ऑर्थोगोनल मैट्रिक्स: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 3: Line 3:
रैखिक बीजगणित में, एक लांबिक आव्यूह, या ऑर्थोनॉर्मल आव्यूह, एक वास्तविक [[ स्क्वायर मैट्रिक्स | वर्ग आव्यूह]] है, जिसके कॉलम और पंक्तियाँ [[ ऑर्थोनॉर्मलिटी | ऑर्थोनॉर्मल]] [[ वेक्टर (गणित और भौतिकी) | सदिश]] होते है।
रैखिक बीजगणित में, एक लांबिक आव्यूह, या ऑर्थोनॉर्मल आव्यूह, एक वास्तविक [[ स्क्वायर मैट्रिक्स | वर्ग आव्यूह]] है, जिसके कॉलम और पंक्तियाँ [[ ऑर्थोनॉर्मलिटी | ऑर्थोनॉर्मल]] [[ वेक्टर (गणित और भौतिकी) | सदिश]] होते है।


इसे व्यक्त करने का एक तरीका है
इसे व्यक्त करने का एक तरीका है<math display="block">Q^\mathrm{T} Q = Q Q^\mathrm{T} = I,</math>जहाँ पे {{math|''Q''<sup>T</sup>}} का स्थानान्तरण है {{mvar|Q}} तथा {{mvar|I}} [[ पहचान मैट्रिक्स |  तत्समक आव्यूह]] है।
<math display="block">Q^\mathrm{T} Q = Q Q^\mathrm{T} = I,</math>
यह समान लक्षण वर्णन की ओर जाता है, एक लांबिक आव्यूह {{mvar|Q}} है यदि इसका परिवर्त इसके व्युत्क्रमणीय आव्यूह के बराबर है।<math display="block">Q^\mathrm{T}=Q^{-1},</math>जहाँ पे {{math|''Q''<sup>−1</sup>}} का व्युत्क्रम है {{mvar|Q}}.
जहाँ पे {{math|''Q''<sup>T</sup>}} का स्थानान्तरण है {{mvar|Q}} तथा {{mvar|I}} [[ पहचान मैट्रिक्स |  तत्समक आव्यूह]] है।


यह समान लक्षण वर्णन की ओर जाता है, एक लांबिक आव्यूह {{mvar|Q}} है यदि इसका परिवर्त इसके व्युत्क्रमणीय आव्यूह के बराबर है।
<math display="block">Q^\mathrm{T}=Q^{-1},</math>
जहाँ पे {{math|''Q''<sup>−1</sup>}} का व्युत्क्रम है {{mvar|Q}}.


एक लंबकोणीय आव्यूह Q अनिवार्य रूप से व्युत्क्रम के साथ व्युत्क्रमणीय है। ({{math|1=''Q''<sup>−1</sup> = ''Q''<sup>T</sup>}}), [[ एकात्मक मैट्रिक्स | एकल आव्यूह]] ({{math|1=''Q''<sup>−1</sup> = ''Q''<sup>∗</sup>}}), जहाँ पे {{math|1=''Q''<sup>∗</sup>}} का हर्मिटियन आसन्न संयुग्मी स्थानांतरण है {{mvar|Q}}, और इसलिए ({{math|1=''Q''<sup>∗</sup>''Q'' = ''QQ''<sup>∗</sup>}}) [[ वास्तविक संख्या | वास्तविक संख्याओं पर सामान्य]] है।  
एक लांबिक आव्यूह Q अनिवार्य रूप से व्युत्क्रम के साथ व्युत्क्रमणीय है। ({{math|1=''Q''<sup>−1</sup> = ''Q''<sup>T</sup>}}), [[ एकात्मक मैट्रिक्स | एकल आव्यूह]] ({{math|1=''Q''<sup>−1</sup> = ''Q''<sup>∗</sup>}}), जहाँ पे {{math|1=''Q''<sup>∗</sup>}} का हर्मिटियन आसन्न संयुग्मी परिवर्त {{mvar|Q}}, है, और इसलिए ({{math|1=''Q''<sup>∗</sup>''Q'' = ''QQ''<sup>∗</sup>}}) [[ वास्तविक संख्या | वास्तविक संख्याओं पर सामान्य]] है। किसी भी लांबिक आव्यूह का निर्धारक या तो +1 या -1 है। एक रैखिक परिवर्तन के रूप में, एक लांबिक आव्यूह वैक्टर के आंतरिक उत्पाद को इकठ्ठा करता है, और इसलिए [[ यूक्लिडियन अंतरिक्ष | यूक्लिडियन समष्टि]]  एक [[ आइसोमेट्री | समान दूरी]] के रूप में कार्य करता है, जैसे [[ रोटेशन (गणित) |क्रमावर्तन]] ,[[ प्रतिबिंब (गणित) | प्रतिबिंब]]  या रोटरप्रतिबिम्ब है। दूसरे शब्दों में, यह एक [[ एकात्मक परिवर्तन | एकल परिवर्तन]] है।  


 
समुच्चय {{math|''n'' × ''n''}} लांबिक आव्यूह का एक [[ समूह (गणित) | समूह]] बनाता है, {{math|O(''n'')}}, लांबिक समूह के रूप में जाना जाता है। [[ उपसमूह | उपसमूह]] {{math|SO(''n'')}} सारणिक +1 के साथ लांबिक आव्यूह से मिलकर बनाता है और लांबिक समूह कहलाता है, और इसका प्रत्येक तत्व एक विशेष लांबिक आव्यूह होता है। एक रैखिक परिवर्तन के रूप में, प्रत्येक विशेष लांबिक आव्यूह क्रमावर्तन के रूप में कार्य करता है।
 
किसी भी लांबिक आव्यूह का निर्धारक या तो +1 या -1 है। एक रेखीय मानचित्र के रूप में, एक लांबिक आव्यूह वैक्टर के आंतरिक उत्पाद को संरक्षित करता है, और इसलिए [[ यूक्लिडियन अंतरिक्ष | यूक्लिडियन अंतरिक्ष]] की एक [[ आइसोमेट्री | आइसोमेट्री]] के रूप में कार्य करता है, जैसे [[ रोटेशन (गणित) | रोटेशन (गणित)]] , [[ प्रतिबिंब (गणित) | प्रतिबिंब (गणित)]] या अनुचित रोटेशन। दूसरे शब्दों में, यह एक [[ एकात्मक परिवर्तन | एकल परिवर्तन]] है।
 
के समुच्चय {{math|''n'' × ''n''}} लांबिक आव्यूह एक [[ समूह (गणित) | समूह (गणित)]] बनाता है, {{math|O(''n'')}}, लांबिक समूह के रूप में जाना जाता है। [[ उपसमूह | उपसमूह]] {{math|SO(''n'')}} सारणिक +1 के साथ लंबकोणीयमैट्रिसेस से मिलकर बना लांबिक समूह कहलाता है, और इसका प्रत्येक तत्व एक विशेष लांबिक आव्यूह है। एक रैखिक परिवर्तन के रूप में, प्रत्येक विशेष लांबिक आव्यूह रोटेशन के रूप में कार्य करता है।


== सिंहावलोकन ==
== सिंहावलोकन ==
Line 24: Line 16:
जहाँ पे {{mvar|Q}} एक लंबकोणीयआव्यूह है। आंतरिक उत्पाद कनेक्शन देखने के लिए, एक सदिश  पर विचार करें {{math|'''v'''}} एक में {{mvar|n}}-आयामी वास्तविक यूक्लिडियन स्थान। ऑर्थोनॉर्मल आधार के संबंध में लिखा गया, की लंबाई का वर्ग {{math|'''v'''}} है {{math|'''v'''<sup>T</sup>'''v'''}}. यदि एक रैखिक परिवर्तन, आव्यूह रूप में {{math|''Q'''''v'''}}, फिर सदिश लंबाई को संरक्षित करता है
जहाँ पे {{mvar|Q}} एक लंबकोणीयआव्यूह है। आंतरिक उत्पाद कनेक्शन देखने के लिए, एक सदिश  पर विचार करें {{math|'''v'''}} एक में {{mvar|n}}-आयामी वास्तविक यूक्लिडियन स्थान। ऑर्थोनॉर्मल आधार के संबंध में लिखा गया, की लंबाई का वर्ग {{math|'''v'''}} है {{math|'''v'''<sup>T</sup>'''v'''}}. यदि एक रैखिक परिवर्तन, आव्यूह रूप में {{math|''Q'''''v'''}}, फिर सदिश लंबाई को संरक्षित करता है
<math display="block">{\mathbf v}^\mathrm{T}{\mathbf v} = (Q{\mathbf v})^\mathrm{T}(Q{\mathbf v}) = {\mathbf v}^\mathrm{T} Q^\mathrm{T} Q {\mathbf v} .</math>
<math display="block">{\mathbf v}^\mathrm{T}{\mathbf v} = (Q{\mathbf v})^\mathrm{T}(Q{\mathbf v}) = {\mathbf v}^\mathrm{T} Q^\mathrm{T} Q {\mathbf v} .</math>
इस प्रकार आयाम (सदिश  स्पेस) | परिमित-आयामी रैखिक आइसोमेट्री-रोटेशन, प्रतिबिंब, और उनके संयोजन-लांबिक मैट्रिस का उत्पादन करते हैं। इसका व्युत्क्रम भी सत्य है: लंबकोणीयमैट्रिसेस का अर्थ लांबिक ट्रांसफॉर्मेशन है। हालांकि, रैखिक बीजगणित में रिक्त स्थान के बीच लांबिक परिवर्तन शामिल हैं जो न तो परिमित-आयामी हो सकते हैं और न ही समान आयाम के हो सकते हैं, और इनमें कोई लांबिक आव्यूह समकक्ष नहीं है।
इस प्रकार आयाम (सदिश  स्पेस) | परिमित-आयामी रैखिक समान दूरी-रोटेशन, प्रतिबिंब, और उनके संयोजन-लांबिक मैट्रिस का उत्पादन करते हैं। इसका व्युत्क्रम भी सत्य है:लांबिक आव्यूह का अर्थ लांबिक ट्रांसफॉर्मेशन है। हालांकि, रैखिक बीजगणित में रिक्त स्थान के बीच लांबिक परिवर्तन शामिल हैं जो न तो परिमित-आयामी हो सकते हैं और न ही समान आयाम के हो सकते हैं, और इनमें कोई लांबिक आव्यूह समकक्ष नहीं है।


