरण के लिए, हम क्रमभंग कर सकते हैं
उदाहरण 2: संशोधित द्विपद गुणांक योग और द्विपद रूपांतरण
एक स्वेच्छाचारी अनुक्रम के लिए अनुक्रमों से संबंधित और योग में क्रमभंग करने के लिए जनक फलन का उपयोग करने का एक और उदाहरण ⟨ fn ⟩ है, हम योग के दो क्रमों को परिभाषित करते हैं
सबसे पहले, हम पहली राशि के लिए जनक फलन लिखने के लिए द्विपद परिवर्तन का उपयोग करते हैं
अंत में, यह इस प्रकार है कि हम निम्नलिखित रूप में पहली योग के माध्यम से दूसरी योग व्यक्त कर सकते हैं:
उदाहरण 3: परस्पर पुनरावर्ती अनुक्रमों के लिए कार्य उत्पन्न करना
इस उदाहरण में, हम गणित की धारा 7.3 में दिए गए एक जनक फलन उदाहरण को सुधारते हैं (फलन श्रृंखला उत्पन्न करने के सुंदर चित्रों के लिए समान संदर्भ का अनुभाग 7.1 भी देखें)। विशेष रूप से, मान लीजिए कि हम 3-दर-एन आयत को अचिह्नित 2-दर-1 दूरगामी टुकड़ों के साथ टाइल करने के तरीकों की कुल संख्या (अन चिह्नित) की खोज करते हैं। सहायक अनुक्रम, अन, को पूर्ण आयत के 3-दर-एन आयत-ऋण-कोने वाले खंड को आच्छादित करने के तरीकों की संख्या के रूप में परिभाषित किया जाना चाहिए।। हम इन परिभाषाओं का उपयोग Un के लिए बंद-रूप अभिव्यक्ति सूत्र के लिए करना चाहते हैं लंबवत बनाम क्षैतिज डोमिनोज़ की स्तिथि को संभालने के लिए इस परिभाषा को और अधिक तोड़े बिना। ध्यान दें कि हमारे दो अनुक्रमों के लिए सामान्य जनक फलन श्रृंखला के अनुरूप हैं
संक्रमण (कॉची उत्पाद)
दो औपचारिक घात श्रृंखलाओं में शर्तों का एक असतत संवलन जनक फलन के उत्पाद को मूल अनुक्रम शब्दों के एक निश्चित योग की गणना करने वाले जनक फलन में बदल देता है (कॉची उत्पाद देखें)।
- विचार करना A(z) और B(z) साधारण जनक फलन हैं।
- विचार करना A(z) और B(z) घातीय जनक फलन हैं।
- तीन साधारण जनक फलन के उत्पाद के परिणामस्वरूप होने वाले त्रिगुणात्मक अनुक्रम पर विचार करें
- इसपर विचार करें m-किसी अनुक्रम का स्वयं के साथ किसी धनात्मक पूर्णांक के लिए गुना संवलन m ≥ 1 (आवेदन के लिए नीचे उदाहरण देखें)
जनक फलनों का गुणन, या उनके अंतर्निहित अनुक्रमों का संवलन, कुछ गिनती और संभाव्यता परिदृश्यों में स्वतंत्र घटनाओं की धारणा के अनुरूप हो सकता है। उदाहरण के लिए, यदि हम सांकेतिक परिपाटी अपनाते हैं कि प्रायिकता उत्पन्न करने वाला फलन, या pgf, एक यादृच्छिक चर का Z द्वारा दर्शाया जाता है GZ(z), तो हम दिखा सकते हैं कि किसी भी दो यादृच्छिक चर के लिए [22]
उदाहरण: कैटलन संख्याों के लिए जनक फलन
एक उदाहरण जहां जनक फलन के संवलन उपयोगी होते हैं, हमें कैटलन संख्याों के लिए सामान्य जनक फलन का प्रतिनिधित्व करने वाले एक विशिष्ट संवृत रूप फलन के लिए हल करने की अनुमति देता है, Cn. विशेष रूप से, इस अनुक्रम में उत्पाद में कोष्ठक सम्मिलित करने के तरीकों की संख्या के रूप में मिश्रित व्याख्या है x0 · x1 ·⋯· xn ताकि गुणा का क्रम पूरी तरह निर्दिष्ट हो। उदाहरण के लिए, C2 = 2 जो दो भावों से मेल खाता है x0 · (x1 · x2) और (x0 · x1) · x2. यह इस प्रकार है कि अनुक्रम द्वारा दिए गए पुनरावृत्ति संबंध को संतुष्ट करता है
उदाहरण: पंखे के पेड़ फैलाना और संवलन के संवलन
