सामान्य वितरण: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 28: Line 28:
एक सामान्य वितरण को कभी-कभी अनौपचारिक रूप से बेल कर्व कहा जाता है।<ref name=":1">{{Cite web|title=Normal Distribution|url=https://www.mathsisfun.com/data/standard-normal-distribution.html|access-date=2020-08-15|website=www.mathsisfun.com}}</ref> चूंकि, कई अन्य वितरण बेल के आकार के होते हैं, जैसे [[कॉची वितरण|कॉची]] छात्र का t-वितरण और [[रसद वितरण|लॉजिस्टिक]] वितरण इत्यादि के रूप में होते है। अन्य नामों के लिए नेमिंग देखते हैं।
एक सामान्य वितरण को कभी-कभी अनौपचारिक रूप से बेल कर्व कहा जाता है।<ref name=":1">{{Cite web|title=Normal Distribution|url=https://www.mathsisfun.com/data/standard-normal-distribution.html|access-date=2020-08-15|website=www.mathsisfun.com}}</ref> चूंकि, कई अन्य वितरण बेल के आकार के होते हैं, जैसे [[कॉची वितरण|कॉची]] छात्र का t-वितरण और [[रसद वितरण|लॉजिस्टिक]] वितरण इत्यादि के रूप में होते है। अन्य नामों के लिए नेमिंग देखते हैं।


[[बहुभिन्नरूपी सामान्य वितरण|बहुभिन्नरूपी सामान्य]] वितरण में सदिश के लिए और [[मैट्रिक्स सामान्य वितरण|आव्यूह सामान्य]] वितरण में मेट्रिसेस के लिए यूनीवेरिएट प्रायिकता वितरण सामान्यीकृत किया जाता है।
[[बहुभिन्नरूपी सामान्य वितरण|बहुभिन्नरूp  सामान्य]] वितरण में सदिश के लिए और [[मैट्रिक्स सामान्य वितरण|आव्यूह सामान्य]] वितरण में मेट्रिसेस के लिए यूनीवेरिएट प्रायिकता वितरण सामान्यीकृत किया जाता है।


== परिभाषाएँ ==
== परिभाषाएँ ==
Line 64: Line 64:


:<math>f(x) = \sqrt{\frac\tau{2\pi}} e^{-\tau(x-\mu)^2/2}.</math>
:<math>f(x) = \sqrt{\frac\tau{2\pi}} e^{-\tau(x-\mu)^2/2}.</math>
इस विकल्प का संख्यात्मक संगणना में लाभ होने का दावा किया जाता है <math>\sigma</math> शून्य के बहुत निकटतम होता है और कुछ संदर्भों में सूत्रों को सरल करता है, जैसे बहुभिन्नरूपी सामान्य वितरण वाले चर के बायेसियन आंकड़ों में करते हैं।
इस विकल्प का संख्यात्मक संगणना में लाभ होने का दावा किया जाता है <math>\sigma</math> शून्य के बहुत निकटतम होता है और कुछ संदर्भों में सूत्रों को सरल करता है, जैसे बहुभिन्नरूp  सामान्य वितरण वाले चर के बायेसियन आंकड़ों में करते हैं।


वैकल्पिक रूप से, मानक विचलन का व्युत्क्रम <math>\tau^\prime=1/\sigma</math> परिशुद्धता के रूप में परिभाषित किया जा सकता है, जिस स्थिति में सामान्य वितरण की अभिव्यक्ति बन जाती है
वैकल्पिक रूप से, मानक विचलन का व्युत्क्रम <math>\tau^\prime=1/\sigma</math> परिशुद्धता के रूप में परिभाषित किया जा सकता है, जिस स्थिति में सामान्य वितरण की अभिव्यक्ति बन जाती है
Line 196: Line 196:


== गुण ==
== गुण ==
सामान्य वितरण ही एकमात्र ऐसा वितरण है जिसके पहले दो से परे [[संचयी]] शून्य होते हैं। अर्थात् माध्य और प्रसरण के अतिरिक्त यह निर्दिष्ट माध्य और वेरिएंस के लिए [[अधिकतम एन्ट्रापी संभाव्यता वितरण|अधिकतम एन्ट्रापी प्रायिकता]] वितरण के साथ निरंतर वितरण है।<ref>{{cite book|last=Cover|first=Thomas M.|author2=Thomas, Joy A.|year=2006|title=Elements of Information Theory|url=https://archive.org/details/elementsinformat00cove|url-access=limited|publisher=John Wiley and Sons|page=[https://archive.org/details/elementsinformat00cove/page/n279 254]|isbn=9780471748816}}</ref><ref>{{cite journal|last1=Park|first1=Sung Y.|last2=Bera|first2=Anil K.|year=2009|title=Maximum Entropy Autoregressive Conditional Heteroskedasticity Model|journal=Journal of Econometrics|pages=219–230|url=http://www.wise.xmu.edu.cn/Master/Download/..%5C..%5CUploadFiles%5Cpaper-masterdownload%5C2009519932327055475115776.pdf|access-date=2011-06-02|doi=10.1016/j.jeconom.2008.12.014|volume=150|issue=2|citeseerx=10.1.1.511.9750|archive-date=March 7, 2016|archive-url=https://web.archive.org/web/20160307144515/http://wise.xmu.edu.cn/uploadfiles/paper-masterdownload/2009519932327055475115776.pdf|url-status=dead}}</ref> गीरी ने मानते हुए यह दिखाया है कि माध्य और वेरिएंस परिमित रूप में होते है और सामान्य वितरण ही एकमात्र वितरण है जहां स्वतंत्र ड्रा के सेट से गणना की गई माध्य और वेरिएंस एक दूसरे से स्वतंत्र हैं।<ref name=Geary1936>Geary RC(1936) The distribution of the "Student's" ratio for the non-normal samples". Supplement to the Journal of the Royal Statistical Society 3 (2): 178–184</ref><ref>{{Cite Q|Q55897617|author1=Lukacs, Eugene|author-link1=Eugene Lukacs}}</ref>  
सामान्य वितरण ही एकमात्र ऐसा वितरण है जिसके पहले दो से परे [[संचयी]] शून्य होते हैं। अर्थात् माध्य और प्रसरण के अतिरिक्त यह निर्दिष्ट माध्य और वेरिएंस के लिए [[अधिकतम एन्ट्रापी संभाव्यता वितरण|अधिकतम एन्ट्राp  प्रायिकता]] वितरण के साथ निरंतर वितरण है।<ref>{{cite book|last=Cover|first=Thomas M.|author2=Thomas, Joy A.|year=2006|title=Elements of Information Theory|url=https://archive.org/details/elementsinformat00cove|url-access=limited|publisher=John Wiley and Sons|page=[https://archive.org/details/elementsinformat00cove/page/n279 254]|isbn=9780471748816}}</ref><ref>{{cite journal|last1=Park|first1=Sung Y.|last2=Bera|first2=Anil K.|year=2009|title=Maximum Entropy Autoregressive Conditional Heteroskedasticity Model|journal=Journal of Econometrics|pages=219–230|url=http://www.wise.xmu.edu.cn/Master/Download/..%5C..%5CUploadFiles%5Cpaper-masterdownload%5C2009519932327055475115776.pdf|access-date=2011-06-02|doi=10.1016/j.jeconom.2008.12.014|volume=150|issue=2|citeseerx=10.1.1.511.9750|archive-date=March 7, 2016|archive-url=https://web.archive.org/web/20160307144515/http://wise.xmu.edu.cn/uploadfiles/paper-masterdownload/2009519932327055475115776.pdf|url-status=dead}}</ref> गीरी ने मानते हुए यह दिखाया है कि माध्य और वेरिएंस परिमित रूप में होते है और सामान्य वितरण ही एकमात्र वितरण है जहां स्वतंत्र ड्रा के सेट से गणना की गई माध्य और वेरिएंस एक दूसरे से स्वतंत्र हैं।<ref name=Geary1936>Geary RC(1936) The distribution of the "Student's" ratio for the non-normal samples". Supplement to the Journal of the Royal Statistical Society 3 (2): 178–184</ref><ref>{{Cite Q|Q55897617|author1=Lukacs, Eugene|author-link1=Eugene Lukacs}}</ref>  


सामान्य वितरण [[अण्डाकार वितरण|दीर्घवृत्ताकार]] वितरण का एक उपवर्ग है। सामान्य वितरण अपने माध्य के बारे में सममित वितरण है और संपूर्ण वास्तविक रेखा पर गैर-शून्य है। जैसे कि यह उन चरों के लिए उपयुक्त मॉडल नहीं हो सकता है जो स्वाभाविक रूप से धनात्मक या दृढ़ता से विषम हैं, जैसे किसी व्यक्ति का वजन या [[शेयर (वित्त)]] की कीमत इत्यादि। ऐसे चरों को अन्य वितरण द्वारा अच्छे से वर्णित किया जा सकता है, जैसे [[लॉग-सामान्य वितरण|लॉग-सामान्य]] वितरण या पारेटो वितरण इत्यादि।
सामान्य वितरण [[अण्डाकार वितरण|दीर्घवृत्ताकार]] वितरण का एक उपवर्ग है। सामान्य वितरण अपने माध्य के बारे में सममित वितरण है और संपूर्ण वास्तविक रेखा पर गैर-शून्य है। जैसे कि यह उन चरों के लिए उपयुक्त मॉडल नहीं हो सकता है जो स्वाभाविक रूप से धनात्मक या दृढ़ता से विषम हैं, जैसे किसी व्यक्ति का वजन या [[शेयर (वित्त)]] की कीमत इत्यादि। ऐसे चरों को अन्य वितरण द्वारा अच्छे से वर्णित किया जा सकता है, जैसे [[लॉग-सामान्य वितरण|लॉग-सामान्य]] वितरण या पारेटो वितरण इत्यादि।
Line 324: Line 324:




=== अधिकतम एन्ट्रापी ===
=== अधिकतम एन्ट्राp ===
एक निर्दिष्ट माध्य के साथ वास्तविक पर सभी प्रायिकता वितरण में से <math>\mu</math> और वेरिएंस <math>\sigma^2</math>, सामान्य वितरण <math>N(\mu,\sigma^2)</math> अधिकतम एंट्रॉपी प्रायिकता वितरण वाला एक है।<ref>{{harvtxt |Cover |Thomas |2006 |p=254 }}</ref> यदि <math>X</math> प्रायिकता घनत्व फलन के साथ एक [[सतत यादृच्छिक चर]] <math>f(x)</math> है और इस प्रकार फिर <math>X</math> एन्ट्रापी को परिभाषित किया जाता है<ref>{{cite book|last1=Williams|first1=David|title=Weighing the odds : a course in probability and statistics|url=https://archive.org/details/weighingoddscour00will|url-access=limited|date=2001|publisher=Cambridge Univ. Press|location=Cambridge [u.a.]|isbn=978-0-521-00618-7|pages=[https://archive.org/details/weighingoddscour00will/page/n219 197]–199|edition=Reprinted.}}</ref><ref>{{cite book|last1=Smith|first1=José M. Bernardo; Adrian F. M.|title=Bayesian theory|url=https://archive.org/details/bayesiantheory00bern_963|url-access=limited|date=2000|publisher=Wiley|location=Chichester [u.a.]|isbn=978-0-471-49464-5|pages=[https://archive.org/details/bayesiantheory00bern_963/page/n224 209], 366|edition=Reprint}}</ref><ref>O'Hagan, A. (1994) ''Kendall's Advanced Theory of statistics, Vol 2B, Bayesian Inference'', Edward Arnold. {{isbn|0-340-52922-9}} (Section 5.40)</ref>
एक निर्दिष्ट माध्य के साथ वास्तविक पर सभी प्रायिकता वितरण में से <math>\mu</math> और वेरिएंस <math>\sigma^2</math>, सामान्य वितरण <math>N(\mu,\sigma^2)</math> अधिकतम एंट्रॉp  प्रायिकता वितरण वाला एक है।<ref>{{harvtxt |Cover |Thomas |2006 |p=254 }}</ref> यदि <math>X</math> प्रायिकता घनत्व फलन के साथ एक [[सतत यादृच्छिक चर]] <math>f(x)</math> है और इस प्रकार फिर <math>X</math> एन्ट्राp  को परिभाषित किया जाता है<ref>{{cite book|last1=Williams|first1=David|title=Weighing the odds : a course in probability and statistics|url=https://archive.org/details/weighingoddscour00will|url-access=limited|date=2001|publisher=Cambridge Univ. Press|location=Cambridge [u.a.]|isbn=978-0-521-00618-7|pages=[https://archive.org/details/weighingoddscour00will/page/n219 197]–199|edition=Reprinted.}}</ref><ref>{{cite book|last1=Smith|first1=José M. Bernardo; Adrian F. M.|title=Bayesian theory|url=https://archive.org/details/bayesiantheory00bern_963|url-access=limited|date=2000|publisher=Wiley|location=Chichester [u.a.]|isbn=978-0-471-49464-5|pages=[https://archive.org/details/bayesiantheory00bern_963/page/n224 209], 366|edition=Reprint}}</ref><ref>O'Hagan, A. (1994) ''Kendall's Advanced Theory of statistics, Vol 2B, Bayesian Inference'', Edward Arnold. {{isbn|0-340-52922-9}} (Section 5.40)</ref>
:<math>
:<math>
H(X) = - \int_{-\infty}^\infty f(x)\log f(x)\, dx
H(X) = - \int_{-\infty}^\infty f(x)\log f(x)\, dx
Line 336: Line 336:
जहाँ <math>f(x)</math> अभी के लिए, माध्य के साथ कुछ घनत्व फलन के रूप में माना जाता है <math>\mu</math> और मानक विचलन <math>\sigma</math>.के रूप में होता है
जहाँ <math>f(x)</math> अभी के लिए, माध्य के साथ कुछ घनत्व फलन के रूप में माना जाता है <math>\mu</math> और मानक विचलन <math>\sigma</math>.के रूप में होता है


अधिकतम एन्ट्रापी पर, एक छोटा बदलाव <math>\delta f(x)</math> के बारे में <math>f(x)</math> भिन्नता उत्पन्न करता है, <math>\delta L</math> के बारे में <math>L</math> जो 0 के बराबर होता है
अधिकतम एन्ट्राp  पर, एक छोटा बदलाव <math>\delta f(x)</math> के बारे में <math>f(x)</math> भिन्नता उत्पन्न करता है, <math>\delta L</math> के बारे में <math>L</math> जो 0 के बराबर होता है


