एम्बेडिंग: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 63: Line 63:
=== सार्वभौमिक बीजगणित और मॉडल सिद्धांत ===
=== सार्वभौमिक बीजगणित और मॉडल सिद्धांत ===
{{further|अधोसंरचना (गणित)|प्राथमिक समानता}}
{{further|अधोसंरचना (गणित)|प्राथमिक समानता}}
यदि <math>\sigma</math> एक [[ हस्ताक्षर (तर्क) ]] है और <math>A,B</math> हैं <math>\sigma</math>-[[ संरचना (गणितीय तर्क) ]] (जिसे भी कहा जाता है) <math>\sigma</math>-[[ सार्वभौमिक बीजगणित ]] में बीजगणित या [[ मॉडल सिद्धांत ]] में मॉडल), फिर एक नक्शा <math>h:A \to B</math> एक है <math>\sigma</math>-एम्बेडिंग [[ iff ]] निम्नलिखित में से सभी धारण करते हैं:
यदि <math>\sigma</math> [[ हस्ताक्षर (तर्क) | हस्ताक्षर]] है और <math>A,B</math> हैं <math>\sigma</math>-[[ संरचना (गणितीय तर्क) ]] (जिसे भी कहा जाता है) <math>\sigma</math>-[[ सार्वभौमिक बीजगणित ]] में बीजगणित या [[ मॉडल सिद्धांत ]] में मॉडल), फिर एक नक्शा <math>h:A \to B</math> एक है <math>\sigma</math>-एम्बेडिंग [[ iff ]] निम्नलिखित में से सभी धारण करते हैं:
* <math>h</math> इंजेक्शन है,
* <math>h</math> इंजेक्शन है,
* हरएक के लिए <math>n</math>-एरी फ़ंक्शन प्रतीक <math>f \in\sigma</math> तथा <math>a_1,\ldots,a_n \in A^n,</math> अपने पास <math>h(f^A(a_1,\ldots,a_n))=f^B(h(a_1),\ldots,h(a_n))</math>,
* हरएक के लिए <math>n</math>-एरी फ़ंक्शन प्रतीक <math>f \in\sigma</math> तथा <math>a_1,\ldots,a_n \in A^n,</math> अपने पास <math>h(f^A(a_1,\ldots,a_n))=f^B(h(a_1),\ldots,h(a_n))</math>,
Line 97: Line 97:
श्रेणी सिद्धांत में, एम्बेडिंग की कोई संतोषजनक और आम तौर पर स्वीकृत परिभाषा नहीं है जो सभी श्रेणियों में लागू हो। कोई उम्मीद करेगा कि सभी समरूपताएं और एम्बेडिंग की सभी रचनाएं एम्बेडिंग हैं, और यह कि सभी एम्बेडिंग मोनोमोर्फिज्म हैं। अन्य विशिष्ट आवश्यकताएं हैं: कोई भी मोनोमोर्फिज्म#संबंधित अवधारणा एक एम्बेडिंग है और [[ पुलबैक (श्रेणी सिद्धांत) ]] के तहत एम्बेडिंग स्थिर हैं।
श्रेणी सिद्धांत में, एम्बेडिंग की कोई संतोषजनक और आम तौर पर स्वीकृत परिभाषा नहीं है जो सभी श्रेणियों में लागू हो। कोई उम्मीद करेगा कि सभी समरूपताएं और एम्बेडिंग की सभी रचनाएं एम्बेडिंग हैं, और यह कि सभी एम्बेडिंग मोनोमोर्फिज्म हैं। अन्य विशिष्ट आवश्यकताएं हैं: कोई भी मोनोमोर्फिज्म#संबंधित अवधारणा एक एम्बेडिंग है और [[ पुलबैक (श्रेणी सिद्धांत) ]] के तहत एम्बेडिंग स्थिर हैं।


आदर्श रूप से किसी दिए गए ऑब्जेक्ट के सभी एम्बेडेड [[ subobject ]] की कक्षा, आइसोमोर्फिज्म तक, छोटी कक्षा भी होनी चाहिए, और इस प्रकार एक [[ आदेशित सेट ]] होना चाहिए। इस मामले में, एम्बेडिंग के वर्ग के संबंध में श्रेणी को अच्छी तरह से संचालित कहा जाता है। यह श्रेणी में नई स्थानीय संरचनाओं को परिभाषित करने की अनुमति देता है (जैसे [[ बंद करने वाला ऑपरेटर ]])।
आदर्श रूप से किसी दिए गए ऑब्जेक्ट के सभी एम्बेडेड [[ subobject |  विषय]] की कक्षा, आइसोमोर्फिज्म तक, छोटी कक्षा भी होनी चाहिए, और इस प्रकार एक [[ आदेशित सेट ]] होना चाहिए। इस मामले में, एम्बेडिंग के वर्ग के संबंध में श्रेणी को अच्छी तरह से संचालित कहा जाता है। यह श्रेणी में नई स्थानीय संरचनाओं को परिभाषित करने की अनुमति देता है (जैसे [[ बंद करने वाला ऑपरेटर ]])।