आदेश का प्रशंसक n को शिखर पर एक ग्राफ के रूप में परिभाषित किया गया है {0, 1,…, n} साथ 2n − 1 किनारों को निम्नलिखित नियमों के अनुसार जोड़ा गया है: वर्टेक्स 0 एक किनारे से दूसरे में से जुड़ा हुआ है n शिखर, और शीर्ष एक किनारे से अगले शीर्ष से जुड़ा हुआ है k + 1 सभी के लिए 1 ≤ k < n.[23] क्रम एक का एक प्रशंसक, क्रम दो के तीन प्रशंसक, क्रम तीन के आठ प्रशंसक, और इसी तरह। एक फैला हुआ पेड़ एक ग्राफ का एक सबग्राफ होता है जिसमें सभी मूल कोने होते हैं और जिसमें इस सबग्राफ को जोड़ने के लिए पर्याप्त किनारे होते हैं, लेकिन इतने सारे किनारे नहीं होते हैं कि सबग्राफ में एक चक्र हो। हम पूछते हैं कि कितने फैले हुए पेड़ हैं fn आदेश के एक प्रशंसक की n प्रत्येक के लिए संभव हैं n ≥ 1.
एक अवलोकन के रूप में, हम शीर्षों के निकटवर्ती सेटों को जोड़ने के तरीकों की संख्या की गणना करके प्रश्न तक पहुँच सकते हैं। उदाहरण के लिए, कब n = 4, हमारे पास वह है f4 = 4 + 3 · 1 + 2 · 2 + 1 · 3 + 2 · 1 · 1 + 1 · 2 · 1 + 1 · 1 · 2 + 1 · 1 · 1 · 1 = 21, जो कि एक योग है m-अनुक्रम के गुना दृढ़ संकल्प gn = n = [zn] z/(1 − z)2 के लिए m ≔ 1, 2, 3, 4. अधिक सामान्यतः, हम इस क्रम के लिए एक सूत्र लिख सकते हैं
अंतर्निहित जनक फलन और लैग्रेंज इनवर्जन फॉर्मूला
This section needs expansion with: This section needs to be added to the list of techniques with generating functions. You can help by adding to it. (April 2017) |
प्रस्तुत है एक फ्री मापदण्ड (स्नेक ऑयल मेथड)
कभी-कभी राशि sn जटिल है, और इसका मूल्यांकन करना हमेशा आसान नहीं होता है। इन राशियों का मूल्यांकन करने के लिए फ्री मापदण्ड विधि एक अन्य विधि है (जिसे एच। विल्फ द्वारा स्नेक ऑयल कहा जाता है)।
अब तक चर्चा की गई दोनों विधियों में है n योग में सीमा के रूप में। जब n योग में स्पष्ट रूप से प्रकट नहीं होता है, तो हम विचार कर सकते हैं n एक "मुक्त" मापदण्ड के रूप में और व्यवहार करें sn के गुणांक के रूप में F(z) = ∑ sn zn, योगों के क्रम को बदलें n और k, और आंतरिक योग की गणना करने का प्रयास करें।
उदाहरण के लिए, यदि हम गणना करना चाहते हैं
उत्पन्न करने वाले फलन सर्वांगसमता सिद्ध करते हैं
हम कहते हैं कि दो जनक फलन (घात श्रेणी) सर्वांगसम मॉड्यूल हैं m, लिखा हुआ A(z) ≡ B(z) (mod m) यदि उनके गुणांक सर्वांगसम मॉड्यूल हैं m सभी के लिए n ≥ 0, अर्थात।, an ≡ bn (mod m) पूर्णांकों के सभी प्रासंगिक मामलों के लिए n (ध्यान दें कि हमें यह मानने की आवश्यकता नहीं है m यहाँ एक पूर्णांक है - यह बहुत अच्छी तरह से बहुपद-मूल्यवान कुछ अनिश्चित में हो सकता है x, उदाहरण के लिए)। यदि सरल दाहिने हाथ की ओर उत्पन्न करने वाला कार्य, B(z), का एक तर्कसंगत कार्य है z, तो इस अनुक्रम के रूप से पता चलता है कि अनुक्रम आवधिक कार्य मोडुलो है जो पूर्णांक-मान के विशेष स्तिथि तय करता है m ≥ 2. उदाहरण के लिए, हम सिद्ध कर सकते हैं कि यूलर संख्याएँ,
Theorem: congruences for series generated by expansions of continued fractions — Suppose that the generating function A(z) is represented by an infinite continued fraction of the form
- the function Ap(z) is rational for all p ≥ 2 where we assume that one of divisibility criteria of p | p1, p1p2, p1p2p3 is met, that is, p | p1p2⋯pk for some k ≥ 1; and
- if the integer p divides the product p1p2⋯pk, then we have A(z) ≡ Ak(z) (mod p).