:<math>
:<math>
Line 349: Line 349:
f(x, \mu, \sigma)=\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}
f(x, \mu, \sigma)=\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}
</math>
</math>
एक सामान्य वितरण की एन्ट्रॉपी बराबर होती है
एक सामान्य वितरण की एन्ट्रॉp  बराबर होती है
:<math>
:<math>
H(X)=\tfrac{1}{2}(1+\log(2\sigma^2\pi))
H(X)=\tfrac{1}{2}(1+\log(2\sigma^2\pi))
Line 456: Line 456:
=== एक्सटेंशन ===
=== एक्सटेंशन ===
सामान्य वितरण की धारणा प्रायिकता सिद्धांत में सबसे महत्वपूर्ण वितरण होने के कारण यूनीवेरिएट के मानक ढांचे से बहुत आगे तक बढ़ा दिया गया है, जो कि एक आयामी स्थिति (1) के रूप में है और इस प्रकार इन सभी विस्तारों को सामान्य या गाऊसी नियम भी कहा जाता है, इसलिए नामों में एक निश्चित अस्पष्टता उपस्थित होती है।
सामान्य वितरण की धारणा प्रायिकता सिद्धांत में सबसे महत्वपूर्ण वितरण होने के कारण यूनीवेरिएट के मानक ढांचे से बहुत आगे तक बढ़ा दिया गया है, जो कि एक आयामी स्थिति (1) के रूप में है और इस प्रकार इन सभी विस्तारों को सामान्य या गाऊसी नियम भी कहा जाता है, इसलिए नामों में एक निश्चित अस्पष्टता उपस्थित होती है।
* बहुभिन्नरूपी सामान्य वितरण के-आयामी [[यूक्लिडियन अंतरिक्ष|यूक्लिडियन स्थान]] में गॉसियन नियम का वर्णन करता है। एक सदिश {{nowrap|''X'' ∈ '''R'''<sup>''k''</sup>}} बहुभिन्नरूपी-सामान्य रूप से वितरित है यदि इसके घटकों का कोई रैखिक संयोजन {{nowrap|Σ{{su|p=''k''|b=''j''=1}}''a<sub>j</sub> X<sub>j</sub>''}} एक अविभाजित सामान्य वितरण है। इस प्रकार X का प्रसरण एक k×k सममित सकारात्मक-निश्चित आव्यूह V के रूप में है। बहुभिन्नरूपी सामान्य वितरण दीर्घवृत्ताकार वितरण का एक विशेष स्थिति है। जैसे, k = 2 स्थितियो में इसका आइसो-घनत्व लोकी दीर्घवृत्त हैं और यादृच्छिक k के स्थितियो में दीर्घवृत्त हैं।
* बहुभिन्नरूp  सामान्य वितरण के-आयामी [[यूक्लिडियन अंतरिक्ष|यूक्लिडियन स्थान]] में गॉसियन नियम का वर्णन करता है। एक सदिश {{nowrap|''X'' ∈ '''R'''<sup>''k''</sup>}} बहुभिन्नरूp -सामान्य रूप से वितरित है यदि इसके घटकों का कोई रैखिक संयोजन {{nowrap|Σ{{su|p=''k''|b=''j''=1}}''a<sub>j</sub> X<sub>j</sub>''}} एक अविभाजित सामान्य वितरण है। इस प्रकार X का प्रसरण एक k×k सममित सकारात्मक-निश्चित आव्यूह V के रूप में है। बहुभिन्नरूp  सामान्य वितरण दीर्घवृत्ताकार वितरण का एक विशेष स्थिति है। जैसे, k = 2 स्थितियो में इसका आइसो-घनत्व लोकी दीर्घवृत्त हैं और यादृच्छिक k के स्थितियो में दीर्घवृत्त हैं।
* [[संशोधित गाऊसी वितरण|संशोधित गाऊसी]] वितरण सामान्य वितरण का एक संशोधित संस्करण है जिसमें सभी ऋणात्मक तत्व 0 पर रीसेट हो जाते हैं
* [[संशोधित गाऊसी वितरण|संशोधित गाऊसी]] वितरण सामान्य वितरण का एक संशोधित संस्करण है जिसमें सभी ऋणात्मक तत्व 0 पर रीसेट हो जाते हैं
* [[जटिल सामान्य वितरण|सम्मिश्र सामान्य]] वितरण सम्मिश्र सामान्य सदिश से संबंधित होते है। एक सम्मिश्र सदिश {{nowrap|''X'' ∈ '''C'''<sup>''k''</sup>}} सामान्य वितरण कहा जाता है यदि इसके वास्तविक और काल्पनिक दोनों घटक संयुक्त रूप से 2k-आयामी बहुभिन्नरूपी सामान्य वितरण होता है। इस प्रकार X की प्रसरण-सहप्रसरण संरचना को दो आव्यूहों द्वारा वर्णित किया जाता है, जबकि प्रसरण आव्यूह Γ और संबंध आव्यूह C के रूप में दर्शाया गया है।
* [[जटिल सामान्य वितरण|सम्मिश्र सामान्य]] वितरण सम्मिश्र सामान्य सदिश से संबंधित होते है। एक सम्मिश्र सदिश {{nowrap|''X'' ∈ '''C'''<sup>''k''</sup>}} सामान्य वितरण कहा जाता है यदि इसके वास्तविक और काल्पनिक दोनों घटक संयुक्त रूप से 2k-आयामी बहुभिन्नरूp  सामान्य वितरण होता है। इस प्रकार X की प्रसरण-सहप्रसरण संरचना को दो आव्यूहों द्वारा वर्णित किया जाता है, जबकि प्रसरण आव्यूह Γ और संबंध आव्यूह C के रूप में दर्शाया गया है।
* आव्यूह सामान्य वितरण सामान्य रूप से वितरित आव्यूह के स्थितियो का वर्णन करता है।
* आव्यूह सामान्य वितरण सामान्य रूप से वितरित आव्यूह के स्थितियो का वर्णन करता है।
* गॉसियन प्रक्रियाएं सामान्य रूप से वितरित स्टोकेस्टिक प्रक्रियाएं हैं। इन्हें कुछ अनंत-आयामी [[हिल्बर्ट अंतरिक्ष|हिल्बर्ट स्थान]] H के तत्वों के रूप में देखा जा सकता है और इस प्रकार सामान्य स्थितियो के लिए बहुभिन्नरूपी सामान्य सदिश के अनुरूप होती है {{nowrap|''k'' {{=}} ∞}}. एक यादृच्छिक तत्व {{nowrap|''h'' ∈ ''H''}} सामान्य कहा जाता है, यदि किसी स्थिरांक {{nowrap|''a'' ∈ ''H''}} के लिए अदिश गुणन {{nowrap|(''a'', ''h'')}} एक (अविभाजित) सामान्य वितरण है। ऐसे गॉसियन ऐसे यादृच्छिक तत्व की वेरिएंस संरचना को रैखिक सहप्रसरण ऑपरेटर K: H → H के संदर्भ में वर्णित किया जा सकता है। इस प्रकार कई गाऊसी प्रक्रियाएँ अपने स्वयं के नाम रखने के लिए बहुत लोकप्रिय हो गई है  
* गॉसियन प्रक्रियाएं सामान्य रूप से वितरित स्टोकेस्टिक प्रक्रियाएं हैं। इन्हें कुछ अनंत-आयामी [[हिल्बर्ट अंतरिक्ष|हिल्बर्ट स्थान]] H के तत्वों के रूप में देखा जा सकता है और इस प्रकार सामान्य स्थितियो के लिए बहुभिन्नरूp  सामान्य सदिश के अनुरूप होती है {{nowrap|''k'' {{=}} ∞}}. एक यादृच्छिक तत्व {{nowrap|''h'' ∈ ''H''}} सामान्य कहा जाता है, यदि किसी स्थिरांक {{nowrap|''a'' ∈ ''H''}} के लिए अदिश गुणन {{nowrap|(''a'', ''h'')}} एक (अविभाजित) सामान्य वितरण है। ऐसे गॉसियन ऐसे यादृच्छिक तत्व की वेरिएंस संरचना को रैखिक सहप्रसरण ऑपरेटर K: H → H के संदर्भ में वर्णित किया जा सकता है। इस प्रकार कई गाऊसी प्रक्रियाएँ अपने स्वयं के नाम रखने के लिए बहुत लोकप्रिय हो गई है  
** ब्राउनी गति
** ब्राउनी गति
** [[ब्राउनियन पुल|ब्राउनियन ब्रिज]],
** [[ब्राउनियन पुल|ब्राउनियन ब्रिज]],
** ऑर्नस्टीन-उहलेनबेक प्रक्रिया
** ऑर्नस्टीन-उहलेनबेक प्रक्रिया
* [[गॉसियन क्यू-वितरण|गॉसियन q -]]वितरण एक सार गणितीय निर्माण है जो सामान्य वितरण के [[क्यू-एनालॉग|q -एनालॉग]] का प्रतिनिधित्व करता है।
* [[गॉसियन क्यू-वितरण|गॉसियन q -]]वितरण एक सार गणितीय निर्माण है जो सामान्य वितरण के [[क्यू-एनालॉग|q -एनालॉग]] का प्रतिनिधित्व करता है।
* q[[क्ष-गाऊसी|-गाऊसी]] गॉसियन वितरण का एक एनालॉग है, इस अर्थ में कि यह सॉलिस एंट्रॉपी को अधिकतम करता है और एक प्रकार का सॉलिस वितरण है। ध्यान दें कि यह वितरण उपरोक्त गॉसियन q-वितरण से भिन्न होता है।
* q[[क्ष-गाऊसी|-गाऊसी]] गॉसियन वितरण का एक एनालॉग है, इस अर्थ में कि यह सॉलिस एंट्रॉp  को अधिकतम करता है और एक प्रकार का सॉलिस वितरण है। ध्यान दें कि यह वितरण उपरोक्त गॉसियन q-वितरण से भिन्न होता है।
* कनियादकिस κ-गाऊसी वितरण गॉसियन वितरण का एक सामान्यीकरण है, जो [[कनियादकिस वितरण|कनियादकिस]] वितरण से उत्पन्न होता है और जो कनियादाकिस वितरणों में से एक है।
* कनियादकिस κ-गाऊसी वितरण गॉसियन वितरण का एक सामान्यीकरण है, जो [[कनियादकिस वितरण|कनियादकिस]] वितरण से उत्पन्न होता है और जो कनियादाकिस वितरणों में से एक है।


Line 520: Line 520:
     s^2 = \frac{n}{n-1} \hat\sigma^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2.
     s^2 = \frac{n}{n-1} \hat\sigma^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2.
   </math>
   </math>
बीच में अंतर <math>s^2</math> और <math>\sigma^2</math> बड़े n के लिए नगण्य रूप से छोटा हो जाता है। चूंकि परिमित नमूनों में, के उपयोग के पीछे की प्रेरणा <math>s^2</math> के रूप में यह है कि यह अंतर्निहित पैरामीटर का निष्पक्ष एस्टीमेटर  <math>\sigma^2</math> है, जबकि <<math>\sigma^2</math>  पक्षपातपूर्ण है। इसके अतिरिक्त , लेहमन-शेफ़े प्रमेय द्वारा एस्टीमेटर गणित <math>\sigma^2</math>  समान रूप से न्यूनतम भिन्नता निष्पक्ष अनुमानक है,<ref name="Kri127" /> जो इसे सभी निष्पक्ष लोगों के बीच सबसे अच्छा एस्टीमेटर बनाता है। चूंकि यह दिखाया जा सकता है कि पक्षपाती एस्टीमेटर  <math>\sigma^2</math> से अच्छे से है और इस प्रकार माध्य वर्ग त्रुटि (एमएसई) मानदंड के संदर्भ में <math>s^2</math> के रूप में होती है। परिमित नमूनों में दोनों  <math>s^2</math> और  <math>\sigma^2</math> के साथ स्केल किया हुआ ची-वर्ग वितरण {{nowrap|(''n'' − 1)}} स्वतंत्र की कोटियां होती है
बीच में अंतर <math>s^2</math> और <math>\sigma^2</math> बड़े n के लिए नगण्य रूप से छोटा हो जाता है। चूंकि परिमित नमूनों में, के उपयोग के p छे की प्रेरणा <math>s^2</math> के रूप में यह है कि यह अंतर्निहित पैरामीटर का निष्पक्ष एस्टीमेटर  <math>\sigma^2</math> है, जबकि <<math>\sigma^2</math>  पक्षपातपूर्ण है। इसके अतिरिक्त , लेहमन-शेफ़े प्रमेय द्वारा एस्टीमेटर गणित <math>\sigma^2</math>  समान रूप से न्यूनतम भिन्नता निष्पक्ष अनुमानक है,<ref name="Kri127" /> जो इसे सभी निष्पक्ष लोगों के बीच सबसे अच्छा एस्टीमेटर बनाता है। चूंकि यह दिखाया जा सकता है कि पक्षपाती एस्टीमेटर  <math>\sigma^2</math> से अच्छे से है और इस प्रकार माध्य वर्ग त्रुटि (एमएसई) मानदंड के संदर्भ में <math>s^2</math> के रूप में होती है। परिमित नमूनों में दोनों  <math>s^2</math> और  <math>\sigma^2</math> के साथ स्केल किया हुआ ची-वर्ग वितरण {{nowrap|(''n'' − 1)}} स्वतंत्र की कोटियां होती है
: <math>
: <math>
     s^2 \sim \frac{\sigma^2}{n-1} \cdot \chi^2_{n-1}, \qquad
     s^2 \sim \frac{\sigma^2}{n-1} \cdot \chi^2_{n-1}, \qquad
Line 564: Line 564:
'नैदानिक ​​प्लॉट' अधिक सहज रूप से आकर्षक लेकिन एक ही समय में व्यक्तिपरक होते हैं, क्योंकि वे शून्य परिकल्पना  को स्वीकार या अस्वीकार करने के लिए अनौपचारिक मानवीय निर्णय पर भरोसा करते हैं।
'नैदानिक ​​प्लॉट' अधिक सहज रूप से आकर्षक लेकिन एक ही समय में व्यक्तिपरक होते हैं, क्योंकि वे शून्य परिकल्पना  को स्वीकार या अस्वीकार करने के लिए अनौपचारिक मानवीय निर्णय पर भरोसा करते हैं।
* q -q प्लॉट, जिसे सामान्य प्रायिकता प्लॉट या रैंकिट प्लॉट के रूप में भी जाना जाता है - मानक सामान्य वितरण से संबंधित मात्राओं के अपेक्षित मानों के विरुद्ध डेटा सेट से क्रमबद्ध मानों का एक प्लॉट है और इस प्रकार यह फॉर्म के बिंदु का एक प्लॉट (Φ<sup>-1</sup>(p<sub>k</sub>), x<sub>(''k'')</sub>) है, जहां प्लॉटिंग पॉइंट p<sub>k,</sub> ''p<sub>k</sub>'' = (''k'' − ''α'')/(''n'' + 1 − 2''α'') के बराबर हैं और α एक समायोजन  स्थिरांक है, जो 0 और 1 के बीच कुछ भी हो सकता है। यदि शून्य परिकल्पना सत्य है, तो प्लॉट किए गए बिंदुओं को लगभग एक सीधी रेखा पर स्थित होना चाहिए।
* q -q प्लॉट, जिसे सामान्य प्रायिकता प्लॉट या रैंकिट प्लॉट के रूप में भी जाना जाता है - मानक सामान्य वितरण से संबंधित मात्राओं के अपेक्षित मानों के विरुद्ध डेटा सेट से क्रमबद्ध मानों का एक प्लॉट है और इस प्रकार यह फॉर्म के बिंदु का एक प्लॉट (Φ<sup>-1</sup>(p<sub>k</sub>), x<sub>(''k'')</sub>) है, जहां प्लॉटिंग पॉइंट p<sub>k,</sub> ''p<sub>k</sub>'' = (''k'' − ''α'')/(''n'' + 1 − 2''α'') के बराबर हैं और α एक समायोजन  स्थिरांक है, जो 0 और 1 के बीच कुछ भी हो सकता है। यदि शून्य परिकल्पना सत्य है, तो प्लॉट किए गए बिंदुओं को लगभग एक सीधी रेखा पर स्थित होना चाहिए।
* पी-पी प्लॉट - q -q प्लॉट के समान, लेकिन बहुत कम बार उपयोग किया जाता है। इस पद्धति में बिंदुओं की साजिश रचने के होते हैं (Φ(z<sub>(''k'')</sub>), पी<sub>k</sub>), जहाँ <math>\textstyle z_{(k)} = (x_{(k)}-\hat\mu)/\hat\sigma</math>. सामान्य रूप से वितरित डेटा के लिए यह प्लॉट (0, 0) और (1, 1) के बीच 45° रेखा पर स्थित होना चाहिए।
* p -प्लॉट - q -q प्लॉट के समान, लेकिन बहुत कम बार उपयोग किया जाता है। इस पद्धति में बिंदुओं की आलेखित करना सम्मलित है (Φ(z<sub>(''k'')</sub>), p <sub>k</sub>), जहाँ <math>\textstyle z_{(k)} = (x_{(k)}-\hat\mu)/\hat\sigma</math>. सामान्य रूप से वितरित डेटा के लिए यह प्लॉट (0, 0) और (1, 1) के बीच 45° रेखा पर स्थित होता है।
अच्छाई के योग्य परीमोमेंट :


