संख्या सिद्धांत में, एक अंकगणितीय, अंकगणितीय, या संख्या-सैद्धांतिक कार्य [1][2] अधिकांश लेखकों के लिए है।[3][4][5] कोई भी फलन (गणित) f(n) जिसका प्रांत प्राकृत संख्या है और जिसका विस्तार सम्मिश्र संख्याओं का उपसमुच्चय है। हार्डी एंड राइट ने अपनी परिभाषा में इस आवश्यकता को सम्मिलित किया है कि एक अंकगणितीय फलन n की कुछ अंकगणितीय संपत्ति को व्यक्त करता है।[6] एक अंकगणितीय फलन का एक उदाहरण विभाजक फलन है। जिसका मान धनात्मक पूर्णांक n पर n के विभाजकों की संख्या के समान है।
संख्या-सैद्धांतिक कार्यों का एक बड़ा वर्ग है। जो उपरोक्त परिभाषा में फिट नहीं होता है, उदाहरण के लिए, अभाज्य-गणना कार्य यह आलेख दोनों वर्गों के कार्यों के लिंक प्रदान करता है।
अंकगणितीय कार्य अधिकांशतः अत्यंत अनियमित होते हैं (कुछ अंकगणितीय कार्यों के पहले 100 मान देखें), किन्तु उनमें से कुछ में रामानुजन के योग के संदर्भ में श्रृंखला विस्तार है।
'पूर्ण योग फलन' यदि a(mn) = a(m) + a(n) सभी प्राकृत संख्याओं m और n के लिए है।
'पूरी तरह से गुणा फलन' यदि a(mn) = a(m)a(n) सभी प्राकृत संख्याओं m और n के लिए है।
दो पूर्ण संख्याएँ m और n सहअभाज्य कहलाती हैं यदि उनका सबसे बड़ा सामान्य भाजक 1 है, अर्थात यदि कोई अभाज्य संख्या नहीं है। जो दोनों को विभाजित करती है।
तब एक अंकगणितीय फलन a है
'योगात्मक फलन' यदि a(mn) = a(m) + a(n) सभी कोप्राइम प्राकृत संख्याओं m और n के लिए है।
'गुणात्मक फलन' यदि a(mn) = a(m)a(n) सभी सहअभाज्य प्राकृतिक संख्याओं m और n के लिए है।
नोटेशन
इस आलेख में, और इसका कारण है कि योग या उत्पाद सभी अभाज्य संख्याओं से अधिक है।
और
इसी प्रकार, और इसका कारण है कि योग या उत्पाद पूरी तरह से सकारात्मक एक्सपोनेंट के साथ सभी प्रमुख शक्तियों से अधिक है। (इसलिए k = 0 सम्मिलित नहीं है):
अंकन और इसका अर्थ है कि योग या गुणनफल n के सभी धनात्मक विभाजकों से अधिक है, जिसमें 1 और n सम्मिलित हैं। उदाहरण के लिए, यदि n = 12, तब
नोटेशन और को जोड़ा जा सकता है। इसका कारण है कि योग या उत्पाद n के सभी प्रमुख विभाजकों से अधिक है। उदाहरण के लिए, यदि n = 18, तब
और इसी तरह और इसका कारण यह है कि योग या उत्पाद n को विभाजित करने वाली सभी प्रमुख शक्तियों से अधिक है। उदाहरण के लिए, यदि n = 24, तब
Ω(n), ω(n), एनp(n) मूल शक्ति अपघटन
अंकगणित के मौलिक प्रमेय में कहा गया है कि किसी भी सकारात्मक पूर्णांक n को अभाज्य की शक्तियों के उत्पाद के रूप में विशिष्ट रूप से दर्शाया जा सकता है। जहां p1 < p2 < ... < pk अभाज्य हैं और aj सकारात्मक पूर्णांक हैं। (1 खाली उत्पाद द्वारा दिया गया है।)
इसे सभी अभाज्य संख्याओं पर अनंत गुणनफल के रूप में लिखना अधिकांशतः सुविधाजनक होता है। जहां परिमित संख्या को छोड़कर सभी में शून्य घातांक होता है। p-एडिक मूल्यांकन 'νp(n)' परिभाषित करें मूल p की उच्चतम शक्ति का प्रतिपादक होना जो n को विभाजित करता है। अर्थात, यदि p, pi में से एक है फिर νp(n) = ai, अन्यथा यह शून्य है। तब
उपरोक्त के संदर्भ में प्राइम ओमेगा फलन ω और Ω द्वारा परिभाषित किया गया है।
ω(n) = k,
Ω(n) = a1 + a2 + ... + ak.