जनक फलनों का उनके गुणांकों के लिए सर्वांगसमता सिद्ध करने में अन्य उपयोग भी होते हैं। हम अगले दो विशिष्ट उदाहरणों का हवाला देते हैं जो पहली तरह की स्टर्लिंग संख्याओं के लिए और विभाजन फलन (गणित) के लिए विशेष केस सर्वांगसमता प्राप्त करते हैं। विभाजन फलन p(n) जो पूर्णांक अनुक्रमों से जुड़ी समस्याओं से निपटने में कार्यों को उत्पन्न करने की बहुमुखी प्रतिभा को दर्शाता है।
स्टर्लिंग संख्या मॉड्यूल छोटे पूर्णांक
पहली तरह की स्टर्लिंग संख्या# परिमित उत्पादों द्वारा उत्पन्न स्टर्लिंग संख्याओं पर अनुरूपता
k] भी जब भी है k < ⌊ n/2 ⌋.
इसी तरह, हम दाएँ हाथ के उत्पादों को कम कर सकते हैं जो स्टर्लिंग संख्या जनक फलनों मॉड्यूलो 3 को परिभाषित करते हैं ताकि थोड़ा और जटिल अभिव्यक्ति प्राप्त हो सके
पार्टीशन फंक्शन के लिए बधाई
इस उदाहरण में, हम अनंत उत्पादों की कुछ मशीनरी को खींचते हैं जिनकी घात श्रृंखला विस्तार कई विशेष कार्यों के विस्तार और विभाजन कार्यों की गणना करता है। विशेष रूप से, हम याद करते हैं कि विभाजन कार्य (संख्या सिद्धांत) p(n) पारस्परिक अनंत q-पोचहैमर प्रतीक द्वारा उत्पन्न होता हैq-पोछाम्मेर सिंबल प्रोडक्ट (और z-पोचममेर उत्पाद जैसा भी स्तिथि हो) द्वारा दिया गया है
सबसे पहले, हम देखते हैं कि द्विपद गुणांक जनक फलन में
या समकक्ष
यह दिखाया जा सकता है कि का गुणांक z5m + 5 में z · ((1 − z)(1 − z2)⋯)4 सभी के लिए 5 से विभाज्य है m.[26] अंत में, चूंकि
जनक फलन का रूपांतरण
जनक फलन के कई रूपांतरण हैं जो अन्य एप्लिकेशन प्रदान करते हैं (जेनरेटिंग फलन रूपांतरण देखें)। एक अनुक्रम के सामान्य जनक फलन (ओजीएफ) का रूपांतरण एक अनुक्रम के लिए जनक फलन को दूसरे को एन्यूमरेट करने वाले जनक फलन में परिवर्तित करने की एक विधि प्रदान करता है। इन परिवर्तनों में सामान्यतः एक अनुक्रम ओजीएफ से जुड़े अभिन्न सूत्र सम्मिलित होते हैं (फलन रूपांतरण # इंटीग्रल रूपांतरण उत्पन्न करना देखें) या इन फलन के उच्च-क्रम व्युत्पादित्स पर भारित योग (फलन रूपांतरण # व्युत्पादित रूपांतरण उत्पन्न करना देखें)।
जब हम राशियों के लिए एक जनक फलन को व्यक्त करना चाहते हैं, तो फलन रूपांतरण उत्पन्न करना चलन में आ सकता है
अनुक्रम के ओजीएफ के बीच परिवर्तित करने के लिए अभिन्न सूत्र भी हैं, F(z), और इसका घातांकी जनक फलन, या EGF, F̂(z), और इसके विपरीत द्वारा दिया गया
अन्य अनुप्रयोग
जनक फलन का उपयोग इसके लिए किया जाता है:
- पुनरावृत्ति संबंध में दिए गए अनुक्रम के लिए बंद सूत्र खोजें। उदाहरण के लिए, फाइबोनैचि संख्या # जनक फलन पर विचार करें।
- अनुक्रमों के लिए पुनरावर्तन संबंध खोजें—एक जनक फलन का रूप पुनरावृत्ति सूत्र का सुझाव दे सकता है।
- अनुक्रमों के बीच संबंधों का पता लगाएं - यदि दो अनुक्रमों के जनक कार्यों का एक समान रूप है, तो अनुक्रम स्वयं संबंधित हो सकते हैं।
