अनुक्रमित वर्ग: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 26: Line 26:
== उदाहरण ==
== उदाहरण ==


=== अनुक्रमित वैक्टर ===
=== अनुक्रमित सदिश ===
उदाहरण के लिए, निम्नलिखित वाक्य पर विचार करें:
उदाहरण के लिए, निम्नलिखित वाक्य पर विचार करें:
{{Quote
{{Quote
|text=The vectors ''v''<sub>1</sub>, ..., ''v''<sub>''n''</sub> are linearly independent.
|text=The vectors ''v''<sub>1</sub>, ..., ''v''<sub>''n''</sub> are linearly independent.
}}
}}
यहां {{math|(''v''<sub>''i''</sub>)<sub>''i'' ∈ {1, ..., ''n''}</sub>}} वैक्टर के एक परिवार को दर्शाता है। {{mvar|i}}i}}-वें वेक्टर {{math|''v''<sub>''i''</sub>}} केवल इस परिवार के संबंध में समझ में आता है, क्योंकि समुच्चय अनियंत्रित हैं इसलिए नहीं है {{mvar|i}} समुच्चय का -वां वेक्टर। इसके अलावा, [[रैखिक स्वतंत्रता]] को एक संग्रह की संपत्ति के रूप में परिभाषित किया गया है; इसलिए यह महत्वपूर्ण है कि वे वैक्टर समुच्चय या परिवार के रूप में रैखिक रूप से स्वतंत्र हों। उदाहरण के लिए, यदि हम विचार करें {{math|1=''n'' = 2}} तथा {{math|1=''v''<sub>1</sub> = ''v''<sub>2</sub> = (1, 0)}} एक ही वेक्टर के रूप में, फिर उनमें से समुच्चय में केवल एक तत्व होता है (एक समुच्चय (गणित के रूप में) अनियंत्रित विशिष्ट तत्वों का संग्रह होता है) और रैखिक रूप से स्वतंत्र होता है, लेकिन परिवार में एक ही तत्व दो बार होता है (अलग-अलग अनुक्रमित होने के बाद से) और है रैखिक रूप से निर्भर (समान वैक्टर रैखिक रूप से निर्भर हैं)।
यहां {{math|(''v''<sub>''i''</sub>)<sub>''i'' ∈ {1, ..., ''n''}</sub>}} सदिश के एक परिवार को दर्शाता है। {{mvar|i}}<nowiki>i}}-वें सदिश </nowiki>{{math|''v''<sub>''i''</sub>}} केवल इस परिवार के संबंध में समझ में आता है, क्योंकि समुच्चय अनियंत्रित हैं इसलिए नहीं है {{mvar|i}} समुच्चय का -वां सदिश। इसके अतिरिक्त, [[रैखिक स्वतंत्रता]] को एक संग्रह की संपत्ति के रूप में परिभाषित किया गया है; इसलिए यह महत्वपूर्ण है कि वे सदिश समुच्चय या परिवार के रूप में रैखिक रूप से स्वतंत्र हों। उदाहरण के लिए, यदि हम विचार करें {{math|1=''n'' = 2}} तथा {{math|1=''v''<sub>1</sub> = ''v''<sub>2</sub> = (1, 0)}} एक ही सदिश के रूप में, फिर उनमें से समुच्चय में केवल एक तत्व होता है (एक समुच्चय (गणित के रूप में) अनियंत्रित विशिष्ट तत्वों का संग्रह होता है) और रैखिक रूप से स्वतंत्र होता है, लेकिन परिवार में एक ही तत्व दो बार होता है (अलग-अलग अनुक्रमित होने के बाद से) और रैखिक रूप से निर्भर है (समान सदिश रैखिक रूप से निर्भर हैं)।