''मोमेंट -आधारित परीमोमेंट'' :
====== फिट टेस्ट की गुडनेस  : ======
* डी'ऑगस्टिनो का के-स्क्वेर्ड परीमोमेंट
''मोमेंट -आधारित टेस्ट''   :
* जर्क-बेरा परीमोमेंट
* डी'ऑगस्टिनो का k-स्क्वेर्ड टेस्ट 
* शापिरो-विल्क परीमोमेंट : यह इस तथ्य पर आधारित है कि q -q प्लॉट में रेखा का ढलान ''σ'' है। टेस्ट्स नमूना वेरिएंस के मान के साथ उस ढलान के कम से कम वर्गों के अनुमान की तुलना करता है, और यदि ये दो मात्राएँ महत्वपूर्ण रूप से भिन्न हैं, तो शून्य परिकल्पना  को अस्वीकार कर देता है।
* जर्क-बेरा टेस्ट 
''प्रयोगसिद्ध वितरण फलन के आधार पर परीमोमेंट'' :
* शापिरो-विल्क टेस्ट : यह इस तथ्य पर आधारित है कि q -q प्लॉट में रेखा का प्रवणता ''σ'' है। इस प्रकार टेस्ट्स नमूना वेरिएंस के मान के साथ उस प्रवणता के कम से कम वर्गों के अनुमान की तुलना करता है और यदि ये दो मात्राएँ महत्वपूर्ण रूप से भिन्न हैं, तो शून्य परिकल्पना  को अस्वीकार कर देता है।
* एंडरसन-डार्लिंग परीमोमेंट
''प्रयोगसिद्ध वितरण फलन के आधार पर टेस्ट''   :
* एंडरसन-डार्लिंग टेस्ट 
* लिलिफ़ोर्स टेस्ट्स (कोल्मोगोरोव-स्मिर्नोव टेस्ट्स का एक रूपांतर)
* लिलिफ़ोर्स टेस्ट्स (कोल्मोगोरोव-स्मिर्नोव टेस्ट्स का एक रूपांतर)


=== सामान्य वितरण का बायेसियन विश्लेषण ===
=== सामान्य वितरण का बायेसियन विश्लेषण ===
सामान्य रूप से वितरित डेटा का बायेसियन विश्लेषण कई भिन्न -भिन्न संभावनाओं से सम्मिश्र है जिन पर विचार किया जा सकता है:
सामान्य रूप से वितरित डेटा का बायेसियन विश्लेषण कई भिन्न -भिन्न संभावनाओं के रूप में  सम्मिश्र है जिन पर विचार किया जा सकता है,
* या तो माध्य, या प्रसरण, या दोनों में से किसी को भी निश्चित क्वांटाइल नहीं माना जा सकता है।
* या तो माध्य या प्रसरण या दोनों में से किसी को भी निश्चित क्वांटाइल नहीं माना जा सकता है।
* जब भिन्नता अज्ञात होती है, तो विश्लेषण सीधे भिन्नता के संदर्भ में, या परिशुद्धता (सांख्यिकी), भिन्नता के पारस्परिक के संदर्भ में किया जा सकता है। सूत्रों को सटीकता के रूप में व्यक्त करने का कारण यह है कि अधिकांश स्थितियो का विश्लेषण सरल है।
* जब भिन्नता अज्ञात होती है, तो विश्लेषण सीधे भिन्नता के संदर्भ में या परिशुद्धता (सांख्यिकी) भिन्नता के पारस्परिक के संदर्भ में किया जा सकता है। सूत्रों को सटीकता के रूप में व्यक्त करने का कारण यह है कि अधिकांश स्थितियो का विश्लेषण सरल रूप में होता है।
* दोनों अविभाज्य और बहुभिन्नरूपी सामान्य वितरण स्थितियो पर विचार करने की आवश्यकता है।
* दोनों अविभाज्य और बहुभिन्न रूपी सामान्य वितरण स्थितियो पर विचार करने की आवश्यकता है।
* अज्ञात चर पर या तो संयुग्म पूर्व या [[अनुचित पूर्व]] वितरण रखा जा सकता है।
* अज्ञात चर पर या तो संयुग्म पूर्व या [[अनुचित पूर्व]] वितरण के रूप में होते है ।
* [[बायेसियन रैखिक प्रतिगमन]] में स्थितियो का एक अतिरिक्त सेट होता है, जहां मूल मॉडल में डेटा को सामान्य रूप से वितरित माना जाता है, और सामान्य पुजारियों को [[प्रतिगमन गुणांक]] पर रखा जाता है। परिणामी विश्लेषण स्वतंत्र रूप से वितरित डेटा के मूल स्थितियो के समान है।
* [[बायेसियन रैखिक प्रतिगमन]] में स्थितियो का एक अतिरिक्त सेट होता है, जहां मूल मॉडल में डेटा को सामान्य रूप से वितरित माना जाता है और सामान्य प्रायर को [[प्रतिगमन गुणांक]] पर रखा जाता है। इस प्रकार परिणामी विश्लेषण स्वतंत्र रूप से वितरित डेटा के मूल स्थितियो के समान है।


गैर-रैखिक-प्रतिगमन स्थितियो के सूत्रों को संयुग्मित पूर्व लेख में संक्षेपित किया गया है।
गैर-रैखिक-प्रतिगमन स्थितियो के सूत्रों को संयुग्मित पूर्व लेख में संक्षेपित किया गया है।
Line 703: Line 703:


==== अज्ञात माध्य और अज्ञात वेरिएंस के साथ ====
==== अज्ञात माध्य और अज्ञात वेरिएंस के साथ ====
i.i.d के एक सेट के लिए सामान्य रूप से वितरित डेटा बिंदु X का आकार ''n'' है जहां प्रत्येक व्यक्तिगत बिंदु ''x'' अनुसरण करता है <math>x \sim \mathcal{N}(\mu, \sigma^2)</math> अज्ञात माध्य μ और अज्ञात वेरिएंस σ के साथ<sup>2</sup>, एक संयुक्त (बहुभिन्नरूपी) संयुग्म पूर्व को माध्य और वेरिएंस पर रखा गया है, जिसमें [[सामान्य-उलटा-गामा वितरण|सामान्य-उलटा-गामा]] वितरण सम्मलित है।
i.i.d के एक सेट के लिए सामान्य रूप से वितरित डेटा बिंदु X का आकार ''n'' है जहां प्रत्येक व्यक्तिगत बिंदु ''x'' अनुसरण करता है <math>x \sim \mathcal{N}(\mu, \sigma^2)</math> अज्ञात माध्य μ और अज्ञात वेरिएंस σ के साथ<sup>2</sup>, एक संयुक्त (बहुभिन्नरूp ) संयुग्म पूर्व को माध्य और वेरिएंस पर रखा गया है, जिसमें [[सामान्य-उलटा-गामा वितरण|सामान्य-उलटा-गामा]] वितरण सम्मलित है।
तार्किक रूप से, यह निम्नानुसार उत्पन्न होता है:
तार्किक रूप से, यह निम्नानुसार उत्पन्न होता है:
# अज्ञात माध्य लेकिन ज्ञात वेरिएंस वाले स्थितियो के विश्लेषण से, हम देखते हैं कि अद्यतन समीकरणों में डेटा बिंदुओं के माध्य और डेटा बिंदुओं के कुल वेरिएंस से युक्त डेटा से पर्याप्त आँकड़े सम्मलित होते हैं, जिन्हें ज्ञात से बदले में गणना की जाती है डेटा बिंदुओं की संख्या से वेरिएंस विभाजित।
# अज्ञात माध्य लेकिन ज्ञात वेरिएंस वाले स्थितियो के विश्लेषण से, हम देखते हैं कि अद्यतन समीकरणों में डेटा बिंदुओं के माध्य और डेटा बिंदुओं के कुल वेरिएंस से युक्त डेटा से पर्याप्त आँकड़े सम्मलित होते हैं, जिन्हें ज्ञात से बदले में गणना की जाती है डेटा बिंदुओं की संख्या से वेरिएंस विभाजित।
Line 710: Line 710:
# उस स्थितियो को संभालने के लिए जहां माध्य और वेरिएंस दोनों अज्ञात हैं, हम माध्य और वेरिएंस पर स्वतंत्र प्राथमिकताएं रख सकते हैं, औसत माध्य के निश्चित अनुमानों के साथ, कुल वेरिएंस , पूर्व में वेरिएंस की गणना करने के लिए उपयोग किए जाने वाले डेटा बिंदुओं की संख्या, और चुकता का योग विचलन। चूंकि ध्यान दें कि वास्तव में, माध्य का कुल वेरिएंस अज्ञात वेरिएंस पर निर्भर करता है, और चुकता विचलन का योग जो वेरिएंस में जाता है (प्रकट होता है) अज्ञात माध्य पर निर्भर करता है। व्यवहार में, बाद की निर्भरता अपेक्षाकृत महत्वहीन है: वास्तविक माध्य को स्थानांतरित करने से उत्पन्न अंक एक समान राशि से बदल जाते हैं, और औसतन चुकता विचलन समान रहेगा। चूंकि , माध्य के कुल वेरिएंस के साथ ऐसा नहीं है: जैसे ही अज्ञात वेरिएंस बढ़ता है, माध्य का कुल वेरिएंस आनुपातिक रूप से बढ़ जाएगा, और हम इस निर्भरता को पकड़ना चाहेंगे।
# उस स्थितियो को संभालने के लिए जहां माध्य और वेरिएंस दोनों अज्ञात हैं, हम माध्य और वेरिएंस पर स्वतंत्र प्राथमिकताएं रख सकते हैं, औसत माध्य के निश्चित अनुमानों के साथ, कुल वेरिएंस , पूर्व में वेरिएंस की गणना करने के लिए उपयोग किए जाने वाले डेटा बिंदुओं की संख्या, और चुकता का योग विचलन। चूंकि ध्यान दें कि वास्तव में, माध्य का कुल वेरिएंस अज्ञात वेरिएंस पर निर्भर करता है, और चुकता विचलन का योग जो वेरिएंस में जाता है (प्रकट होता है) अज्ञात माध्य पर निर्भर करता है। व्यवहार में, बाद की निर्भरता अपेक्षाकृत महत्वहीन है: वास्तविक माध्य को स्थानांतरित करने से उत्पन्न अंक एक समान राशि से बदल जाते हैं, और औसतन चुकता विचलन समान रहेगा। चूंकि , माध्य के कुल वेरिएंस के साथ ऐसा नहीं है: जैसे ही अज्ञात वेरिएंस बढ़ता है, माध्य का कुल वेरिएंस आनुपातिक रूप से बढ़ जाएगा, और हम इस निर्भरता को पकड़ना चाहेंगे।
# इससे पता चलता है कि हम अज्ञात वेरिएंस पर माध्य से पहले एक सशर्त बनाते हैं, जिसमें एक हाइपरपैरामीटर पूर्व से जुड़े छद्म-अवलोकन के माध्य को निर्दिष्ट करता है, और एक अन्य पैरामीटर छद्म-टिप्पणियों की संख्या को निर्दिष्ट करता है। यह संख्या भिन्नता पर स्केलिंग पैरामीटर के रूप में फलन करती है, जिससे वास्तविक भिन्नता पैरामीटर के सापेक्ष माध्य के समग्र भिन्नता को नियंत्रित करना संभव हो जाता है। वेरिएंस के पूर्व में भी दो हाइपरपरमेटर्स होते हैं, एक पूर्व से जुड़े छद्म-अवलोकनों के वर्ग विचलन के योग को निर्दिष्ट करता है, और दूसरा एक बार फिर से छद्म-टिप्पणियों की संख्या को निर्दिष्ट करता है। ध्यान दें कि प्रत्येक पूर्व में छद्म-अवलोकन की संख्या निर्दिष्ट करने वाला एक हाइपरपैरामीटर होता है, और प्रत्येक स्थितियो में यह उस पूर्व के सापेक्ष भिन्नता को नियंत्रित करता है। इन्हें दो भिन्न -भिन्न हाइपरपैरामीटर के रूप में दिया जाता है जिससे की दो पुरोहितों के प्रसरण (अर्थात् विश्वास) को भिन्न -भिन्न नियंत्रित किया जा सके।
# इससे पता चलता है कि हम अज्ञात वेरिएंस पर माध्य से पहले एक सशर्त बनाते हैं, जिसमें एक हाइपरपैरामीटर पूर्व से जुड़े छद्म-अवलोकन के माध्य को निर्दिष्ट करता है, और एक अन्य पैरामीटर छद्म-टिप्पणियों की संख्या को निर्दिष्ट करता है। यह संख्या भिन्नता पर स्केलिंग पैरामीटर के रूप में फलन करती है, जिससे वास्तविक भिन्नता पैरामीटर के सापेक्ष माध्य के समग्र भिन्नता को नियंत्रित करना संभव हो जाता है। वेरिएंस के पूर्व में भी दो हाइपरपरमेटर्स होते हैं, एक पूर्व से जुड़े छद्म-अवलोकनों के वर्ग विचलन के योग को निर्दिष्ट करता है, और दूसरा एक बार फिर से छद्म-टिप्पणियों की संख्या को निर्दिष्ट करता है। ध्यान दें कि प्रत्येक पूर्व में छद्म-अवलोकन की संख्या निर्दिष्ट करने वाला एक हाइपरपैरामीटर होता है, और प्रत्येक स्थितियो में यह उस पूर्व के सापेक्ष भिन्नता को नियंत्रित करता है। इन्हें दो भिन्न -भिन्न हाइपरपैरामीटर के रूप में दिया जाता है जिससे की दो पुरोहितों के प्रसरण (अर्थात् विश्वास) को भिन्न -भिन्न नियंत्रित किया जा सके।
# यह तुरंत सामान्य-उलटा-गामा वितरण की ओर ले जाता है, जो अभी-अभी परिभाषित दो वितरण का गुणन है, जिसमें संयुग्मित पुजारियों का उपयोग किया जाता है (वेरिएंस पर एक  व्युत्क्रम गामा वितरण , और माध्य पर एक सामान्य वितरण , वेरिएंस पर सशर्त) और उन्हीं चार पैरामीटर के साथ अभी-अभी परिभाषित किया गया है।
# यह तुरंत सामान्य-उलटा-गामा वितरण की ओर ले जाता है, जो अभी-अभी परिभाषित दो वितरण का गुणन है, जिसमें संयुग्मित प्रायर का उपयोग किया जाता है (वेरिएंस पर एक  व्युत्क्रम गामा वितरण , और माध्य पर एक सामान्य वितरण , वेरिएंस पर सशर्त) और उन्हीं चार पैरामीटर के साथ अभी-अभी परिभाषित किया गया है।