- अनुक्रमों के स्पर्शोन्मुख व्यवहार का अन्वेषण करें।
- अनुक्रमों से संबंधित सर्वसमिका सिद्ध करें।
- साहचर्य में गणना की समस्याओं को हल करें और उनके समाधान को कूटलेखनिंग करें। रूक बहुपद कॉम्बिनेटरिक्स में एक आवेदन का एक उदाहरण है।
- अनंत योग का मूल्यांकन करें।
अन्य जनक फलन
उदाहरण
अधिक जटिल जनक फलन द्वारा उत्पन्न बहुपद अनुक्रमों के उदाहरणों में सम्मिलित हैं:
- अपीलीय बहुपद
- चेबिशेव बहुपद
- अंतर बहुपद
- सामान्यीकृत अपेल बहुपद
- क्यू-अंतर बहुपद|q-अंतर बहुपद
अधिक जटिल जनक फलन द्वारा उत्पन्न अन्य क्रम:
- डबल घातीय जनक फलन। उदाहरण के लिए: Aitken's Array: Triangle of Numbers
- जनक फलन और विकर्ण जनक फलन के हैडमार्ड उत्पाद, और उनके संगत जनक फलन रूपांतरण # हैडमार्ड उत्पाद और विकर्ण जनक फलन
संवलन बहुपद
नुथ का आलेख जिसका शीर्षक कनवॉल्यूशन पॉलीनॉमियल्स है[28] संवलन बहुपद अनुक्रमों के एक सामान्यीकृत वर्ग को फॉर्म के उनके विशेष जनक फलन द्वारा परिभाषित करता है
हम कहते हैं कि बहुपदों का एक परिवार, f0, f1, f2,…, एक दृढ़ संकल्प परिवार बनाता है if deg fn ≤ n और यदि निम्नलिखित दृढ़ संकल्प की स्थिति सभी के लिए है x, y और सभी के लिए n ≥ 0:
उपरोक्त अंकन में परिभाषित दृढ़ बहुपदों के अनुक्रम में निम्नलिखित गुण हैं:
- क्रम n! · fn(x) द्विपद प्रकार का है
- अनुक्रम के विशेष मूल्यों में सम्मिलित हैं fn(1) = [zn] F(z) और fn(0) = δn,0, और
- स्वेच्छाचारी (निश्चित) के लिए x, y, t ∈ ℂ, ये बहुपद रूप के संवलन सिद्धांतों को संतुष्ट करते हैं
विशेष जनक फलन की तालिकाएँ
विशेष गणितीय श्रृंखला की प्रारंभिक सूची मिली है गणितीय श्रृंखला की सूची। कंक्रीट गणित की धारा 5.4 और 7.4 में और विल्फ की जनक फलनोलॉजी की धारा 2.5 में कई उपयोगी और विशेष अनुक्रम जनक फलन पाए जाते हैं। नोट के अन्य विशेष जनक फलन में अगली तालिका में प्रविष्टियाँ सम्मिलित हैं, जो किसी भी तरह से पूर्ण नहीं हैं।[29]
This section needs expansion with: Lists of special and special sequence generating functions. The next table is a start. You can help by adding to it. (April 2017) |
Formal power series Generating-function formula Notes is a first-order harmonic number is a Bernoulli number is a Fibonacci number and denotes the rising factorial, or Pochhammer symbol and some integer is the polylogarithm function and is a generalized harmonic number for is a Stirling number of the second kind and where the individual terms in the expansion satisfy The two-variable case is given by
इतिहास
जॉर्ज पोल्या गणित और प्रशंसनीय तर्क में लिखते हैं:
नेम जनक फलन लाप्लास के कारण है। फिर भी, इसे कोई नाम दिए बिना, यूलर ने लाप्लास [..] से बहुत पहले कार्यों को उत्पन्न करने के उपकरण का उपयोग किया। उन्होंने इस गणितीय उपकरण को संयोजन विश्लेषण और संख्या सिद्धांत की कई समस्याओं पर लागू किया।
यह भी देखें
- क्षण-उत्पन्न करने वाला कार्य
- संभावना पैदा करने वाला कार्य
- फलन परिवर्तन उत्पन्न करना
- स्टेनली की पारस्परिकता प्रमेय
- विभाजन के लिए आवेदन (संख्या सिद्धांत)
- संयुक्त सिद्धांत
- चक्रीय छलनी
- जेड-रूपांतरण
- उम्ब्रल कैलकुलस
टिप्पणियाँ
- ↑ Incidentally, we also have a corresponding formula when m < 0 given by
संदर्भ
- ↑ Knuth, Donald E. (1997). "§1.2.9 Generating Functions". मौलिक एल्गोरिदम. The Art of Computer Programming. Vol. 1 (3rd ed.). Addison-Wesley. ISBN 0-201-89683-4.
- ↑ This alternative term can already be found in E.N. Gilbert (1956), "Enumeration of Labeled graphs", Canadian Journal of Mathematics 3, p. 405–411, but its use is rare before the year 2000; since then it appears to be increasing.
- ↑ Flajolet & Sedgewick 2009, p. 95
- ↑ Apostol, Tom M. (1976), Introduction to analytic number theory, Undergraduate Texts in Mathematics, New York-Heidelberg: Springer-Verlag, ISBN 978-0-387-90163-3, MR 0434929, Zbl 0335.10001 pp.42–43
- ↑ Wilf 1994, p. 56
- ↑ Wilf 1994, p. 59
- ↑ Hardy, G.H.; Wright, E.M.; Heath-Brown, D.R; Silverman, J.H. (2008). संख्या के सिद्धांत का परिचय (6th ed.). Oxford University Press. p. 339. ISBN 9780199219858.
- ↑ Spivey, Michael Z. (2007). "संयुक्त योग और परिमित अंतर". Discrete Math. 307 (24): 3130–3146. doi:10.1016/j.disc.2007.03.052. MR 2370116.
- ↑ Mathar, R. J. (2012). "फिर भी इंटीग्रल की एक और तालिका". arXiv:1207.5845 [math.CA]. v4 eq. (0.4)
- ↑ Graham, Knuth & Patashnik 1994, Table 265 in §6.1 for finite sum identities involving the Stirling number triangles.
- ↑ Lando 2003, §2.4
- ↑ Example from Stanley, Richard P.; Fomin, Sergey (1997). "§6.3". Enumerative Combinatorics: Volume 2. Cambridge Studies in Advanced Mathematics. Vol. 62. Cambridge University Press. ISBN 978-0-521-78987-5.
- ↑ Knuth 1997, §1.2.9
- ↑ Solution to Graham, Knuth & Patashnik 1994, p. 569, exercise 7.36
- ↑ Flajolet & Sedgewick 2009, §B.4
- ↑ Schneider, C. (2007). "प्रतीकात्मक योग कॉम्बिनेटरिक्स की सहायता करता है". Sem. Lothar. Combin. 56: 1–36.
- ↑ For more complete information on the properties of J-fractions see:
- Flajolet, P. (1980). "Combinatorial aspects of continued fractions" (PDF). Discrete Mathematics. 32 (2): 125–161. doi:10.1016/0012-365X(80)90050-3.