पुनरावृत्ति से बचने के लिए, इस आलेख में सूचीबद्ध कार्यों के लिए जब भी संभव सूत्र n और संबंधित pi, ai, ω, और Ω के संदर्भ में दिए गए हैं।
गुणक कार्य
pk(n), τ(n), d(n) - विभाजक राशि
σk(n) 1 और n सहित n के सकारात्मक विभाजकों की k वीं शक्तियों का योग है। जहां k एक सम्मिश्र संख्या है।
'σ1(n)', n के (सकारात्मक) विभाजकों का योग, सामान्यतः 'σ(n)' द्वारा दर्शाया जाता है।
चूँकि शून्य घात की एक धनात्मक 'σ0(n)' संख्या एक है। इसलिए n के (सकारात्मक) विभाजकों की संख्या है। इसे सामान्यतः 'd(n)' या 'τ(n)' (जर्मन टेयलर = विभाजक के लिए) द्वारा दर्शाया जाता है।
दूसरे गुणनफल में k = 0 सेट करने पर प्राप्त होता है।
φ(n) - यूलर टोटिएंट फलन
'यूलर टोटिएंट फलन φ(n)', फलन, धनात्मक पूर्णांकों की वह संख्या है। जो n से अधिक नहीं है। जो n के सहअभाज्य हैं।
Jk(n) - जॉर्डन कुल फलन
'जॉर्डन कुल फलन Jk(n) n से कम या उसके समान सकारात्मक पूर्णांकों के k-टुपल्स की संख्या है। जो n के साथ मिलकर एक कोप्राइम (k + 1)-ट्यूपल बनाता है। यह यूलर के टोटेंट φ(n) = J1(n) का सामान्यीकरण है।
μ(n) - मोबियस फलन
'मोबियस फलन μ(n) मोबियस उलटा सूत्र के कारण महत्वपूर्ण है। नीचे डिरिक्लेट कनवल्शन देखें।
इसका तात्पर्य है कि μ(1) = 1. (क्योंकि Ω(1) = ω(1) = 0.) है।
τ(n) – रामानुजन ताऊ फलन
'रामानुजन ताऊ फलन τ(n)' इसकी जनक फलन पहचान द्वारा परिभाषित है।
चूँकि यह कहना कठिन है कि वास्तव में n का अंकगणितीय गुण क्या व्यक्त करता है,[7] (τ(n) है। (2π) मॉड्यूलर डिस्क्रिमिनेंट#मॉड्यूलर डिस्क्रिमिनेंट फलन के q-विस्तार में 12 गुना n वां फूरियर गुणांक) [8] इसे अंकगणितीय कार्यों में सम्मिलित किया गया है। क्योंकि यह गुणक है और यह कुछ σk(n) और आरk(n) वाली सर्वसमिकाओं में होता है। (क्योंकि ये भी मॉड्यूलर रूप के विस्तार में गुणांक हैं)।
Cq(n) - रामानुजन का योग
Cq(n)', रामानुजन का योग, एकता के आदिम q वें मूल की nवीं शक्तियों का योग है।
तथापि इसे जटिल संख्याओं के योग के रूप में परिभाषित किया गया हो (q के अधिकांश मानों के लिए अपरिमेय), यह एक पूर्णांक है। n के निश्चित मान के लिए यह q में गुणक है:
सभी 'डिरिचलेट वर्ण χ(n)' पूरी तरह गुणक हैं। दो वर्णों के विशेष अंकन है।
'प्रमुख चरित्र (मॉड n)' को χ0(a) (या χ1(a)) द्वारा दर्शाया जाता है। इसे के रूप में परिभाषित किया गया है।
द्विघात वर्ण (मॉड n) विषम n के लिए जैकोबी प्रतीक द्वारा निरूपित किया जाता है।(यह n के लिए भी परिभाषित नहीं है) |
इस सूत्र में लीजेंड्रे प्रतीक है, जो सभी पूर्णांकों a और सभी विषम अभाज्य p द्वारा परिभाषित है।
खाली उत्पाद के लिए सामान्य अधिवेशन के बाद, है।
योगात्मक कार्य
ω(n) - विशिष्ट अभाज्य भाजक
'ω(n)', n को विभाजित करने वाली अलग-अलग प्राइम्स की संख्या के रूप में ऊपर परिभाषित, योगात्मक है (प्राइम ओमेगा फलन देखें)।
पूरी तरह से योगात्मक कार्य
Ω(n) - मूल विभाजक