एक [[ ठोस श्रेणी ]] में, एक एम्बेडिंग एक आकृतिवाद है <math>f:A\rightarrow B</math> जो अंतर्निहित सेट से एक इंजेक्शन फ़ंक्शन है <math>A</math> के अंतर्निहित सेट के लिए <math>B</math> और निम्नलिखित अर्थों में एक प्रारंभिक रूपवाद भी है:
एक [[ ठोस श्रेणी ]] में, एक एम्बेडिंग एक आकृतिवाद है <math>f:A\rightarrow B</math> जो अंतर्निहित सेट से एक इंजेक्शन फ़ंक्शन है <math>A</math> के अंतर्निहित सेट के लिए <math>B</math> और निम्नलिखित अर्थों में एक प्रारंभिक रूपवाद भी है:

Revision as of 22:43, 20 November 2022

गणित में एंबेडिंग गणितीय संरचना का एक उदाहरण है[1] जो किसी अन्य उदाहरण में समाहित है, जैसे एक समूह जो उपसमूह है।

जब किसी वस्तु को वस्तु में एम्बेड किया जाता है तब एम्बेडिंग में इंजेक्शन समारोह और संरचना-संरक्षण मानचित्र द्वारा दी जाती है . संरचना-संरक्षण का अर्थ उस गणितीय संरचना पर निर्भर करता है जिसका उदाहरण तथा हैं। श्रेणी सिद्धांत में, संरचना-संरक्षण मानचित्र को रूपवाद कहा जाता है।

तथ्य यह है कि एक नक्शा में एम्बेडिंग है जिसे अधिकांश हुक किए गए तीर के उपयोग द्वारा संकेत किया जाता है (U+21AA हुक के साथ दाईं ओर तीर);[2] इस प्रकार: (यह अंकन कभी-कभी समावेशन नक्शो के लिए आरक्षित होता है।)

X और Y को देखते हुए, X के Y में अलग-अलग एम्बेडिंग संभव हो सकते हैं। ब्याज के विषयों में एक मानक एम्बेडिंग होता है, जैसे कि पूर्णांकों में प्राकृतिक संख्याएँ, परिमेय संख्याओं में पूर्णांक, वास्तविक संख्याओं में परिमेय संख्याएँ और जटिल संख्याओं में वास्तविक संख्याएँ। ऐसे विषयों में कार्यक्षेत्र को उसकी छवि में सम्मलित करना साधारण है I इसलिये .

टोपोलॉजी और ज्यामिति

सामान्य टोपोलॉजी

सामान्य टोपोलॉजी में, एम्बेडिंग अपनी छवि पर एक होमियोमोर्फिज्म होता है।[3] एक इंजेक्शन लगातार (टोपोलॉजी) कार्य में, मानचित्र टोपोलॉजिकल स्पेस के बीच तथा संस्थानिक एम्बेडिंग है, यदि के बीच होमोमोर्फिज्म उत्पन्न होता है तब तथा (कहाँ पर से परम्परा में मिली उपस्थान का वहन करता है)I साधारण रूप से, एम्बेडिंग हैं, टोपोलॉजी में के रूप में एक उप-स्थान है I सभी एम्बेडिंग इंजेक्शन और निरंतर कार्य (टोपोलॉजी) है। एम्बेडिंग में सभी इंजेक्शन नक्शा खुले या बंद होते है जबकि ऐसे एम्बेडिंग भी हैं जो न तो खुले हैं और न ही बंद हैं। ऐसा तब होता है जब छवि में न  खुला समूह हो ,और न ही बंद समूह हो।

किसी दिए गए स्थान के लिए , एक एम्बेडिंग अस्तित्व में का   सामयिक अपरिवर्तनीय है I यह दो स्थानों को अलग करने की अनुमति देता है एम्बेडेड में यदि एक स्थान सक्षम है जबकि दूसरा स्थान सक्षम नहीं है।