प्राथमिकताओं को सामान्य रूप से निम्नानुसार परिभाषित किया गया है:
प्राथमिकताओं को सामान्य रूप से निम्नानुसार परिभाषित किया गया है:
Line 778: Line 778:
\end{संरेखित करें}</math>
\end{संरेखित करें}</math>


दूसरे शब्दों में, पश्च वितरण में p(μ) पर सामान्य वितरण के गुणन का रूप होता है{{!}}पी<sup>2</sup>) p(σ) पर प्रतिलोम गामा वितरण से गुना<sup>2</sup>), पैरामीटर के साथ जो उपरोक्त अद्यतन समीकरणों के समान हैं।
दूसरे शब्दों में, पश्च वितरण में p(μ) पर सामान्य वितरण के गुणन का रूप होता है{{!}}p <sup>2</sup>) p(σ) पर प्रतिलोम गामा वितरण से गुना<sup>2</sup>), पैरामीटर के साथ जो उपरोक्त अद्यतन समीकरणों के समान हैं।
}}
}}


Line 785: Line 785:
# बिल्कुल सामान्य डिस्ट्रीब्यूशन ;
# बिल्कुल सामान्य डिस्ट्रीब्यूशन ;
# लगभग सामान्य कानून, उदाहरण के लिए जब इस तरह के सन्निकटन को केंद्रीय सीमा प्रमेय द्वारा उचित ठहराया जाता है; और
# लगभग सामान्य कानून, उदाहरण के लिए जब इस तरह के सन्निकटन को केंद्रीय सीमा प्रमेय द्वारा उचित ठहराया जाता है; और
# वितरण सामान्य के रूप में तैयार किया गया - सामान्य वितरण किसी दिए गए माध्य और वेरिएंस के लिए अधिकतम एन्ट्रापी के सिद्धांत के साथ वितरण है।
# वितरण सामान्य के रूप में तैयार किया गया - सामान्य वितरण किसी दिए गए माध्य और वेरिएंस के लिए अधिकतम एन्ट्राp  के सिद्धांत के साथ वितरण है।
# प्रतिगमन समस्याएं - व्यवस्थित प्रअभिव्यक्ति के बाद पाए जाने वाले सामान्य वितरण को पर्याप्त रूप से अच्छी तरह से प्रतिरूपित किया गया है।
# प्रतिगमन समस्याएं - व्यवस्थित प्रअभिव्यक्ति के बाद पाए जाने वाले सामान्य वितरण को पर्याप्त रूप से अच्छी तरह से प्रतिरूपित किया गया है।


Line 791: Line 791:
[[File:QHarmonicOscillator.png|thumb|[[क्वांटम हार्मोनिक ऑसिलेटर]] की जमीनी अवस्था में गॉसियन वितरण होता है।]]भौतिकी में कुछ मात्राएँ सामान्य रूप से वितरित की जाती हैं, जैसा कि पहले [[जेम्स क्लर्क मैक्सवेल]] द्वारा प्रदर्शित किया गया था। ऐसी मात्राओं के उदाहरण हैं:
[[File:QHarmonicOscillator.png|thumb|[[क्वांटम हार्मोनिक ऑसिलेटर]] की जमीनी अवस्था में गॉसियन वितरण होता है।]]भौतिकी में कुछ मात्राएँ सामान्य रूप से वितरित की जाती हैं, जैसा कि पहले [[जेम्स क्लर्क मैक्सवेल]] द्वारा प्रदर्शित किया गया था। ऐसी मात्राओं के उदाहरण हैं:
* एक क्वांटम हार्मोनिक ऑसिलेटर में जमीनी अवस्था का प्रायिकता घनत्व फलन ।
* एक क्वांटम हार्मोनिक ऑसिलेटर में जमीनी अवस्था का प्रायिकता घनत्व फलन ।
* एक कण की स्थिति जो विसरण का अनुभव करती है। यदि प्रारंभ में कण एक विशिष्ट बिंदु पर स्थित है (अर्थात इसका प्रायिकता वितरण [[डिराक डेल्टा समारोह|डिराक डेल्टा फलन]] है), तो समय टी के बाद इसका स्थान वेरिएंस टी के साथ एक सामान्य वितरण द्वारा वर्णित किया गया है, जो [[[[प्रसार]] समीकरण]] को संतुष्ट करता है<math>\frac{\partial}{\partial t} f(x,t) = \frac{1}{2} \frac{\partial^2}{\partial x^2} f(x,t)</math>. यदि प्रारंभिक स्थान एक निश्चित घनत्व फलन द्वारा दिया गया है <math>g(x)</math>, फिर समय टी पर घनत्व जी और सामान्य पीडीएफ का कनवल्शन है।
* एक कण की स्थिति जो विसरण का अनुभव करती है। यदि प्रारंभ में कण एक विशिष्ट बिंदु पर स्थित है (अर्थात इसका प्रायिकता वितरण [[डिराक डेल्टा समारोह|डिराक डेल्टा फलन]] है), तो समय टी के बाद इसका स्थान वेरिएंस टी के साथ एक सामान्य वितरण द्वारा वर्णित किया गया है, जो [[[[प्रसार]] समीकरण]] को संतुष्ट करता है<math>\frac{\partial}{\partial t} f(x,t) = \frac{1}{2} \frac{\partial^2}{\partial x^2} f(x,t)</math>. यदि प्रारंभिक स्थान एक निश्चित घनत्व फलन द्वारा दिया गया है <math>g(x)</math>, फिर समय टी पर घनत्व जी और सामान्य p डीएफ का कनवल्शन है।


=== अनुमानित सामान्यता ===
=== अनुमानित सामान्यता ===
Line 904: Line 904:
साथ ही, यह पियर्सन ही थे जिन्होंने सबसे पहले वितरण को आधुनिक संकेतन के रूप में मानक विचलन σ के रूप में लिखा था। इसके तुरंत बाद, वर्ष 1915 में, [[रोनाल्ड फिशर]] ने सामान्य वितरण के सूत्र में स्थान पैरामीटर जोड़ा, इसे आजकल लिखे गए तरीके से व्यक्त करते हुए:
साथ ही, यह पियर्सन ही थे जिन्होंने सबसे पहले वितरण को आधुनिक संकेतन के रूप में मानक विचलन σ के रूप में लिखा था। इसके तुरंत बाद, वर्ष 1915 में, [[रोनाल्ड फिशर]] ने सामान्य वितरण के सूत्र में स्थान पैरामीटर जोड़ा, इसे आजकल लिखे गए तरीके से व्यक्त करते हुए:
<math display="block"> df = \frac{1}{\sqrt{2\sigma^2\pi}} e^{-(x - m)^2/(2\sigma^2)} \, dx.</math>
<math display="block"> df = \frac{1}{\sqrt{2\sigma^2\pi}} e^{-(x - m)^2/(2\sigma^2)} \, dx.</math>
मानक सामान्य शब्द, जो शून्य माध्य और इकाई भिन्नता के साथ सामान्य वितरण को दर्शाता है, 1950 के दशक के आसपास सामान्य उपयोग में आया, जो पी. जी. होएल (1947) द्वारा गणितीय आंकड़ों का परिचय और ए. एम. मूड (1950) द्वारा लोकप्रिय पाठ्यपुस्तकों में दिखाई देता है। ) सांख्यिकी के सिद्धांत का परिचय .<ref>{{cite web|title=Earliest uses... (entry STANDARD NORMAL CURVE)|url=http://jeff560.tripod.com/s.html}}</ref>
मानक सामान्य शब्द, जो शून्य माध्य और इकाई भिन्नता के साथ सामान्य वितरण को दर्शाता है, 1950 के दशक के आसपास सामान्य उपयोग में आया, जो p . जी. होएल (1947) द्वारा गणितीय आंकड़ों का परिचय और ए. एम. मूड (1950) द्वारा लोकप्रिय पाठ्यपुस्तकों में दिखाई देता है। ) सांख्यिकी के सिद्धांत का परिचय .<ref>{{cite web|title=Earliest uses... (entry STANDARD NORMAL CURVE)|url=http://jeff560.tripod.com/s.html}}</ref>




Line 915: Line 915:
* [[अधिकतम अर्ध पर पूरी चौड़ाई]]
* [[अधिकतम अर्ध पर पूरी चौड़ाई]]
* [[गौस्सियन धुंधलापन]] - कनवल्शन, जो कर्नेल के रूप में सामान्य वितरण का उपयोग करता है
* [[गौस्सियन धुंधलापन]] - कनवल्शन, जो कर्नेल के रूप में सामान्य वितरण का उपयोग करता है
* [[संशोधित आधा सामान्य वितरण|संशोधित आधा सामान्य]] वितरण <ref name="Sun, Kong and Pal">{{cite journal |last1=Sun |first1=Jingchao |last2=Kong |first2=Maiying |last3=Pal |first3=Subhadip |title=The Modified-Half-Normal distribution: Properties and an efficient sampling scheme |journal=Communications in Statistics - Theory and Methods |date=22 June 2021 |pages=1–23 |doi=10.1080/03610926.2021.1934700 |s2cid=237919587 |url=https://www.tandfonline.com/doi/abs/10.1080/03610926.2021.1934700?journalCode=lsta20 |issn=0361-0926}}</ref> पीडीएफ के साथ <math>(0, \infty)</math> के रूप में दिया जाता है <math> f(x)= \frac{2\beta^{\frac{\alpha}{2}} x^{\alpha-1} \exp(-\beta x^2+ \gamma x )}{\Psi{\left(\frac{\alpha}{2}, \frac{ \gamma}{\sqrt{\beta}}\right)}}</math>, जहाँ <math>\Psi(\alpha,z)={}_1\Psi_1\left(\begin{matrix}\left(\alpha,\frac{1}{2}\right)\\(1,0)\end{matrix};z \right)</math> [[फॉक्स-राइट साई समारोह|फॉक्स-राइट साई फलन]] को दर्शाता है।
* [[संशोधित आधा सामान्य वितरण|संशोधित आधा सामान्य]] वितरण <ref name="Sun, Kong and Pal">{{cite journal |last1=Sun |first1=Jingchao |last2=Kong |first2=Maiying |last3=Pal |first3=Subhadip |title=The Modified-Half-Normal distribution: Properties and an efficient sampling scheme |journal=Communications in Statistics - Theory and Methods |date=22 June 2021 |pages=1–23 |doi=10.1080/03610926.2021.1934700 |s2cid=237919587 |url=https://www.tandfonline.com/doi/abs/10.1080/03610926.2021.1934700?journalCode=lsta20 |issn=0361-0926}}</ref> p डीएफ के साथ <math>(0, \infty)</math> के रूप में दिया जाता है <math> f(x)= \frac{2\beta^{\frac{\alpha}{2}} x^{\alpha-1} \exp(-\beta x^2+ \gamma x )}{\Psi{\left(\frac{\alpha}{2}, \frac{ \gamma}{\sqrt{\beta}}\right)}}</math>, जहाँ <math>\Psi(\alpha,z)={}_1\Psi_1\left(\begin{matrix}\left(\alpha,\frac{1}{2}\right)\\(1,0)\end{matrix};z \right)</math> [[फॉक्स-राइट साई समारोह|फॉक्स-राइट साई फलन]] को दर्शाता है।
* [[सामान्य रूप से वितरित और असंबद्ध का अर्थ स्वतंत्र नहीं है]]
* [[सामान्य रूप से वितरित और असंबद्ध का अर्थ स्वतंत्र नहीं है]]
* [[अनुपात सामान्य वितरण|अनुपात सामान्य डिस्ट्रीब्यूशन]]  
* [[अनुपात सामान्य वितरण|अनुपात सामान्य डिस्ट्रीब्यूशन]]  

Revision as of 10:24, 14 August 2023

Normal distribution
Probability density function
Normal Distribution PDF.svg
The red curve is the standard normal distribution
Cumulative distribution function
Normal Distribution CDF.svg
Notation
Parameters = mean (location)
= variance (squared scale)
Support
PDF Failed to parse (Conversion error. Server ("cli") reported: "SyntaxError: Expected "-", "[", "\\", "\\begin", "\\begin{", "]", "^", "_", "{", "}", [ \t\n\r], [%$], [().], [,:;?!'], [/|], [0-9], [><~], [\-+*=], or [a-zA-Z] but "ई" found.in 1:44"): {\displaystyle \frac{1}{\sigma\sqrt{2\pi}} ई^{-\frac{1}{2}\बाएं(\frac{x - \mu}{\sigma}\right)^2}}

सांख्यिकी में, एक सामान्य वितरण या गॉसियन वितरण वास्तविक मान यादृच्छिक चर के लिए निरंतर प्रायिकता वितरण का एक प्रकार है और जबकि इसकी चर की प्रायिकता घनत्व फलन का सामान्य प्रकार है

पैरामीटर वितरण का औसत माध्य अपेक्षित मान है और इसकी माध्यिका और मोड सांख्यिकी पद्धति है, जबकि पैरामीटर इसका मानक विचलन है और इस प्रकार वितरण का वेरिएंस के रूप में है, गाऊसी वितरण के साथ एक यादृच्छिक चर को सामान्य वितरण कहा जाता है और इसे सामान्य विचलन भी कहा जाता है।

सामान्य वितरण आंकड़ों में महत्वपूर्ण होते हैं और अधिकांशतः प्राकृतिक विज्ञान और सामाजिक विज्ञान में वास्तविक-मान वाले यादृच्छिक चर का प्रतिनिधित्व करने के लिए उपयोग किए जाते हैं जिनके वितरण ज्ञात नहीं होते हैं।[1][2] और इस प्रकार उनका महत्व आंशिक रूप से केंद्रीय सीमा प्रमेय के कारण होता है। इसमें कहा गया है कि, कुछ शर्तों के अनुसार परिमित माध्य और वेरिएंस के साथ एक यादृच्छिक चर के कई नमूनों टिप्पणियों का औसत स्वयं एक यादृच्छिक चर है, जिसका वितरण अभिसरण नमूने की संख्या बढ़ने पर सामान्य वितरण में होता है। इसलिए, भौतिक मात्राएँ जो कई स्वतंत्र प्रक्रियाओं का योग होने की आशंका की जाती हैं, जैसे माप त्रुटियां, अधिकांशतः ऐसे वितरण होते हैं जो लगभग सामान्य रूप में होते है।[3]

इसके अतिरिक्त, गॉसियन वितरण में कुछ अद्वितीय गुण हैं जो विश्लेषणात्मक अध्ययनों के रूप में मान हैं। उदाहरण के लिए, सामान्य विचलन के निश्चित संग्रह का कोई भी रैखिक संयोजन एक सामान्य विचलन है। इस प्रकार कई परिणाम और विधियाँ, जैसे कि अनिश्चितता का प्रसार और कम से कम वर्ग पैरामीटर फिटिंग विश्लेषणात्मक रूप से स्पष्ट रूप से प्राप्त की जा सकती हैं जब प्रासंगिक चर सामान्य रूप से वितरित किए जाते हैं।