'प्राइम फ़ैक्टर Ω(n)', जिसे ऊपर n के प्राइम फ़ैक्टर की संख्या के रूप में परिभाषित किया गया है। जिसे बहुगुणों के साथ गिना जाता है। पूरी तरह से योगात्मक है (प्राइम ओमेगा फलन देखें)।
νp(n) - पूर्णांक n का p-एडिक मूल्यांकन
नियत अभाज्य p के लिए, 'νp(n)', जिसे ऊपर n को विभाजित करने वाले p की सबसे बड़ी शक्ति के घातांक के रूप में परिभाषित किया गया है, पूरी तरह से योज्य है।
लघुगणक व्युत्पन्न
जहाँ अंकगणितीय व्युत्पन्न है।
न तो गुणक और न ही योगात्मक
π(x), Π(x), θ(x), ψ(x) - प्राइम-काउंटिंग फलन
ये महत्वपूर्ण कार्य (जो अंकगणितीय कार्य नहीं हैं) को गैर-नकारात्मक वास्तविक तर्कों के लिए परिभाषित किया गया है, और विभिन्न बयानों और अभाज्य संख्या प्रमेय के प्रमाणों में उपयोग किया जाता है। वे अंकगणितीय कार्यों के योग कार्य हैं (नीचे मुख्य भाग देखें) जो न तो गुणक हैं और न ही योगात्मक हैं।
'प्राइम-काउंटिंग फलन π(x)', प्राइम्स की संख्या x से अधिक नहीं है। यह अभाज्य संख्याओं के सूचक फलन का योग फलन है।
एक संबंधित फलन प्राइम शक्तियों की गणना करता है, प्राइम के लिए वजन 1, उनके वर्गों के लिए 1/2, क्यूब्स के लिए 1/3, ... यह अंकगणितीय फलन का योग फलन है। जो पूर्णांक पर मान 1/k लेता है। जो k हैं कुछ अभाज्य संख्या की घात, और अन्य पूर्णांकों पर मान 0 है।
चेबीशेव फलन θ(x) और ψ(x), को अभाज्य संख्याओं के प्राकृतिक लघुगणक के योग के रूप में परिभाषित किया गया है। जो x' से अधिक नहीं है |
चेबीशेव फलन ψ(x) ठीक नीचे वॉन मैंगोल्ड्ट फलन का योग फलन है।
Λ(n) - वॉन मैंगोल्ड फलन
Λ(n)', वॉन मैंगोल्ड फलन, 0 है जब तक कि तर्क n एक प्रमुख शक्ति pk नहीं है। जिस स्थिति में यह अभाज्य p का प्राकृतिक लघुगणक है।
p (n) - विभाजन फलन
'विभाजन फलन (संख्या सिद्धांत) p(n) धनात्मक पूर्णांकों के योग के रूप में n को दर्शाने के विधियों की संख्या है। जहां भिन्न क्रम में समान योग वाले दो निरूपणों को भिन्न होने के रूप में नहीं गिना जाता है।
λ (n) - कारमाइकल फलन
'कारमाइकल फलन λ(n) सबसे छोटी सकारात्मक संख्या है जैसे कि सभी के लिए n के लिए एक कोप्राइम समतुल्य रूप से, यह पूर्णांक मॉड्यूलो n के गुणक समूह के तत्वों के आदेशों का कम से कम सामान्य गुणक है।
विषम अभाज्य संख्याओं की घातों के लिए और 2 और 4 के लिए, λ(n) n के यूलर कुल फलन के समान है। 4 से अधिक 2 की शक्तियों के लिए यह n के यूलर टोटेंट फलन के आधे के समान है।
और सामान्य n के लिए यह n के प्रमुख शक्ति कारकों में से प्रत्येक के λ का कम से कम सामान्य गुणक है।
h(n) - कक्षा संख्या
'आदर्श वर्ग समूह|h(n)', वर्ग संख्या फलन, विविक्तकर n वाले परिमेय के बीजगणितीय विस्तार के आदर्श वर्ग समूह का क्रम है। संकेतन अस्पष्ट है, क्योंकि सामान्य रूप से एक ही विवेचक के साथ कई विस्तार होते हैं। मौलिक उदाहरणों के लिए द्विघात क्षेत्र और चक्रीय क्षेत्र देखें।
Rk(n) - के वर्गों का योग