संबंधित परिभाषाएँ

किसी फ़ंक्शन का कार्यक्षेत्र टोपोलॉजिकल स्पेस है तब इसे फ़ंक्शन कहा जाता है I यह अपने कार्यक्षेत्र के एक बिंदु पर स्थानीय इंजेक्शन के रूप में सम्मिलित होता हैI बिंदु का प्रतिबंध इंजेक्शन है। इसे स्थानीय रूप से स्थानीय इंजेक्शन कहा जाता है I कार्यक्षेत्र के आसपास के सभी बिंदु स्थानीय रूप से इंजेक्शन है I स्थानीय (स्थलीय, सम्मान चिकनी) एम्बेडिंग एक ऐसा कार्य है जिसमे सभी बिंदु कार्यक्षेत्र के निकटतम होते है जिसके लिए इसका प्रतिबंध एक एम्बेडिंग होता है।

प्रत्येक इंजेक्शन फ़ंक्शन स्थानीय रूप से इंजेक्शन होता है लेकिन विपरीत नहीं होते है । स्थानीय भिन्नता , स्थानीय होमोमोर्फिज्म , और चिकनी विसर्जन सभी स्थानीय इंजेक्शन के कार्य हैं जो आवश्यक रूप से इंजेक्शन नहीं हैं। व्युत्क्रम कार्य प्रमेय में स्थानीय रूप से बीच में लगातार होने वाले कार्य के लिए पर्याप्त स्थिति देता है। प्रत्येक फाइबर स्थानीय रूप से इंजेक्शन का कार्य करता है अनिवार्य रूप से एक कार्यक्षेत्र का अलग उपस्थान है I


विभेदक टोपोलॉजी

विभेदक टोपोलॉजी में तथा को कई गुना और को चिकना नक्शा होने देना चाहिए। फिर को विसर्जन कहा जाता है यदि इसका व्युत्पन्न सभी जगह इंजेक्शन है।एम्बेडिंग को एक विसर्जन के रूप में परिभाषित किया गया है जो ऊपर वर्णित टोपोलॉजिकल के अर्थ में एक एम्बेडिंग है ( इसका तात्यर्य है छवि पर होमोमोर्फिज्म)।[4] दूसरे शब्दों में, एक एम्बेडिंग का कार्यक्षेत्र अपनी छवि के लिए भिन्न होता है, और विशेष रूप से एम्बेडिंग की छवि कई गुना होनी चाहिए। विसर्जन एक स्थानीय एम्बेडिंग है, किसी भी बिंदु के लिए एक निकटतम है ऐसा है कि एक एम्बेडिंग है।

जब कार्यक्षेत्र ही मैनिफोल्ड कॉम्पैक्ट होता है, तो सरल एम्बेडिंग की धारणा  इंजेक्शन विसर्जन के बराबर होती है।

महत्वपूर्ण यह है . यहाँ रुचि इस बात में है कि किसी एम्बेडिंग के लिए के आयाम ( ) के संदर्भ में कितना बड़ा होना चाहिए I. व्हिटनी एम्बेडिंग प्रमेय [5] कहता है कि पर्याप्त है, और रैखिक सीमा सर्वोत्तम है। उदाहरण , वास्तविक प्रक्षेप्य स्थान आयाम का , जहां को दो की शक्ति की आवश्यकता होती है, एम्बेडिंग के लिए . जबकि , यह विसर्जन पर लागू नहीं होता है; उदाहरण के लिए, में डुबोया जा सकता है जैसा कि बॉयज़ सरफेस द्वारा दिखाया गया है - जिसमें वह स्थान स्वयं-बदलते हैं। रोमन सतह पर विसर्जन होना असफल होता है क्योंकि इसमें क्रॉस-कैप होते हैं।

एक एम्बेडिंग उचित है यदि यह सीमाओं के संबंध में अच्छा व्यवहार करता है किसी को मानचित्र Y की आवश्यकता होती है जो ऐसा हो .

  • , तथा
  • ट्रांसवर्सलिटी है के किसी भी बिंदु में .