- Wall, H.S. (2018) [1948]. Analytic Theory of Continued Fractions. Dover. ISBN 978-0-486-83044-5.
- ↑ See the following articles:
- Schmidt, Maxie D. (2016). "Continued Fractions for Square Series Generating Functions". arXiv:1612.02778 [math.NT].
- — (2017). "Jacobi-Type Continued Fractions for the Ordinary Generating Functions of Generalized Factorial Functions". Journal of Integer Sequences. 20. arXiv:1610.09691. 17.3.4.
- — (2017). "Jacobi-Type Continued Fractions and Congruences for Binomial Coefficients Modulo Integers h ≥ 2". arXiv:1702.01374 [math.CO].
- ↑ "लैम्बर्ट श्रृंखला पहचान". Math Overflow. 2017.
- ↑ Good, I. J. (1986). "सममित डिरिचलेट वितरण और आकस्मिक तालिकाओं के लिए उनके मिश्रण के अनुप्रयोगों पर". Annals of Statistics. 4 (6): 1159–1189. doi:10.1214/aos/1176343649.
- ↑ See the usage of these terms in Graham, Knuth & Patashnik 1994, §7.4 on special sequence generating functions.
- ↑ Graham, Knuth & Patashnik 1994, §8.3
- ↑ Graham, Knuth & Patashnik 1994, Example 6 in §7.3 for another method and the complete setup of this problem using generating functions. This more "convoluted" approach is given in Section 7.5 of the same reference.
- ↑ Lando 2003, §5
- ↑ Hardy et al. 2008, §19.12
- ↑ Hardy, G.H.; Wright, E.M. An Introduction to the Theory of Numbers. p.288, Th.361
- ↑ Graham, Knuth & Patashnik 1994, p. 535, exercise 5.71
- ↑ Knuth, D. E. (1992). "कनवल्शन पॉलीनॉमियल्स". Mathematica J. 2: 67–78. arXiv:math/9207221. Bibcode:1992math......7221K.
- ↑ See also the 1031 Generating Functions found in Plouffe, Simon (1992). Approximations de séries génératrices et quelques conjectures [Approximations of generating functions and a few conjectures] (Masters) (in français). Université du Québec à Montréal. arXiv:0911.4975.
उद्धरण
- Aigner, Martin (2007). A Course in Enumeration. Graduate Texts in Mathematics. Vol. 238. Springer. ISBN 978-3-540-39035-0.
- Doubilet, Peter; Rota, Gian-Carlo; Stanley, Richard (1972). "On the foundations of combinatorial theory. VI. The idea of generating function". Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability. 2: 267–318. Zbl 0267.05002. Reprinted in Rota, Gian-Carlo (1975). "3. The idea of generating function". Finite Operator Calculus. With the collaboration of P. Doubilet, C. Greene, D. Kahaner, A. Odlyzko and R. Stanley. Academic Press. pp. 83–134. ISBN 0-12-596650-4. Zbl 0328.05007.
- Flajolet, Philippe; Sedgewick, Robert (2009). Analytic Combinatorics. Cambridge University Press. ISBN 978-0-521-89806-5. Zbl 1165.05001.
- Goulden, Ian P.; Jackson, David M. (2004). Combinatorial Enumeration. Dover Publications. ISBN 978-0486435978.
- Graham, Ronald L.; Knuth, Donald E.; Patashnik, Oren (1994). "Chapter 7: Generating Functions". Concrete Mathematics. A foundation for computer science (2nd ed.). Addison-Wesley. pp. 320–380. ISBN 0-201-55802-5. Zbl 0836.00001.
- Lando, Sergei K. (2003). Lectures on Generating Functions. American Mathematical Society. ISBN 978-0-8218-3481-7.
- Wilf, Herbert S. (1994). Generatingfunctionology (2nd ed.). Academic Press. ISBN 0-12-751956-4. Zbl 0831.05001.
बाहरी संबंध
- "Introduction To Ordinary Generating Functions" by Mike Zabrocki, York University, Mathematics and Statistics
- "Generating function", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- Generating Functions, Power Indices and Coin Change at cut-the-knot
- "Generating Functions" by Ed Pegg Jr., Wolfram Demonstrations Project, 2007.