'वर्गों का योग फलन|आरk(n)' उन विधियों की संख्या है। जिन्हें n को k वर्गों के योग के रूप में दर्शाया जा सकता है, जहाँ निरूपण जो केवल योग के क्रम में भिन्न होते हैं या वर्गमूल के चिह्नों में भिन्न के रूप में गिने जाते हैं।
डेरिवेटिव के लिए डिफरेंशियल ऑपरेटर नोटेशन का उपयोग करना, अंकगणितीय डेरिवेटिव d (n) एक ऐसा फलन है
यदि n प्राइम, और
(उत्पाद नियम)
योग फलन
एक अंकगणितीय फलन दिया गया है), यह 'समेशन फलन' A(x) द्वारा परिभाषित किया गया है।
A को एक वास्तविक चर के कार्य के रूप में माना जा सकता है। एक सकारात्मक पूर्णांक एम दिया गया है, a खुले अंतराल m < x < m + 1 के साथ स्थिर है, और प्रत्येक पूर्णांक पर असंतोष का वर्गीकरण है। जिसके लिए a(m) ≠ 0. है।
चूँकि इस तरह के कार्यों को अधिकांशतः श्रृंखला और अभिन्न द्वारा दर्शाया जाता है। बिंदुवार अभिसरण प्राप्त करने के लिए यह सामान्य रूप से बाएँ और दाएँ मानों के औसत के रूप में विच्छिन्नता पर मान को परिभाषित करता है।
अंकगणितीय कार्यों के व्यक्तिगत मूल्यों में उतार-चढ़ाव हो सकता है। जैसा कि उपरोक्त अधिकांश उदाहरणों में है। योग कार्य इन उतार-चढ़ाव को सुचारू करते हैं। कुछ स्थितियों में यह संभव हो सकता है कि बड़े x के योग फलन के लिए स्पर्शोन्मुख विश्लेषण खोजा जाता है।
इस घटना का एक मौलिक उदाहरण [9]विभाजक सारांश फलन द्वारा दिया जाता है। d (n) का योग फलन, n के विभाजकों की संख्या है।
एक अंकगणितीय फलन का एक औसत क्रम कुछ सरल या उत्तम समझा जाने वाला फलन होता है। जिसमें समान रूप से समान योग फलन होता है, और इसलिए औसत पर समान मान लेता है। हम कहते हैं कि gf का औसत क्रम है। यदि
एक्स के रूप में अनंत की ओर जाता है। उपरोक्त उदाहरण से पता चलता है कि d (n) में औसत ऑर्डर लॉग (n) है।[10]
डिरिचलेट कनवल्शन
अंकगणितीय फलन a(n) दिया है, मान लीजिए Fa(s), जटिल s के लिए, संबंधित डिरिचलेट श्रृंखला (जहां यह अभिसारी श्रृंखला) द्वारा परिभाषित कार्य है।[11]
Fa(s) को a(n) का जनरेटिंग फलन कहा जाता है। सभी n के लिए स्थिर फलन a(n) = 1 के अनुरूप ऐसी सबसे सरल श्रृंखला, ς(s) रीमैन जीटा फलन है।
मोबियस फलन का जनरेटिंग फलन ज़ेटा फलन का व्युत्क्रम है।
दो अंकगणितीय कार्यों a और b और उनके संबंधित जनन फलन Fa(s) और Fb(s) पर विचार करें। गुणनफल Fa(s) Fb(s) की गणना निम्नानुसार की जा सकती है।
यह दिखाने के लिए एक सीधा अभ्यास है कि यदि c(n) द्वारा परिभाषित किया गया है।
तब
इस फलन c को a और b का डिरिचलेट कनवल्शन कहा जाता है और इसे द्वारा दर्शाया जाता है।
एक विशेष रूप से महत्वपूर्ण स्थिति सभी n के लिए स्थिर फलन a(n) = 1 के साथ कनवल्शन है। जो जेता फलन द्वारा जनरेटिंग फलन को गुणा करने के अनुरूप है।
ज़ेटा फलन के व्युत्क्रम से गुणा करने पर मोबियस उलटा सूत्र मिलता है।
यदि f गुणक है, तो g भी गुणक है। यदि f पूरी तरह से गुणक है, तो g गुणक है, किन्तु पूरी तरह से गुणक हो भी सकता है और नहीं भी हो सकता है।
कार्यों के बीच संबंध