=== मैट्रिक्स ===
=== आव्यूह ===
मान लीजिए कि एक पाठ निम्नलिखित बताता है:
मान लीजिए कि एक पाठ निम्नलिखित बताता है:
{{Quote
{{Quote
|text=A square matrix ''A'' is invertible, [[if and only if]] the rows of ''A'' are linearly independent.
|text=A square matrix ''A'' is invertible, [[if and only if]] the rows of ''A'' are linearly independent.
}}
}}
पिछले उदाहरण की तरह, यह महत्वपूर्ण है कि A की पंक्तियाँ एक परिवार के रूप में रैखिक रूप से स्वतंत्र हों, एक समुच्चय के रूप में नहीं। उदाहरण के लिए, मैट्रिक्स पर विचार करें
पिछले उदाहरण की तरह, यह महत्वपूर्ण है कि A की पंक्तियाँ एक परिवार के रूप में रैखिक रूप से स्वतंत्र हों, एक समुच्चय के रूप में नहीं। उदाहरण के लिए, आव्यूह पर विचार करें
:<math> A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}. </math>
:<math> A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}. </math>
पंक्तियों के समुच्चय में एक ही तत्व होता है {{math|(1, 1)}} एक समुच्चय अद्वितीय तत्वों से बना है, इसलिए यह रैखिक रूप से स्वतंत्र है, लेकिन मैट्रिक्स व्युत्क्रमणीय नहीं है क्योंकि मैट्रिक्स निर्धारक 0. है। दूसरी ओर, पंक्तियों के परिवार में दो तत्व अलग-अलग अनुक्रमित होते हैं जैसे कि पहली पंक्ति {{math|(1, 1)}} और दूसरी पंक्ति {{math|(1,1)}} इसलिए यह रैखिक रूप से निर्भर है। इसलिए यह कथन सही है यदि यह पंक्तियों के परिवार को संदर्भित करता है, लेकिन गलत है यदि यह पंक्तियों के समुच्चय को संदर्भित करता है। (बयान तब भी सही होता है जब पंक्तियों की व्याख्या [[multiset]] के संदर्भ में की जाती है, जिसमें तत्वों को भी अलग रखा जाता है लेकिन जिसमें अनुक्रमित परिवार की कुछ संरचना का अभाव होता है।)
पंक्तियों के समुच्चय में एक ही तत्व होता है {{math|(1, 1)}} एक समुच्चय अद्वितीय तत्वों से बना है, इसलिए यह रैखिक रूप से स्वतंत्र है, लेकिन आव्यूह व्युत्क्रमणीय नहीं है क्योंकि आव्यूह निर्धारक 0. है। दूसरी ओर, पंक्तियों के परिवार में दो तत्व अलग-अलग अनुक्रमित होते हैं जैसे कि पहली पंक्ति {{math|(1, 1)}} और दूसरी पंक्ति {{math|(1,1)}} इसलिए यह रैखिक रूप से निर्भर है। इसलिए यह कथन सही है यदि यह पंक्तियों के परिवार को संदर्भित करता है, लेकिन गलत है यदि यह पंक्तियों के समुच्चय को संदर्भित करता है। (बयान तब भी सही होता है जब पंक्तियों की व्याख्या [[multiset|मल्टीसेट]] के संदर्भ में की जाती है, जिसमें तत्वों को भी अलग रखा जाता है लेकिन जिसमें अनुक्रमित परिवार की कुछ संरचना का अभाव होता है।)


=== अन्य उदाहरण ===
=== अन्य उदाहरण ===

Revision as of 21:26, 4 December 2022

गणित में, एक परिवार, या अनुक्रमित परिवार, अनौपचारिक रूप से वस्तुओं का एक संग्रह है, प्रत्येक किसी सूचकांक समुच्चय से एक सूचकांक द्वारा जुड़ा होता है। उदाहरण के लिए, 'वास्तविक संख्याओं का परिवार, पूर्णांकों के समुच्चय द्वारा अनुक्रमित' वास्तविक संख्याओं का एक संग्रह है, जहां एक दिया गया फलन प्रत्येक पूर्णांक (संभवतः समान) के लिए एक वास्तविक संख्या का चयन करता है।

अधिक औपचारिक रूप से, एक अनुक्रमित परिवार एक फलन (गणित) है जो एक फलन के अपने डोमेन के साथ है I और छवि (गणित) X. (यानी, अनुक्रमित परिवार और गणितीय कार्य तकनीकी रूप से समान हैं, बस दृष्टिकोण अलग हैं।) अधिकांशतः समुच्चय का तत्व (गणित) X परिवार का निर्माण करने वाला कहा जाता है। इस दृष्टि से, अनुक्रमित परिवारों की व्याख्या कार्यों के अतिरिक्त अनुक्रमित तत्वों के संग्रह के रूप में की जाती है। समुच्चय I परिवार का सूचकांक समुच्चय कहा जाता है, और X अनुक्रमित समुच्चय है।

अनुक्रम प्राकृतिक संख्या द्वारा अनुक्रमित एक प्रकार के परिवार हैं। सामान्यतः, सूचकांक समुच्चय I गणनीय समुच्चय होने के लिए प्रतिबंधित नहीं है। उदाहरण के लिए, वास्तविक संख्याओं द्वारा अनुक्रमित प्राकृतिक संख्याओं के उपसमुच्चय के असंख्य परिवार पर विचार किया जा सकता है।