सैद्धांतिक और व्यावहारिक दोनों कारणों से लांबिक मैट्रिसेस कई कारणों से महत्वपूर्ण हैं। {{math|''n'' × ''n''}}<nowiki> }} लांबिक मैट्रिसेस आव्यूह गुणन के तहत एक समूह (गणित) बनाते हैं, लांबिक समूह द्वारा दर्शाया गया है </nowiki>{{math|O(''n'')}}, जो—इसके उपसमूहों के साथ—गणित और भौतिक विज्ञान में व्यापक रूप से उपयोग किया जाता है। उदाहरण के लिए, एक अणु का [[ बिंदु समूह ]] O(3) का एक उपसमूह है। क्योंकि लांबिक आव्यूहके फ़्लोटिंग पॉइंट संस्करणों में लाभप्रद गुण होते हैं, वे संख्यात्मक रैखिक बीजगणित में कई एल्गोरिदम के लिए महत्वपूर्ण होते हैं, जैसे क्यूआर अपघटन |{{mvar|QR}} अपघटन। एक अन्य उदाहरण के रूप में, उपयुक्त सामान्यीकरण के साथ असतत कोज्या परिवर्तन ([[ बेचा ]] 3 संपीड़न में प्रयुक्त) एक लांबिक आव्यूह द्वारा दर्शाया गया है।
सैद्धांतिक और व्यावहारिक दोनों कारणों से लांबिक मैट्रिसेस कई कारणों से महत्वपूर्ण हैं। {{math|''n'' × ''n''}}<nowiki> }} लांबिक मैट्रिसेस आव्यूह गुणन के तहत एक समूह (गणित) बनाते हैं, लांबिक समूह द्वारा दर्शाया गया है </nowiki>{{math|O(''n'')}}, जो—इसके उपसमूहों के साथ—गणित और भौतिक विज्ञान में व्यापक रूप से उपयोग किया जाता है। उदाहरण के लिए, एक अणु का [[ बिंदु समूह ]] O(3) का एक उपसमूह है। क्योंकि लांबिक आव्यूहके फ़्लोटिंग पॉइंट संस्करणों में लाभप्रद गुण होते हैं, वे संख्यात्मक रैखिक बीजगणित में कई एल्गोरिदम के लिए महत्वपूर्ण होते हैं, जैसे क्यूआर अपघटन |{{mvar|QR}} अपघटन। एक अन्य उदाहरण के रूप में, उपयुक्त सामान्यीकरण के साथ असतत कोज्या परिवर्तन ([[ बेचा ]] 3 संपीड़न में प्रयुक्त) एक लांबिक आव्यूह द्वारा दर्शाया गया है।


== उदाहरण ==
== उदाहरण ==
नीचे छोटे लंबकोणीयमैट्रिसेस और संभावित व्याख्याओं के कुछ उदाहरण दिए गए हैं।
नीचे छोटेलांबिक आव्यूह और संभावित व्याख्याओं के कुछ उदाहरण दिए गए हैं।
*<math>
*<math>
\begin{bmatrix}
\begin{bmatrix}
Line 39: Line 31:
\cos \theta & -\sin \theta \\
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta \\
\sin \theta & \cos \theta \\
\end{bmatrix}</math> (मूल के बारे में रोटेशन)
\end{bmatrix}</math> (मूल के बारे मेंक्रमावर्तन)
*<math>
*<math>
\begin{bmatrix}
\begin{bmatrix}
Line 67: Line 59:
0 & = pq+tu.
0 & = pq+tu.
\end{align}</math>
\end{align}</math>
पहले समीकरण को ध्यान में रखते हुए, व्यापकता के नुकसान के बिना {{math|1=''p'' = cos ''θ''}}, {{math|1=''q'' = sin ''θ''}}; तो कोई {{math|1=''t'' = −''q''}}, {{math|1=''u'' = ''p''}} या {{math|1=''t'' = ''q''}}, {{math|1=''u'' = −''p''}}. हम पहले मामले को रोटेशन के रूप में व्याख्या कर सकते हैं {{mvar|θ}} (जहाँ पे {{math|1=''θ'' = 0}} पहचान है), और दूसरा कोण पर एक रेखा में प्रतिबिंब के रूप में {{math|{{sfrac|''θ''|2}}}}.
पहले समीकरण को ध्यान में रखते हुए, व्यापकता के नुकसान के बिना {{math|1=''p'' = cos ''θ''}}, {{math|1=''q'' = sin ''θ''}}; तो कोई {{math|1=''t'' = −''q''}}, {{math|1=''u'' = ''p''}} या {{math|1=''t'' = ''q''}}, {{math|1=''u'' = −''p''}}. हम पहले मामले कोक्रमावर्तन के रूप में व्याख्या कर सकते हैं {{mvar|θ}} (जहाँ पे {{math|1=''θ'' = 0}} पहचान है), और दूसरा कोण पर एक रेखा में प्रतिबिंब के रूप में {{math|{{sfrac|''θ''|2}}}}.


<math display="block">
<math display="block">
Line 85: Line 77:
\end{bmatrix}.</math> पहचान भी एक क्रमपरिवर्तन आव्यूह है।
\end{bmatrix}.</math> पहचान भी एक क्रमपरिवर्तन आव्यूह है।


एक प्रतिबिंब अनैच्छिक आव्यूह है, जिसका तात्पर्य है कि एक प्रतिबिंब आव्यूह [[ सममित मैट्रिक्स | सममित आव्यूह]] (इसके स्थानान्तरण के बराबर) के साथ-साथ लांबिक भी है। दो [[ रोटेशन मैट्रिक्स | रोटेशन आव्यूह]] का उत्पाद एक रोटेशन आव्यूह है, और दो प्रतिबिंब आव्यूह का उत्पाद भी एक रोटेशन आव्यूह है।
एक प्रतिबिंब अनैच्छिक आव्यूह है, जिसका तात्पर्य है कि एक प्रतिबिंब आव्यूह [[ सममित मैट्रिक्स | सममित आव्यूह]] (इसके स्थानान्तरण के बराबर) के साथ-साथ लांबिक भी है। दो [[ रोटेशन मैट्रिक्स |क्रमावर्तन आव्यूह]] का उत्पाद एकक्रमावर्तन आव्यूह है, और दो प्रतिबिंब आव्यूह का उत्पाद भी एकक्रमावर्तन आव्यूह है।


=== उच्च आयाम ===
=== उच्च आयाम ===
Line 102: Line 94:
मूल के माध्यम से एक बिंदु में एक व्युत्क्रम और क्रमशः एक अनुचित घुमाव का प्रतिनिधित्व करते हैं {{math|z}}-एक्सिस।
मूल के माध्यम से एक बिंदु में एक व्युत्क्रम और क्रमशः एक अनुचित घुमाव का प्रतिनिधित्व करते हैं {{math|z}}-एक्सिस।


उच्च आयामों में घुमाव अधिक जटिल हो जाते हैं; वे अब पूरी तरह से एक कोण से चित्रित नहीं किए जा सकते हैं, और एक से अधिक प्लानर उप-स्थान को प्रभावित कर सकते हैं। ए का वर्णन करना आम बात है {{nowrap|3 × 3}} धुरी और कोण के संदर्भ में रोटेशन आव्यूह, लेकिन यह केवल तीन आयामों में काम करता है। तीन आयामों से ऊपर दो या दो से अधिक कोणों की आवश्यकता होती है, जिनमें से प्रत्येक रोटेशन के एक विमान से जुड़ा होता है।
उच्च आयामों में घुमाव अधिक जटिल हो जाते हैं; वे अब पूरी तरह से एक कोण से चित्रित नहीं किए जा सकते हैं, और एक से अधिक प्लानर उप-स्थान को प्रभावित कर सकते हैं। ए का वर्णन करना आम बात है {{nowrap|3 × 3}} धुरी और कोण के संदर्भ मेंक्रमावर्तन आव्यूह, लेकिन यह केवल तीन आयामों में काम करता है। तीन आयामों से ऊपर दो या दो से अधिक कोणों की आवश्यकता होती है, जिनमें से प्रत्येकक्रमावर्तन के एक विमान से जुड़ा होता है।


हालांकि, हमारे पास सामान्य रूप से लागू होने वाले क्रमपरिवर्तन, प्रतिबिंब और घूर्णन के लिए प्राथमिक बिल्डिंग ब्लॉक हैं।
हालांकि, हमारे पास सामान्य रूप से लागू होने वाले क्रमपरिवर्तन, प्रतिबिंब और घूर्णन के लिए प्राथमिक बिल्डिंग ब्लॉक हैं।
Line 113: Line 105:
यहाँ अंश एक सममित आव्यूह है जबकि भाजक एक संख्या है, का वर्ग परिमाण {{math|'''v'''}}. यह के लंबवत हाइपरप्लेन में एक प्रतिबिंब है {{math|'''v'''}} (किसी भी सदिश घटक को समानांतर नकारना {{math|'''v'''}}). यदि {{math|'''v'''}} एक इकाई सदिश  है, तो {{math|1=''Q'' = ''I'' − 2'''vv'''<sup>T</sup>}} पर्याप्त एक हाउसहोल्डर प्रतिबिंब का उपयोग आमतौर पर एक कॉलम के निचले हिस्से को एक साथ शून्य करने के लिए किया जाता है। आकार का कोई भी लंबकोणीयआव्यूह {{nowrap|''n'' × ''n''}} अधिकतम के उत्पाद के रूप में निर्मित किया जा सकता है {{mvar|n}} ऐसे प्रतिबिंब।
यहाँ अंश एक सममित आव्यूह है जबकि भाजक एक संख्या है, का वर्ग परिमाण {{math|'''v'''}}. यह के लंबवत हाइपरप्लेन में एक प्रतिबिंब है {{math|'''v'''}} (किसी भी सदिश घटक को समानांतर नकारना {{math|'''v'''}}). यदि {{math|'''v'''}} एक इकाई सदिश  है, तो {{math|1=''Q'' = ''I'' − 2'''vv'''<sup>T</sup>}} पर्याप्त एक हाउसहोल्डर प्रतिबिंब का उपयोग आमतौर पर एक कॉलम के निचले हिस्से को एक साथ शून्य करने के लिए किया जाता है। आकार का कोई भी लंबकोणीयआव्यूह {{nowrap|''n'' × ''n''}} अधिकतम के उत्पाद के रूप में निर्मित किया जा सकता है {{mvar|n}} ऐसे प्रतिबिंब।


एक [[ गिवेंस रोटेशन ]] एक दो-आयामी (प्लानर) उप-स्थान पर कार्य करता है जो दो समन्वित अक्षों द्वारा फैला हुआ है, एक चुने हुए कोण से घूमता है। यह आम तौर पर एक एकल सबडायगोनल प्रविष्टि को शून्य करने के लिए उपयोग किया जाता है। आकार का कोई भी रोटेशन आव्यूह {{math|''n'' × ''n''}} अधिकतम के उत्पाद के रूप में निर्मित किया जा सकता है {{math|{{sfrac|''n''(''n'' − 1)|2}}}} ऐसे घुमाव। के मामले में {{nowrap|3 × 3}} मैट्रिसेस, ऐसे तीन घुमाव पर्याप्त हैं; और इस क्रम को ठीक करके हम सभी का वर्णन कर सकते हैं {{nowrap|3 × 3}} उपयोग किए गए तीन कोणों के संदर्भ में रोटेशन मैट्रिसेस (हालांकि विशिष्ट रूप से नहीं), जिन्हें अक्सर [[ यूलर कोण ]] कहा जाता है।
एक [[ गिवेंस रोटेशन | गिवेंसक्रमावर्तन]] एक दो-आयामी (प्लानर) उप-स्थान पर कार्य करता है जो दो समन्वित अक्षों द्वारा फैला हुआ है, एक चुने हुए कोण से घूमता है। यह आम तौर पर एक एकल सबडायगोनल प्रविष्टि को शून्य करने के लिए उपयोग किया जाता है। आकार का कोई भीक्रमावर्तन आव्यूह {{math|''n'' × ''n''}} अधिकतम के उत्पाद के रूप में निर्मित किया जा सकता है {{math|{{sfrac|''n''(''n'' − 1)|2}}}} ऐसे घुमाव। के मामले में {{nowrap|3 × 3}} मैट्रिसेस, ऐसे तीन घुमाव पर्याप्त हैं; और इस क्रम को ठीक करके हम सभी का वर्णन कर सकते हैं {{nowrap|3 × 3}} उपयोग किए गए तीन कोणों के संदर्भ मेंक्रमावर्तन मैट्रिसेस (हालांकि विशिष्ट रूप से नहीं), जिन्हें अक्सर [[ यूलर कोण ]] कहा जाता है।