एक सामान्य वितरण को कभी-कभी अनौपचारिक रूप से बेल कर्व कहा जाता है।[4] चूंकि, कई अन्य वितरण बेल के आकार के होते हैं, जैसे कॉची छात्र का t-वितरण और लॉजिस्टिक वितरण इत्यादि के रूप में होते है। अन्य नामों के लिए नेमिंग देखते हैं।

बहुभिन्नरूp सामान्य वितरण में सदिश के लिए और आव्यूह सामान्य वितरण में मेट्रिसेस के लिए यूनीवेरिएट प्रायिकता वितरण सामान्यीकृत किया जाता है।

परिभाषाएँ

मानक सामान्य डिस्ट्रीब्यूशन

सामान्य वितरण का सबसे सरल स्थिति मानक सामान्य वितरण या इकाई सामान्य वितरण के रूप में जाना जाता है। यह एक विशेष स्थिति है जब u = 0 और और इसे इस प्रायिकता घनत्व फलन (या घनत्व) द्वारा वर्णित किया गया है

चर z का माध्य 0 है और वेरिएंस और मानक विचलन घनत्व 1 है इसका शीर्ष पर है और मोड़ बिंदु और .के रूप में है

यद्यपि उपरोक्त घनत्व को सामान्यतः सामान्य मानक के रूप में जाना जाता है, कुछ लेखकों ने उस शब्द का उपयोग सामान्य वितरण के अन्य संस्करणों का वर्णन करने के लिए किया है। उदाहरण के लिए, कार्ल फ्रेडरिक गॉस ने एक बार मानक को सामान्य के रूप में परिभाषित किया था

जिसमें 1/2 का वेरिएंस होता है और स्टीफन स्टिगलर[5] एक बार मानक सामान्य के रूप में परिभाषित किया गया है

जिसका एक सरल फलन ात्मक रूप और एक वेरिएंस है

सामान्य सामान्य डिस्ट्रीब्यूशन

प्रत्येक सामान्य वितरण मानक सामान्य वितरण का एक संस्करण है, जिसका डोमेन एक कारक मानक विचलन द्वारा बढ़ाया गया है और फिर द्वारा औसत मान का अनुवाद किया गया है:

प्रायिकता घनत्व द्वारा स्केल किया जाना चाहिए जिससे की समाकलन 1 के रूप में होता है।

यदि एक मानक सामान्य विचलन के रूप में है, तो अपेक्षित मान के साथ एक सामान्य वितरण होता है और मानक विचलन . के बराबर है और मानक सामान्य वितरण के एक कारक द्वारा विस्तारित किया जा सकता है और इस प्रकार द्वारा स्थानांतरित किया जाता है, एक भिन्न सामान्य वितरण प्राप्त करने के लिए द्वारा स्थानांतरित किया जा सकता है, जिसे कहा जाता है. इसके विपरीत यदि पैरामीटर के साथ एक सामान्य विचलन और के रूप में है फिर यह वितरण को फिर से बढ़ाया जा सकता है और सूत्र के माध्यम से स्थानांतरित किया जा सकता है इसे मानक सामान्य वितरण में बदलने के लिए इस चर को का मानकीकृत रूप भी कहा जाता है.

अंकन

मानक गाऊसी वितरण की प्रायिकता घनत्व को अधिकांशतः ग्रीक अक्षर से निरूपित किया जाता है, इस प्रकार मानक सामान्य वितरण शून्य माध्य और इकाई प्रसरण के साथकिया जा सकता है।[6] ग्रीक अक्षर फी का वैकल्पिक रूप, , भी अधिकांशतः प्रयोग किया जाता है।

सामान्य वितरण को अधिकांशतः या कहा जाता है.[7] इस प्रकार जब एक यादृच्छिक चर सामान्य रूप से माध्य और मानक विचलन , के साथ वितरित किया जाता है, तो कोई

लिख सकता है

वैकल्पिक मानकीकरण

कुछ लेखक विचलन या वेरिएंस के अतिरिक्त वितरण की चौड़ाई को परिभाषित करने वाले पैरामीटर के रूप में अच्छे का उपयोग करने की वकालत करते हैं और इस प्रकार परिशुद्धता को सामान्यतः वेरिएंस के व्युत्क्रम के रूप में परिभाषित किया जाता है,[8] तब इस प्रकार वितरण का सूत्र बन जाता है,

इस विकल्प का संख्यात्मक संगणना में लाभ होने का दावा किया जाता है शून्य के बहुत निकटतम होता है और कुछ संदर्भों में सूत्रों को सरल करता है, जैसे बहुभिन्नरूp सामान्य वितरण वाले चर के बायेसियन आंकड़ों में करते हैं।

वैकल्पिक रूप से, मानक विचलन का व्युत्क्रम परिशुद्धता के रूप में परिभाषित किया जा सकता है, जिस स्थिति में सामान्य वितरण की अभिव्यक्ति बन जाती है

स्टिगलर के अनुसार, यह सूत्रीकरण बहुत सरल और याद रखने में आसान सूत्र और वितरण की मात्राओं के लिए सरल अनुमानित सूत्रों के कारण लाभप्रद है।

सामान्य वितरण प्राकृतिक और , पैरामीटर और प्राकृतिक सांख्यिकी x और x2 के साथ एक चरघातांकी फॅमिली बनाते हैं। सामान्य वितरण के लिए दोहरी अपेक्षा पैरामीटर η1 = μ और η2 = μ2 + σ2.के रूप में होते है,

संचयी वितरण फलन

मानक सामान्य वितरण का संचयी वितरण फलन (सीडीएफ), सामान्यतः बड़े ग्रीक अक्षर फाई से दर्शाया जाता है, जो अभिन्न रूप में है

संबंधित त्रुटि फलन एक यादृच्छिक चर की प्रायिकता देता है, इस प्रकार माध्य 0 के सामान्य वितरण के साथ और भिन्नता 1/2 सीमा में गिरती है . इस प्रकार है:

इन समाकलन को प्रारंभिक फलन के संदर्भ में व्यक्त नहीं किया जा सकता है और अधिकांशतः इन्हें विशेष फलन कहा जाता है। चूंकि, कई संख्यात्मक सन्निकटन ज्ञात हैं और इस प्रकार अधिक के लिए सामान्य सीडीएफ और सामान्य क्वांटाइल फलन के लिए संख्यात्मक सन्निकटन देखें।

दो फलन निकट सेसंबंधित हैं, अर्थात्

घनत्व के साथ सामान्य सामान्य वितरण के लिए , अर्थ और विचलन , संचयी वितरण फलन के रूप में होते है

मानक सामान्य सीडीएफ का पूरक, , अधिकांशतः Q फलन कहा जाता है, विशेष रूप से इंजीनियरिंग टेक्स्ट में,[9][10] यह प्रायिकता देता है कि एक मानक सामान्य यादृच्छिक चर का मान के रूप में अधिक हो जाता है : . की अन्य परिभाषाएँ -फलन जिनमें से सभी सरल रूपांतरण हैं , का भी कभी-कभी उपयोग किया जाता है।[11]

मानक सामान्य सीडीएफ के एक फलन का ग्राफ बिंदु (0,1/2) के चारों ओर 2 गुना घूर्णी समरूपता है; वह है, . इसका प्रतिपक्षी (अनिश्चितकालीन अभिन्न) निम्नानुसार व्यक्त किया जा सकता है,

मानक सामान्य वितरण के सीडीएफ को एक श्रृंखला में भागों द्वारा एकीकरण द्वारा विस्तारित किया जा सकता है,

जहाँ डबल क्रमगुणित को दर्शाता है।

बड़े x के लिए सीडीएफ का एक ऐसिम्टाटिक विस्तार द्वारा एकीकरण का उपयोग करके प्राप्त किया जा सकता है और इस प्रकार अधिक जानकारी के लिए, त्रुष्टि फलन #एसिम्प्टोटिक विस्तार देखते है।[12]

टेलर श्रृंखला सन्निकटन का उपयोग करके मानक सामान्य वितरण सीडीएफ के लिए एक त्वरित सन्निकटनके रूप में पाये जाते है,


मानक विचलन और कवरेज

सामान्य वितरण के लिए, सेट के 68.27% के लिए औसत खाते से दूर एक मानक विचलन से कम मान; जबकि औसत खाते से दो मानक विचलन 95.45% हैं; और तीन मानक विचलन 99.73% हैं।

एक सामान्य वितरण से निकाले गए लगभग 68% मान एक मानक विचलन σ माध्य से दूर होते हैं और इस प्रकार लगभग 95% मान दो मानक विचलन के भीतर होते हैं और लगभग 99.7% तीन मानक विचलन के भीतर होते हैं।[4] इस तथ्य को 68–95–99.7 एम्पिरिकल नियम या 3-सिग्मा नियम के रूप में जाना जाता है।

अधिक अच्छे रूप से, एक सामान्य विचलन के बीच की सीमा में होने की प्रायिकता और द्वारा दिया गया है

12 महत्वपूर्ण अंकों के लिए, का मान इस प्रकार हैं,

OEIS
1 0.682689492137 0.317310507863
3 .15148718753
OEISA178647
2 0.954499736104 0.045500263896
21 .9778945080
OEISA110894
3 0.997300203937 0.002699796063
370 .398347345
OEISA270712
4 0.999936657516 0.000063342484
15787 .1927673
5 0.999999426697 0.000000573303
1744277 .89362
6 0.999999998027 0.000000001973
506797345 .897

बड़े के लिए कोई सन्निकटन मान .का उपयोग किया जा सकता है

क्वांटाइल फलन

किसी वितरण का क्वांटाइल फलन संचयी वितरण फलन का व्युत्क्रम होता है। मानक सामान्य वितरण के क्वांटाइल फलन को प्रोबिट फलन कहा जाता है और इसे व्युत्क्रम त्रुटि फलन के रूप में संदर्भ में व्यक्त किया जा सकता है,

औसत के साथ एक सामान्य यादृच्छिक चर के लिए और वेरिएंस क्वांटाइल फलन के रूप में है

क्वांटाइल मानक सामान्य वितरण का सामान्य रूप से निरूपित किया जाता है . इन मानों का उपयोग परिकल्पना टेस्ट्स , कॉन्फिडेंस अंतराल के निर्माण और Q-Q प्लॉट में किया जाता है। एक सामान्य यादृच्छिक चर अधिक हो जाता है, इस प्रकार प्रायिकता के साथ अंतराल के बाहर होता है प्रायिकता के साथ . विशेष रूप से, क्वांटाइल 1.96 है; इसलिए केवल 5% स्थितियो में एक सामान्य यादृच्छिक चर अंतराल के बाहर होता है।

निम्न तालिका क्वांटाइल इस प्रकार देती है कि एक निर्दिष्ट प्रायिकता . के साथ श्रेणी के रूप में निर्दिष्ट होता है, ये मान नमूना औसत और ऐसिम्टाटिक रूप से सामान्य वितरण वाले अन्य सांख्यिकीय अनुमानकों के लिए टॉलरेंस अंतराल निर्धारित करने के लिए उपयोगी होते है। ध्यान दें कि निम्न तालिका दिखाती है , नहीं जैसा कि ऊपर परिभाषित किया गया है।

 
0.80 1.281551565545 0.999 3.290526731492
0.90 1.644853626951 0.9999 3.890591886413
0.95 1.959963984540 0.99999 4.417173413469
0.98 2.326347874041 0.999999 4.891638475699
0.99 2.575829303549 0.9999999 5.326723886384
0.995 2.807033768344 0.99999999 5.730728868236
0.998 3.090232306168 0.999999999 6.109410204869

छोटे के लिए , क्वांटाइल फलन में उपयोगी ऐसिम्टाटिक विस्तार के रूप में होते है

[13]


गुण

सामान्य वितरण ही एकमात्र ऐसा वितरण है जिसके पहले दो से परे संचयी शून्य होते हैं। अर्थात् माध्य और प्रसरण के अतिरिक्त यह निर्दिष्ट माध्य और वेरिएंस के लिए अधिकतम एन्ट्राp प्रायिकता वितरण के साथ निरंतर वितरण है।[14][15] गीरी ने मानते हुए यह दिखाया है कि माध्य और वेरिएंस परिमित रूप में होते है और सामान्य वितरण ही एकमात्र वितरण है जहां स्वतंत्र ड्रा के सेट से गणना की गई माध्य और वेरिएंस एक दूसरे से स्वतंत्र हैं।[16][17]

सामान्य वितरण दीर्घवृत्ताकार वितरण का एक उपवर्ग है। सामान्य वितरण अपने माध्य के बारे में सममित वितरण है और संपूर्ण वास्तविक रेखा पर गैर-शून्य है। जैसे कि यह उन चरों के लिए उपयुक्त मॉडल नहीं हो सकता है जो स्वाभाविक रूप से धनात्मक या दृढ़ता से विषम हैं, जैसे किसी व्यक्ति का वजन या शेयर (वित्त) की कीमत इत्यादि। ऐसे चरों को अन्य वितरण द्वारा अच्छे से वर्णित किया जा सकता है, जैसे लॉग-सामान्य वितरण या पारेटो वितरण इत्यादि।

सामान्य वितरण का मान व्यावहारिक रूप से शून्य होता है जब मान माध्य से कुछ मानक विचलनों से अधिक दूर स्थित होता है, उदाहरण के लिए, तीन मानक विचलनों का प्रसार कुल वितरण के 0.27% को छोड़कर सभी को कवर करता है। इसलिए, यह एक उपयुक्त मॉडल नहीं हो सकता है जब कोई आउटलेर्स मानों के एक महत्वपूर्ण अंश की अपेक्षा करता है जो कई मानक विचलन को माध्य से दूर करते हैं और कम से कम वर्ग और अन्य सांख्यिकीय अनुमान विधियां जो सामान्य रूप से वितरित चर के लिए इष्टतम हैं, ऐसे डेटा के लिए अधिकांशतः इस प्रकार प्रयुक्त होने पर अत्यधिक अविश्वसनीय हो जाती हैं। उन स्थितियो में, अधिक भारी टेल्ड वाले वितरण की कल्पना की जानी चाहिए और उचित मजबूत सांख्यिकीय अनुमान विधियों को प्रयुक्त किया जाना चाहिए।

गॉसियन वितरण स्टेबल वितरण के फॅमिली से संबंधित है, जो स्वतंत्र और समान रूप से वितरित यादृच्छिक चर के योगों के आकर्षण हैं | इस प्रकार स्वतंत्र, समान रूप से वितरित वितरण माध्य या वेरिएंस परिमित होते है या नहीं। गॉसियन को छोड़कर जो एक सीमित स्थिति में सभी स्टेबल वितरण में भारी टेल्ड और अनंत वेरिएंस होता है। यह उन कुछ वितरण में से एक है जो स्टेबल हैं और जिनमें प्रायिकता घनत्व फलन के रूप में हैं, जिन्हें विश्लेषणात्मक रूप से व्यक्त किया जा सकता है, अन्य कॉची वितरण और लेवी वितरण हैं।