अंकगणितीय कार्यों को एक दूसरे के साथ और विश्लेषण के कार्यों, विशेष रूप से शक्तियों, जड़ों, और घातीय और लॉग कार्यों के साथ जोड़ने वाले बहुत से सूत्र हैं। पृष्ठ विभाजक योग पहचान में अंकगणितीय कार्यों को सम्मिलित करने वाली पहचान के कई और सामान्यीकृत और संबंधित उदाहरण हैं।
अर्थात्, यदि n विषम है, σk*(n) n के विभाजकों की kवीं शक्तियों का योग है, अर्थात, σk(n), और यदि n भी है तो यह n के सम विभाजकों की k वीं शक्तियों का योग है। जो n के विषम विभाजकों की k वीं शक्तियों का योग है।
यहाँ कनवल्शन का कारण डिरिचलेट कनवल्शन नहीं है, किन्तु पावर श्रेणी के गुणांकों के लिए सूत्र गुणन और विभाजन को संदर्भित करता है।
क्रम अनुक्रम an और बीn का कनवल्शन या कॉची उत्पाद कहा जाता है। इन सूत्रों को विश्लेषणात्मक रूप से सिद्ध किया जा सकता है। (आइज़ेंस्टीन श्रृंखला देखें) या प्राथमिक विधियों से।[27]
चूंकि pk(n) (प्राकृतिक संख्या k के लिए) और τ(n) पूर्णांक हैं, उपरोक्त सूत्रों का उपयोग सर्वांगसमता सिद्ध करने के लिए किया जा सकता है। [34] कार्यों के लिए कुछ उदाहरणों के लिए रामानुजन ताऊ फलन कार्य देखें।
सेटिंग p(0) = 1. द्वारा पार्टीशन फलन के डोमेन का विस्तार करें |
[35] इस पुनरावृत्ति का उपयोग p(n) की गणना के लिए किया जा सकता है।
वर्ग संख्या संबंधित
पीटर गुस्ताव लेज्यून डिरिचलेट ने ऐसे सूत्रों की खोज की थी जो द्विघात संख्या क्षेत्र के वर्ग संख्या h को जैकोबी प्रतीक से संबंधित करते हैं।[36] एक पूर्णांक d को 'मौलिक विभेदक' कहा जाता है। यदि यह द्विघात संख्या क्षेत्र का विभेदक है। यह d ≠ 1 के समान है और या तो ए) d मुक्त है और d ≡ 1 (मॉड 4) या b) d ≡ 0 (मोड 4), d/4 स्क्वायरफ्री है, और d/4 ≡ 2 या 3 (मॉड 4)[37] क्रोनकर प्रतीक को परिभाषित करके भाजक में सम संख्याओं को स्वीकार करने के लिए जैकोबी प्रतीक का विस्तार करें |
↑Gérald Tenenbaum (1995). विश्लेषणात्मक और संभाव्य संख्या सिद्धांत का परिचय. Cambridge studies in advanced mathematics. Vol. 46. Cambridge University Press. pp. 36–55. ISBN0-521-41261-7.
↑Hardy & Wright, § 17.6, show how the theory of generating functions can be constructed in a purely formal manner with no attention paid to convergence.
↑Ramanujan, Some Formulæ in the Analytic Theory of Numbers, eq. (C); Papers p. 133. A footnote says that Hardy told Ramanujan it also appears in an 1857 paper by Liouville.
↑Ramanujan, Some Formulæ in the Analytic Theory of Numbers, eq. (F); Papers p. 134
Schwarz, Wolfgang; Spilker, Jürgen (1994), Arithmetical Functions. An introduction to elementary and analytic properties of arithmetic functions and to some of their almost-periodic properties, London Mathematical Society Lecture Note Series, vol. 184, Cambridge University Press, ISBN0-521-42725-8, Zbl0807.11001