पहले अनुबंध होने के बराबर है तथा . दूसरा अनुबंध में, सीमा की स्पर्शरेखा नहीं है I

रिमैनियन और स्यूडो-रिमैनियन ज्यामिति

रीमैनियन ज्यामिति और स्यूडो-रीमैनियन ज्यामिति में तथा रीमैनियन कई गुना या अधिक रिमैनियन होने देना। एक सममितीय एम्बेडिंग सरल एम्बेडिंग है जो रिमेंनियन मीट्रिक को संरक्षित करता है कि को पीछे खींचने में बराबर हो I द्वारा , अर्थात। . स्पष्ट रूप से, किसी भी दो स्पर्शरेखा सदिशों के लिए अपने पास

समान रूप से, सममितीय विसर्जन में रिमैनियन मैनिफोल्ड्स के बीच एक विसर्जन है जो रिमैनियन मेट्रिक्स को संरक्षित करता है।

रीमैनियन ज्यामिति में, सममितीय एम्बेडिंग एक सरल एम्बेडिंग है जो घटता की लंबाई (सीएफ़. नैश एम्बेडिंग प्रमेय ) को संरक्षित करता है।[6]


बीजगणित

सामान्य रूप से, एक बीजगणितीय श्रेणी , दो बीजगणितीय संरचनाओं तथा के बीच एम्बेडिंग रूपवाद है एक है I जो कि इंजेक्शन है।

क्षेत्र सिद्धांत

क्षेत्र सिद्धांत में, एक क्षेत्र का एम्बेडिंग मैदान मे एक वलय समरूपता है .

का कर्नेल का एक आदर्श है जो पूरा क्षेत्र नहीं हो सकता, स्थिति के कारण . इसके अतिरिक्त, यह क्षेत्रों की एक प्रसिद्ध संपत्ति है कि उनका एकमात्र शून्य आदर्श और संपूर्ण क्षेत्र है। इसलिए, कर्नेल हैI इसलिए क्षेत्र की एम्बेडिंग एकरूपता है। अत, क्षेत्र विस्तार के लिए समरूपी है का . इस क्षेत्र को मनमाना समरूपता के लिए एम्बेड किए गए नाम को सही ठहराता है।

सार्वभौमिक बीजगणित और मॉडल सिद्धांत

यदि हस्ताक्षर है और हैं -संरचना (गणितीय तर्क) (जिसे भी कहा जाता है) -सार्वभौमिक बीजगणित में बीजगणित या मॉडल सिद्धांत में मॉडल), फिर एक नक्शा एक है -एम्बेडिंग iff निम्नलिखित में से सभी धारण करते हैं:

  • इंजेक्शन है,
  • हरएक के लिए -एरी फ़ंक्शन प्रतीक तथा अपने पास ,
  • हरएक के लिए -एरी संबंध प्रतीक तथा अपने पास आईएफएफ

यहां के समकक्ष एक मॉडल सैद्धांतिक संकेतन है . मॉडल सिद्धांत में प्राथमिक एम्बेडिंग की एक मजबूत धारणा भी है।

आदेश सिद्धांत और डोमेन सिद्धांत

आदेश सिद्धांत में, आंशिक रूप से आदेशित सेट ों का एक एम्बेडिंग एक फ़ंक्शन है आंशिक रूप से आदेशित सेटों के बीच तथा ऐसा है कि

की इंजेक्शन इस परिभाषा से शीघ्रता से अनुसरण करता है। डोमेन सिद्धांत में, एक अतिरिक्त आवश्यकता यह है कि

निर्देशित सेट है।

मीट्रिक रिक्त स्थान

एक मानचित्रण मीट्रिक रिक्त स्थान को एम्बेडिंग कहा जाता है (खिंचाव कारक के साथ ) यदि

हरएक के लिए और कुछ स्थिर .

सामान्य स्थान

एक महत्वपूर्ण विशेष मामला आदर्श स्थान ों का है; इस मामले में रैखिक एम्बेडिंग पर विचार करना स्वाभाविक है।

मूलभूत प्रश्नों में से एक जिसे परिमित-आयामी आदर्श स्थान के बारे में पूछा जा सकता है है, अधिकतम आयाम क्या है ऐसा है कि हिल्बर्ट अंतरिक्ष रैखिक रूप से एम्बेड किया जा सकता है निरंतर विकृति के साथ?