समरूपता और डेरिवेटिव

घनत्व के साथ सामान्य वितरण (अर्थ और मानक विचलन ) के निम्नलिखित गुण हैं

  • यह बिंदु के चारों ओर सममित है, जो एक ही समय में बहुलक सांख्यिकी, माध्यिका और वितरण का माध्य है।[18]
  • यह अनिमॉडल है इसका पहला यौगिक के लिए धनात्मक है और के लिए ऋणात्मक और पर केवल शून्य के रूप में है
  • वक्र और x-अक्ष से घिरा क्षेत्र इकाई है अर्थात एक के बराबर है।
  • इसकी पहली अवकलज के रूप में है
  • इसके घनत्व में दो विभक्ति बिंदु होते हैं जहाँ दूसरा अवकलज होता है शून्य है और चिह्न बदलता है, इसका अर्थ एक मानक विचलन दूर स्थित है, अर्थात् और [18]
  • इसका घनत्व लघुगणकीय रूप से अवतल फलन है।[18]
    • इसका घनत्व असीम रूप से भिन्न फलन है, वास्तव में ऑर्डर 2 का सुपरस्मूथ है।[19]

इसके अतिरिक्त घनत्व मानक सामान्य वितरण में निम्नलिखित गुण भी हैं, अर्थात और )

  • इसकी पहली अवकलज है
  • इसका दूसरा अवकलज है
  • अधिक सामान्यतः, इसकी nवें अवकलज है जहाँ n(प्रायिकतात्मक ) हर्मिट बहुपद है।[20]
  • प्रायिकता है कि एक सामान्य रूप से वितरित चर ज्ञात के साथ और एक विशेष सेट में है, इस तथ्य का उपयोग करके गणना की जा सकती है कि भिन्न एक मानक सामान्य वितरण है।

मोमेंट

चर के अपेक्षित मान का प्लैन और निरपेक्ष मोमेंट और गणित के रूप में होते है। यदि अपेक्षित मान का शून्य है, इन पैरामीटर को केंद्रीय मोमेंट कहा जाता है; अन्यथा इन पैरामीटर को गैर-केंद्रीय मोमेंट कहा जाता है। सामान्यतः हम केवल पूर्णांक क्रम वाले मोमेंट .में रुचि रखते हैं

यदि एक सामान्य वितरण है, गैर-केंद्रीय मोमेंट के रूप में उपस्थित हैं और किसी के लिए परिमित हैं जिसका वास्तविक भाग −1 से बड़ा है। किसी भी गैर-ऋणात्मक पूर्णांक के लिए प्लैन केंद्रीय मोमेंट इस प्रकार हैं[21]

यहाँ दोहरे क्रमगुणन को दर्शाता है, अर्थात सभी संख्याओं का गुणनफल से 1 तक जिसमें समान समानता है

केंद्रीय निरपेक्ष मोमेंट सभी समान क्रम के लिए प्लैन मोमेंट के साथ मेल खाते हैं, लेकिन विषम क्रमागत के लिए अशून्य हैं। किसी भी गैर-ऋणात्मक पूर्णांक के लिए इस रूप में होते है

अंतिम सूत्र किसी भी गैर-पूर्णांक के लिए मान्य होते है, अर्थात जब प्लैन और निरपेक्ष मोमेंट को कॉन्फ़्लूएंट हाइपरज्यामितीय फलन और के संदर्भ में व्यक्त किया जा सकता है

ये अभिव्यक्ति मान्य रहते हैं यदि पूर्णांक नहीं है। सामान्यीकृत हर्माइट बहुपद भी देखें।

Order Non-central moment Central moment
1
2
3
4
5
6
7
8

गणितीय की अपेक्षा उस घटना पर आधारित थी सशर्त अन्तराल में द्वारा दिया गया है

जहाँ और क्रमशः घनत्व और संचयी वितरण फलन . के लिए के रूप में होता है, इसे व्युत्क्रम मिल्स अनुपात के रूप में जाना जाता है। ध्यान दें कि ऊपर, घनत्व का व्युत्क्रम मिल्स अनुपात में मानक सामान्य घनत्व के अतिरिक्त प्रयोग किया जाता है, इसलिए यहां हमारे पास के अतिरिक्त . हैं।

फूरियर रूपांतरण और विशिष्ट फलन

एक सामान्य घनत्व का फूरियर रूपांतरण माध्य के साथ और मानक विचलन के रूप में है[22]

जहाँ काल्पनिक इकाई है। यदि माध्य , पहला कारक 1 है और फूरियर ट्रांसफॉर्म एक स्टेबल कारक के अतिरिक्त आवृत्ति डोमेन पर एक सामान्य घनत्व है, इस प्रकार 0 और मानक विचलन के साथ . विशेष रूप से, मानक सामान्य वितरण एक फूरियर रूपांतरण का एक अभिलक्षणिक फलन है।

प्रायिकता सिद्धांत में, एक वास्तविक-मान यादृच्छिक चर के प्रायिकता वितरण का फूरियर रूपांतरण विशेष फलन प्रायिकता सिद्धांत से निकटता से जुड़ा हुआ है उस चर के रूप में होते है, जिसके अपेक्षित मान के रूप में परिभाषित किया गया है वास्तविक चर के एक फलन के रूप में फूरियर रूपांतरण की आवृत्ति पैरामीटर के रूप में होते है। इस परिभाषा को विश्लेषणात्मक रूप से एक सम्मिश्र -मान चर तक बढ़ाया जा सकता है[23] दोनों के बीच संबंध इस प्रकार है,


मोमेंट और संचयी जनरेटिंग फलन

एक वास्तविक यादृच्छिक चर का मोमेंट जनरेटिंग फलन का अपेक्षित मान है और इस प्रकार वास्तविक पैरामीटर के एक फलन के रूप में . घनत्व के साथ सामान्य वितरण के लिए , अर्थ और विचलन , मोमेंट जनरेटिंग फलन के रूप में उपस्थित है और इसके बराबर है

संचयी जनरेटिंग फलन मोमेंट जनरेटिंग फलन का लघुगणक है, अर्थात्

चूँकि यह एक द्विघात बहुपद के रूप में होते है, केवल पहले दो संचयी अशून्य हैं, अर्थात् माध्य और भिन्नता .के रूप में होते है

स्टीन ऑपरेटर और वर्ग

स्टीन की विधि के भीतर स्टीन ऑपरेटर और एक यादृच्छिक चर का वर्ग हैं और सभी बिल्कुल निरंतर फलन का वर्ग .के रूप में होता है

शून्य वेरिएंस सीमा

सीमा में (गणित) जब शून्य हो जाता है, प्रायिकता घनत्व अंततः शून्य हो जाता है , लेकिन यदि ,बिना सीमा के बढ़ता है जबकि इसका समाकल 1 के बराबर रहता है। इसलिए, सामान्य वितरण को साधारण फलन (गणित) के रूप में परिभाषित नहीं किया जा सकता जब होता है

चूंकि, सामान्य वितरण को एक सामान्यीकृत फलन के रूप में शून्य वेरिएंस के साथ परिभाषित किया जा सकता है; विशेष रूप से, डिराक का डेल्टा फलन के रूप में माध्यम से अनुवादित है, इसका सीडीएफ तब माध्य ,द्वारा अनुवादित हैवीसाइड स्टेप फलन है,


अधिकतम एन्ट्राp

एक निर्दिष्ट माध्य के साथ वास्तविक पर सभी प्रायिकता वितरण में से और वेरिएंस , सामान्य वितरण अधिकतम एंट्रॉp प्रायिकता वितरण वाला एक है।[24] यदि प्रायिकता घनत्व फलन के साथ एक सतत यादृच्छिक चर है और इस प्रकार फिर एन्ट्राp को परिभाषित किया जाता है[25][26][27]

जहाँ कभी भी शून्य समझा जाता है . इस फलन कार्यात्मकता को अधिकतम किया जा सकता है, इस शर्त के अधीन कि वितरण उचित रूप से सामान्यीकृत है और इसमें वैरिएबल कैलकुलस का उपयोग करके एक निर्दिष्ट भिन्नता है। दो लैग्रेंज गुणक वाले एक फलन को परिभाषित किया गया है

जहाँ अभी के लिए, माध्य के साथ कुछ घनत्व फलन के रूप में माना जाता है और मानक विचलन .के रूप में होता है

अधिकतम एन्ट्राp पर, एक छोटा बदलाव के बारे में भिन्नता उत्पन्न करता है, के बारे में जो 0 के बराबर होता है

चूंकि यह किसी भी छोटे के लिए होना चाहिए, कोष्ठक में शब्द शून्य के रूप में होता है और यील्ड के लिए हल करना चाहिए:

और को हल करने के लिए कॉन्सट्रेंट समीकरणों का उपयोग करने से सामान्य वितरण का घनत्व प्राप्त होता है:

एक सामान्य वितरण की एन्ट्रॉp बराबर होती है

अन्य गुण

  1. यदि किसी यादृच्छिक चर का अभिलक्षणिक फलन रूप का है , जहां एक बहुपद है, तो जोज़ेफ़ मार्सिंकीविज़ के नाम पर मार्सिंकीविज़ प्रमेय का दावा है कि अधिक से अधिक एक द्विघात बहुपद हो सकता है, और इसलिए एक सामान्य यादृच्छिक चर है। इस परिणाम का परिणाम यह है कि सामान्य वितरण गैर-शून्य संचयकों की सीमित संख्या (दो) वाला एकमात्र वितरण है।
  2. यदि और संयुक्त रूप से सामान्य और असंबंधित हैं, तो वे स्वतंत्र हैं। यह आवश्यक है कि और संयुक्त रूप से सामान्य रूप में होते है और इस प्रकार गुणधर्म टिक नहीं पाती। गैर सामान्य यादृच्छिक चर के लिए असंबद्धता का अर्थ स्वतंत्र नहीं होता है।
  3. एक सामान्य वितरण का दूसरे से कुल्बैक-लीब्लर विचलन द्वारा दिया जाता है,
  4. सामान्य वितरण के लिए फिशर सूचना मैट्रिक्स wrt गणित> \ mu</ गणित>और >\sigma^2</math> विकर्ण है और फार्म लेता है गणित प्रदर्शन = ब्लॉक> \mathcal I (\mu, \sigma^2) = \begin{pmatrix} \frac{1}{\sigma^2} & 0 \\ 0 & \frac{1}{2\sigma^4} \end{ pmatrix} </ गणित> सामान्य वितरण के लिए फिशर सूचना मैट्रिक्स wrt गणित> \ mu</ गणित>और >\sigma^2</math> विकर्ण है और फार्म लेता है।
  5. एक सामान्य बंटन के माध्य से पहले का संयुग्मी एक अन्य सामान्य बंटन है।[28] विशेष रूप से, अगर आईआईडी हैं और पूर्व है , फिर के अनुमानक के लिए पश्च वितरण होगा
  6. सामान्य वितरण की फॅमिली न केवल घातीय फॅमिली (EF) बनाता है, जिससे कि वास्तव में द्विघात विस्थापन फलन (NEF) के साथ एक प्राकृतिक घातीय फॅमिली (NEF) बनाता है। सामान्य वितरण के कई गुण NEF-QVF वितरण, NEF वितरण या EF वितरण के सामान्य गुणों के अनुसार होते हैं।एन NEF or EF के वितरण में 6 फॅमिली के रूप में सम्मलित हैं, जिनमें पॉइसन, गामा, द्विपद और ऋणात्मक द्विपद वितरण के रूप में सम्मलित हैं, जबकि कई सामान्य फॅमिली संभावना और सांख्यिकी में अध्ययन कर रहे हैं
  7. सूचना ज्यामिति में, सामान्य वितरण की फॅमिली निरंतर वक्रता के साथ एक सांख्यिकीय कई गुना बनाता है . (±1)-कनेक्शन के संबंध में एक ही फॅमिली कई गुना फ्लैट है और .[29]

संबंधित डिस्ट्रीब्यूशन

केंद्रीय सीमा प्रमेय

जैसे-जैसे असतत घटनाओं की संख्या बढ़ती है, फलन एक सामान्य वितरण जैसा दिखने लगता है
प्रायिकता घनत्व फलन की तुलना, के योग के लिए वृद्धि के साथ एक सामान्य वितरण के लिए उनके अभिसरण को दिखाने के लिए निष्पक्ष 6-पक्षीय पासा , केंद्रीय सीमा प्रमेय के अनुसार। नीचे-दाएं ग्राफ़ में, पिछले ग्राफ़ के स्मूथ प्रोफाइल को सामान्य वितरण (ब्लैक कर्व) के साथ पुन: व्यवस्थित, आरोपित और तुलना की जाती है।

केंद्रीय सीमा प्रमेय कहता है कि कुछ बहुत सामान्य स्थितियों के अनुसार कई यादृच्छिक चरों के योग का लगभग सामान्य वितरण होता है। इस प्रकार विशेष रूप से, जहाँ स्वतंत्र और समान रूप से समान वितरण के रूप में होता है और शून्य माध्य और वेरिएंस के साथ समान रूप से वितरित यादृच्छिक चर और उनका माध्य द्वारा मापा जाता है

फिर, जैसे-जैसे बढ़ता है, की प्रायिकता वितरण शून्य माध्य और वेरिएंस .के साथ सामान्य वितरण की ओर प्रवृत्त होता है

प्रमेय को चरों तक बढ़ाया जाता है, जो स्वतंत्र रूप में नहीं हैं या समान रूप से वितरित नहीं हैं यदि कुछ कॉन्सट्रेंट को निर्भरता की डिग्री और वितरण के मोमेंट पर रखा जाता है।

व्यवहार में आने वाले अनेक परीक्षण सांख्यिकी, अंक (सांख्यिकी) और एस्टीमेटर अभ्यास में सामना करते हैं, उनमें कुछ यादृच्छिक चर के योग होते हैं और इससे भी अधिक अनुमानकों को अभिव्यक्ति फलन (सांख्यिकी) के उपयोग के माध्यम से यादृच्छिक चर के योग के रूप में दर्शाया जा सकता है। केंद्रीय सीमा प्रमेय का अर्थ है कि उन सांख्यिकीय पैरामीटर में असमान रूप से सामान्य वितरण होता है।

केंद्रीय सीमा प्रमेय का अर्थ यह भी है कि कुछ वितरण को सामान्य वितरण द्वारा अनुमानित किया जा सकता है, उदाहरण के लिए:

  • द्विपद वितरण माध्य के साथ डी मोइवर-लाप्लास प्रमेय है और वेरिएंस बड़े के लिए और के लिए 0 या 1 के बहुत निकटतम रूप में नहीं होते है।
  • पैरामीटर के साथ पॉइसन वितरण औसत के साथ लगभग सामान्य रूप में होते है और वेरिएंस , के बड़े मानों के लिए .के रूप में होते है[30]
  • ची-वर्ग वितरण औसत के साथ लगभग सामान्य है और वेरिएंस , बड़े के लिए . रूप में होते है
  • छात्र का टी-वितरण माध्य 0 और प्रसरण 1 के साथ लगभग सामान्य है जब बड़ी है।

ये अनुमान पर्याप्त रूप से अच्छे हैं या नहीं यह इस बात पर निर्भर करता है कि उनकी आवश्यकता किस प्रयोजन के लिए है और सामान्य वितरण के संयोजन की दर इस तरह के अनुमान वितरण के अंत में कम अच्छे होते हैं।