एक [[ जैकोबी रोटेशन ]] का एक गिवेंस रोटेशन के रूप में एक ही रूप है, लेकिन इसका उपयोग एक के दोनों ऑफ-विकर्ण प्रविष्टियों को शून्य करने के लिए किया जाता है {{nowrap|2 × 2}} सममित सबआव्यूह।
एक [[ जैकोबी रोटेशन | जैकोबीक्रमावर्तन]] का एक गिवेंसक्रमावर्तन के रूप में एक ही रूप है, लेकिन इसका उपयोग एक के दोनों ऑफ-विकर्ण प्रविष्टियों को शून्य करने के लिए किया जाता है {{nowrap|2 × 2}} सममित सबआव्यूह।


== गुण ==
== गुण ==
Line 136: Line 128:
प्रत्येक लांबिक आव्यूह का व्युत्क्रम फिर से लांबिक होता है, जैसा कि दो लांबिक आव्यूह का आव्यूह उत्पाद होता है। वास्तव में, सभी का सेट {{math|''n'' × ''n''}} लांबिक आव्यूहएक समूह (गणित) के सभी स्वयंसिद्धों को संतुष्ट करता है। यह आयाम का एक [[ कॉम्पैक्ट स्पेस ]] लाई समूह है {{math|{{sfrac|''n''(''n'' − 1)|2}}}}, लंबकोणीयसमूह कहा जाता है और द्वारा निरूपित किया जाता है {{math|O(''n'')}}.
प्रत्येक लांबिक आव्यूह का व्युत्क्रम फिर से लांबिक होता है, जैसा कि दो लांबिक आव्यूह का आव्यूह उत्पाद होता है। वास्तव में, सभी का सेट {{math|''n'' × ''n''}} लांबिक आव्यूहएक समूह (गणित) के सभी स्वयंसिद्धों को संतुष्ट करता है। यह आयाम का एक [[ कॉम्पैक्ट स्पेस ]] लाई समूह है {{math|{{sfrac|''n''(''n'' − 1)|2}}}}, लंबकोणीयसमूह कहा जाता है और द्वारा निरूपित किया जाता है {{math|O(''n'')}}.


लांबिक मैट्रिसेस जिसका निर्धारक +1 है, एक [[ कनेक्टेड स्पेस ]] बनाता है | पथ से जुड़ा [[ सामान्य उपसमूह ]] {{math|O(''n'')}} एक उपसमूह 2 के सूचकांक का, विशेष लंबकोणीयसमूह {{math|SO(''n'')}} घुमावों का। [[ भागफल समूह ]] {{math|O(''n'')/SO(''n'')}} के लिए आइसोमोर्फिक है {{math|O(1)}}, निर्धारक के अनुसार [+1] या [−1] चुनने वाले प्रक्षेपण मानचित्र के साथ। निर्धारक -1 के साथ लांबिक आव्यूहमें पहचान शामिल नहीं है, और इसलिए एक उपसमूह नहीं बल्कि केवल एक सहसमुच्चय बनाते हैं; यह भी (अलग से) जुड़ा हुआ है। इस प्रकार प्रत्येक लंबकोणीयसमूह के दो टुकड़े हो जाते हैं; और क्योंकि प्रक्षेपण नक्शा सटीक अनुक्रम, {{math|O(''n'')}} का अर्धप्रत्यक्ष उत्पाद है {{math|SO(''n'')}} द्वारा {{math|O(1)}}. व्यावहारिक रूप में, एक तुलनीय कथन यह है कि किसी भी लांबिक आव्यूह को एक रोटेशन आव्यूह लेकर और संभवतः इसके किसी एक कॉलम को नकार कर बनाया जा सकता है, जैसा कि हमने देखा {{nowrap|2 × 2}} आव्यूह। यदि {{mvar|n}} विषम है, तो सेमीडायरेक्ट उत्पाद वास्तव में [[ समूहों का प्रत्यक्ष उत्पाद ]] है, और किसी भी लांबिक आव्यूह को रोटेशन आव्यूह लेकर और संभवतः इसके सभी स्तंभों को नकार कर बनाया जा सकता है। यह निर्धारकों की संपत्ति से अनुसरण करता है कि एक स्तंभ को नकारना निर्धारक को नकारता है, और इस प्रकार स्तंभों की एक विषम (लेकिन सम नहीं) संख्या को नकारना निर्धारक को नकारता है।
लांबिक मैट्रिसेस जिसका निर्धारक +1 है, एक [[ कनेक्टेड स्पेस ]] बनाता है | पथ से जुड़ा [[ सामान्य उपसमूह ]] {{math|O(''n'')}} एक उपसमूह 2 के सूचकांक का, विशेष लंबकोणीयसमूह {{math|SO(''n'')}} घुमावों का। [[ भागफल समूह ]] {{math|O(''n'')/SO(''n'')}} के लिए आइसोमोर्फिक है {{math|O(1)}}, निर्धारक के अनुसार [+1] या [−1] चुनने वाले प्रक्षेपण मानचित्र के साथ। निर्धारक -1 के साथ लांबिक आव्यूहमें पहचान शामिल नहीं है, और इसलिए एक उपसमूह नहीं बल्कि केवल एक सहसमुच्चय बनाते हैं; यह भी (अलग से) जुड़ा हुआ है। इस प्रकार प्रत्येक लंबकोणीयसमूह के दो टुकड़े हो जाते हैं; और क्योंकि प्रक्षेपण नक्शा सटीक अनुक्रम, {{math|O(''n'')}} का अर्धप्रत्यक्ष उत्पाद है {{math|SO(''n'')}} द्वारा {{math|O(1)}}. व्यावहारिक रूप में, एक तुलनीय कथन यह है कि किसी भी लांबिक आव्यूह को एकक्रमावर्तन आव्यूह लेकर और संभवतः इसके किसी एक कॉलम को नकार कर बनाया जा सकता है, जैसा कि हमने देखा {{nowrap|2 × 2}} आव्यूह। यदि {{mvar|n}} विषम है, तो सेमीडायरेक्ट उत्पाद वास्तव में [[ समूहों का प्रत्यक्ष उत्पाद ]] है, और किसी भी लांबिक आव्यूह कोक्रमावर्तन आव्यूह लेकर और संभवतः इसके सभी स्तंभों को नकार कर बनाया जा सकता है। यह निर्धारकों की संपत्ति से अनुसरण करता है कि एक स्तंभ को नकारना निर्धारक को नकारता है, और इस प्रकार स्तंभों की एक विषम (लेकिन सम नहीं) संख्या को नकारना निर्धारक को नकारता है।


अब विचार करें {{math|(''n'' + 1) × (''n'' + 1)}} लांबिक आव्यूहजिसमें नीचे दाहिनी प्रविष्टि 1 के बराबर है। अंतिम कॉलम (और अंतिम पंक्ति) का शेष शून्य होना चाहिए, और ऐसे दो आव्यूह के उत्पाद का एक ही रूप है। शेष आव्यूह एक है {{math|''n'' × ''n''}} लांबिक आव्यूह; इस प्रकार {{math|O(''n'')}} का एक उपसमूह है {{math|O(''n'' + 1)}} (और सभी उच्च समूहों के)।
अब विचार करें {{math|(''n'' + 1) × (''n'' + 1)}} लांबिक आव्यूहजिसमें नीचे दाहिनी प्रविष्टि 1 के बराबर है। अंतिम कॉलम (और अंतिम पंक्ति) का शेष शून्य होना चाहिए, और ऐसे दो आव्यूह के उत्पाद का एक ही रूप है। शेष आव्यूह एक है {{math|''n'' × ''n''}} लांबिक आव्यूह; इस प्रकार {{math|O(''n'')}} का एक उपसमूह है {{math|O(''n'' + 1)}} (और सभी उच्च समूहों के)।
Line 148: Line 140:
चूंकि [[ गृहस्थ मैट्रिक्स | गृहस्थ आव्यूह]] के रूप में एक प्राथमिक प्रतिबिंब किसी भी लांबिक आव्यूह को इस विवश रूप में कम कर सकता है, ऐसे प्रतिबिंबों की एक श्रृंखला किसी भी लांबिक आव्यूह को पहचान में ला सकती है; इस प्रकार एक लंबकोणीयसमूह एक [[ प्रतिबिंब समूह ]] है। अंतिम स्तंभ किसी भी इकाई सदिश  के लिए तय किया जा सकता है, और प्रत्येक विकल्प की एक अलग प्रति देता है {{math|O(''n'')}} में {{math|O(''n'' + 1)}}; तौर पर {{math|O(''n'' + 1)}} इकाई गोले के ऊपर एक [[ फाइबर बंडल ]] है {{math|''S''<sup>''n''</sup>}} फाइबर के साथ {{math|O(''n'')}}.
चूंकि [[ गृहस्थ मैट्रिक्स | गृहस्थ आव्यूह]] के रूप में एक प्राथमिक प्रतिबिंब किसी भी लांबिक आव्यूह को इस विवश रूप में कम कर सकता है, ऐसे प्रतिबिंबों की एक श्रृंखला किसी भी लांबिक आव्यूह को पहचान में ला सकती है; इस प्रकार एक लंबकोणीयसमूह एक [[ प्रतिबिंब समूह ]] है। अंतिम स्तंभ किसी भी इकाई सदिश  के लिए तय किया जा सकता है, और प्रत्येक विकल्प की एक अलग प्रति देता है {{math|O(''n'')}} में {{math|O(''n'' + 1)}}; तौर पर {{math|O(''n'' + 1)}} इकाई गोले के ऊपर एक [[ फाइबर बंडल ]] है {{math|''S''<sup>''n''</sup>}} फाइबर के साथ {{math|O(''n'')}}.