इसका उत्तर ड्वोरेट्स्की के प्रमेय द्वारा दिया गया है।

श्रेणी सिद्धांत

श्रेणी सिद्धांत में, एम्बेडिंग की कोई संतोषजनक और आम तौर पर स्वीकृत परिभाषा नहीं है जो सभी श्रेणियों में लागू हो। कोई उम्मीद करेगा कि सभी समरूपताएं और एम्बेडिंग की सभी रचनाएं एम्बेडिंग हैं, और यह कि सभी एम्बेडिंग मोनोमोर्फिज्म हैं। अन्य विशिष्ट आवश्यकताएं हैं: कोई भी मोनोमोर्फिज्म#संबंधित अवधारणा एक एम्बेडिंग है और पुलबैक (श्रेणी सिद्धांत) के तहत एम्बेडिंग स्थिर हैं।

आदर्श रूप से किसी दिए गए ऑब्जेक्ट के सभी एम्बेडेड विषय की कक्षा, आइसोमोर्फिज्म तक, छोटी कक्षा भी होनी चाहिए, और इस प्रकार एक आदेशित सेट होना चाहिए। इस मामले में, एम्बेडिंग के वर्ग के संबंध में श्रेणी को अच्छी तरह से संचालित कहा जाता है। यह श्रेणी में नई स्थानीय संरचनाओं को परिभाषित करने की अनुमति देता है (जैसे बंद करने वाला ऑपरेटर )।

एक ठोस श्रेणी में, एक एम्बेडिंग एक आकृतिवाद है जो अंतर्निहित सेट से एक इंजेक्शन फ़ंक्शन है के अंतर्निहित सेट के लिए और निम्नलिखित अर्थों में एक प्रारंभिक रूपवाद भी है: यदि किसी वस्तु के अंतर्निहित सेट से एक कार्य है के अंतर्निहित सेट के लिए , और अगर इसकी रचना के साथ एक रूपवाद है , फिर स्वयं एक रूपवाद है।

किसी श्रेणी के लिए गुणनखंडन प्रणाली भी एम्बेडिंग की धारणा को जन्म देती है। यदि एक गुणनखंडन प्रणाली है, तो morphisms in एम्बेडिंग के रूप में माना जा सकता है, खासकर जब श्रेणी के संबंध में अच्छी तरह से संचालित हो . ठोस सिद्धांतों में अक्सर एक गुणनखंड प्रणाली होती है जिसमें पिछले अर्थों में एम्बेडिंग शामिल हैं। यह इस आलेख में दिए गए अधिकांश उदाहरणों का मामला है।

श्रेणी सिद्धांत में हमेशा की तरह, एक दोहरी (श्रेणी सिद्धांत) अवधारणा होती है, जिसे भागफल के रूप में जाना जाता है। सभी पूर्ववर्ती गुण दोहराए जा सकते हैं।

एक एम्बेडिंग एक उपश्रेणी # एंबेडिंग को भी संदर्भित कर सकता है।

यह भी देखें

टिप्पणियाँ

  1. Spivak 1999, p. 49 suggests that "the English" (i.e. the British) use "embedding" instead of "imbedding".
  2. "तीर - यूनिकोड" (PDF). Retrieved 2017-02-07.
  3. Hocking & Young 1988, p. 73. Sharpe 1997, p. 16.
  4. Bishop & Crittenden 1964, p. 21. Bishop & Goldberg 1968, p. 40. Crampin & Pirani 1994, p. 243. do Carmo 1994, p. 11. Flanders 1989, p. 53. Gallot, Hulin & Lafontaine 2004, p. 12. Kobayashi & Nomizu 1963, p. 9. Kosinski 2007, p. 27. Lang 1999, p. 27. Lee 1997, p. 15. Spivak 1999, p. 49. Warner 1983, p. 22.
  5. Whitney H., Differentiable manifolds, Ann. of Math. (2), 37 (1936), pp. 645–680
  6. Nash J., The embedding problem for Riemannian manifolds, Ann. of Math. (2), 63 (1956), 20–63.


संदर्भ


इस पेज में लापता आंतरिक लिंक की सूची

  • अंक शास्त्र
  • आकारिता
  • समावेशन नक्शा
  • किसी फ़ंक्शन का डोमेन
  • बंद सेट
  • खुला सेट
  • पड़ोस (गणित)
  • व्युत्क्रम समारोह प्रमेय
  • अंतर टोपोलॉजी
  • विविध
  • आगे की ओर (अंतर)
  • डिफियोमोर्फिज्म
  • रिमानियन ज्यामिति
  • छद्म रीमैनियन मैनिफोल्ड
  • पुलबैक (अंतर ज्यामिति)
  • वक्र
  • विविधता (सार्वभौमिक बीजगणित)
  • क्षेत्र (गणित)
  • क्षेत्र सिद्धांत (गणित)
  • रिंग समरूपता
  • नॉर्म्ड स्पेस
  • छोटा वर्ग
  • कारककरण प्रणाली
  • टोपोलॉजी और टोपोलॉजिकल डायनामिक्स में यूनिवर्सल स्पेस

बाहरी संबंध