केंद्रीय सीमा प्रमेय में सन्निकटन त्रुटि के लिए एक सामान्य ऊपरी सीमा बेरी-एसेन प्रमेय द्वारा दी गई है और इस प्रकार सन्निकटन में सुधार एडगेवर्थ विस्तार द्वारा दिया गया है।

इस प्रमेय का उपयोग गॉसियन नॉइज़ के रूप में कई समान नॉइज़ स्रोतों के योग को सही ठहराने के लिए भी किया जा सकता है। इसको AWGN. में दिखाया गया है।

सामान्य चर के संचालन और फलन

a: किसी फलन का प्रायिकता घनत्व एक सामान्य चर का साथ और . बी: एक फलन की प्रायिकता घनत्व दो सामान्य चर के और , जहाँ , , , , और . सी: दो सहसंबद्ध सामान्य चर के दो फलन की संयुक्त प्रायिकता घनत्व का हीट मैप और , जहाँ , , , , और . डी: एक फलन की प्रायिकता घनत्व 4 iid मानक सामान्य चर के। इनकी गणना रे-ट्रेसिंग की संख्यात्मक विधि द्वारा की जाती है।[31]

प्रायिकता घनत्व फलन संचयी वितरण फलन और एक या एक से अधिक स्वतंत्र या सहसंबद्ध सामान्य चर के किसी भी फलन के व्युत्क्रम संचयी वितरण फलन की गणना रे-ट्रेसिंग की संख्यात्मक विधि से की जा सकती है।[31] (मैटलैब कोड) और इस प्रकार निम्नलिखित अनुभागों में हम कुछ विशेष स्थितियो को देख सकते है।

एकल सामान्य चर पर संचालन

यदि माध्य के साथ सामान्य रूप से वितरित किया जाता है और वेरिएंस , तब

  • , किसी भी वास्तविक संख्या के लिए और , भी सामान्य रूप से माध्य के साथ वितरित किया जाता है और मानक विचलन . अर्थात्, रैखिक परिवर्तनों के अनुसार सामान्य वितरण का फॅमिली संवृत रूप में होते है।
  • का घातांक लॉग-सामान्य रूप से: eX ~ ln(N (μ, σ2)). वितरित किया जाता है
  • का पूर्ण मान सामान्य वितरण |X| ~ Nf (μ, σ2).को फोल्ड कर देता है, यदि इसे अर्ध-सामान्य वितरण के रूप में जाना जाता है।
  • सामान्यीकृत अवशिष्टों का निरपेक्ष मान, |X - μ|/σ, में स्वतंत्र की एक डिग्री के साथ ची वितरण होते है। .
  • X/σ के वर्ग में स्वतंत्र की एक डिग्री के साथ गैर-केन्द्रीय ची-वर्ग वितरण है: . यदि , वितरण को केवल ची-वर्ग कहा जाता है।
  • एक सामान्य चर की लॉग प्रायिकता केवल इसकी प्रायिकता घनत्व फलन का लघुगणक है,
    चूंकि यह एक मानक सामान्य चर का एक स्केल्ड और स्थानांतरित वर्ग है, इसे स्केल्ड और शिफ्ट किए गए ची-स्क्वेर्ड चर के रूप में वितरित किया जाता है।
  • वेरिएबलX का वितरण एक अंतराल [a, b] तक सीमित है, जिसे छोटा सामान्य वितरण कहा जाता है।
  • (X- μ)−2 का लेवी वितरण स्थान 0 और स्केल σ2 के साथ है
दो स्वतंत्र सामान्य चर पर संचालन
  • यदि और साधन के साथ दो स्वतंत्र ( प्रायिकता सिद्धांत) सामान्य यादृच्छिक चर हैं , और मानक विचलन , , फिर उनका योग भी सामान्य रूप से वितरित किया जाता है, सामान्य रूप से वितरित यादृच्छिक चर का योग माध्य के साथ और वेरिएंस .के रूप में होता है
  • विशेष रूप से, यदि और शून्य माध्य और वेरिएंस के साथ स्वतंत्र सामान्य विचलन हैं, तब और शून्य माध्य और वेरिएंस के साथ स्वतंत्र और सामान्य रूप से वितरित होते है यह ध्रुवीकरण की पहचान की एक विशेष स्थिति है।[32]
  • यदि , माध्य के साथ दो स्वतंत्र सामान्य विचलन हैं और विचलन , और , यादृच्छिक वास्तविक संख्याएं हैं, इस प्रकार चर
    भी सामान्य रूप से माध्य के साथ वितरित किया जाता है और विचलन . यह इस प्रकार है कि सामान्य वितरण स्टेबल वितरण घातांक के साथ है
दो स्वतंत्र मानक सामान्य चर पर संचालन

यदि और माध्य 0 और प्रसरण 1 के साथ दो स्वतंत्र मानक सामान्य यादृच्छिक चर के रूप में हैं

  • उनका योग और अंतर सामान्य रूप से माध्य शून्य और वेरिएंस .दो के साथ वितरित किया जाता है
  • उनका गुणन घनत्व फलन के साथ सामान्य वितरण का अनुसरण करता है[33] इस प्रकार जहाँ दूसरे प्रकार का संशोधित बेसेल फलन है। यह वितरण , पर असंबद्ध शून्य के आसपास सममित है और इसका विशिष्ट फलन प्रायिकता सिद्धांत .के रूप में है
  • उनका अनुपात मानक कॉची वितरण का अनुसरण करता है: .
  • उनका यूक्लिडियन मानदंड रेले वितरण है।

कई स्वतंत्र सामान्य चर पर संचालन

  • स्वतंत्र सामान्य विचलन का कोई भी रैखिक संयोजन एक सामान्य विचलन है।
  • यदि स्वतंत्र मानक सामान्य यादृच्छिक चर हैं, तो उनके वर्गों के योग में ची-वर्ग वितरण है और स्वतंत्र की कोटियां इस प्रकार है,
  • यदि साधन के साथ सामान्य रूप से वितरित यादृच्छिक चर स्वतंत्र हैं और प्रसरण , तो उनका नमूना माध्य नमूना मानक विचलन से स्वतंत्र है,[34] जिसे बसु के प्रमेय या कोचरन के प्रमेय का उपयोग करके प्रदर्शित किया जा सकता है।[35] इन दो मात्राओं के अनुपात में छात्र का t-वितरण होता है स्वतंत्र की कोटियो के रूप में होती है
  • यदि , स्वतंत्र मानक सामान्य यादृच्छिक चर हैं, तो वर्गों के सामान्यीकृत योगों का अनुपात होता है F-वितरण साथ (n, m) स्वतंत्र की कोटियां होती है [36]

एकाधिक सहसंबद्ध सामान्य चर पर संचालन

घनत्व फलन पर संचालन

विभाजित सामान्य वितरण को विभिन्न सामान्य वितरण के घनत्व फलन के स्केल किए गए वर्गों के रूप में सम्मलित होने और एक में एकीकृत करने के लिए घनत्व को कम करने के संदर्भ में सबसे सीधे परिभाषित किया गया है। इस प्रकार छोटा किया गया सामान्य वितरण एकल घनत्व फलन के एक खंड को फिर से स्केल करने का परिणाम होता है।

अनंत विभाज्यता और क्रैमर की प्रमेय

किसी भी धनात्मक पूर्णांक के लिए , माध्य के साथ कोई भी सामान्य वितरण और वेरिएंस के योग का वितरण है, इस प्रकार स्वतंत्र सामान्य विचलन प्रत्येक माध्य के साथ और वेरिएंस . इस गुणधर्म को अनंत विभाज्यता प्रायिकता कहा जाता है।[37]

इसके विपरीत यदि और स्वतंत्र यादृच्छिक चर और उनकी राशि हैं एक सामान्य वितरण है, फिर दोनों और सामान्य विचलन के रूप में होना चाहिए।[38]

इस परिणाम को क्रैमर के अपघटन प्रमेय के रूप में जाना जाता है और यह कहने के बराबर है कि दो वितरण का कनवल्शन सामान्य है यदि और केवल यदि दोनों सामान्य हैं। क्रैमर के प्रमेय का तात्पर्य है कि स्वतंत्र गैर-गाऊसी चरों के एक रैखिक संयोजन का कभी भी बिल्कुल सामान्य वितरण नहीं होता है, चूंकि यह यादृच्छिक ढंग से निकटता से संपर्क कर सकता है।[39]

बर्नस्टीन की प्रमेय

बर्नस्टीन के प्रमेय में कहा गया है कि यदि और स्वतंत्र हैं और और स्वतंत्र भी हैं, तो X और Y दोनों का सामान्य वितरण अनिवार्य रूप से होते है।[40][41]

अधिक सामान्यतः, यदि स्वतंत्र यादृच्छिक चर हैं, फिर दो भिन्न रैखिक संयोजन और स्वतंत्र रूप में होता है, यदि और केवल यदि सभी सामान्य हैं और , जहाँ के वेरिएंस .को दर्शाता है[40]

एक्सटेंशन

सामान्य वितरण की धारणा प्रायिकता सिद्धांत में सबसे महत्वपूर्ण वितरण होने के कारण यूनीवेरिएट के मानक ढांचे से बहुत आगे तक बढ़ा दिया गया है, जो कि एक आयामी स्थिति (1) के रूप में है और इस प्रकार इन सभी विस्तारों को सामान्य या गाऊसी नियम भी कहा जाता है, इसलिए नामों में एक निश्चित अस्पष्टता उपस्थित होती है।

  • बहुभिन्नरूp सामान्य वितरण के-आयामी यूक्लिडियन स्थान में गॉसियन नियम का वर्णन करता है। एक सदिश XRk बहुभिन्नरूp -सामान्य रूप से वितरित है यदि इसके घटकों का कोई रैखिक संयोजन Σk
    j=1
    aj Xj
    एक अविभाजित सामान्य वितरण है। इस प्रकार X का प्रसरण एक k×k सममित सकारात्मक-निश्चित आव्यूह V के रूप में है। बहुभिन्नरूp सामान्य वितरण दीर्घवृत्ताकार वितरण का एक विशेष स्थिति है। जैसे, k = 2 स्थितियो में इसका आइसो-घनत्व लोकी दीर्घवृत्त हैं और यादृच्छिक k के स्थितियो में दीर्घवृत्त हैं।
  • संशोधित गाऊसी वितरण सामान्य वितरण का एक संशोधित संस्करण है जिसमें सभी ऋणात्मक तत्व 0 पर रीसेट हो जाते हैं
  • सम्मिश्र सामान्य वितरण सम्मिश्र सामान्य सदिश से संबंधित होते है। एक सम्मिश्र सदिश XCk सामान्य वितरण कहा जाता है यदि इसके वास्तविक और काल्पनिक दोनों घटक संयुक्त रूप से 2k-आयामी बहुभिन्नरूp सामान्य वितरण होता है। इस प्रकार X की प्रसरण-सहप्रसरण संरचना को दो आव्यूहों द्वारा वर्णित किया जाता है, जबकि प्रसरण आव्यूह Γ और संबंध आव्यूह C के रूप में दर्शाया गया है।
  • आव्यूह सामान्य वितरण सामान्य रूप से वितरित आव्यूह के स्थितियो का वर्णन करता है।
  • गॉसियन प्रक्रियाएं सामान्य रूप से वितरित स्टोकेस्टिक प्रक्रियाएं हैं। इन्हें कुछ अनंत-आयामी हिल्बर्ट स्थान H के तत्वों के रूप में देखा जा सकता है और इस प्रकार सामान्य स्थितियो के लिए बहुभिन्नरूp सामान्य सदिश के अनुरूप होती है k = ∞. एक यादृच्छिक तत्व hH सामान्य कहा जाता है, यदि किसी स्थिरांक aH के लिए अदिश गुणन (a, h) एक (अविभाजित) सामान्य वितरण है। ऐसे गॉसियन ऐसे यादृच्छिक तत्व की वेरिएंस संरचना को रैखिक सहप्रसरण ऑपरेटर K: H → H के संदर्भ में वर्णित किया जा सकता है। इस प्रकार कई गाऊसी प्रक्रियाएँ अपने स्वयं के नाम रखने के लिए बहुत लोकप्रिय हो गई है
  • गॉसियन q -वितरण एक सार गणितीय निर्माण है जो सामान्य वितरण के q -एनालॉग का प्रतिनिधित्व करता है।
  • q-गाऊसी गॉसियन वितरण का एक एनालॉग है, इस अर्थ में कि यह सॉलिस एंट्रॉp को अधिकतम करता है और एक प्रकार का सॉलिस वितरण है। ध्यान दें कि यह वितरण उपरोक्त गॉसियन q-वितरण से भिन्न होता है।
  • कनियादकिस κ-गाऊसी वितरण गॉसियन वितरण का एक सामान्यीकरण है, जो कनियादकिस वितरण से उत्पन्न होता है और जो कनियादाकिस वितरणों में से एक है।

यदि यादृच्छिक चर X में वितरण होता है तो उसके पास दो खण्ड सामान्य वितरण के रूप में होते है।

जहां μ माध्य है और σ1 और σ2 क्रमशः माध्य के बाएँ और दाएँ वितरण के मानक विचलन हैं।

इस वितरण का माध्य, वेरिएंस और तीसरा केंद्रीय मोमेंट निर्धारित किया जाता है,[42]

जहाँ E(X), V(X) और T(X) क्रमशः माध्य, वेरिएंस और तीसरा केंद्रीय मोमेंट के रूप में होता है ।

गॉसियन नियम के मुख्य व्यावहारिक उपयोगों में से एक व्यवहार में आने वाले कई भिन्न -भिन्न यादृच्छिक चरों के प्रयोगसिद्ध वितरण को मॉडल करना है। ऐसे स्थितियो में एक संभावित विस्तार वितरण का एक समृद्ध फॅमिली होता है, जिसमें दो से अधिक पैरामीटर होते है और इसलिए प्रयोगसिद्ध वितरण को अधिक अच्छे रूप से फिट करने में सक्षम होते है इस प्रकार एक्सटेंशन के उदाहरण होते है।

  • पियर्सन वितरण — प्रायिकता वितरण का एक चार-पैरामीटर फॅमिली जो विभिन्न विषमता और कर्टोसिस मानों को सम्मलित करने के लिए सामान्य नियम का विस्तार करता है।
  • सामान्यीकृत सामान्य वितरण , जिसे घातांक घात वितरण के रूप में भी जाना जाता है और इस प्रकार मोटे या पतले ऐसिम्टाटिक व्यवहार के साथ वितरण टेल्ड की अनुमति देता है।

सांख्यिकीय निष्कर्ष

पैरामीटर का अनुमान

अधिकांशतः ऐसा होता है कि हम सामान्य वितरण के पैरामीटर को नहीं जानते हैं, बल्कि इसके अतिरिक्त उन्हें अनुमान सिद्धांत से करना चाहते हैं। अर्थात एक सामान्य से जनसंख्या से एक नमूना लेकर हम पैरामीटर के अनुमानित मानों को सीखना चाहते है और इस प्रकार और . इस समस्या का मानक दृष्टिकोण अधिकतम प्रायिकता विधि है, जिसके लिए लॉग-लाइबिलिटी फलन को अधिकतम करने की आवश्यकता होती है

और के संबंध में अवकलन लेने और पहले क्रम की स्थितियों की परिणामी प्रणाली को हल करने से अधिकतम प्रायिकता अनुमान प्राप्त होता है,