इसी प्रकार, {{math|SO(''n'')}} का एक उपसमूह है {{math|SO(''n'' + 1)}}; और किसी भी विशेष लांबिक आव्यूह को एक समान प्रक्रिया का उपयोग करके गिवेंस रोटेशन द्वारा उत्पन्न किया जा सकता है। बंडल संरचना बनी रहती है: {{math|SO(''n'') ↪ SO(''n'' + 1) → ''S''<sup>''n''</sup>}}. एक एकल घुमाव अंतिम कॉलम की पहली पंक्ति में एक शून्य उत्पन्न कर सकता है, और की श्रृंखला {{math|''n'' − 1}} घूर्णन an . के अंतिम स्तंभ की अंतिम पंक्ति को छोड़कर सभी को शून्य कर देगा {{math|''n'' × ''n''}} रोटेशन आव्यूह। चूंकि विमान स्थिर हैं, प्रत्येक घूर्णन में केवल एक डिग्री की स्वतंत्रता होती है, इसका कोण। प्रेरण द्वारा, {{math|SO(''n'')}} इसलिए है
इसी प्रकार, {{math|SO(''n'')}} का एक उपसमूह है {{math|SO(''n'' + 1)}}; और किसी भी विशेष लांबिक आव्यूह को एक समान प्रक्रिया का उपयोग करके गिवेंसक्रमावर्तन द्वारा उत्पन्न किया जा सकता है। बंडल संरचना बनी रहती है: {{math|SO(''n'') ↪ SO(''n'' + 1) → ''S''<sup>''n''</sup>}}. एक एकल घुमाव अंतिम कॉलम की पहली पंक्ति में एक शून्य उत्पन्न कर सकता है, और की श्रृंखला {{math|''n'' − 1}} घूर्णन an . के अंतिम स्तंभ की अंतिम पंक्ति को छोड़कर सभी को शून्य कर देगा {{math|''n'' × ''n''}}क्रमावर्तन आव्यूह। चूंकि विमान स्थिर हैं, प्रत्येक घूर्णन में केवल एक डिग्री की स्वतंत्रता होती है, इसका कोण। प्रेरण द्वारा, {{math|SO(''n'')}} इसलिए है
<math display="block">(n-1) + (n-2) + \cdots + 1 = \frac{n(n-1)}{2}</math>
<math display="block">(n-1) + (n-2) + \cdots + 1 = \frac{n(n-1)}{2}</math>
स्वतंत्रता की डिग्री, और इसलिए करता है {{math|O(''n'')}}.
स्वतंत्रता की डिग्री, और इसलिए करता है {{math|O(''n'')}}.
Line 163: Line 155:
R_1 & & & \\ & \ddots & & \\ & & R_k & \\ & & & 1
R_1 & & & \\ & \ddots & & \\ & & R_k & \\ & & & 1
\end{bmatrix}\ (n\text{ odd}).</math>
\end{bmatrix}\ (n\text{ odd}).</math>
जहां मैट्रिसेस {{math|''R''<sub>1</sub>, ..., ''R''<sub>''k''</sub>}} हैं {{nowrap|2 × 2}} रोटेशन मैट्रिसेस, और शेष प्रविष्टियों के साथ शून्य। असाधारण रूप से, एक रोटेशन ब्लॉक विकर्ण हो सकता है, {{math|±''I''}}. इस प्रकार, यदि आवश्यक हो तो एक कॉलम को नकारना और यह ध्यान रखना कि a {{nowrap|2 × 2}} प्रतिबिंब एक +1 और -1 के लिए विकर्ण करता है, किसी भी लांबिक आव्यूह को फॉर्म में लाया जा सकता है
जहां मैट्रिसेस {{math|''R''<sub>1</sub>, ..., ''R''<sub>''k''</sub>}} हैं {{nowrap|2 × 2}}क्रमावर्तन मैट्रिसेस, और शेष प्रविष्टियों के साथ शून्य। असाधारण रूप से, एकक्रमावर्तन ब्लॉक विकर्ण हो सकता है, {{math|±''I''}}. इस प्रकार, यदि आवश्यक हो तो एक कॉलम को नकारना और यह ध्यान रखना कि a {{nowrap|2 × 2}} प्रतिबिंब एक +1 और -1 के लिए विकर्ण करता है, किसी भी लांबिक आव्यूह को फॉर्म में लाया जा सकता है
<math display="block">P^\mathrm{T}QP = \begin{bmatrix}
<math display="block">P^\mathrm{T}QP = \begin{bmatrix}
\begin{matrix}R_1 & & \\ & \ddots & \\ & & R_k\end{matrix} & 0 \\
\begin{matrix}R_1 & & \\ & \ddots & \\ & & R_k\end{matrix} & 0 \\
0 & \begin{matrix}\pm 1 & & \\ & \ddots & \\ & & \pm 1\end{matrix} \\
0 & \begin{matrix}\pm 1 & & \\ & \ddots & \\ & & \pm 1\end{matrix} \\
\end{bmatrix},</math>
\end{bmatrix},</math>
मेट्रिसेस {{math|''R''<sub>1</sub>, ..., ''R''<sub>''k''</sub>}} सम्मिश्र संख्या में इकाई वृत्त पर स्थित eigenvalues ​​​​के संयुग्म जोड़े दें; इसलिए यह अपघटन पुष्टि करता है कि सभी आइगेनवैल्यू और ईजेनसदिश  का पूर्ण मान 1 है। यदि {{mvar|n}} विषम है, कम से कम एक वास्तविक आइगेनमान है, +1 या -1; एक के लिए {{nowrap|3 × 3}} रोटेशन, +1 से जुड़ा ईजेनसदिश रोटेशन अक्ष है।
मेट्रिसेस {{math|''R''<sub>1</sub>, ..., ''R''<sub>''k''</sub>}} सम्मिश्र संख्या में इकाई वृत्त पर स्थित eigenvalues ​​​​के संयुग्म जोड़े दें; इसलिए यह अपघटन पुष्टि करता है कि सभी आइगेनवैल्यू और ईजेनसदिश  का पूर्ण मान 1 है। यदि {{mvar|n}} विषम है, कम से कम एक वास्तविक आइगेनमान है, +1 या -1; एक के लिए {{nowrap|3 × 3}}क्रमावर्तन, +1 से जुड़ा ईजेनसदिश क्रमावर्तन अक्ष है।


=== लेट बीजगणित ===
=== लेट बीजगणित ===
Line 179: Line 171:
झूठ समूह के शब्दों में, इसका मतलब है कि एक लंबकोणीयआव्यूह समूह के झूठ बीजगणित में [[ तिरछा-सममित मैट्रिक्स | तिरछा-सममित आव्यूह]] | तिरछा-सममित आव्यूह होता है। दूसरी दिशा में जा रहे हैं, किसी भी तिरछा-सममित आव्यूह का आव्यूह घातीय एक लांबिक आव्यूह (वास्तव में, विशेष लांबिक) है।
झूठ समूह के शब्दों में, इसका मतलब है कि एक लंबकोणीयआव्यूह समूह के झूठ बीजगणित में [[ तिरछा-सममित मैट्रिक्स | तिरछा-सममित आव्यूह]] | तिरछा-सममित आव्यूह होता है। दूसरी दिशा में जा रहे हैं, किसी भी तिरछा-सममित आव्यूह का आव्यूह घातीय एक लांबिक आव्यूह (वास्तव में, विशेष लांबिक) है।


उदाहरण के लिए, त्रि-आयामी वस्तु भौतिकी कॉल कोणीय वेग एक अंतर रोटेशन है, इस प्रकार झूठ बीजगणित में एक सदिश  <math>\mathfrak{so}(3)</math> स्पर्शरेखा {{math|SO(3)}}. दिया गया {{math|1='''ω''' = (''xθ'', ''yθ'', ''zθ'')}}, साथ {{math|1='''v''' = (''x'', ''y'', ''z'')}} एक इकाई सदिश  होने के नाते, का सही तिरछा-सममित आव्यूह रूप है {{mvar|'''ω'''}} है
उदाहरण के लिए, त्रि-आयामी वस्तु भौतिकी कॉल कोणीय वेग एक अंतरक्रमावर्तन है, इस प्रकार झूठ बीजगणित में एक सदिश  <math>\mathfrak{so}(3)</math> स्पर्शरेखा {{math|SO(3)}}. दिया गया {{math|1='''ω''' = (''xθ'', ''yθ'', ''zθ'')}}, साथ {{math|1='''v''' = (''x'', ''y'', ''z'')}} एक इकाई सदिश  होने के नाते, का सही तिरछा-सममित आव्यूह रूप है {{mvar|'''ω'''}} है
<math display="block">
<math display="block">
\Omega = \begin{bmatrix}
\Omega = \begin{bmatrix}
Line 197: Line 189:


===लाभ ===
===लाभ ===
[[ संख्यात्मक विश्लेषण ]] संख्यात्मक रैखिक बीजगणित के लिए लांबिक आव्यूह के कई गुणों का लाभ उठाता है, और वे स्वाभाविक रूप से उत्पन्न होते हैं। उदाहरण के लिए, किसी स्थान के लिए ऑर्थोनॉर्मल आधार, या आधारों के लांबिक परिवर्तन की गणना करना अक्सर वांछनीय होता है; दोनों लंबकोणीयमैट्रिसेस का रूप लेते हैं। निर्धारक ±1 और परिमाण 1 के सभी eigenvalues ​​[[ संख्यात्मक स्थिरता ]] के लिए बहुत लाभ का है। एक निहितार्थ यह है कि स्थिति संख्या 1 है (जो न्यूनतम है), इसलिए लांबिक आव्यूह के साथ गुणा करते समय त्रुटियों को बढ़ाया नहीं जाता है। कई एल्गोरिदम इस कारण से होमहोल्डर प्रतिबिंब और गिवेंस रोटेशन जैसे लांबिक मैट्रिस का उपयोग करते हैं। यह भी मददगार है कि, न केवल एक लांबिक आव्यूह उलटा है, बल्कि इसका उलटा सूचकांकों का आदान-प्रदान करके अनिवार्य रूप से मुक्त उपलब्ध है।
[[ संख्यात्मक विश्लेषण ]] संख्यात्मक रैखिक बीजगणित के लिए लांबिक आव्यूह के कई गुणों का लाभ उठाता है, और वे स्वाभाविक रूप से उत्पन्न होते हैं। उदाहरण के लिए, किसी स्थान के लिए ऑर्थोनॉर्मल आधार, या आधारों के लांबिक परिवर्तन की गणना करना अक्सर वांछनीय होता है; दोनोंलांबिक आव्यूह का रूप लेते हैं। निर्धारक ±1 और परिमाण 1 के सभी eigenvalues ​​[[ संख्यात्मक स्थिरता ]] के लिए बहुत लाभ का है। एक निहितार्थ यह है कि स्थिति संख्या 1 है (जो न्यूनतम है), इसलिए लांबिक आव्यूह के साथ गुणा करते समय त्रुटियों को बढ़ाया नहीं जाता है। कई एल्गोरिदम इस कारण से होमहोल्डर प्रतिबिंब और गिवेंसक्रमावर्तन जैसे लांबिक मैट्रिस का उपयोग करते हैं। यह भी मददगार है कि, न केवल एक लांबिक आव्यूह उलटा है, बल्कि इसका उलटा सूचकांकों का आदान-प्रदान करके अनिवार्य रूप से मुक्त उपलब्ध है।


कई एल्गोरिदम की सफलता के लिए क्रमपरिवर्तन आवश्यक हैं, जिसमें पिवट तत्व # आंशिक और पूर्ण पिवोटिंग के साथ वर्कहॉर्स गॉसियन उन्मूलन शामिल है (जहां क्रमपरिवर्तन धुरी करते हैं)। हालांकि, वे शायद ही कभी स्पष्ट रूप से मैट्रिसेस के रूप में प्रकट होते हैं; उनका विशेष रूप अधिक कुशल प्रतिनिधित्व की अनुमति देता है, जैसे कि की सूची {{mvar|n}} सूचकांक।
कई एल्गोरिदम की सफलता के लिए क्रमपरिवर्तन आवश्यक हैं, जिसमें पिवट तत्व # आंशिक और पूर्ण पिवोटिंग के साथ वर्कहॉर्स गॉसियन उन्मूलन शामिल है (जहां क्रमपरिवर्तन धुरी करते हैं)। हालांकि, वे शायद ही कभी स्पष्ट रूप से मैट्रिसेस के रूप में प्रकट होते हैं; उनका विशेष रूप अधिक कुशल प्रतिनिधित्व की अनुमति देता है, जैसे कि की सूची {{mvar|n}} सूचकांक।


इसी तरह, हाउसहोल्डर और गिवेंस मैट्रिसेस का उपयोग करने वाले एल्गोरिदम आमतौर पर गुणन और भंडारण के विशेष तरीकों का उपयोग करते हैं। उदाहरण के लिए, एक गिवेंस रोटेशन एक आव्यूह की केवल दो पंक्तियों को प्रभावित करता है जो इसे गुणा करता है, क्रम के पूर्ण [[ मैट्रिक्स गुणन | आव्यूह गुणन]] को बदलता है {{math|''n''<sup>3</sup>}} बहुत अधिक कुशल आदेश के लिए {{mvar|n}}. जब इन प्रतिबिंबों और घुमावों का उपयोग एक आव्यूह में शून्य का परिचय देता है, तो रिक्त स्थान परिवर्तन को पुन: उत्पन्न करने के लिए पर्याप्त डेटा संग्रहीत करने के लिए पर्याप्त होता है, और ऐसा मजबूती से करता है। (निम्नलिखित {{harvtxt|Stewart|1976}}, हम एक रोटेशन एंगल स्टोर नहीं करते हैं, जो महंगा और खराब व्यवहार दोनों है।)
इसी तरह, हाउसहोल्डर और गिवेंस मैट्रिसेस का उपयोग करने वाले एल्गोरिदम आमतौर पर गुणन और भंडारण के विशेष तरीकों का उपयोग करते हैं। उदाहरण के लिए, एक गिवेंसक्रमावर्तन एक आव्यूह की केवल दो पंक्तियों को प्रभावित करता है जो इसे गुणा करता है, क्रम के पूर्ण [[ मैट्रिक्स गुणन | आव्यूह गुणन]] को बदलता है {{math|''n''<sup>3</sup>}} बहुत अधिक कुशल आदेश के लिए {{mvar|n}}. जब इन प्रतिबिंबों और घुमावों का उपयोग एक आव्यूह में शून्य का परिचय देता है, तो रिक्त स्थान परिवर्तन को पुन: उत्पन्न करने के लिए पर्याप्त डेटा संग्रहीत करने के लिए पर्याप्त होता है, और ऐसा मजबूती से करता है। (निम्नलिखित {{harvtxt|Stewart|1976}}, हम एकक्रमावर्तन एंगल स्टोर नहीं करते हैं, जो महंगा और खराब व्यवहार दोनों है।)


===अपघटन ===
===अपघटन ===
Line 225: Line 217:
एक रैखिक प्रणाली के मामले में जो कम निर्धारित है, या अन्यथा गैर-उलटा आव्यूह, एकवचन मूल्य अपघटन (एसवीडी) समान रूप से उपयोगी है। साथ {{mvar|A}} के रूप में कारक {{math|''U''Σ''V''<sup>T</sup>}}, एक संतोषजनक समाधान मूर-पेनरोज़ [[ छद्म उलटा ]] का उपयोग करता है, {{math|''V''Σ<sup>+</sup>''U''<sup>T</sup>}}, जहाँ पे {{math|Σ<sup>+</sup>}} केवल प्रत्येक गैर-शून्य विकर्ण प्रविष्टि को उसके व्युत्क्रम से प्रतिस्थापित करता है। समूह {{math|'''x'''}} प्रति {{math|''V''Σ<sup>+</sup>''U''<sup>T</sup>'''b'''}}.
एक रैखिक प्रणाली के मामले में जो कम निर्धारित है, या अन्यथा गैर-उलटा आव्यूह, एकवचन मूल्य अपघटन (एसवीडी) समान रूप से उपयोगी है। साथ {{mvar|A}} के रूप में कारक {{math|''U''Σ''V''<sup>T</sup>}}, एक संतोषजनक समाधान मूर-पेनरोज़ [[ छद्म उलटा ]] का उपयोग करता है, {{math|''V''Σ<sup>+</sup>''U''<sup>T</sup>}}, जहाँ पे {{math|Σ<sup>+</sup>}} केवल प्रत्येक गैर-शून्य विकर्ण प्रविष्टि को उसके व्युत्क्रम से प्रतिस्थापित करता है। समूह {{math|'''x'''}} प्रति {{math|''V''Σ<sup>+</sup>''U''<sup>T</sup>'''b'''}}.


वर्ग उलटा आव्यूह का मामला भी रुचि रखता है। मान लीजिए, उदाहरण के लिए, कि {{mvar|A}} एक है {{nowrap|3 × 3}} रोटेशन आव्यूह जिसकी गणना कई ट्विस्ट और टर्न की संरचना के रूप में की गई है। फ़्लोटिंग पॉइंट वास्तविक संख्याओं के गणितीय आदर्श से मेल नहीं खाता है, इसलिए {{mvar|A}} धीरे-धीरे अपनी वास्तविक रूढ़िवादिता को खो दिया है। एक ग्राम-श्मिट प्रक्रिया स्तंभों को [[ ऑर्थोगोनलाइज़ेशन | लांबिकाइज़ेशन]] कर सकती है, लेकिन यह सबसे विश्वसनीय, न ही सबसे कुशल, और न ही सबसे अपरिवर्तनीय विधि है। ध्रुवीय अपघटन एक आव्यूह को एक जोड़ी में कारक बनाता है, जिनमें से एक दिए गए आव्यूह के लिए अद्वितीय निकटतम लांबिक आव्यूह है, या यदि दिया गया आव्यूह एकवचन है तो निकटतम में से एक है। (निकटता को आधार के लांबिक परिवर्तन के तहत किसी भी [[ मैट्रिक्स मानदंड | आव्यूह मानदंड]] अपरिवर्तनीय द्वारा मापा जा सकता है, जैसे वर्णक्रमीय मानदंड या फ्रोबेनियस मानदंड।) निकट-लांबिक आव्यूह के लिए, लांबिक कारक के लिए तेजी से अभिसरण न्यूटन की विधि दृष्टिकोण द्वारा प्राप्त किया जा सकता है। प्रति {{harvtxt|Higham|1986}} (# CITEREFHigham1990), बार-बार आव्यूह को इसके व्युत्क्रम स्थानान्तरण के साथ औसत करता है। {{harvtxt|Dubrulle|1999}} सुविधाजनक अभिसरण परीक्षण के साथ एक त्वरित विधि प्रकाशित की है।
वर्ग उलटा आव्यूह का मामला भी रुचि रखता है। मान लीजिए, उदाहरण के लिए, कि {{mvar|A}} एक है {{nowrap|3 × 3}}क्रमावर्तन आव्यूह जिसकी गणना कई ट्विस्ट और टर्न की संरचना के रूप में की गई है। फ़्लोटिंग पॉइंट वास्तविक संख्याओं के गणितीय आदर्श से मेल नहीं खाता है, इसलिए {{mvar|A}} धीरे-धीरे अपनी वास्तविक रूढ़िवादिता को खो दिया है। एक ग्राम-श्मिट प्रक्रिया स्तंभों को [[ ऑर्थोगोनलाइज़ेशन | लांबिकाइज़ेशन]] कर सकती है, लेकिन यह सबसे विश्वसनीय, न ही सबसे कुशल, और न ही सबसे अपरिवर्तनीय विधि है। ध्रुवीय अपघटन एक आव्यूह को एक जोड़ी में कारक बनाता है, जिनमें से एक दिए गए आव्यूह के लिए अद्वितीय निकटतम लांबिक आव्यूह है, या यदि दिया गया आव्यूह एकवचन है तो निकटतम में से एक है। (निकटता को आधार के लांबिक परिवर्तन के तहत किसी भी [[ मैट्रिक्स मानदंड | आव्यूह मानदंड]] अपरिवर्तनीय द्वारा मापा जा सकता है, जैसे वर्णक्रमीय मानदंड या फ्रोबेनियस मानदंड।) निकट-लांबिक आव्यूह के लिए, लांबिक कारक के लिए तेजी से अभिसरण न्यूटन की विधि दृष्टिकोण द्वारा प्राप्त किया जा सकता है। प्रति {{harvtxt|Higham|1986}} (# CITEREFHigham1990), बार-बार आव्यूह को इसके व्युत्क्रम स्थानान्तरण के साथ औसत करता है। {{harvtxt|Dubrulle|1999}} सुविधाजनक अभिसरण परीक्षण के साथ एक त्वरित विधि प्रकाशित की है।


उदाहरण के लिए, एक गैर-लांबिक आव्यूह पर विचार करें जिसके लिए साधारण औसत एल्गोरिथ्म सात कदम उठाता है
उदाहरण के लिए, एक गैर-लांबिक आव्यूह पर विचार करें जिसके लिए साधारण औसत एल्गोरिथ्म सात कदम उठाता है

Revision as of 23:23, 18 November 2022

रैखिक बीजगणित में, एक लांबिक आव्यूह, या ऑर्थोनॉर्मल आव्यूह, एक वास्तविक वर्ग आव्यूह है, जिसके कॉलम और पंक्तियाँ ऑर्थोनॉर्मल सदिश होते है।

इसे व्यक्त करने का एक तरीका है

जहाँ पे QT का स्थानान्तरण है Q तथा I तत्समक आव्यूह है। यह समान लक्षण वर्णन की ओर जाता है, एक लांबिक आव्यूह Q है यदि इसका परिवर्त इसके व्युत्क्रमणीय आव्यूह के बराबर है।
जहाँ पे Q−1 का व्युत्क्रम है Q.


एक लांबिक आव्यूह Q अनिवार्य रूप से व्युत्क्रम के साथ व्युत्क्रमणीय है। (Q−1 = QT), एकल आव्यूह (Q−1 = Q), जहाँ पे Q का हर्मिटियन आसन्न संयुग्मी परिवर्त Q, है, और इसलिए (QQ = QQ) वास्तविक संख्याओं पर सामान्य है। किसी भी लांबिक आव्यूह का निर्धारक या तो +1 या -1 है। एक रैखिक परिवर्तन के रूप में, एक लांबिक आव्यूह वैक्टर के आंतरिक उत्पाद को इकठ्ठा करता है, और इसलिए यूक्लिडियन समष्टि एक समान दूरी के रूप में कार्य करता है, जैसे क्रमावर्तन , प्रतिबिंब या रोटरप्रतिबिम्ब है। दूसरे शब्दों में, यह एक एकल परिवर्तन है।

समुच्चय n × n लांबिक आव्यूह का एक समूह बनाता है, O(n), लांबिक समूह के रूप में जाना जाता है। उपसमूह SO(n) सारणिक +1 के साथ लांबिक आव्यूह से मिलकर बनाता है और लांबिक समूह कहलाता है, और इसका प्रत्येक तत्व एक विशेष लांबिक आव्यूह होता है। एक रैखिक परिवर्तन के रूप में, प्रत्येक विशेष लांबिक आव्यूह क्रमावर्तन के रूप में कार्य करता है।

सिंहावलोकन

एक लांबिक आव्यूह एकल आव्यूह का वास्तविक विशेषज्ञता है, और इस प्रकार हमेशा एक सामान्य आव्यूह होता है। यद्यपि हम यहां केवल वास्तविक आव्यूहों पर विचार करते हैं, परिभाषा का उपयोग किसी भी क्षेत्र (गणित) से प्रविष्टियों के साथ आव्यूहों के लिए किया जा सकता है। हालांकि, लांबिक आव्यूहस्वाभाविक रूप से डॉट उत्पाद ों से उत्पन्न होते हैं, और जटिल संख्याओं के मैट्रिसेस के लिए जो एकल आवश्यकता के बजाय आगे बढ़ते हैं। लांबिक आव्यूहडॉट उत्पाद को संरक्षित करते हैं,[1] तो, वैक्टर के लिए u तथा v एक में n-आयामी वास्तविक यूक्लिडियन स्थान

जहाँ पे Q एक लंबकोणीयआव्यूह है। आंतरिक उत्पाद कनेक्शन देखने के लिए, एक सदिश पर विचार करें v एक में n-आयामी वास्तविक यूक्लिडियन स्थान। ऑर्थोनॉर्मल आधार के संबंध में लिखा गया, की लंबाई का वर्ग v है vTv. यदि एक रैखिक परिवर्तन, आव्यूह रूप में Qv, फिर सदिश लंबाई को संरक्षित करता है
इस प्रकार आयाम (सदिश स्पेस) | परिमित-आयामी रैखिक समान दूरी-रोटेशन, प्रतिबिंब, और उनके संयोजन-लांबिक मैट्रिस का उत्पादन करते हैं। इसका व्युत्क्रम भी सत्य है:लांबिक आव्यूह का अर्थ लांबिक ट्रांसफॉर्मेशन है। हालांकि, रैखिक बीजगणित में रिक्त स्थान के बीच लांबिक परिवर्तन शामिल हैं जो न तो परिमित-आयामी हो सकते हैं और न ही समान आयाम के हो सकते हैं, और इनमें कोई लांबिक आव्यूह समकक्ष नहीं है।

सैद्धांतिक और व्यावहारिक दोनों कारणों से लांबिक मैट्रिसेस कई कारणों से महत्वपूर्ण हैं। n × n }} लांबिक मैट्रिसेस आव्यूह गुणन के तहत एक समूह (गणित) बनाते हैं, लांबिक समूह द्वारा दर्शाया गया है O(n), जो—इसके उपसमूहों के साथ—गणित और भौतिक विज्ञान में व्यापक रूप से उपयोग किया जाता है। उदाहरण के लिए, एक अणु का बिंदु समूह O(3) का एक उपसमूह है। क्योंकि लांबिक आव्यूहके फ़्लोटिंग पॉइंट संस्करणों में लाभप्रद गुण होते हैं, वे संख्यात्मक रैखिक बीजगणित में कई एल्गोरिदम के लिए महत्वपूर्ण होते हैं, जैसे क्यूआर अपघटन |QR अपघटन। एक अन्य उदाहरण के रूप में, उपयुक्त सामान्यीकरण के साथ असतत कोज्या परिवर्तन (बेचा 3 संपीड़न में प्रयुक्त) एक लांबिक आव्यूह द्वारा दर्शाया गया है।

उदाहरण

नीचे छोटेलांबिक आव्यूह और संभावित व्याख्याओं के कुछ उदाहरण दिए गए हैं।

  • (पहचान परिवर्तन)
  • (मूल के बारे मेंक्रमावर्तन)
  • (एक्स-अक्ष पर प्रतिबिंब)
  • (समन्वय अक्षों का क्रमचय)

प्राथमिक निर्माण

निचला आयाम

सबसे सरल लांबिक आव्यूहहैं 1 × 1 आव्यूह [1] और [−1], जिसे हम पहचान के रूप में व्याख्या कर सकते हैं और मूल के आर-पार वास्तविक रेखा के प्रतिबिंब के रूप में व्याख्या कर सकते हैं। 2 × 2 }} आव्यूह का रूप है

कौन सी ऑर्थोगोनैलिटी मांग तीन समीकरणों को संतुष्ट करती है
पहले समीकरण को ध्यान में रखते हुए, व्यापकता के नुकसान के बिना p = cos θ, q = sin θ; तो कोई t = −q, u = p या t = q, u = −p. हम पहले मामले कोक्रमावर्तन के रूप में व्याख्या कर सकते हैं θ (जहाँ पे θ = 0 पहचान है), और दूसरा कोण पर एक रेखा में प्रतिबिंब के रूप में θ/2.

प्रतिबिंब आव्यूह का विशेष मामला θ = 90° द्वारा दिए गए 45° पर रेखा के बारे में प्रतिबिंब उत्पन्न करता है y = x और इसलिए आदान-प्रदान x तथा y; यह एक क्रमपरिवर्तन आव्यूह है, प्रत्येक कॉलम और पंक्ति में एक 1 (और अन्यथा 0) के साथ:
पहचान भी एक क्रमपरिवर्तन आव्यूह है।

एक प्रतिबिंब अनैच्छिक आव्यूह है, जिसका तात्पर्य है कि एक प्रतिबिंब आव्यूह सममित आव्यूह (इसके स्थानान्तरण के बराबर) के साथ-साथ लांबिक भी है। दो क्रमावर्तन आव्यूह का उत्पाद एकक्रमावर्तन आव्यूह है, और दो प्रतिबिंब आव्यूह का उत्पाद भी एकक्रमावर्तन आव्यूह है।

उच्च आयाम

आयाम के बावजूद, लांबिक आव्यूहको विशुद्ध रूप से घूर्णी या नहीं के रूप में वर्गीकृत करना हमेशा संभव होता है, लेकिन इसके लिए 3 × 3 आव्यूह और गैर-घूर्णी आव्यूह बड़े प्रतिबिंबों की तुलना में अधिक जटिल हो सकते हैं। उदाहरण के लिए,

मूल के माध्यम से एक बिंदु में एक व्युत्क्रम और क्रमशः एक अनुचित घुमाव का प्रतिनिधित्व करते हैं z-एक्सिस।

उच्च आयामों में घुमाव अधिक जटिल हो जाते हैं; वे अब पूरी तरह से एक कोण से चित्रित नहीं किए जा सकते हैं, और एक से अधिक प्लानर उप-स्थान को प्रभावित कर सकते हैं। ए का वर्णन करना आम बात है 3 × 3 धुरी और कोण के संदर्भ मेंक्रमावर्तन आव्यूह, लेकिन यह केवल तीन आयामों में काम करता है। तीन आयामों से ऊपर दो या दो से अधिक कोणों की आवश्यकता होती है, जिनमें से प्रत्येकक्रमावर्तन के एक विमान से जुड़ा होता है।

हालांकि, हमारे पास सामान्य रूप से लागू होने वाले क्रमपरिवर्तन, प्रतिबिंब और घूर्णन के लिए प्राथमिक बिल्डिंग ब्लॉक हैं।

आदिम

सबसे प्राथमिक क्रमचय एक स्थानान्तरण है, जो दो पंक्तियों का आदान-प्रदान करके पहचान आव्यूह से प्राप्त किया जाता है। कोई n × n क्रमचय आव्यूह को इससे अधिक के उत्पाद के रूप में बनाया जा सकता है n − 1 स्थानान्तरण।

एक गैर-शून्य सदिश से एक हाउसहोल्डर प्रतिबिंब का निर्माण किया जाता है v जैसा

यहाँ अंश एक सममित आव्यूह है जबकि भाजक एक संख्या है, का वर्ग परिमाण v. यह के लंबवत हाइपरप्लेन में एक प्रतिबिंब है v (किसी भी सदिश घटक को समानांतर नकारना v). यदि v एक इकाई सदिश है, तो Q = I − 2vvT पर्याप्त एक हाउसहोल्डर प्रतिबिंब का उपयोग आमतौर पर एक कॉलम के निचले हिस्से को एक साथ शून्य करने के लिए किया जाता है। आकार का कोई भी लंबकोणीयआव्यूह n × n अधिकतम के उत्पाद के रूप में निर्मित किया जा सकता है n ऐसे प्रतिबिंब।

एक गिवेंसक्रमावर्तन एक दो-आयामी (प्लानर) उप-स्थान पर कार्य करता है जो दो समन्वित अक्षों द्वारा फैला हुआ है, एक चुने हुए कोण से घूमता है। यह आम तौर पर एक एकल सबडायगोनल प्रविष्टि को शून्य करने के लिए उपयोग किया जाता है। आकार का कोई भीक्रमावर्तन आव्यूह n × n अधिकतम के उत्पाद के रूप में निर्मित किया जा सकता है n(n − 1)/2 ऐसे घुमाव। के मामले में 3 × 3 मैट्रिसेस, ऐसे तीन घुमाव पर्याप्त हैं; और इस क्रम को ठीक करके हम सभी का वर्णन कर सकते हैं 3 × 3 उपयोग किए गए तीन कोणों के संदर्भ मेंक्रमावर्तन मैट्रिसेस (हालांकि विशिष्ट रूप से नहीं), जिन्हें अक्सर यूलर कोण कहा जाता है।

एक जैकोबीक्रमावर्तन का एक गिवेंसक्रमावर्तन के रूप में एक ही रूप है, लेकिन इसका उपयोग एक के दोनों ऑफ-विकर्ण प्रविष्टियों को शून्य करने के लिए किया जाता है 2 × 2 सममित सबआव्यूह।

गुण

आव्यूह गुण

एक वास्तविक वर्ग आव्यूह लंबकोणीयहै अगर और केवल अगर इसके कॉलम यूक्लिडियन स्पेस का एक ऑर्थोनॉर्मल आधार बनाते हैं Rn साधारण यूक्लिडियन डॉट उत्पाद के साथ, जो कि केवल तभी होता है जब इसकी पंक्तियाँ एक ऑर्थोनॉर्मल आधार बनाती हैं Rn. यह मान लेना आकर्षक हो सकता है कि लांबिक (ऑर्थोनॉर्मल नहीं) कॉलम वाले आव्यूह को लांबिक आव्यूह कहा जाएगा, लेकिन ऐसे आव्यूह में कोई विशेष रुचि नहीं है और कोई विशेष नाम नहीं है; वे केवल संतुष्ट MTM = D, साथ D एक विकर्ण आव्यूह

किसी भी लांबिक आव्यूह का निर्धारक +1 या -1 है। यह निर्धारकों के बारे में बुनियादी तथ्यों से निम्नानुसार है:

इसका उलट सत्य नहीं है; ± 1 का एक निर्धारक होने से लांबिकिटी की कोई गारंटी नहीं है, यहां तक ​​​​कि लांबिक कॉलम के साथ भी, जैसा कि निम्नलिखित काउंटर उदाहरण द्वारा दिखाया गया है।
क्रमचय मेट्रिसेस के साथ निर्धारक सम और विषम क्रमपरिवर्तन से मेल खाता है, +1 या -1 होने के कारण क्रमचय की समानता सम या विषम है, क्योंकि निर्धारक पंक्तियों का एक वैकल्पिक कार्य है।

निर्धारक प्रतिबंध से मजबूत तथ्य यह है कि एक लांबिक आव्यूह हमेशा ईजेनवैल्यू और ईजेनसदिश के पूर्ण सेट को प्रदर्शित करने के लिए जटिल संख्या ओं पर विकर्ण आव्यूह हो सकता है, जिनमें से सभी का (जटिल) निरपेक्ष मान 1 होना चाहिए।

समूह गुण

प्रत्येक लांबिक आव्यूह का व्युत्क्रम फिर से लांबिक होता है, जैसा कि दो लांबिक आव्यूह का आव्यूह उत्पाद होता है। वास्तव में, सभी का सेट n × n लांबिक आव्यूहएक समूह (गणित) के सभी स्वयंसिद्धों को संतुष्ट करता है। यह आयाम का एक कॉम्पैक्ट स्पेस लाई समूह है n(n − 1)/2, लंबकोणीयसमूह कहा जाता है और द्वारा निरूपित किया जाता है O(n).

लांबिक मैट्रिसेस जिसका निर्धारक +1 है, एक कनेक्टेड स्पेस बनाता है | पथ से जुड़ा सामान्य उपसमूह O(n) एक उपसमूह 2 के सूचकांक का, विशेष लंबकोणीयसमूह SO(n) घुमावों का। भागफल समूह O(n)/SO(n) के लिए आइसोमोर्फिक है O(1), निर्धारक के अनुसार [+1] या [−1] चुनने वाले प्रक्षेपण मानचित्र के साथ। निर्धारक -1 के साथ लांबिक आव्यूहमें पहचान शामिल नहीं है, और इसलिए एक उपसमूह नहीं बल्कि केवल एक सहसमुच्चय बनाते हैं; यह भी (अलग से) जुड़ा हुआ है। इस प्रकार प्रत्येक लंबकोणीयसमूह के दो टुकड़े हो जाते हैं; और क्योंकि प्रक्षेपण नक्शा सटीक अनुक्रम, O(n) का अर्धप्रत्यक्ष उत्पाद है SO(n) द्वारा O(1). व्यावहारिक रूप में, एक तुलनीय कथन यह है कि किसी भी लांबिक आव्यूह को एकक्रमावर्तन आव्यूह लेकर और संभवतः इसके किसी एक कॉलम को नकार कर बनाया जा सकता है, जैसा कि हमने देखा 2 × 2 आव्यूह। यदि n विषम है, तो सेमीडायरेक्ट उत्पाद वास्तव में समूहों का प्रत्यक्ष उत्पाद है, और किसी भी लांबिक आव्यूह कोक्रमावर्तन आव्यूह लेकर और संभवतः इसके सभी स्तंभों को नकार कर बनाया जा सकता है। यह निर्धारकों की संपत्ति से अनुसरण करता है कि एक स्तंभ को नकारना निर्धारक को नकारता है, और इस प्रकार स्तंभों की एक विषम (लेकिन सम नहीं) संख्या को नकारना निर्धारक को नकारता है।

अब विचार करें (n + 1) × (n + 1) लांबिक आव्यूहजिसमें नीचे दाहिनी प्रविष्टि 1 के बराबर है। अंतिम कॉलम (और अंतिम पंक्ति) का शेष शून्य होना चाहिए, और ऐसे दो आव्यूह के उत्पाद का एक ही रूप है। शेष आव्यूह एक है n × n लांबिक आव्यूह; इस प्रकार O(n) का एक उपसमूह है O(n + 1) (और सभी उच्च समूहों के)।

चूंकि गृहस्थ आव्यूह के रूप में एक प्राथमिक प्रतिबिंब किसी भी लांबिक आव्यूह को इस विवश रूप में कम कर सकता है, ऐसे प्रतिबिंबों की एक श्रृंखला किसी भी लांबिक आव्यूह को पहचान में ला सकती है; इस प्रकार एक लंबकोणीयसमूह एक प्रतिबिंब समूह है। अंतिम स्तंभ किसी भी इकाई सदिश के लिए तय किया जा सकता है, और प्रत्येक विकल्प की एक अलग प्रति देता है O(n) में O(n + 1); तौर पर O(n + 1) इकाई गोले के ऊपर एक फाइबर बंडल है Sn फाइबर के साथ O(n).

इसी प्रकार, SO(n) का एक उपसमूह है SO(n + 1); और किसी भी विशेष लांबिक आव्यूह को एक समान प्रक्रिया का उपयोग करके गिवेंसक्रमावर्तन द्वारा उत्पन्न किया जा सकता है। बंडल संरचना बनी रहती है: SO(n) ↪ SO(n + 1) → Sn. एक एकल घुमाव अंतिम कॉलम की पहली पंक्ति में एक शून्य उत्पन्न कर सकता है, और की श्रृंखला n − 1 घूर्णन an . के अंतिम स्तंभ की अंतिम पंक्ति को छोड़कर सभी को शून्य कर देगा n × nक्रमावर्तन आव्यूह। चूंकि विमान स्थिर हैं, प्रत्येक घूर्णन में केवल एक डिग्री की स्वतंत्रता होती है, इसका कोण। प्रेरण द्वारा, SO(n) इसलिए है

स्वतंत्रता की डिग्री, और इसलिए करता है O(n).

क्रमपरिवर्तन आव्यूह अभी भी सरल हैं; वे लाई समूह नहीं, बल्कि केवल एक परिमित समूह बनाते हैं, ऑर्डर फैक्टोरियल|n!सममित समूह Sn. इसी तर्क से, Sn का एक उपसमूह है Sn + 1. सम क्रमपरिवर्तन निर्धारक +1 के क्रमपरिवर्तन आव्यूह के उपसमूह का उत्पादन करते हैं, क्रम n!/2 वैकल्पिक समूह

विहित रूप

अधिक मोटे तौर पर, किसी भी लांबिक आव्यूह का प्रभाव लांबिक द्वि-आयामी उप-स्थानों पर स्वतंत्र क्रियाओं में अलग हो जाता है। यानी अगर Q विशेष लांबिक है तो कोई हमेशा एक लांबिक आव्यूह ढूंढ सकता है P, (घूर्णी) आधार का परिवर्तन, जो लाता है Q ब्लॉक विकर्ण रूप में:

जहां मैट्रिसेस R1, ..., Rk हैं 2 × 2क्रमावर्तन मैट्रिसेस, और शेष प्रविष्टियों के साथ शून्य। असाधारण रूप से, एकक्रमावर्तन ब्लॉक विकर्ण हो सकता है, ±I. इस प्रकार, यदि आवश्यक हो तो एक कॉलम को नकारना और यह ध्यान रखना कि a 2 × 2 प्रतिबिंब एक +1 और -1 के लिए विकर्ण करता है, किसी भी लांबिक आव्यूह को फॉर्म में लाया जा सकता है
मेट्रिसेस R1, ..., Rk सम्मिश्र संख्या में इकाई वृत्त पर स्थित eigenvalues ​​​​के संयुग्म जोड़े दें; इसलिए यह अपघटन पुष्टि करता है कि सभी आइगेनवैल्यू और ईजेनसदिश का पूर्ण मान 1 है। यदि n विषम है, कम से कम एक वास्तविक आइगेनमान है, +1 या -1; एक के लिए 3 × 3क्रमावर्तन, +1 से जुड़ा ईजेनसदिश क्रमावर्तन अक्ष है।

लेट बीजगणित

मान लीजिए की प्रविष्टियाँ Q के अलग-अलग कार्य हैं t, और कि t = 0 देता है Q = I. लांबिकिटी की स्थिति को अलग करना

पैदावार
पर मूल्यांकन t = 0 (Q = I) तो तात्पर्य है
झूठ समूह के शब्दों में, इसका मतलब है कि एक लंबकोणीयआव्यूह समूह के झूठ बीजगणित में तिरछा-सममित आव्यूह | तिरछा-सममित आव्यूह होता है। दूसरी दिशा में जा रहे हैं, किसी भी तिरछा-सममित आव्यूह का आव्यूह घातीय एक लांबिक आव्यूह (वास्तव में, विशेष लांबिक) है।

उदाहरण के लिए, त्रि-आयामी वस्तु भौतिकी कॉल कोणीय वेग एक अंतरक्रमावर्तन है, इस प्रकार झूठ बीजगणित में एक सदिश स्पर्शरेखा SO(3). दिया गया ω = (, , ), साथ v = (x, y, z) एक इकाई सदिश होने के नाते, का सही तिरछा-सममित आव्यूह रूप है ω है

इसका घातांक अक्ष के चारों ओर घूमने के लिए लंबकोणीयआव्यूह है v कोण से θ; स्थापना c = cos θ/2, s = sin θ/2,


संख्यात्मक रैखिक बीजगणित

लाभ

संख्यात्मक विश्लेषण संख्यात्मक रैखिक बीजगणित के लिए लांबिक आव्यूह के कई गुणों का लाभ उठाता है, और वे स्वाभाविक रूप से उत्पन्न होते हैं। उदाहरण के लिए, किसी स्थान के लिए ऑर्थोनॉर्मल आधार, या आधारों के लांबिक परिवर्तन की गणना करना अक्सर वांछनीय होता है; दोनोंलांबिक आव्यूह का रूप लेते हैं। निर्धारक ±1 और परिमाण 1 के सभी eigenvalues ​​संख्यात्मक स्थिरता के लिए बहुत लाभ का है। एक निहितार्थ यह है कि स्थिति संख्या 1 है (जो न्यूनतम है), इसलिए लांबिक आव्यूह के साथ गुणा करते समय त्रुटियों को बढ़ाया नहीं जाता है। कई एल्गोरिदम इस कारण से होमहोल्डर प्रतिबिंब और गिवेंसक्रमावर्तन जैसे लांबिक मैट्रिस का उपयोग करते हैं। यह भी मददगार है कि, न केवल एक लांबिक आव्यूह उलटा है, बल्कि इसका उलटा सूचकांकों का आदान-प्रदान करके अनिवार्य रूप से मुक्त उपलब्ध है।

कई एल्गोरिदम की सफलता के लिए क्रमपरिवर्तन आवश्यक हैं, जिसमें पिवट तत्व # आंशिक और पूर्ण पिवोटिंग के साथ वर्कहॉर्स गॉसियन उन्मूलन शामिल है (जहां क्रमपरिवर्तन धुरी करते हैं)। हालांकि, वे शायद ही कभी स्पष्ट रूप से मैट्रिसेस के रूप में प्रकट होते हैं; उनका विशेष रूप अधिक कुशल प्रतिनिधित्व की अनुमति देता है, जैसे कि की सूची n सूचकांक।

इसी तरह, हाउसहोल्डर और गिवेंस मैट्रिसेस का उपयोग करने वाले एल्गोरिदम आमतौर पर गुणन और भंडारण के विशेष तरीकों का उपयोग करते हैं। उदाहरण के लिए, एक गिवेंसक्रमावर्तन एक आव्यूह की केवल दो पंक्तियों को प्रभावित करता है जो इसे गुणा करता है, क्रम के पूर्ण आव्यूह गुणन को बदलता है n3 बहुत अधिक कुशल आदेश के लिए n. जब इन प्रतिबिंबों और घुमावों का उपयोग एक आव्यूह में शून्य का परिचय देता है, तो रिक्त स्थान परिवर्तन को पुन: उत्पन्न करने के लिए पर्याप्त डेटा संग्रहीत करने के लिए पर्याप्त होता है, और ऐसा मजबूती से करता है। (निम्नलिखित Stewart (1976), हम एकक्रमावर्तन एंगल स्टोर नहीं करते हैं, जो महंगा और खराब व्यवहार दोनों है।)

अपघटन

कई महत्वपूर्ण आव्यूह अपघटन (Golub & Van Loan 1996) विशेष रूप से लांबिक आव्यूहशामिल करें:

क्यूआर अपघटन |QR अपघटन: M = QR, Q ओर्थोगोनल, R ऊपरी त्रिकोणीय

विलक्षण मान अपघटन
M = UΣVT, U तथा V ओर्थोगोनल, Σ विकर्ण आव्यूह
आव्यूह का ईजेनडीकम्पोज़िशन (वर्णक्रमीय प्रमेय के अनुसार अपघटन)
S = QΛQT, S सममित, Q ओर्थोगोनल, Λ विकर्ण
ध्रुवीय अपघटन
M = QS, Q ओर्थोगोनल, S सममित सकारात्मक-अर्धपरिमित

उदाहरण

रैखिक समीकरणों की एक अतिनिर्धारित प्रणाली पर विचार करें, जैसा कि प्रयोगात्मक त्रुटियों की भरपाई के लिए भौतिक घटना के बार-बार माप के साथ हो सकता है। लिखना Ax = b, जहाँ पे A है m × n, m > n. ए QR अपघटन कम हो जाता है A ऊपरी त्रिकोणीय के लिए R. उदाहरण के लिए, यदि A है 5 × 3 फिर R रूप है

रैखिक कम से कम वर्ग (गणित) समस्या को खोजने के लिए है x जो कम करता है ||Axb||, जो प्रक्षेपित करने के बराबर है b उप-स्थान के लिए के स्तंभों द्वारा फैलाया गया A. के स्तंभों को मानते हुए A (और इसलिए R) स्वतंत्र हैं, प्रक्षेपण समाधान से पाया जाता है ATAx = ATb. अब ATA वर्गाकार है (n × n) और उलटा, और बराबर भी RTR. लेकिन शून्य की निचली पंक्तियों में R उत्पाद में अतिश्योक्तिपूर्ण हैं, जो इस प्रकार पहले से ही निचले-त्रिकोणीय ऊपरी-त्रिकोणीय कारक रूप में है, जैसा कि गाऊसी उन्मूलन (चोल्स्की अपघटन ) में है। यहां रूढ़िवादिता न केवल कम करने के लिए महत्वपूर्ण है ATA = (RTQT)QR प्रति RTR, बल्कि संख्यात्मक समस्याओं को बढ़ाए बिना समाधान की अनुमति देने के लिए भी।

एक रैखिक प्रणाली के मामले में जो कम निर्धारित है, या अन्यथा गैर-उलटा आव्यूह, एकवचन मूल्य अपघटन (एसवीडी) समान रूप से उपयोगी है। साथ A के रूप में कारक UΣVT, एक संतोषजनक समाधान मूर-पेनरोज़ छद्म उलटा का उपयोग करता है, VΣ+UT, जहाँ पे Σ+ केवल प्रत्येक गैर-शून्य विकर्ण प्रविष्टि को उसके व्युत्क्रम से प्रतिस्थापित करता है। समूह x प्रति VΣ+UTb.

वर्ग उलटा आव्यूह का मामला भी रुचि रखता है। मान लीजिए, उदाहरण के लिए, कि A एक है 3 × 3क्रमावर्तन आव्यूह जिसकी गणना कई ट्विस्ट और टर्न की संरचना के रूप में की गई है। फ़्लोटिंग पॉइंट वास्तविक संख्याओं के गणितीय आदर्श से मेल नहीं खाता है, इसलिए A धीरे-धीरे अपनी वास्तविक रूढ़िवादिता को खो दिया है। एक ग्राम-श्मिट प्रक्रिया स्तंभों को लांबिकाइज़ेशन कर सकती है, लेकिन यह सबसे विश्वसनीय, न ही सबसे कुशल, और न ही सबसे अपरिवर्तनीय विधि है। ध्रुवीय अपघटन एक आव्यूह को एक जोड़ी में कारक बनाता है, जिनमें से एक दिए गए आव्यूह के लिए अद्वितीय निकटतम लांबिक आव्यूह है, या यदि दिया गया आव्यूह एकवचन है तो निकटतम में से एक है। (निकटता को आधार के लांबिक परिवर्तन के तहत किसी भी आव्यूह मानदंड अपरिवर्तनीय द्वारा मापा जा सकता है, जैसे वर्णक्रमीय मानदंड या फ्रोबेनियस मानदंड।) निकट-लांबिक आव्यूह के लिए, लांबिक कारक के लिए तेजी से अभिसरण न्यूटन की विधि दृष्टिकोण द्वारा प्राप्त किया जा सकता है। प्रति Higham (1986) (# CITEREFHigham1990), बार-बार आव्यूह को इसके व्युत्क्रम स्थानान्तरण के साथ औसत करता है। Dubrulle (1999) सुविधाजनक अभिसरण परीक्षण के साथ एक त्वरित विधि प्रकाशित की है।

उदाहरण के लिए, एक गैर-लांबिक आव्यूह पर विचार करें जिसके लिए साधारण औसत एल्गोरिथ्म सात कदम उठाता है

और कौन सा त्वरण दो चरणों में कम हो जाता है (साथ में γ = 0.353553, 0.565685).

ग्राम-श्मिट न्यूनतम 8.12404 के बजाय 8.28659 की फ्रोबेनियस दूरी द्वारा दिखाए गए एक अवर समाधान का उत्पादन करता है।


यादृच्छिकीकरण

कुछ संख्यात्मक अनुप्रयोग, जैसे कि मोंटे कार्लो विधि तरीके और उच्च-आयामी डेटा रिक्त स्थान की खोज, समान वितरण (निरंतर) यादृच्छिक लांबिक आव्यूह की पीढ़ी की आवश्यकता होती है। इस संदर्भ में, हार माप के संदर्भ में वर्दी को परिभाषित किया गया है, जो अनिवार्य रूप से आवश्यक है कि किसी भी स्वतंत्र रूप से चुने गए लांबिक आव्यूह द्वारा गुणा किए जाने पर वितरण में परिवर्तन न हो। सांख्यिकीय स्वतंत्रता के साथ लांबिकाइज़िंग मेट्रिसेस समान रूप से वितरित रैंडम प्रविष्टियाँ समान रूप से वितरित लांबिक आव्यूहमें परिणाम नहीं देती हैं[citation needed], लेकिन क्यूआर अपघटन|QR स्वतंत्र सामान्य वितरण का अपघटन यादृच्छिक प्रविष्टि करता है, जब तक कि का विकर्ण R केवल सकारात्मक प्रविष्टियां शामिल हैं (Mezzadri 2006). Stewart (1980) इसे एक अधिक कुशल विचार के साथ बदल दिया Diaconis & Shahshahani (1987) बाद में उपसमूह एल्गोरिथ्म के रूप में सामान्यीकृत किया गया (जिस रूप में यह क्रमपरिवर्तन और घुमाव के लिए भी काम करता है)। एक उत्पन्न करने के लिए (n + 1) × (n + 1) लांबिक आव्यूह, एक ले लो n × n एक और आयाम का एक समान रूप से वितरित इकाई सदिश n + 1. सदिश से हाउसहोल्डर रिफ्लेक्शन बनाएं, फिर इसे छोटे आव्यूह पर लागू करें (नीचे दाएं कोने में 1 के साथ बड़े आकार में एम्बेड किया गया)।

निकटतम लंबकोणीयआव्यूह

लांबिक आव्यूह खोजने की समस्या Q किसी दिए गए आव्यूह के निकटतम M लांबिक प्रोक्रस्ट्स समस्या से संबंधित है। अद्वितीय समाधान प्राप्त करने के कई अलग-अलग तरीके हैं, जिनमें से सबसे सरल एकवचन मान का अपघटन ले रहा है M और एकवचन मूल्यों को लोगों के साथ बदलना। एक अन्य विधि व्यक्त करती है R स्पष्ट रूप से लेकिन आव्यूह वर्गमूल के उपयोग की आवश्यकता है:[2]

यह पुनरावृत्ति देने के लिए एक आव्यूह के वर्गमूल को निकालने के लिए बेबीलोनियन विधि के साथ जोड़ा जा सकता है जो एक लांबिक आव्यूह को द्विघात रूप से अभिसरण करता है:
जहाँ पे Q0 = M.

ये पुनरावृत्तियां स्थिर हैं बशर्ते की स्थिति संख्या M तीन से कम है।[3] व्युत्क्रम के प्रथम-क्रम के सन्निकटन का उपयोग करना और उसी आरंभीकरण के परिणामस्वरूप संशोधित पुनरावृत्ति होती है:


स्पिन और पिन

एक सूक्ष्म तकनीकी समस्या लांबिक मैट्रिसेस के कुछ उपयोगों को प्रभावित करती है। निर्धारक +1 और -1 के साथ समूह घटक न केवल एक दूसरे से जुड़े हुए स्थान हैं, यहां तक ​​कि +1 घटक भी, SO(n), केवल जुड़ा हुआ स्थान नहीं है (SO(1) को छोड़कर, जो तुच्छ है)। इस प्रकार कभी-कभी एसओ (एन), स्पिनर समूह के कवरिंग मैप के साथ काम करना फायदेमंद या आवश्यक भी होता है, Spin(n). वैसे ही, O(n) कवरिंग ग्रुप, पिन समूह , पिन (एन) है। के लिये n > 2, Spin(n) बस जुड़ा हुआ है और इस प्रकार के लिए सार्वभौमिक कवरिंग समूह SO(n). स्पिन समूह का अब तक का सबसे प्रसिद्ध उदाहरण है Spin(3), जो और कुछ नहीं SU(2), या इकाई चतुष्कोणों का समूह।

पिन और स्पिन समूह क्लिफोर्ड बीजगणित के भीतर पाए जाते हैं, जो स्वयं लांबिक आव्यूहसे बनाए जा सकते हैं।

आयताकार आव्यूह

यदि Q एक वर्ग आव्यूह नहीं है, तो शर्तें QTQ = I तथा QQT = I समकक्ष नहीं हैं। स्थिति QTQ = I कहता है कि Q के स्तंभ लम्बवत हैं। यह तभी हो सकता है जब Q एक m × n आव्यूह के साथ nm (रैखिक निर्भरता के कारण)। इसी प्रकार, QQT = I कहते हैं कि की पंक्तियाँ Q ऑर्थोनॉर्मल हैं, जिनकी आवश्यकता है nm.

इन आव्यूह के लिए कोई मानक शब्दावली नहीं है। उन्हें अर्ध-लांबिक आव्यूह, ऑर्थोनॉर्मल आव्यूह, लांबिक आव्यूह, और कभी-कभी ऑर्थोनॉर्मल पंक्तियों/स्तंभों के साथ बस आव्यूह कहा जाता है।

मामले के लिए nm, ऑर्थोनॉर्मल कॉलम वाले मैट्रिस को k-फ्रेम के रूप में संदर्भित किया जा सकता है| लांबिक कश्मीर फ्रेम और वे स्टिफ़ेल कई गुना के तत्व हैं।

यह भी देखें

टिप्पणियाँ

  1. "Paul's online math notes"[full citation needed], Paul Dawkins, Lamar University, 2008. Theorem 3(c)
  2. "Finding the Nearest Orthonormal Matrix", Berthold K.P. Horn, MIT.
  3. "Newton's Method for the Matrix Square Root" Archived 2011-09-29 at the Wayback Machine, Nicholas J. Higham, Mathematics of Computation, Volume 46, Number 174, 1986.


संदर्भ

  • Diaconis, Persi; Shahshahani, Mehrdad (1987), "The subgroup algorithm for generating uniform random variables", Probability in the Engineering and Informational Sciences, 1: 15–32, doi:10.1017/S0269964800000255, ISSN 0269-9648, S2CID 122752374
  • Dubrulle, Augustin A. (1999), "An Optimum Iteration for the Matrix Polar Decomposition", Electronic Transactions on Numerical Analysis, 8: 21–25
  • Golub, Gene H.; Van Loan, Charles F. (1996), Matrix Computations (3/e ed.), Baltimore: Johns Hopkins University Press, ISBN 978-0-8018-5414-9
  • Higham, Nicholas (1986), "Computing the Polar Decomposition—with Applications" (PDF), SIAM Journal on Scientific and Statistical Computing, 7 (4): 1160–1174, doi:10.1137/0907079, ISSN 0196-5204
  • Higham, Nicholas; Schreiber, Robert (July 1990), "Fast polar decomposition of an arbitrary matrix", SIAM Journal on Scientific and Statistical Computing, 11 (4): 648–655, CiteSeerX 10.1.1.230.4322, doi:10.1137/0911038, ISSN 0196-5204, S2CID 14268409 [1]
  • Stewart, G. W. (1976), "The Economical Storage of Plane Rotations", Numerische Mathematik, 25 (2): 137–138, doi:10.1007/BF01462266, ISSN 0029-599X, S2CID 120372682
  • Stewart, G. W. (1980), "The Efficient Generation of Random Orthogonal Matrices with an Application to Condition Estimators", SIAM Journal on Numerical Analysis, 17 (3): 403–409, Bibcode:1980SJNA...17..403S, doi:10.1137/0717034, ISSN 0036-1429
  • Mezzadri, Francesco (2006), "How to generate random matrices from the classical compact groups", Notices of the American Mathematical Society, 54, arXiv:math-ph/0609050, Bibcode:2006math.ph...9050M


बाहरी संबंध