गणितीय कथन

परिभाषा। होने देना I तथा X समुच्चय हो और f एक समारोह (गणित) ऐसा है कि

कहाँ पे का एक तत्व है I और छवि का समारोह के तहत f द्वारा निरूपित किया जाता है . उदाहरण के लिए, द्वारा निरूपित किया जाता है . प्रतीक इंगित करने के लिए प्रयोग किया जाता है का तत्व है X द्वारा अनुक्रमित . कार्यक्रम f इस प्रकार तत्वों का एक परिवार स्थापित करता है X द्वारा अनुक्रमित I, जिसे द्वारा दर्शाया गया है , या केवल (xi) अगर इंडेक्स समुच्चय को ज्ञात माना जाता है। कभी-कभी कोष्ठक के बजाय कोण कोष्ठक या ब्रेसिज़ का उपयोग किया जाता है, हालांकि ब्रेसिज़ के उपयोग से अनुक्रमित परिवारों को समुच्चय के साथ भ्रमित करने का जोखिम होता है।

फ़ंक्शन (गणित) और अनुक्रमित परिवार किसी भी फ़ंक्शन के बाद से औपचारिक रूप से समतुल्य हैं f किसी फ़ंक्शन के डोमेन के साथ I परिवार को प्रवृत्त करता है (f(i))iI और इसके विपरीत। एक परिवार का एक तत्व होना संबंधित कार्य की सीमा में होने के बराबर है। हालाँकि, व्यवहार में, एक परिवार को एक समारोह के बजाय एक संग्रह के रूप में देखा जाता है।

कोई भी समुच्चय X एक परिवार को जन्म देता है (xx)xX, कहाँ पे X स्वयं द्वारा अनुक्रमित किया जाता है (जिसका अर्थ है कि पहचान कार्य है)। हालाँकि, परिवार समुच्चय से भिन्न होते हैं जिसमें एक ही वस्तु एक परिवार में विभिन्न सूचकांकों के साथ कई बार दिखाई दे सकती है, जबकि एक समुच्चय अलग-अलग वस्तुओं का एक संग्रह होता है। एक परिवार में कोई भी तत्व ठीक एक बार होता है यदि और केवल यदि संबंधित कार्य इंजेक्शन है।

एक अनुक्रमित परिवार एक समुच्चय परिभाषित करता है , यानी की छवि I नीचे f. मैपिंग के बाद से f इंजेक्शन समारोह होने की आवश्यकता नहीं है, वहां मौजूद हो सकता है साथ ij ऐसा है कि xi = xj. इस प्रकार, , कहाँ पे |A| समुच्चय की प्रमुखता को दर्शाता है A. उदाहरण के लिए, अनुक्रम प्राकृतिक संख्या द्वारा अनुक्रमित छवि सेट है . इसके अलावा समुच्चय किसी भी संरचना के बारे में जानकारी नहीं रखता है I. इसलिए, परिवार के बजाय समुच्चय का उपयोग करने से कुछ जानकारी खो सकती है। उदाहरण के लिए, परिवार के इंडेक्स समुच्चय पर ऑर्डरिंग परिवार पर ऑर्डरिंग को प्रेरित करती है, लेकिन संबंधित छवि समुच्चय पर कोई ऑर्डरिंग नहीं होती है।

उदाहरण

अनुक्रमित सदिश

उदाहरण के लिए, निम्नलिखित वाक्य पर विचार करें:

The vectors v1, ..., vn are linearly independent.

यहां (vi)i ∈ {1, ..., n} सदिश के एक परिवार को दर्शाता है। ii}}-वें सदिश vi केवल इस परिवार के संबंध में समझ में आता है, क्योंकि समुच्चय अनियंत्रित हैं इसलिए नहीं है i समुच्चय का -वां सदिश। इसके अतिरिक्त, रैखिक स्वतंत्रता को एक संग्रह की संपत्ति के रूप में परिभाषित किया गया है; इसलिए यह महत्वपूर्ण है कि वे सदिश समुच्चय या परिवार के रूप में रैखिक रूप से स्वतंत्र हों। उदाहरण के लिए, यदि हम विचार करें n = 2 तथा v1 = v2 = (1, 0) एक ही सदिश के रूप में, फिर उनमें से समुच्चय में केवल एक तत्व होता है (एक समुच्चय (गणित के रूप में) अनियंत्रित विशिष्ट तत्वों का संग्रह होता है) और रैखिक रूप से स्वतंत्र होता है, लेकिन परिवार में एक ही तत्व दो बार होता है (अलग-अलग अनुक्रमित होने के बाद से) और रैखिक रूप से निर्भर है (समान सदिश रैखिक रूप से निर्भर हैं)।

आव्यूह

मान लीजिए कि एक पाठ निम्नलिखित बताता है:

A square matrix A is invertible, if and only if the rows of A are linearly independent.

पिछले उदाहरण की तरह, यह महत्वपूर्ण है कि A की पंक्तियाँ एक परिवार के रूप में रैखिक रूप से स्वतंत्र हों, एक समुच्चय के रूप में नहीं। उदाहरण के लिए, आव्यूह पर विचार करें

पंक्तियों के समुच्चय में एक ही तत्व होता है (1, 1) एक समुच्चय अद्वितीय तत्वों से बना है, इसलिए यह रैखिक रूप से स्वतंत्र है, लेकिन आव्यूह व्युत्क्रमणीय नहीं है क्योंकि आव्यूह निर्धारक 0. है। दूसरी ओर, पंक्तियों के परिवार में दो तत्व अलग-अलग अनुक्रमित होते हैं जैसे कि पहली पंक्ति (1, 1) और दूसरी पंक्ति (1,1) इसलिए यह रैखिक रूप से निर्भर है। इसलिए यह कथन सही है यदि यह पंक्तियों के परिवार को संदर्भित करता है, लेकिन गलत है यदि यह पंक्तियों के समुच्चय को संदर्भित करता है। (बयान तब भी सही होता है जब पंक्तियों की व्याख्या मल्टीसेट के संदर्भ में की जाती है, जिसमें तत्वों को भी अलग रखा जाता है लेकिन जिसमें अनुक्रमित परिवार की कुछ संरचना का अभाव होता है।)

अन्य उदाहरण

मान लीजिए n परिमित समुच्चय{1, 2, ..., n} है, जहाँ n एक धनात्मक पूर्णांक है।

  • एक आदेशित जोड़ी (2-ट्यूपल) दो तत्वों के समुच्चय द्वारा अनुक्रमित एक परिवार है, 2 = {1, 2}; आदेशित जोड़ी के प्रत्येक तत्व को 2 समुच्चय के प्रत्येक तत्व द्वारा अनुक्रमित किया जाता है.
  • एक टपल |n-टुपल समुच्चय द्वारा अनुक्रमित एक परिवार है n.
  • एक अनंत अनुक्रम प्राकृतिक संख्याओं द्वारा अनुक्रमित एक परिवार है।
  • एक टपल एक है n-टपल एक अनिर्दिष्ट के लिए n, या एक अनंत क्रम।
  • एक n×m आव्यूह (गणित) कार्टेशियन उत्पाद द्वारा अनुक्रमित एक परिवार है n×m कौन से तत्व क्रमित युग्म हैं, उदा., (2, 5) दूसरी पंक्ति और 5वें कॉलम में आव्यूह तत्व को अनुक्रमित करना।
  • एक नेट (गणित) एक निर्देशित समुच्चय द्वारा अनुक्रमित एक परिवार है।

अनुक्रमित परिवारों पर संचालन

सूचकांक समूह का उपयोग अक्सर रकम और अन्य समान ऑपरेशनों में किया जाता है। उदाहरण के लिए, यदि (ai)iI संख्याओं का एक अनुक्रमित परिवार है, उन सभी संख्याओं का योग द्वारा निरूपित किया जाता है

जब (Ai)iI समुच्चयों का एक परिवार है, उन सभी समुच्चयों के संघ (समुच्चय सिद्धांत) द्वारा निरूपित किया जाता है

इसी प्रकार चौराहे (सेट सिद्धांत) और कार्टेशियन उत्पादों के लिए।

अनुक्रमित उपपरिवार

एक अनुक्रमित परिवार (Bi)iJ एक अनुक्रमित परिवार का उपपरिवार है (Ai)iI, यदि और केवल यदि J का उपसमुच्चय है I तथा Bi = Ai सभी के लिए रखता है i में J.

श्रेणी सिद्धांत में उपयोग

श्रेणी सिद्धांत में समान अवधारणा को आरेख (श्रेणी सिद्धांत) कहा जाता है। एक आरेख श्रेणी सिद्धांत में वस्तुओं के एक अनुक्रमित परिवार को जन्म देने वाला एक फ़ंक्टर है C, अन्य श्रेणी द्वारा अनुक्रमित J, और दो सूचकांकों के आधार पर रूपवाद से संबंधित है।

यह भी देखें


इस पेज में लापता आंतरिक लिंक की सूची

  • अंक शास्त्र
  • समारोह (गणित)
  • किसी फ़ंक्शन का डोमेन
  • अगर और केवल अगर
  • सेट (गणित)
  • सिद्ध
  • क्रमित युग्म
  • कार्तीय गुणन
  • सेट का परिवार
  • चौराहा (सेट सिद्धांत)
  • ऑपरेटर

संदर्भ

  • Mathematical Society of Japan, Encyclopedic Dictionary of Mathematics, 2nd edition, 2 vols., Kiyosi Itô (ed.), MIT Press, Cambridge, MA, 1993. Cited as EDM (volume).