नमूना मतलब

एस्टीमेटर को नमूना माध्य कहा जाता है, क्योंकि यह सभी अवलोकनों का अंकगणितीय माध्य है। आँकड़ा , के लिए पूर्ण और पर्याप्त है और इसलिए लेहमैन-शेफ़े प्रमेय के अनुसार समान रूप से न्यूनतम विचरण निष्पक्ष (यूएमवीयू) एस्टीमेटर है।.[43] परिमित नमूनों में यह सामान्य रूप से वितरित किया जाता है:

इस एस्टीमेटर का प्रसरण व्युत्क्रम फिशर सूचना आव्यूह के μμ-तत्व के बराबर है। इसका तात्पर्य है कि एस्टीमेटर परिमित नमूना कुशल रूप में होते है। इस प्रकार व्यावहारिक महत्व का तथ्य यह है कि की मानक त्रुटि (सांख्यिकी) के समानुपातिक होता है, अर्थात यदि कोई मानक त्रुटि को 10 के गुणक से घटाना चाहता है, तो उसे नमूने में अंकों की संख्या 100 के गुणक से बढ़ानी होती है। यह तथ्य जनमत सर्वेक्षणों के लिए नमूना आकार और मोंटे कार्लो सिमुलेशन में परीक्षणों की संख्या को निर्धारित करने में व्यापक रूप से उपयोग किया जाता है।

ऐसिम्टाटिक सिद्धांत (सांख्यिकी) के दृष्टिकोण से संगत एस्टीमेटर है, अर्थात, यह प्रायिकता में अभिसरण के रूप में है, जैसा . एस्टीमेटर भी ऐसिम्टाटिक सामान्यता है, जो इस तथ्य का एक सरल परिणाम है कि यह परिमित नमूनों में सामान्य है:

नमूना वेरिएंस

एस्टीमेटर को नमूना प्रसरण कहा जाता है, क्योंकि यह नमूने का प्रसरण गणित है और इस प्रकार अभ्यास में,और इस प्रकार के अतिरिक्त अधिकांशतः एक अन्य एस्टीमेटर का उपयोग किया जाता है। यह अन्य एस्टीमेटर से निरूपित करते है और इसे नमूना वेरिएंस भी कहा जाता है, जो शब्दावली में एक निश्चित अस्पष्टता का प्रतिनिधित्व करता है और इसका वर्गमूल नमूना मानक विचलन कहा जाता है। एस्टीमेटर , से भिन्न होता है और (n − 1) भाजक में n के अतिरिक्त तथाकथित बेसेल होता है

बीच में अंतर और बड़े n के लिए नगण्य रूप से छोटा हो जाता है। चूंकि परिमित नमूनों में, के उपयोग के p छे की प्रेरणा के रूप में यह है कि यह अंतर्निहित पैरामीटर का निष्पक्ष एस्टीमेटर है, जबकि < पक्षपातपूर्ण है। इसके अतिरिक्त , लेहमन-शेफ़े प्रमेय द्वारा एस्टीमेटर गणित समान रूप से न्यूनतम भिन्नता निष्पक्ष अनुमानक है,[43] जो इसे सभी निष्पक्ष लोगों के बीच सबसे अच्छा एस्टीमेटर बनाता है। चूंकि यह दिखाया जा सकता है कि पक्षपाती एस्टीमेटर से अच्छे से है और इस प्रकार माध्य वर्ग त्रुटि (एमएसई) मानदंड के संदर्भ में के रूप में होती है। परिमित नमूनों में दोनों और के साथ स्केल किया हुआ ची-वर्ग वितरण (n − 1) स्वतंत्र की कोटियां होती है

इन अभिव्यक्ति में से पहला दर्शाता है कि का वेरिएंस के बराबर है, जो व्युत्क्रम फ़िशर सूचना आव्यूह के σσ-तत्व से थोड़ा अधिक होता है। इस प्रकार, के लिए एक कुशल आकलनकर्ता के रूप में नहीं है और इसके अतिरिक्त UMVU के रूप में होते है, हम यह निष्कर्ष निकाल सकते हैं कि परिमित-नमूना कुशल एस्टीमेटर के लिए उपस्थित नहीं होता है।

ऐसिम्टाटिक सिद्धांत को प्रयुक्त करना, दोनों एस्टीमेटर और संगत हैं, अर्थात वे प्रायिकता में अभिमुख होते है नमूना आकार के रूप में होते है, दोनों अनुमानक भी स्पर्शोन्मुख रूप से सामान्य हैं,

विशेष रूप से, दोनों एस्टीमेटर .के लिए स्पर्शोन्मुख रूप से कुशल हैं

कॉन्फिडेंस अंतराल

कोचरन के प्रमेय के अनुसार, सामान्य वितरण के लिए नमूने का अर्थ और नमूना प्रसरण s2 स्वतंत्र (प्रायिकता सिद्धांत हैं, जिसका अर्थ है कि उनके संयुक्त वितरण पर विचार करने से कोई लाभ नहीं हो सकता है। एक विलोम प्रमेय भी है, यदि एक नमूने में नमूना माध्य और नमूना वेरिएंस स्वतंत्र रूप में हैं, तो नमूना सामान्य वितरण के रूप में आया होता है । तथाकथित t-सांख्यिकी के निर्माण के लिए और s के बीच की स्वतंत्र को नियोजित किया जा सकता है,

गणित>
 t = \frac{\hat\mu-\mu}{s/\sqrt{n}} = \frac{\overline{x}-\mu}{\sqrt{\frac{1}{n(n-1) )}\sum(x_i-\overline{x})^2}} \sim t_{n-1}
 </ गणित>

इस क्वांटाइल t में छात्र का t-वितरण (n − 1) है, इस प्रकार स्वतंत्र की डिग्री और यह एक सहायक आँकड़ा पैरामीटर के मान से स्वतंत्र है। इस t-सांख्यिकी के वितरण को बदलने से हमें μ के लिए कॉन्फिडेंस अंतराल का निर्माण करने की अनुमति मिलती है;[44] इसी तरह, आँकड़ा s2 के χ2 वितरण को उलटने से हमें σ2 के लिए कॉन्फ़िडेंस इंटरवल देता है:[45]

जहां tk,pऔर χ 2
k,p
 
क्रमशः t- और χ2 वितरण की pth मात्राएँ हैं। ये कॉन्फिडेंस इंटरवल आत्मकॉन्फिडेंस स्तर 1 − α के होते हैं, जिसका अर्थ है कि ट्रू मान μ और σ2 प्रायिकता या सार्थकता स्तर α के साथ इन अंतरालों के बाहर आते हैं। इस प्रकार व्यवहार में लोग सामान्यतः α = 5% लेते हैं, जिसके परिणामस्वरूप 95% कॉन्फिडेंस अंतराल के रूप में होता है।

अनुमानित सूत्र और s2 के असिम्प्टोटिक वितरण से प्राप्त किए जा सकते हैं।

अनुमानित सूत्र n के बड़े मानों के लिए मान्य रूप में हो जाते हैं और और मैन्युअल गणना के लिए अधिक सुविधाजनक होते हैं क्योंकि मानक सामान्य क्वांटाइल्स zα/2 n पर निर्भर नहीं होती हैं। विशेष रूप से सबसे लोकप्रिय मान α = 5%, का परिणाम |z0.025| = 1.96 के रूप में होता है,

सामान्य टेस्ट्स

सामान्यता टेस्ट्स इस प्रायिकता का आकलन करते हैं कि दिए गए डेटा सेट {x1, ..., xn} सामान्य वितरण के रूप में होता है। सामान्यतः शून्य परिकल्पना H0 यह है कि टेस्ट्स सामान्य रूप से अनिर्दिष्ट माध्य μ और वेरिएंस σ2 के साथ वितरित किए जाते हैं और इस प्रकार वैकल्पिक Ha कि वितरण यादृच्छिक है। इस समस्या के लिए कई टेस्ट्स 40 से अधिक तैयार किए गए हैं। उनमें से अधिक प्रमुख नीचे उल्लिखित हैं

'नैदानिक ​​प्लॉट' अधिक सहज रूप से आकर्षक लेकिन एक ही समय में व्यक्तिपरक होते हैं, क्योंकि वे शून्य परिकल्पना को स्वीकार या अस्वीकार करने के लिए अनौपचारिक मानवीय निर्णय पर भरोसा करते हैं।

  • q -q प्लॉट, जिसे सामान्य प्रायिकता प्लॉट या रैंकिट प्लॉट के रूप में भी जाना जाता है - मानक सामान्य वितरण से संबंधित मात्राओं के अपेक्षित मानों के विरुद्ध डेटा सेट से क्रमबद्ध मानों का एक प्लॉट है और इस प्रकार यह फॉर्म के बिंदु का एक प्लॉट (Φ-1(pk), x(k)) है, जहां प्लॉटिंग पॉइंट pk, pk = (kα)/(n + 1 − 2α) के बराबर हैं और α एक समायोजन स्थिरांक है, जो 0 और 1 के बीच कुछ भी हो सकता है। यदि शून्य परिकल्पना सत्य है, तो प्लॉट किए गए बिंदुओं को लगभग एक सीधी रेखा पर स्थित होना चाहिए।
  • p -p प्लॉट - q -q प्लॉट के समान, लेकिन बहुत कम बार उपयोग किया जाता है। इस पद्धति में बिंदुओं की आलेखित करना सम्मलित है (Φ(z(k)), p k), जहाँ . सामान्य रूप से वितरित डेटा के लिए यह प्लॉट (0, 0) और (1, 1) के बीच 45° रेखा पर स्थित होता है।
फिट टेस्ट की गुडनेस  :

मोमेंट -आधारित टेस्ट  :

  • डी'ऑगस्टिनो का k-स्क्वेर्ड टेस्ट
  • जर्क-बेरा टेस्ट
  • शापिरो-विल्क टेस्ट : यह इस तथ्य पर आधारित है कि q -q प्लॉट में रेखा का प्रवणता σ है। इस प्रकार टेस्ट्स नमूना वेरिएंस के मान के साथ उस प्रवणता के कम से कम वर्गों के अनुमान की तुलना करता है और यदि ये दो मात्राएँ महत्वपूर्ण रूप से भिन्न हैं, तो शून्य परिकल्पना को अस्वीकार कर देता है।

प्रयोगसिद्ध वितरण फलन के आधार पर टेस्ट  :

  • एंडरसन-डार्लिंग टेस्ट
  • लिलिफ़ोर्स टेस्ट्स (कोल्मोगोरोव-स्मिर्नोव टेस्ट्स का एक रूपांतर)

सामान्य वितरण का बायेसियन विश्लेषण

सामान्य रूप से वितरित डेटा का बायेसियन विश्लेषण कई भिन्न -भिन्न संभावनाओं के रूप में सम्मिश्र है जिन पर विचार किया जा सकता है,

  • या तो माध्य या प्रसरण या दोनों में से किसी को भी निश्चित क्वांटाइल नहीं माना जा सकता है।
  • जब भिन्नता अज्ञात होती है, तो विश्लेषण सीधे भिन्नता के संदर्भ में या परिशुद्धता (सांख्यिकी) भिन्नता के पारस्परिक के संदर्भ में किया जा सकता है। सूत्रों को सटीकता के रूप में व्यक्त करने का कारण यह है कि अधिकांश स्थितियो का विश्लेषण सरल रूप में होता है।
  • दोनों अविभाज्य और बहुभिन्न रूपी सामान्य वितरण स्थितियो पर विचार करने की आवश्यकता है।
  • अज्ञात चर पर या तो संयुग्म पूर्व या अनुचित पूर्व वितरण के रूप में होते है ।
  • बायेसियन रैखिक प्रतिगमन में स्थितियो का एक अतिरिक्त सेट होता है, जहां मूल मॉडल में डेटा को सामान्य रूप से वितरित माना जाता है और सामान्य प्रायर को प्रतिगमन गुणांक पर रखा जाता है। इस प्रकार परिणामी विश्लेषण स्वतंत्र रूप से वितरित डेटा के मूल स्थितियो के समान है।

गैर-रैखिक-प्रतिगमन स्थितियो के सूत्रों को संयुग्मित पूर्व लेख में संक्षेपित किया गया है।

दो द्विघातों का योग

अदिश रूप

निम्नलिखित सहायक सूत्र पश्च वितरण अद्यतन समीकरणों को सरल बनाने के लिए उपयोगी है, जो अन्यथा बहुत कठिन हो जाते हैं।

यह समीकरण वर्गों का विस्तार करके, x में पदों को समूहित करके, और वर्ग को पूरा करके x में दो द्विघातों के योग को फिर से लिखता है। कुछ शर्तों से जुड़े सम्मिश्र निरंतर कारकों के बारे में निम्नलिखित पर ध्यान दें:

  1. कारण y और z के भारित औसत का रूप है।
  2. इससे पता चलता है कि इस कारक को एक ऐसी स्थिति के परिणामस्वरूप माना जा सकता है जहां मात्राओं के गुणक व्युत्क्रम a और b सीधे जुड़ते हैं, इसलिए a और b को संयोजित करने के लिए, परिणाम को फिर से प्राप्त करना, जोड़ना और पुनः प्राप्त करना आवश्यक है। मूल इकाइयाँ। यह अच्छे उसी तरह का ऑपरेशन है जो अनुकूल माध्य द्वारा किया जाता है, इसलिए यह आश्चर्यजनक नहीं है a और b का आधा हार्मोनिक माध्य है।
सदिश रूप

दो सदिश चतुष्कोणों के योग के लिए एक समान सूत्र लिखा जा सकता है: यदि x, y, z लंबाई k के सदिश हैं, और A और B सममित आव्यूह हैं, आकार के व्युत्क्रमणीय आव्यूह , तब

जहाँ

ध्यान दें कि रूप x′ A x को द्विघात रूप कहा जाता है और यह एक अदिश (गणित) है:

दूसरे शब्दों में, यह x से तत्वों के जोड़े के उत्पादों के सभी संभावित संयोजनों को जोड़ता है, प्रत्येक के लिए एक भिन्न गुणांक के साथ। इसके अतिरिक्त , चूंकि , केवल योग ए के किसी भी ऑफ-डायगोनल तत्वों के लिए मायने रखता है, और यह मानने में व्यापकता का कोई नुकसान नहीं है कि ए सममित आव्यूह है। इसके अतिरिक्त , यदि ए सममित है, तो फॉर्म


माध्य से भिन्नताओं का योग

एक अन्य उपयोगी सूत्र इस प्रकार है:

जहाँ


ज्ञात वेरिएंस के साथ

i.i.d के एक सेट के लिए सामान्य रूप से वितरित डेटा बिंदु X का आकार n है जहां प्रत्येक व्यक्तिगत बिंदु x अनुसरण करता है ज्ञात वेरिएंस σ के साथ2, संयुग्म पूर्व वितरण भी सामान्य रूप से वितरित किया जाता है।

प्रसरण को परिशुद्धता (सांख्यिकी) के रूप में फिर से लिखकर, अर्थात τ = 1/σ का उपयोग करके इसे अधिक आसानी से दिखाया जा सकता है2</उप>। तो यदि और हम निम्नानुसार आगे बढ़ते हैं।

सबसे पहले, प्रायिकता फलन है (उपरोक्त सूत्र का उपयोग माध्य से मतभेदों के योग के लिए):

फिर, हम निम्नानुसार आगे बढ़ते हैं: