योजना (गणित): Difference between revisions

From Vigyanwiki
No edit summary
 
(6 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Short description|Generalization of algebraic variety}}
{{Short description|Generalization of algebraic variety}}
गणित में, एक '''''योजना''''' एक [[ गणितीय संरचना ]] है जो कई तरीकों से बीजगणितीय विविधता की धारणा को विस्तृत करती है, जैसे कि[[ बहुलता (गणित) | गुणनखंडों]] को ध्यान मे रखते हुए समीकरण ''x'' = 0 और ''x''<sup>2</sup> = 0 एक ही बीजगणितीय विविधता लेकिन विभिन्न योजनाओं को परिभाषित करता है और किसी भी [[ क्रमविनिमेय अंगूठी | क्रमविनिमेय वलय]] पर परिभाषित विविधताओ की अनुमति देता है। उदाहरण के लिए, फर्मेट वक्र [[ पूर्णांक | पूर्णांक]] पर परिभाषित होते हैं।
गणित में, एक '''''योजना''''' एक [[ गणितीय संरचना ]] है जो कई तरीकों से बीजगणितीय विविधता की धारणा को विस्तृत करती है, जैसे कि[[ बहुलता (गणित) | गुणनखंडों]] को ध्यान मे रखते हुए समीकरण ''x'' = 0 और ''x''<sup>2</sup> = 0 एक ही बीजगणितीय विविधता लेकिन विभिन्न योजनाओं को परिभाषित करता है और किसी भी [[ क्रमविनिमेय अंगूठी | क्रमविनिमेय वलय]] पर परिभाषित विविधताओ की अनुमति देता है। उदाहरण के लिए, फर्मेट वक्र [[ पूर्णांक | पूर्णांक]] पर परिभाषित होते हैं।


'''''योजना''''' '''''सिद्धांत''''' को [[ अलेक्जेंडर ग्रोथेंडिक |अलेक्जेंडर ग्रोथेंडिक]] ने 1960 में अपने ग्रंथ <nowiki>''</nowiki>एलिमेंट्स डी जियोमेट्री एल्जेब्रिक<nowiki>''</nowiki> में पेश किया था; इसका एक उद्देश्य [[ बीजगणितीय ज्यामिति ]] की गहरी समस्याओं को हल करने के लिए आवश्यक औपचारिकता विकसित करना था, जैसे कि वेइल अनुमान जिनमें से अंतिम पियरे डेलिग्ने द्वारा सिद्ध किया गया था।<ref>Introduction of the first edition of "[[Éléments de géométrie algébrique]]".</ref> क्रमविनिमेय बीजगणित पर दृढ़ता से आधारित, योजना सिद्धांत [[ टोपोलॉजी |टोपोलॉजी]] और होमोलॉजिकल बीजगणित के तरीकों के व्यवस्थित उपयोग की अनुमति देता है। योजना सिद्धांत बीजगणितीय ज्यामिति को बहुत अधिक[[ संख्या सिद्धांत ]]के साथ एकीकृत करता है, जो अंततः विल्स के फ़र्मेट के अंतिम प्रमेय के प्रमाण का नेतृत्व करता है।
'''''योजना''''' '''''सिद्धांत''''' को [[ अलेक्जेंडर ग्रोथेंडिक |अलेक्जेंडर ग्रोथेंडिक]] ने 1960 में अपने ग्रंथ <nowiki>''</nowiki>एलिमेंट्स डी जियोमेट्री एल्जेब्रिक<nowiki>''</nowiki> में पेश किया था; इसका एक उद्देश्य [[ बीजगणितीय ज्यामिति ]] की गहरी समस्याओं को हल करने के लिए आवश्यक औपचारिकता विकसित करना था, जैसे कि वेइल अनुमान जिनमें से अंतिम पियरे डेलिग्ने द्वारा सिद्ध किया गया था।<ref>Introduction of the first edition of "[[Éléments de géométrie algébrique]]".</ref> क्रमविनिमेय बीजगणित पर दृढ़ता से आधारित, योजना सिद्धांत सांस्थिति और समतुल्य बीजगणित के तरीकों के व्यवस्थित उपयोग की अनुमति देता है। योजना सिद्धांत बीजगणितीय ज्यामिति को बहुत अधिक[[ संख्या सिद्धांत ]]के साथ एकीकृत करता है, जो अंततः विल्स के फ़र्मेट के अंतिम प्रमेय के प्रमाण का नेतृत्व करता है।


औपचारिक रूप से, एक योजना अपने सभी विवृत समुच्चय के लिए क्रमविनिमय वलय के साथ एक [[ टोपोलॉजिकल स्पेस | सांस्थितिक समष्टि]] है, जो उनके विवृत उपसमुच्चय के साथ क्रमविनिमेय वलय के वर्णक्रम ([[ प्रमुख आदर्श | अभाज्य काल्पनिक]] के स्थान) को एक साथ जोड़ने से उत्पन्न होती है। दूसरे शब्दों में, यह एक वलयाकार स्थान है जो स्थानीय रूप से क्रमविनिमेय वलय का एक वर्णक्रम है।
औपचारिक रूप से, एक योजना अपने सभी विवृत समुच्चय के लिए क्रमविनिमय वलय के साथ एक [[ टोपोलॉजिकल स्पेस |सांस्थितिक समष्टि]] है, जो उनके विवृत उपसमुच्चय के साथ क्रमविनिमेय वलय के वर्णक्रम([[ प्रमुख आदर्श |अभाज्य काल्पनिक]] के स्थान) को एक साथ जोड़ने से उत्पन्न होती है। दूसरे शब्दों में, यह एक वलयाकार स्थान है जो स्थानीय रूप से क्रमविनिमेय वलय का एक वर्णक्रम है।


ग्रोथेंडिक का सापेक्षिक दृष्टिकोण यह है कि अधिकांश बीजगणितीय ज्यामिति को आकारिकी X → Y योजनाओं के लिए विकसित किया जाना चाहिए (जिसे योजना X 'के ऊपर' Y कहा जाता है), न कि किसी विशिष्ट योजना के लिए। उदाहरण के लिए, [[ बीजगणितीय सतह | बीजगणितीय सतहो]] का अध्ययन करने में, किसी योजना Y पर बीजगणितीय सतहों के वर्गों पर विचार करना उपयोगी हो सकता है। कई स्थितियों में, किसी दिए गए प्रकार की सभी विविधताओ के वर्गों को ही एक विविधता या योजना के रूप में देखा जा सकता है, जिसे सापेक्ष स्थान के रूप में जाना जाता है।  
ग्रोथेंडिक का सापेक्षिक दृष्टिकोण यह है कि अधिकांश बीजगणितीय ज्यामिति को आकारिकी X → Y योजनाओं के लिए विकसित किया जाना चाहिए (जिसे योजना X 'के ऊपर' Y कहा जाता है), न कि किसी विशिष्ट योजना के लिए। उदाहरण के लिए, [[ बीजगणितीय सतह | बीजगणितीय सतहो]] का अध्ययन करने में, किसी योजना Y पर बीजगणितीय सतहों के वर्गों पर विचार करना उपयोगी हो सकता है। कई स्थितियों में, किसी दिए गए प्रकार की सभी प्रकारो के वर्गों को ही एक प्रकार या योजना के रूप में देखा जा सकता है, जिसे सापेक्ष स्थान के रूप में जाना जाता है।  


योजनाओं के सिद्धांत की कुछ विस्तृत परिभाषाओं के लिए, [[ योजना सिद्धांत की शब्दावली | योजना सिद्धांत की शब्दावली]] देखें।
योजनाओं के सिद्धांत की कुछ विस्तृत परिभाषाओं के लिए,[[ योजना सिद्धांत की शब्दावली | योजना सिद्धांत की शब्दावली]] देखें।


== विकास ==
== विकास ==
बीजगणितीय ज्यामिति की उत्पत्ति अधिकतम [[ वास्तविक संख्या | वास्तविक संख्या]]ओं पर [[ बहुपद |बहुपद]] समीकरणों के अध्ययन में निहित है। 19वीं शताब्दी तक, यह स्पष्ट हो गया (विशेष रूप से [[ जीन-विक्टर पोंसलेट ]] और [[ बर्नहार्ड रीमैन ]] के काम में) कि बीजगणितीय ज्यामिति को [[ जटिल संख्या | सम्मिश्र संख्या]]ओं के [[ क्षेत्र (गणित) |क्षेत्र]] पर काम करके सरल बनाया गया था, जिसका बीजगणितीय रूप से सीमित होने का लाभ है।{{sfn|Dieudonné|1985|loc=Chapters IV and V}} 20वीं शताब्दी की शुरुआत में दो मुद्दों ने धीरे-धीरे ध्यान आकर्षित किया, संख्या सिद्धांत में समस्याओं से प्रेरित होकर बीजगणितीय ज्यामिति को किसी भी बीजगणितीय रूप से सीमित क्षेत्र में कैसे विकसित किया जा सकता है, विशेष रूप से सकारात्मक [[ विशेषता (बीजगणित) | विशेषताओ]] में? और क्या एकपक्षीय क्षेत्र पर बीजगणितीय ज्यामिति के बारे में ? सम्मिश्र विविधताओ का अध्ययन करने के लिए प्रयुक्त टोपोलॉजी और [[ जटिल विश्लेषण |सम्मिश्र विश्लेषण]] के उपकरण यहां लागू नहीं होते हैं।
बीजगणितीय ज्यामिति की उत्पत्ति अधिकतम [[ वास्तविक संख्या |वास्तविक संख्या]]ओं पर [[ बहुपद |बहुपद]] समीकरणों के अध्ययन में निहित है। 19वीं शताब्दी तक, यह स्पष्ट हो गया (विशेष रूप से [[ जीन-विक्टर पोंसलेट ]] और [[ बर्नहार्ड रीमैन ]] के काम में) कि बीजगणितीय ज्यामिति को [[ जटिल संख्या |सम्मिश्र संख्या]]ओं के [[ क्षेत्र (गणित) |क्षेत्र]] पर क्रिया करके सरल बनाया गया था, जिसका बीजगणितीय रूप से सीमित होने का लाभ है।{{sfn|Dieudonné|1985|loc=Chapters IV and V}} 20वीं शताब्दी के प्रारंभ में दो मुद्दों ने धीरे-धीरे ध्यान आकर्षित किया, संख्या सिद्धांत में समस्याओं से प्रेरित होकर बीजगणितीय ज्यामिति को किसी भी बीजगणितीय रूप से सीमित क्षेत्र में कैसे विकसित किया जा सकता है, विशेष रूप से सकारात्मक [[ विशेषता (बीजगणित) | विशेषताओ]] में और क्या एकपक्षीय क्षेत्र पर बीजगणितीय ज्यामिति के बारे में सम्मिश्र विविधताओ का अध्ययन करने के लिए प्रयुक्त सांस्थिति और [[ जटिल विश्लेषण |सम्मिश्र विश्लेषण]] के उपकरण यहां लागू नहीं होते हैं।


हिल्बर्ट का शून्य स्थान प्रमेय किसी भी बीजगणितीय रूप से सीमित क्षेत्र k पर बीजगणितीय ज्यामिति के लिए एक दृष्टिकोण का सुझाव देते हैं: बहुपद वलय में [[ अधिकतम आदर्श |अधिकतम काल्पनिक]] k[x<sub>1</sub>,...,x<sub>''n''</sub>] k<sup>n</sup>  के तत्वों के n-टपल के समुच्चय के साथ,प्रत्येक के लिए अलग-अलग समानता मे है, और रूढ आदर्श k<sup>n</sup> में असमानेय  बीजगणितीय समुच्चय के अनुरूप हैं, एफीन विविधताओ के रूप में जाना जाता है। इन विचारों से प्रेरित होकर, [[ एमी नोथेर ]] और [[ वोल्फगैंग क्रूली | वोल्फगैंग क्रूल]] ने 1920 और 1930 के दशक में '''<nowiki/>'क्रमविनिमेय  बीजगणित'''' का विषय विकसित किया।{{sfn|Dieudonné|1985|loc=sections VII.2 and VII.5}} उनका काम बीजगणितीय ज्यामिति को विशुद्ध रूप से बीजगणितीय दिशा में सामान्यीकृत करता है: एक बहुपद वलय  में प्रमुख आदर्शों का अध्ययन करने के बजाय, किसी भी क्रमविनिमेय वलय में प्रमुख आदर्शों का अध्ययन किया जा सकता है। उदाहरण के लिए, क्रुल ने प्रमुख आदर्शों के संदर्भ में किसी भी क्रमविनिमेय वलय के क्रुल आयाम को परिभाषित किया। कम से कम जब[[ नोथेरियन रिंग | नोथेरियन वलय]] है, तो उन्होंने कई गुणों को सिद्ध किया जो कि आयाम की ज्यामितीय धारणा से हैं।
हिल्बर्ट का शून्य स्थान प्रमेय किसी भी बीजगणितीय रूप से सीमित क्षेत्र k पर बीजगणितीय ज्यामिति के लिए एक दृष्टिकोण का सुझाव देते हैं: बहुपद वलय में [[ अधिकतम आदर्श |अधिकतम काल्पनिक]] k[x<sub>1</sub>,...,x<sub>''n''</sub>] k<sup>n</sup>  के तत्वों के n-टपल के समुच्चय के साथ,प्रत्येक के लिए अलग-अलग समानता मे है, और रूढ आदर्श k<sup>n</sup> में असमानेय  बीजगणितीय समुच्चय के अनुरूप हैं, एफीन विविधताओ के रूप में जाना जाता है। इन विचारों से प्रेरित होकर, [[ एमी नोथेर |एमी नोथेर]] और [[ वोल्फगैंग क्रूली |वोल्फगैंग क्रूल]] ने 1920 और 1930 के दशक में '''<nowiki/>'क्रमविनिमेय  बीजगणित'''' का विषय विकसित किया।{{sfn|Dieudonné|1985|loc=sections VII.2 and VII.5}} उनका काम बीजगणितीय ज्यामिति को विशुद्ध रूप से बीजगणितीय दिशा में सामान्यीकृत करता है: एक बहुपद वलय  में प्रमुख आदर्शों का अध्ययन करने के बजाय, किसी भी क्रमविनिमेय वलय में प्रमुख आदर्शों का अध्ययन किया जा सकता है। उदाहरण के लिए, क्रुल ने प्रमुख आदर्शों के संदर्भ में किसी भी क्रमविनिमेय वलय के क्रुल आयाम को परिभाषित किया। कम से कम जब[[ नोथेरियन रिंग | नोथेरियन वलय]] है, तो उन्होंने कई गुणों को सिद्ध किया जो कि आयाम की ज्यामितीय धारणा से हैं।


नोथेर और क्रुल के क्रमविनिमेय बीजगणित को एफीन बीजगणितीय विविधताओ के दृष्टिकोण के रूप में देखा जा सकता है। हालांकि, बीजगणितीय ज्यामिति में कई तर्क प्रक्षेपीय विविधताओ के लिए बेहतर काम करते हैं,  क्योंकि अनिवार्य रूप से प्रक्षेपीय विविधताए [[ कॉम्पैक्ट स्पेस |संक्षिप्त]] होती हैं। 1920 के दशक से 1940 के दशक तक, बार्टेल लिंडर्ट वैन डेर वेर्डन,आंद्रे वेइल और [[ ऑस्कर ज़ारिस्की |ऑस्कर ज़ारिस्की]] ने प्रक्षेपी (या [[ अर्ध-प्रोजेक्टिव | अर्ध-प्रक्षेपी]]) विविधताओ की समृद्ध स्थापना में बीजगणितीय ज्यामिति के लिए एक नई नींव के रूप में क्रमविनिमेय बीजगणित लागू किया।{{sfn|Dieudonné|1985|loc=section VII.4}} विशेष रूप से, [[ ज़ारिस्की टोपोलॉजी ]] किसी भी बीजगणितीय रूप से सीमित क्षेत्र पर [[ विविध | विविध]]ता पर एक उपयोगी टोपोलॉजी है, जो कुछ हद तक एक सम्मिश्र विविधता (सम्मिश्र संख्याओं के टोपोलॉजी के आधार पर) पर उत्कृष्ट टोपोलॉजी की जगह लेती है।
नोथेर और क्रुल के क्रमविनिमेय बीजगणित को एफीन बीजगणितीय विविधताओ के दृष्टिकोण के रूप में देखा जा सकता है। हालांकि, बीजगणितीय ज्यामिति में कई तर्क प्रक्षेपीय विविधताओ के लिए परस्पर क्रिया करते हैं,  क्योंकि अनिवार्य रूप से प्रक्षेपीय विविधताए [[ कॉम्पैक्ट स्पेस |संक्षिप्त]] होती हैं। 1920 के दशक से 1940 के दशक तक, बार्टेल लिंडर्ट वैन डेर वेर्डन,आंद्रे वेइल और [[ ऑस्कर ज़ारिस्की |ऑस्कर ज़ारिस्की]] ने प्रक्षेपी(या [[ अर्ध-प्रोजेक्टिव | अर्ध-प्रक्षेपी]]) विविधताओ की समृद्ध स्थापना में बीजगणितीय ज्यामिति के लिए एक नई नींव के रूप में क्रमविनिमेय बीजगणित लागू किया।{{sfn|Dieudonné|1985|loc=section VII.4}} विशेष रूप से, [[ ज़ारिस्की टोपोलॉजी |ज़ारिस्की सांस्थिति]] किसी भी बीजगणितीय रूप से सीमित क्षेत्र पर[[ विविध | विविध]]ता पर एक उपयोगी सांस्थिति है, जो कुछ हद तक एक सम्मिश्र विविधता (सम्मिश्र संख्याओं के सांस्थिति के आधार पर) पर उत्कृष्ट सांस्थिति की जगह लेती है।


संख्या सिद्धांत के अनुप्रयोगों के लिए, वैन डेर वेर्डन और वील ने किसी भी क्षेत्र पर बीजगणितीय ज्यामिति तैयार की, जरूरी नहीं कि बीजगणितीय रूप से सीमित हो। टोपोलॉजी में विविध मॉडल पर विवृत उपसमुच्चय के साथ एफ़िन विविधताओ को चिपकाकर, एक अमूर्त विविधता ([[ प्रक्षेप्य स्थान ]] में अंतर्निहित नहीं) को परिभाषित करने वाला वेल पहला व्यक्ति था। किसी भी क्षेत्र में वक्र की जैकोबियन विविधता के अपने निर्माण के लिए उन्हें इस व्यापकता की आवश्यकता थी। बाद में, जेकोबियंस को वेइल, [[ वी-एल इयान जीसी कैसे |वी-एल इयान जीसी कैसे]] और [[ तेरुहिसा मात्सुजाका |तेरुहिसा मात्सुजाका]] द्वारा प्रक्षेपी विविधताओ के रूप में दिखाया गया।
संख्या सिद्धांत के अनुप्रयोगों के लिए, वैन डेर वेर्डन और वील ने किसी भी क्षेत्र पर बीजगणितीय ज्यामिति तैयार की, जरूरी नहीं कि बीजगणितीय रूप से सीमित हो। टोपोलॉजी में विविध मॉडल पर विवृत उपसमुच्चय के साथ एफ़िन विविधताओ को चिपकाकर, एक अमूर्त विविधता ([[ प्रक्षेप्य स्थान ]] में अंतर्निहित नहीं) को परिभाषित करने वाला वेल पहला व्यक्ति था। किसी भी क्षेत्र में वक्र की जैकोबियन विविधता के अपने निर्माण के लिए उन्हें इस व्यापकता की आवश्यकता थी। बाद में, जेकोबियंस को वेइल, [[ वी-एल इयान जीसी कैसे |वी-एल इयान जीसी कैसे]] और [[ तेरुहिसा मात्सुजाका |तेरुहिसा मात्सुजाका]] द्वारा प्रक्षेपी विविधताओ के रूप में दिखाया गया।
Line 21: Line 21:
इटालियन स्कूल के बीजगणितीय ज्यामितियो ने प्रायः बीजगणितीय विविधता के [[ सामान्य बिंदु |सामान्य बिंदु]] की कुछ अस्पष्ट अवधारणा का उपयोग करते थे। सामान्य बिंदु के लिए जो सत्य है वह विविधता के अधिकांश बिंदुओं के लिए सत्य है। बीजगणितीय ज्यामिति (1946) की वेइल की नींव में, एक बहुत बड़े बीजगणितीय रूप से सीमित क्षेत्र में बिंदुओं को लेकर सामान्य बिंदुओं का निर्माण किया जाता है, जिसे एक सार्वभौमिक डोमेन कहा जाता है।{{sfn|Dieudonné|1985|loc=section VII.4}} हालांकि यह नींव के रूप में काम करता था, यह अजीब था: एक ही विविधता के लिए कई अलग-अलग सामान्य बिंदु थे। (योजनाओं के बाद के सिद्धांत में, प्रत्येक बीजगणितीय विविधता का एक सामान्य बिंदु होता है।)
इटालियन स्कूल के बीजगणितीय ज्यामितियो ने प्रायः बीजगणितीय विविधता के [[ सामान्य बिंदु |सामान्य बिंदु]] की कुछ अस्पष्ट अवधारणा का उपयोग करते थे। सामान्य बिंदु के लिए जो सत्य है वह विविधता के अधिकांश बिंदुओं के लिए सत्य है। बीजगणितीय ज्यामिति (1946) की वेइल की नींव में, एक बहुत बड़े बीजगणितीय रूप से सीमित क्षेत्र में बिंदुओं को लेकर सामान्य बिंदुओं का निर्माण किया जाता है, जिसे एक सार्वभौमिक डोमेन कहा जाता है।{{sfn|Dieudonné|1985|loc=section VII.4}} हालांकि यह नींव के रूप में काम करता था, यह अजीब था: एक ही विविधता के लिए कई अलग-अलग सामान्य बिंदु थे। (योजनाओं के बाद के सिद्धांत में, प्रत्येक बीजगणितीय विविधता का एक सामान्य बिंदु होता है।)


1950 के दशक में, [[ क्लाउड चेवेली | क्लाउड चेवेली]], [[ न्यायमूर्ति नागता |न्यायमूर्ति नागता]] और [[ जीन पियरे सेरे |जीन पियरे सेरे]] , संख्या सिद्धांत और बीजगणितीय ज्यामिति से संबंधित वेइल अनुमानों से प्रेरित होकर, बीजगणितीय ज्यामिति की वस्तुओं को आगे बढ़ाया, उदाहरण के लिए आधार के छल्ले को सामान्य बनाने की अनुमति दी गई। योजना शब्द का प्रयोग पहली बार 1956 के शेवेली संगोष्ठी में किया गया था, जिसमें शेवेली ज़ारिस्की के विचारों का अनुसरण कर रहे थे।<ref>{{citation|last=Chevalley|first= C. |title=Les schémas|series= Séminaire Henri Cartan|volume= 8 |year=1955–1956|issue= 5|url= http://www.numdam.org/item?id=SHC_1955-1956__8__A5_0}}</ref> [[ पियरे कार्टियर (गणितज्ञ) ]] के अनुसार, यह आंद्रे मार्टिन्यू थे जिन्होंने सेरे को बीजगणितीय ज्यामिति की नींव के रूप में एकपक्षीय ढंग से क्रमविनिमेय वलय वर्णक्रम का उपयोग करने की संभावना का सुझाव दिया था।{{sfn|Cartier|2001|loc=note 29}}
1950 के दशक में, [[ क्लाउड चेवेली | क्लाउड चेवेली]], [[ न्यायमूर्ति नागता |न्यायमूर्ति नागता]] और [[ जीन पियरे सेरे |जीन पियरे सेरे]], संख्या सिद्धांत और बीजगणितीय ज्यामिति से संबंधित वेइल अनुमानों से प्रेरित होकर, बीजगणितीय ज्यामिति की वस्तुओं को आगे बढ़ाया, उदाहरण के लिए आधार के छल्ले को सामान्य बनाने की अनुमति दी गई। योजना शब्द का प्रयोग पहली बार 1956 के शेवेली संगोष्ठी में किया गया था, जिसमें शेवेली ज़ारिस्की के विचारों का अनुसरण कर रहे थे।<ref>{{citation|last=Chevalley|first= C. |title=Les schémas|series= Séminaire Henri Cartan|volume= 8 |year=1955–1956|issue= 5|url= http://www.numdam.org/item?id=SHC_1955-1956__8__A5_0}}</ref> [[ पियरे कार्टियर (गणितज्ञ) ]] के अनुसार, यह आंद्रे मार्टिन्यू थे जिन्होंने सेरे को बीजगणितीय ज्यामिति की नींव के रूप में एकपक्षीय ढंग से क्रमविनिमेय वलय वर्णक्रम का उपयोग करने की संभावना का सुझाव दिया था।{{sfn|Cartier|2001|loc=note 29}}




== योजनाओं की उत्पत्ति ==
== योजनाओं की उत्पत्ति ==
ग्रोथेंडिक ने तब एक योजना की निर्णायक परिभाषा दी, जिससे प्रायोगिक सुझावों और आंशिक विकास की एक पीढ़ी का निष्कर्ष निकला।{{sfn|Dieudonné|1985|loc=sections VII.4, VIII.2, VIII.3}} उन्होंने एक प्राकृतिक टोपोलॉजी (ज़ारिस्की टोपोलॉजी के रूप में जाना जाता है) के साथ आर के प्रमुख आदर्शों के स्थान के रूप में एक क्रमविनिमेय वलय आर के एक वलय एक्स के वर्णक्रम को परिभाषित किया, लेकिन इसे वलयो के एक [[ शीफ (गणित) | शीफ]] के साथ संवर्धित किया: प्रत्येक विवृत उपसमुच्चय U के लिए उसने क्रमविनिमेय वलय O<sub>''X''</sub>(U) नियत किया, ये वस्तु युक्ति(R) एफीन योजना हैं; एक सामान्य योजना तब एक साथ जोड़कर एफीन योजनाओं द्वारा प्राप्त की जाती है।
ग्रोथेंडिक ने तब एक योजना की निर्णायक परिभाषा दी, जिससे प्रायोगिक सुझावों और आंशिक विकास की एक पीढ़ी का निष्कर्ष निकला।{{sfn|Dieudonné|1985|loc=sections VII.4, VIII.2, VIII.3}} उन्होंने एक प्राकृतिक टोपोलॉजी (ज़ारिस्की टोपोलॉजी के रूप में जाना जाता है) के साथ आर के प्रमुख आदर्शों के स्थान के रूप में एक क्रमविनिमेय वलय आर के एक वलय एक्स के वर्णक्रम को परिभाषित किया, लेकिन इसे वलयो के एक [[ शीफ (गणित) |संग्राही]] के साथ संवर्धित किया: प्रत्येक विवृत उपसमुच्चय U के लिए उसने क्रमविनिमेय वलय O<sub>''X''</sub>(U) नियत किया, ये वस्तु युक्ति(R) एफीन योजना हैं; एक सामान्य योजना तब एक साथ जोड़कर एफीन योजनाओं द्वारा प्राप्त की जाती है।


अधिकांश बीजगणितीय ज्यामिति एक क्षेत्र k पर प्रक्षेपी या अर्ध-प्रक्षेपी किस्मों पर केंद्रित है; वास्तव में, k को प्रायः सम्मिश्र संख्या के रूप में लिया जाता है। एकपक्षीय योजनाओं की तुलना में उस तरह की योजनाएं बहुत खास हैं; नीचे दिए गए उदाहरणों की तुलना करें। बहरहाल, यह सुविधाजनक है कि ग्रोथेंडिक ने एकपक्षीय योजनाओं के लिए सिद्धांत का एक बड़ा निकाय विकसित किया। उदाहरण के लिए, एक योजना के रूप में पहले एक सापेक्ष स्थान  का निर्माण करना आम है, और केवल बाद में अध्ययन करें कि क्या यह एक अधिक ठोस वस्तु है जैसे कि प्रक्षेपी विविधता। इसके अलावा, संख्या सिद्धांत के लिए अनुप्रयोग शीघ्रता से उन पूर्णांकों पर योजनाओं की ओर ले जाते हैं जो किसी भी क्षेत्र में परिभाषित नहीं होते हैं।
अधिकांश बीजगणितीय ज्यामिति एक क्षेत्र k पर प्रक्षेपी या अर्ध-प्रक्षेपी प्रकार पर केंद्रित है; वास्तव में, k को प्रायः सम्मिश्र संख्या के रूप में लिया जाता है। एकपक्षीय योजनाओं की तुलना में उस तरह की योजनाएं बहुत महत्वपूर्ण हैं; नीचे दिए गए उदाहरणों की तुलना करें। फिर भी, यह उपयुक्त है कि ग्रोथेंडिक ने एकपक्षीय योजनाओं के लिए सिद्धांत का एक बड़ा निकाय विकसित किया। उदाहरण के लिए, एक योजना के रूप में पहले एक सापेक्ष स्थान  का निर्माण करना सामान्य है, और केवल बाद में अध्ययन करें कि क्या यह एक अधिक ठोस वस्तु है जैसे कि प्रक्षेपी बहुरूपता। इसके अलावा, संख्या सिद्धांत के लिए अनुप्रयोग शीघ्रता से उन पूर्णांकों पर योजनाओं की ओर ले जाते हैं जो किसी भी क्षेत्र में परिभाषित नहीं होते हैं।


== परिभाषा ==
== परिभाषा ==
एक एफीन योजना एक स्थानीय रूप से वलय किए हुए आकारिकी स्थान है जो एक क्रमविनिमेय वलय ''R'' के वलय स्थान (''R'') के वर्णक्रम के लिए है। एक योजना एक स्थानीय रूप से घेरा हुआ स्थान ''X'' है जो विवृत समुच्चय  ''U''<sub>''i''</sub>,द्वारा आवरण को स्वीकार करता है ऐसा है कि प्रत्येक U<sub>''i''</sub> (स्थानीय रूप से वलय किए गए स्थान के रूप में) एक संबद्ध योजना है।{{sfn|Hartshorne|1997|loc=section II.2}} विशेष रूप से, X एक शीफ O<sub>''X''</sub> के साथ आता है जो प्रत्येक विवृत उपसमुच्चय U को एक क्रमविनिमेय वलय O<sub>''X''</sub>(U) प्रदान करता है जिसे U पर 'नियमित कार्यों का वलय' कहा जाता है। एक योजना के बारे मे सोच सकते है कि समन्वय आरेख द्वारा कवर किया जा रहा है जो कि योजनाएं हैं। परिभाषा का प्रत्येक दृष्टि से तात्पर्य है कि योजनाओं को ज़ारिस्की टोपोलॉजी का उपयोग करके एक साथ जोड़ने वाली योजनाओं को प्राप्त करके प्राप्त किया जाता है।
एक एफीन योजना एक स्थानीय रूप से वलय किए हुए आकारिकी स्थान है जो एक क्रमविनिमेय वलय ''R'' के वलय स्थान (''R'') के वर्णक्रम के लिए है। एक योजना एक स्थानीय रूप से घेरा हुआ स्थान ''X'' है जो विवृत समुच्चय  ''U''<sub>''i''</sub>,द्वारा समाविष्ट को स्वीकार करता है ऐसा है कि प्रत्येक U<sub>''i''</sub> (स्थानीय रूप से वलय किए गए स्थान के रूप में) एक संबद्ध योजना है।{{sfn|Hartshorne|1997|loc=section II.2}} विशेष रूप से, X एक संग्राही O<sub>''X''</sub> के साथ आता है जो प्रत्येक विवृत उपसमुच्चय U को एक क्रमविनिमेय वलय O<sub>''X''</sub>(U) प्रदान करता है जिसे U पर 'नियमित कार्यों का वलय' कहा जाता है। एक योजना के बारे मे सोच सकते है कि समन्वय आरेख द्वारा समाविष्ट किया जा रहा है जो कि योजनाएं हैं। परिभाषा का प्रत्येक दृष्टि से तात्पर्य है कि योजनाओं को ज़ारिस्की सांस्थिति का उपयोग करके एक साथ जोड़ने वाली योजनाओं को प्राप्त करके प्राप्त किया जाता है।


प्रारम्भिक दिनों में, इसे एक पूर्व योजना कहा जाता था, और एक योजना को एक [[ अलग योजना ]] पूर्व योजना के रूप में परिभाषित किया गया था। पूर्वयोजना शब्द उपयोग से बाहर हो गया है, लेकिन अभी भी पुरानी किताबों में पाया जा सकता है, जैसे कि ग्रोथेंडिक के एलीमेंट्स डे जियोमेट्री अल्जेब्रिक और [[ डेविड ममफोर्ड ]] की रेड बुक।{{sfn|Mumford|1999|loc=Chapter II}}
प्रारम्भिक दिनों में, इसे एक पूर्व योजना कहा जाता था, और एक योजना को एक [[ अलग योजना |अलग योजना]] पूर्व योजना के रूप में परिभाषित किया गया था। पूर्वयोजना शब्द उपयोग से बाहर हो गया है, लेकिन अभी भी पुरानी किताबों में पाया जा सकता है, जैसे कि ग्रोथेंडिक के एलीमेंट्स डे जियोमेट्री अल्जेब्रिक और [[ डेविड ममफोर्ड ]] की रेड बुक।{{sfn|Mumford|1999|loc=Chapter II}}


[[ प्राकृतिक संख्या | प्राकृतिक संख्या]] ''n'' के लिए एक एफीन योजना का एक मूल उदाहरण है एफीन ''n'' - एक क्षेत्र 'k' पर स्थान है। परिभाषा के अनुसार, A बहुपद वलय k[x<sub>1</sub>,...X<sub>''n''</sub>] का वर्णक्रम है। योजना सिद्धांत के अर्थ में, एफीन n-स्थान वास्तव में किसी भी क्रमविनिमेय वलय R पर परिभाषित किया जा सकता है, जिसका अर्थ है युक्ति (R[x)<sub>1</sub>,...,X<sub>''n''</sub>])।  
[[ प्राकृतिक संख्या | प्राकृतिक संख्या]] ''n'' के लिए एक एफीन योजना का एक मूल उदाहरण है एफीन ''n'' - एक क्षेत्र 'k' पर स्थान है। परिभाषा के अनुसार, A बहुपद वलय k[x<sub>1</sub>,...X<sub>''n''</sub>] का वर्णक्रम है। योजना सिद्धांत के अर्थ में, एफीन n-स्थान वास्तव में किसी भी क्रमविनिमेय वलय R पर परिभाषित किया जा सकता है, जिसका अर्थ है युक्ति (R[x)<sub>1</sub>,...,X<sub>''n''</sub>])।  


== योजनाओं की श्रेणी ==
== योजनाओं की श्रेणी ==
योजनाएँ एक [[ श्रेणी सिद्धांत ]] बनाती हैं, जिसमें आकारिकी को स्थानीय रूप से घेरे हुए स्थानों के आकारिकी के रूप में परिभाषित किया जाता है। (यह भी देखें: योजनाओं की रूपरेखा।) एक योजना वाई के लिए, एक योजना एक्स 'के ऊपर' वाई (या एक वाई-'योजना') का अर्थ है योजनाओं का एक आकारिकी एक्स → वाई है। क्रमविनिमेय वलय R के ऊपर एक योजना X का अर्थ आकारिकी एक्स → युक्ति(आर) है।
योजनाएँ एक [[ श्रेणी सिद्धांत ]] बनाती हैं, जिसमें आकारिकी को स्थानीय रूप से घेरे हुए स्थानों के आकारिकी के रूप में परिभाषित किया जाता है। (यह भी देखें: योजनाओं की रूपरेखा।) एक योजना वाई के लिए, एक योजना एक्स 'के ऊपर' वाई (या एक वाई-'योजना') का अर्थ है योजनाओं का एक आकारिकी एक्स → वाई है। क्रमविनिमेय वलय R के ऊपर एक योजना X का अर्थ आकारिकी एक्स → युक्ति(आर) है।


क्षेत्र k पर एक बीजगणितीय विविधता को कुछ गुणों के साथ k पर एक योजना के रूप में परिभाषित किया जा सकता है। वास्तव में किन योजनाओं को विविधताओ कहा जाना चाहिए, इसके बारे में अलग-अलग परंपराएँ हैं। एक मानक विकल्प यह है कि k से अधिक 'विविधता' का अर्थ परिमित प्रकार की एक अभिन्न पृथक योजना। <ref name=St020D>{{Citation | title=Stacks Project, Tag 020D | url=http://stacks.math.columbia.edu/tag/020D}}.</ref>
क्षेत्र k पर एक बीजगणितीय बहुरूपता को कुछ गुणों के साथ k पर एक योजना के रूप में परिभाषित किया जा सकता है। वास्तव में किन योजनाओं को बहुरूपता कहा जाना चाहिए, इसके बारे में अलग-अलग परंपराएँ हैं। एक मानक विकल्प यह है कि k से अधिक 'बहुरूपता' का अर्थ परिमित प्रकार की एक अभिन्न पृथक योजना है। <ref name=St020D>{{Citation | title=Stacks Project, Tag 020D | url=http://stacks.math.columbia.edu/tag/020D}}.</ref>


योजनाओं का एक आकारिकी f: X → Y नियमित कार्यों के छल्ले पर एक 'पश्च अपकर्ष समरूपता' निर्धारित करता है, f*: O(Y) → O(X)। एफ़िन योजनाओं के स्थिति में, यह निर्माण योजनाओं के आकारिकी युक्ति (ए) → युक्ति (बी) और क्रमविनिमेय समरूपता बी → ए के बीच एक-से-एक समानता है।{{sfn|Hartshorne|1997|loc=Proposition II.2.3}} इस अर्थ में, योजना सिद्धांत पूरी तरह से क्रमविनिमेय वलय के सिद्धांत को समाहित करता है।
योजनाओं का एक आकारिकी f: X → Y नियमित कार्यों के छल्ले पर एक 'पश्च अपकर्ष समरूपता' निर्धारित करता है, f*: O(Y) → O(X)। एफ़िन योजनाओं के स्थिति में, यह निर्माण योजनाओं के आकारिकी युक्ति (ए) → युक्ति (बी) और क्रमविनिमेय समरूपता बी → ए के बीच एक-से-एक समानता है।{{sfn|Hartshorne|1997|loc=Proposition II.2.3}} इस अर्थ में, योजना सिद्धांत पूरी तरह से क्रमविनिमेय वलय के सिद्धांत को समाहित करता है।
Line 45: Line 45:
चूंकि Z क्रमविनिमेय वलय की श्रेणी में एक [[ प्रारंभिक वस्तु |प्रारंभिक वस्तु]] है, योजनाओं की श्रेणी में एक [[ टर्मिनल वस्तु |आवधिक वस्तु]] के रूप में युक्ति(Z) है।
चूंकि Z क्रमविनिमेय वलय की श्रेणी में एक [[ प्रारंभिक वस्तु |प्रारंभिक वस्तु]] है, योजनाओं की श्रेणी में एक [[ टर्मिनल वस्तु |आवधिक वस्तु]] के रूप में युक्ति(Z) है।


एक योजना ''X'' के लिए एक क्रमविनिमेय वलय ''R'' पर, एक R-'X के बिंदु का अर्थ है आकारिकी  X→ युक्ति( आर) का एक अनुभाग। एक X(R) R बिन्दुओ के समुच्चय के लिए लिखता है। उदाहरण के लिए, यह परिभाषा 'R' में मानों के साथ 'X के परिभाषित समीकरणों के समाधान के समुच्चय की पुरानी धारणा का पुनर्निर्माण करती है। जब ''R'' एक क्षेत्र ''k'' हो, ''X''(''k'') को  ''X'' के तर्कसंगत बिंदु ''k'' का समुच्चय भी कहा जाता है ।
एक योजना ''X'' के लिए एक क्रमविनिमेय वलय ''R'' पर, एक R-'X के बिंदु का अर्थ है आकारिकी  X→ युक्ति( आर) का एक अनुभाग X(R) R बिन्दुओ के समुच्चय के लिए लिखा जाता है। उदाहरण के लिए, यह परिभाषा 'R' में मानों के साथ 'X के परिभाषित समीकरणों के समाधान के समुच्चय की पुरानी धारणा का पुनर्निर्माण करती है। जब ''R'' एक क्षेत्र ''k'' हो, ''X''(''k'') को  ''X'' के तर्कसंगत बिंदु ''k'' का समुच्चय भी कहा जाता है ।


अधिकतम सामान्य तौर पर, एक योजना ''X'' के लिए एक क्रमविनिमेय वलय ''R'' पर और किसी भी क्रमविनिमेय ''R''-बीजगणित वलय ''S'' पर, एक ''S''- बिन्दु का अर्थ है आकारिकी युक्ति S →'' X'' के ऊपर ''R''। कोई ''S'' के समुच्चय के लिए ''X''(''S'') लिखता है - ''X'' के बिन्दु। (यह पुराने अवलोकन का सामान्यीकरण करता है जिसमें 'k'' क्षे''त्र पर कुछ समीकरण दिए गए हैं, कोई भी 'k के किसी भी [[ फील्ड एक्सटेंशन | क्षेत्र विस्तारण]] ''E'' में समीकरणों के समाधान के समुच्चय पर विचार कर सकता है।) एक योजना के लिए ' 'R'' के ऊपर 'X'', असाइनमेंट ''S'' ''X''(''S'') क्रमविनिमेय ''R''-बीजगणित से समुच्चय तक एक प्रकार्यक है। यह एक महत्वपूर्ण अवलोकन है कि एक योजना ''X''के ऊपर ''R'' से अधिक बिन्दुओ के इस कारक द्वारा निर्धारित की जाती है।{{sfn|Eisenbud|Harris|1998|loc=Proposition VI-2}}
अधिकतम सामान्यताः, एक योजना ''X'' के लिए एक क्रमविनिमेय वलय ''R'' पर और किसी भी क्रमविनिमेय ''R''-बीजगणित वलय ''S'' पर, एक ''S''- बिन्दु का अर्थ है आकारिकी युक्ति S →'' X'' के ऊपर ''R''। कोई ''S'' के समुच्चय के लिए ''X''(''S'') लिखा जाता है - ''X'' के बिन्दु। (यह पुराने अवलोकन का सामान्यीकरण करता है जिसमें 'k'' क्षेत्र'' पर कुछ समीकरण दिए गए हैं, कोई भी 'k के किसी भी [[ फील्ड एक्सटेंशन | क्षेत्र विस्तारण]] ''E'' में समीकरणों के समाधान के समुच्चय पर विचार कर सकता है।) एक योजना के लिए ' 'R'' के ऊपर 'X'', असाइनमेंट ''S'' ''X''(''S'') क्रमविनिमेय ''R''-बीजगणित से समुच्चय तक एक प्रकार्यक है। यह एक महत्वपूर्ण अवलोकन है कि एक योजना ''X''के ऊपर ''R'' से अधिक बिन्दुओ के इस कारक द्वारा निर्धारित की जाती है।{{sfn|Eisenbud|Harris|1998|loc=Proposition VI-2}}


योजनाओं का प्राकृतिक उत्पाद हमेशा सम्मिलित रहता है। यही है, किसी भी योजना X और Z के लिए एक योजना Y, प्राकृतिक उत्पाद X× के आकारिकी के साथ<sub>''Y''</sub>Z ([[ पुलबैक (श्रेणी सिद्धांत) | (श्रेणी सिद्धांत)]] के अर्थ में) योजनाओं की श्रेणी में सम्मिलित है। यदि X और Z एक क्षेत्र k पर योजनाएँ हैं, तो युक्ति (k) पर उनके प्राकृतिक उत्पाद को k-योजनाओं की श्रेणी में 'उत्पाद' X × Z कहा जा सकता है। उदाहरण के लिए, एफाइन स्थान ए का उत्पाद<sup>AM</sup> और <sup>n</sup> के ऊपर kका गुणनफल  एफीन स्थान A <sup>AM+AN</sup>  के ऊपर K है।  
योजनाओं का प्राकृतिक उत्पाद सदैव सम्मिलित रहता है। यही है, किसी भी योजना X और Z के लिए एक योजना Y, प्राकृतिक उत्पाद X× के आकारिकी के साथ<sub>''Y''</sub>Z ([[ पुलबैक (श्रेणी सिद्धांत) | (श्रेणी सिद्धांत)]] के अर्थ में) योजनाओं की श्रेणी में सम्मिलित है। यदि X और Z एक क्षेत्र k पर योजनाएँ हैं, तो युक्ति (k) पर उनके प्राकृतिक उत्पाद को k-योजनाओं की श्रेणी में 'उत्पाद' X × Z कहा जा सकता है। उदाहरण के लिए, एफाइन स्थान A <sup>AM</sup> का उत्पाद और A<sup>n</sup> के ऊपर kका गुणनफल  एफीन स्थान A<sup>AM+AN</sup>  के ऊपर K है।  


चूंकि योजनाओं की श्रेणी में प्राकृतिक उत्पाद हैं और एक आवधिक वस्तु युक्ति ('Z') भी है, इसमें सभी सीमित[[ सीमा (श्रेणी सिद्धांत) | सीमा (श्रेणी सिद्धांत)]] हैं।
चूंकि योजनाओं की श्रेणी में प्राकृतिक उत्पाद हैं और एक आवधिक वस्तु युक्ति ('Z') भी है, इसमें सभी सीमित[[ सीमा (श्रेणी सिद्धांत) | सीमा (श्रेणी सिद्धांत)]] हैं।


== उदाहरण ==
== उदाहरण ==
* हर affine स्कीम Spec(R) एक स्कीम है। (यहाँ और नीचे, माने गए सभी छल्ले क्रमविनिमेय हैं।)
* प्रत्येक एफीन योजना युक्ति(R) एक योजना है। (यहाँ और नीचे, माने गए सभी छल्ले क्रमविनिमेय हैं।)
* फ़ील्ड k पर एक बहुपद f, {{math|1=''f'' ∈ ''k''[''x''<sub>1</sub>, ..., ''x''<sub>''n''</sub>]}}, एक बंद उपयोजना निर्धारित करता है {{math|1=''f'' = 0}} एफ़िन स्पेस में <sup>n</sup> k के ऊपर, जिसे एफ़िन [[ ऊनविम पृष्ठ ]] कहा जाता है। औपचारिक रूप से, इसे परिभाषित किया जा सकता है <math display="block"> \operatorname{Spec} k[x_1, \ldots, x_n]/(f).</math> उदाहरण के लिए, k को सम्मिश्र संख्याएँ, समीकरण के रूप में लेना {{math|1=''x''<sup>2</sup> = ''y''<sup>2</sup>(''y''+1)}} affine तल A में एक विलक्षण वक्र को परिभाषित करता है{{supsub|2|'''C'''}}, बीजगणितीय किस्म का एक विलक्षण बिंदु#परिभाषा कहलाता है।
* क्षेत्र k पर एक बहुपद f, {{math|1=''f'' ∈ ''k''[''x''<sub>1</sub>, ..., ''x''<sub>''n''</sub>]}}, एक सीमित उपयोजना {{math|1=''f'' = 0}}निर्धारित करता है  एफ़िन स्थान में A<sup>n</sup> के ऊपर k, जिसे एफ़िन [[ ऊनविम पृष्ठ ]]कहा जाता है। औपचारिक रूप से, इसे परिभाषित किया जा सकता है <math display="block"> \operatorname{Spec} k[x_1, \ldots, x_n]/(f).</math> उदाहरण के लिए, k को सम्मिश्र संख्या मानते हुए, समीकरण  {{math|1=''x''<sup>2</sup> = ''y''<sup>2</sup>(''y''+1)}} एफीन तल A2C में एक विलक्षण वक्र को परिभाषित करता है जिसे वास्तविक घनीय वक्र कहा जाता है।  
*किसी भी क्रमविनिमेय वलय R और प्राकृतिक संख्या n के लिए, 'प्रक्षेपी स्थान' 'P'{{supsub|''n''|''R''}} खुले उपसमुच्चय के साथ R के ऊपर affine n-space की n + 1 प्रतियों को चिपकाकर एक योजना के रूप में निर्मित किया जा सकता है। यह मौलिक उदाहरण है जो एफ़िन योजनाओं से परे जाने के लिए प्रेरित करता है। प्रक्षिप्त स्थान की तुलना में प्रक्षेपी स्थान का मुख्य लाभ यह है कि 'P'{{supsub|''n''|''R''}} आर पर उचित आकारिकी है; यह कॉम्पैक्टनेस का बीजगणित-ज्यामितीय संस्करण है। एक संबंधित प्रेक्षण यह है कि जटिल प्रक्षेपी स्थान 'सीपी'<sup>n</sup> शास्त्रीय टोपोलॉजी ('सी' की टोपोलॉजी पर आधारित) में एक कॉम्पैक्ट स्पेस है, जबकि 'सी'<sup>n</sup> नहीं है (n > 0 के लिए)।
*
* बहुपद वलय में सकारात्मक डिग्री का एक [[ सजातीय बहुपद ]] f {{math|1=''R''[''x''<sub>0</sub>, ..., ''x''<sub>''n''</sub>]}} एक बंद उपयोजना निर्धारित करता है {{math|1=''f'' = 0}} प्रोजेक्टिव स्पेस में पी<sup>n</sup> ओवर R, जिसे [[ प्रक्षेपी हाइपरसफेस ]] कहा जाता है। परियोजना निर्माण के संदर्भ में, इस उपयोजना को इस प्रकार लिखा जा सकता है <math display="block"> \operatorname{Proj} R[x_0,\ldots,x_n]/(f).</math> उदाहरण के लिए, बंद उपयोजना {{math|1=''x''<sup>3</sup> + ''y''<sup>3</sup> = ''z''<sup>3</sup>}} पी. का{{supsub|2|'''Q'''}} [[ परिमेय संख्या ]]ओं पर एक [[ अण्डाकार वक्र ]] है।
*किसी भी क्रमविनिमेय वलय R और प्राकृतिक संख्या n के लिए, 'प्रक्षेपी स्थान' 'P' विवृत उपसमुच्चय के साथ R के ऊपर एफीन n-स्थान की n + 1 प्रतियों को चिपकाकर एक योजना के रूप में निर्मित किया जा सकता है। यह मौलिक उदाहरण है जो एफ़िन योजनाओं से परे जाने के लिए प्रेरित करता है। प्रक्षिप्त स्थान की तुलना में प्रक्षेपी स्थान का मुख्य लाभ यह है कि 'P' आर पर उचित आकारिकी है; यह सघनता बीजगणित-ज्यामितीय संस्करण है। एक संबंधित प्रेक्षण यह है कि जटिल प्रक्षेपी स्थान 'CP'<sup>n</sup> उत्कृष्ट सांस्थिति ('C' की टोपोलॉजी पर आधारित) में एक सघन स्थान है, जबकि 'C'<sup>n</sup> नहीं है (n > 0 के लिए)।
* दो मूल के साथ लाइन (एक क्षेत्र ''के'' पर) ''के'' पर एफाइन लाइन की दो प्रतियों के साथ शुरू करके परिभाषित योजना है, और दो खुले उपसमुच्चय को एक साथ जोड़कर <sup>1</sup> − 0 पहचान मानचित्र द्वारा। यह एक गैर-पृथक योजना का एक सरल उदाहरण है। विशेष रूप से, यह एफ़िन नहीं है।{{sfn|Hartshorne|1997|loc=Example II.4.0.1}}
* बहुपद वलय में सकारात्मक अंश का एक [[ सजातीय बहुपद |सजातीय बहुपद]] f {{math|1=''R''[''x''<sub>0</sub>, ..., ''x''<sub>''n''</sub>]}} एक बंद उपयोजना निर्धारित करता है {{math|1=''f'' = 0}} प्रक्षेपी स्थान में P<sup>n</sup> के ऊपर R, जिसे [[ प्रक्षेपी हाइपरसफेस | प्रक्षेपी ऊनविम पृष्ठ]] कहा जाता है। परियोजना निर्माण के संदर्भ में, इस उपयोजना को इस प्रकार लिखा जा सकता है <math display="block"> \operatorname{Proj} R[x_0,\ldots,x_n]/(f).</math> उदाहरण के लिए, सीमित उपयोजना {{math|1=''x''<sup>3</sup> + ''y''<sup>3</sup> = ''z''<sup>3</sup>}} पी. का [[ परिमेय संख्या |परिमेय संख्या]]ओं पर एक [[ अण्डाकार वक्र | अर्धवृत्ताकार वक्र]] है।
*एफ़िन योजनाओं से परे जाने का एक सरल कारण यह है कि एक एफ़िन योजना के एक खुले उपसमुच्चय को एफ़िन होने की आवश्यकता नहीं है। उदाहरण के लिए, चलो {{math|1=''X'' = A<sup>''n''</sup> − 0}}, सम्मिश्र संख्या C पर कहें; तब ''X'' ''n'' 2 के लिए affine नहीं है। ('n'' पर प्रतिबंध आवश्यक है: affine रेखा ऋणात्मक मूल affine योजना के लिए समरूप है {{math|1=Spec('''C'''[''x'', ''x''<sup>−1</sup>])}}. यह दिखाने के लिए कि एक्स एफ़िन नहीं है, एक गणना करता है कि एक्स पर प्रत्येक नियमित फ़ंक्शन ए पर एक नियमित फ़ंक्शन तक विस्तारित होता है<sup>n</sup>, जब n ≥ 2. (यह जटिल विश्लेषण में हार्टोग्स के लेम्मा के अनुरूप है, हालांकि साबित करना आसान है।) यानी समावेशन {{math|1=''f'': ''X'' → A<sup>''n''</sup>}} से एक आइसोमोर्फिज्म प्रेरित करता है {{math|1=''O''(A<sup>''n''</sup>) = '''C'''[''x''<sub>1</sub>, ...., ''x''<sub>''n''</sub>]}} प्रति {{math|1=''O''(''X'')}}. यदि X सजातीय थे, तो यह अनुसरण करेगा कि f एक तुल्याकारिता थी। लेकिन f आच्छादक नहीं है और इसलिए एक तुल्याकारिता नहीं है। इसलिए, योजना X एफ़िन नहीं है।{{sfn|Hartshorne|1997|loc=Exercises I.3.6 and III.4.3}}
* दो मूल के साथ लाइन (एक क्षेत्र ''के'' पर) पर एफाइन लाइन की दो प्रतियों के साथ प्रारंभ करके परिभाषित योजना है, और दो विवृत उपसमुच्चय को एक साथ जोड़कर A<sup>1</sup> − 0 पहचान मानचित्र द्वारा। यह एक गैर-पृथक योजना का एक सरल उदाहरण है। विशेष रूप से, यह एफ़िन नहीं है।{{sfn|Hartshorne|1997|loc=Example II.4.0.1}}
* मान लीजिए k एक क्षेत्र है। फिर योजना <math display="inline">\operatorname{Spec}\left(\prod_{n=1}^\infty k\right)</math> एक एफ़िन योजना है जिसका अंतर्निहित टोपोलॉजिकल स्पेस सकारात्मक पूर्णांकों (असतत टोपोलॉजी के साथ) का स्टोन-ईच कॉम्पैक्टीफिकेशन है। वास्तव में, इस वलय के प्रमुख आदर्श सकारात्मक पूर्णांक पर [[ ultrafilter ]] के साथ एक-से-एक पत्राचार में हैं, आदर्श के साथ <math display="inline">\prod_{m \neq n} k</math> सकारात्मक पूर्णांक n से जुड़े प्रमुख अल्ट्राफिल्टर के अनुरूप।{{sfn|Arapura|2011|loc=section 1}} यह टोपोलॉजिकल स्पेस क्रुल डायमेंशन | जीरो-डायमेंशनल है, और विशेष रूप से, प्रत्येक बिंदु एक इरेड्यूसेबल घटक है। चूँकि affine योजनाएँ [[ अर्ध-कॉम्पैक्ट ]] होती हैं, यह एक अर्ध-सम्बद्ध योजना का एक उदाहरण है जिसमें असीम रूप से कई इर्रिड्यूसिबल घटक होते हैं। (इसके विपरीत, एक [[ नोथेरियन योजना ]] में केवल बहुत से अप्रासंगिक घटक होते हैं।)
*एफ़िन योजनाओं से परे जाने का एक सरल कारण यह है कि एक एफ़िन योजना के एक विवृत उपसमुच्चय को एफ़िन होने की आवश्यकता नहीं है। उदाहरण के लिए, मन ले कि {{math|1=''X'' = A<sup>''n''</sup> − 0}}, सम्मिश्र संख्या C पर ; तब ''X'' ''n'' 2 के लिए एफीन नहीं है। ('n'' पर प्रतिबंध आवश्यक है: एफीन लाइन ऋणात्मक मूल एफीन योजना के लिए समरूप है {{math|1=Spec('''C'''[''x'', ''x''<sup>−1</sup>])}}. यह दिखाने के लिए कि एक्स एफ़िन नहीं है, एक गणना करता है कि एक्स पर प्रत्येक नियमित कार्य ए पर एक नियमित कार्य तक विस्तारित होता है<sup>n</sup>, जब n ≥ 2. (यह जटिल विश्लेषण में हार्टोग्स के लेम्मा के अनुरूप है, हालांकि साबित करना आसान है।) अर्थात समावेशन {{math|1=''f'': ''X'' → A<sup>''n''</sup>}} से एक समाकृतिकता को प्रेरित करता है {{math|1=''O''(A<sup>''n''</sup>) = '''C'''[''x''<sub>1</sub>, ...., ''x''<sub>''n''</sub>]}} प्रति {{math|1=''O''(''X'')}}. यदि X सजातीय थे, तो यह अनुसरण करेगा कि f एक तुल्याकारिता थी। लेकिन f आच्छादक नहीं है और इसलिए एक तुल्याकारिता नहीं है। इसलिए, योजना X एफ़िन नहीं है।{{sfn|Hartshorne|1997|loc=Exercises I.3.6 and III.4.3}}
* मान लीजिए k एक क्षेत्र है। फिर योजना <math display="inline">\operatorname{Spec}\left(\prod_{n=1}^\infty k\right)</math> एक एफ़िन योजना है जिसका अंतर्निहित सांस्थितिक स्थान धनात्मक पूर्णांकों (असतत टोपोलॉजी के साथ) का कठोर-ईच सघनता है। वास्तव में, इस वलय के प्रमुख आदर्श धनात्मक पूर्णांक पर [[ ultrafilter | अतिसूक्ष्म निस्यंदक]] के साथ एक-से-एक तद्विषयक में हैं, आदर्श के साथ <math display="inline">\prod_{m \neq n} k</math> धनात्मक पूर्णांक n से जुड़े प्रमुख अतिसूक्ष्म निस्यंदक के अनुरूप है।{{sfn|Arapura|2011|loc=section 1}} यह सांस्थितिकी स्थान शून्य-आयामी है, और विशेष रूप से, प्रत्येक बिंदु एक अलघुकरणीय घटक है। चूँकि एफीन योजनाएँ [[ अर्ध-कॉम्पैक्ट | अर्ध-सघन]] होती हैं, यह एक अर्ध-सम्बद्ध योजना का एक उदाहरण है जिसमें असीम रूप से कई अलघुकरणीय घटक होते हैं। (इसके विपरीत, एक [[ नोथेरियन योजना | नोथेरियन योजना]] में केवल बहुत से अप्रासंगिक घटक होते हैं।)


=== आकारिकी के उदाहरण ===
=== आकारिकी के उदाहरण ===
Line 66: Line 67:


=== अंकगणितीय सतह ===
=== अंकगणितीय सतह ===
यदि हम एक बहुपद पर विचार करें <math>f \in \mathbb{Z}[x,y]</math> तो affine योजना <math>X = \operatorname{Spec}(\mathbb{Z}[x,y]/(f))</math> करने के लिए एक विहित आकारिकी है <math>\operatorname{Spec}\mathbb{Z}</math> और [[ अंकगणितीय सतह ]] कहलाती है। सूत्र  <math>X_p = X \times_{\operatorname{Spec}(\mathbb{Z})}\operatorname{Spec}(\mathbb{F}_p)</math> फिर परिमित क्षेत्रों पर बीजगणितीय वक्र हैं <math>\mathbb{F}_p</math>. यदि <math>f(x,y) = y^2 - x^3 + ax^2 + bx + c</math> एक अर्धवृत्ताकार वक्र है तो उसके द्वारा उत्पन्न विवेचक स्थान पर सूत्र <math>\Delta_f</math> जहां  <math display="block">\Delta_f = -4a^3c + a^2b^2 + 18abc - 4b^3 - 27c^2</math><ref>{{Cite web | url = https://homepages.warwick.ac.uk/~maskal/MA426_EllipticCurves_2018.pdf | title = अण्डाकार वक्र| page = 20}}</ref> सभी विलक्षण योजनाएँ हैं। उदाहरण के लिए, यदि <math>p</math> एक अभाज्य संख्या है और <math display="block">X = \operatorname{Spec}\left(
यदि हम एक बहुपद पर विचार करें <math>f \in \mathbb{Z}[x,y]</math> तो एफीन योजना <math>X = \operatorname{Spec}(\mathbb{Z}[x,y]/(f))</math> करने के लिए एक विहित आकारिकी है <math>\operatorname{Spec}\mathbb{Z}</math> और [[ अंकगणितीय सतह ]] कहलाती है। सूत्र  <math>X_p = X \times_{\operatorname{Spec}(\mathbb{Z})}\operatorname{Spec}(\mathbb{F}_p)</math> फिर परिमित क्षेत्रों पर बीजगणितीय वक्र हैं <math>\mathbb{F}_p</math>. यदि <math>f(x,y) = y^2 - x^3 + ax^2 + bx + c</math> एक अर्धवृत्ताकार वक्र है तो उसके द्वारा उत्पन्न विवेचक स्थान पर सूत्र <math>\Delta_f</math> जहां  <math display="block">\Delta_f = -4a^3c + a^2b^2 + 18abc - 4b^3 - 27c^2</math><ref>{{Cite web | url = https://homepages.warwick.ac.uk/~maskal/MA426_EllipticCurves_2018.pdf | title = अण्डाकार वक्र| page = 20}}</ref> सभी विलक्षण योजनाएँ हैं। उदाहरण के लिए, यदि <math>p</math> एक अभाज्य संख्या है और <math display="block">X = \operatorname{Spec}\left(
     \frac{\mathbb{Z}[x,y]}{(y^2 - x^3 - p)}
     \frac{\mathbb{Z}[x,y]}{(y^2 - x^3 - p)}
\right)</math> तो इसका विवेचक है <math>-27p^2</math>. विशेष रूप से, यह वक्र अभाज्य संख्याओं पर विलक्षण  है <math>3, p</math>.
\right)</math> तो इसका विवेचक है <math>-27p^2</math>. विशेष रूप से, यह वक्र अभाज्य संख्याओं पर विलक्षण  है <math>3, p</math>.


== योजनाओं के लिए प्रेरणा ==
== योजनाओं के लिए प्रेरणा ==
यहाँ कुछ ऐसे तरीके दिए गए हैं जिनमें योजनाएँ बीजगणितीय किस्मों की पुरानी धारणाओं और उनके महत्व से परे जाती हैं।
यहाँ कुछ ऐसे तरीके दिए गए हैं जिनमें योजनाएँ बीजगणितीय बहुरूपता की पुरानी धारणाओं और उनके महत्व के आगे जाती हैं।


* फील्ड एक्सटेंशन। फ़ील्ड ''k'' पर ''n'' वेरिएबल्स में कुछ बहुपद समीकरणों को देखते हुए, उत्पाद सेट ''k'' में समीकरणों के समाधान के सेट ''X''(''k'') का अध्ययन किया जा सकता है। '<sup>एन</sup>. यदि फ़ील्ड k बीजगणितीय रूप से बंद है (उदाहरण के लिए जटिल संख्या), तो कोई भी X(k) जैसे सेट पर बीजगणितीय ज्यामिति को आधार बना सकता है: X(k) पर ज़ारिस्की टोपोलॉजी को परिभाषित करें, इस प्रकार के विभिन्न समुच्चय के बीच बहुपद मानचित्रण पर विचार करें, और इसी तरह। लेकिन अगर k बीजगणितीय रूप से बंद नहीं है, तो सेट X(k) पर्याप्त समृद्ध नहीं है। वास्तव में, दिए गए समीकरणों के समाधान X(E) का अध्ययन k के किसी भी क्षेत्र विस्तार E में किया जा सकता है, लेकिन ये सेट किसी भी उचित अर्थ में X(k) द्वारा निर्धारित नहीं किए जाते हैं। उदाहरण के लिए, x . द्वारा परिभाषित वास्तविक संख्याओं पर समतल वक्र X<sup>2</sup> + y<sup>2</sup> = -1 में X('R') खाली है, लेकिन X('C') खाली नहीं है। (वास्तव में, एक्स ('सी') को 'सी' - 0 के साथ पहचाना जा सकता है।) इसके विपरीत, क्षेत्र K पर एक योजना एक्स में प्रत्येक विस्तार के लिए ई-तर्कसंगत बिंदुओं के सेट एक्स (ई) को निर्धारित करने के लिए पर्याप्त जानकारी है। कश्मीर के क्षेत्र ई। (विशेष रूप से, ए की बंद उपयोजना{{supsub|2|'''R'''}} एक्स द्वारा परिभाषित<sup>2</sup> + और<sup>2</sup> = -1 एक गैर-खाली स्थलीय स्थान है।)
* क्षेत्र विस्तारण -क्षेत्र ''k'' पर ''n'' चर में कुछ बहुपद समीकरणों को देखते हुए, उत्पाद समुच्चय ''k'''n में समीकरणों के समाधान के सेट ''X''(''k'') का अध्ययन किया जा सकता है। . यदि क्षेत्र k बीजगणितीय रूप से सीमित है (उदाहरण के लिए सम्मिश्र संख्या), तो कोई भी समुच्चय पर बीजगणितीय ज्यामिति को आधार बना सकता है X(k): X(k) पर ज़ारिस्की टोपोलॉजी को परिभाषित करें, इस प्रकार के विभिन्न समुच्चय के बीच बहुपद मानचित्रण पर विचार करें, और इसी तरह। लेकिन अगर k बीजगणितीय रूप से सीमित नहीं है, तो समुच्चय X(k) पर्याप्त समृद्ध नहीं है। वास्तव में, दिए गए समीकरणों के समाधान X(E) का अध्ययन k के किसी भी क्षेत्र विस्तार E में किया जा सकता है, लेकिन ये समुच्चय किसी भी उचित अर्थ में X(k) द्वारा निर्धारित नहीं किए जाते हैं। उदाहरण के लिए, x . द्वारा परिभाषित वास्तविक संख्याओं पर समतल वक्र X<sup>2</sup> + y<sup>2</sup> = -1 में X('R') रिक्त है, लेकिन X('C') रिक्त नहीं है। (वास्तव में, एक्स ('सी') को 'सी' - 0 के साथ पहचाना जा सकता है।) इसके विपरीत, क्षेत्र K पर एक योजना एक्स में प्रत्येक विस्तार के लिए ई-तर्कसंगत बिंदुओं के समुच्चय (ई) को निर्धारित करने के लिए पर्याप्त जानकारी है। x<sup>2</sup> + y<sup>2</sup> = -1 एक गैर-खाली सामयिक स्थान है।)
* सामान्य बिंदु। एफ़िन लाइन ए के बिंदु{{supsub|1|'''C'''}}, एक योजना के रूप में, इसके जटिल बिंदु हैं (प्रत्येक जटिल संख्या के लिए एक) एक साथ एक सामान्य बिंदु (जिसका समापन पूरी योजना है)। सामान्य बिंदु एक प्राकृतिक आकृतिवाद की छवि है Spec(C(''x'')) → A{{supsub|1|'''C'''}}, जहाँ C(''x'') एक चर में [[ तर्कसंगत कार्य ]]ों का क्षेत्र है। यह देखने के लिए कि योजना में वास्तविक सामान्य बिंदु होना क्यों उपयोगी है, निम्नलिखित उदाहरण पर विचार करें।
* सामान्य बिंदु- एफ़िन लाइन ए के बिंदु, एक योजना के रूप में, इसके सम्मिश्र बिंदु हैं (प्रत्येक सम्मिश्र संख्या के लिए एक) एक साथ एक सामान्य बिंदु (जिसका समापन पूरी योजना है)। सामान्य बिंदु एक प्राकृतिक आकृतिवाद की छवि है Spec(C(''x'')) → A, जहाँ C(''x'') एक चर में [[ तर्कसंगत कार्य ]] का क्षेत्र है। यह देखने के लिए कि योजना में वास्तविक सामान्य बिंदु होना क्यों उपयोगी है, निम्नलिखित उदाहरण पर विचार करें।
* मान लें कि ''X'' समतल वक्र ''y'' है<sup>2</sup> = x(x−1)(x−5) सम्मिश्र संख्याओं पर। यह A की एक बंद उपयोजना है{{supsub|2|'''C'''}}. इसे एफ़िन लाइन ए के डबल कवर को कवर करने वाले एक बड़े आकार के रूप में देखा जा सकता है{{supsub|1|'''C'''}} x-निर्देशांक को प्रक्षेपित करके। आकारिकी का तंतु X → A<sup>1</sup> A . के सामान्य बिंदु पर<sup>1</sup> वास्तव में X का सामान्य बिंदु है, जो आकारिकी प्रदान करता है <math display="block">\operatorname{Spec} \mathbf{C}(x) \left (\sqrt{x(x-1)(x-5)} \right )\to \operatorname{Spec}\mathbf{C}(x).</math> यह बदले में फील्ड एक्सटेंशन -2 फील्ड्स के विस्तार की डिग्री के बराबर है <math display="block">\mathbf{C}(x) \subset \mathbf{C}(x) \left (\sqrt{x(x-1)(x-5)} \right ).</math> इस प्रकार, एक किस्म का वास्तविक सामान्य बिंदु होने से बीजगणितीय किस्मों के डिग्री -2 आकारिकी और बीजीय किस्म के कार्य क्षेत्र के संबंधित डिग्री -2 विस्तार के बीच एक ज्यामितीय संबंध उत्पन्न होता है। यह [[ मौलिक समूह ]] (जो टोपोलॉजी में रिक्त स्थान को वर्गीकृत करता है) और गैलोइस समूह (जो कुछ फ़ील्ड एक्सटेंशन को वर्गीकृत करता है) के बीच संबंध को सामान्य करता है। दरअसल, ग्रोथेंडिक का एटले मौलिक समूह का सिद्धांत मौलिक समूह और गैलोइस समूह को एक ही पायदान पर मानता है।
* मान लें कि ''X'' समतल वक्र ''y'' है<sup>2</sup> = x(x−1)(x−5) सम्मिश्र संख्याओं पर। यह A की एक सीमित उपयोजना है. इसे एफ़िन लाइन ए के दोहरे समावेशन को समावेश करने वाले एक बड़े आकार के रूप में देखा जा सकता है x-निर्देशांक को प्रक्षेपित करके आकारिकी का तंतु X → A<sup>1</sup> A . के सामान्य बिंदु पर<sup>1</sup> वास्तव में X का सामान्य बिंदु है, जो आकारिकी प्रदान करता है <math display="block">\operatorname{Spec} \mathbf{C}(x) \left (\sqrt{x(x-1)(x-5)} \right )\to \operatorname{Spec}\mathbf{C}(x).</math> यह बदले में क्षेत्र विस्तारण -2 क्षेत्र के विस्तार की डिग्री के बराबर है <math display="block">\mathbf{C}(x) \subset \mathbf{C}(x) \left (\sqrt{x(x-1)(x-5)} \right ).</math> इस प्रकार, एक विविधता का वास्तविक सामान्य बिंदु होने से बीजगणितीय वर्गों के डिग्री -2 आकारिकी और बीजीय किस्म के कार्य क्षेत्र के संबंधित डिग्री -2 विस्तार के बीच एक ज्यामितीय संबंध उत्पन्न होता है। यह [[ मौलिक समूह ]] (जो टोपोलॉजी में रिक्त स्थान को वर्गीकृत करता है) और गैलोइस समूह (जो कुछ क्षेत्र विस्तारण को वर्गीकृत करता है) के बीच संबंध को सामान्य करता है। लेकिन, ग्रोथेंडिक का एटले मौलिक समूह का सिद्धांत मौलिक समूह और गैलोइस समूह को एक ही आधार पर मानता है।


*नीलपोटेंट तत्व। चलो ''X'' affine लाइन A . की बंद उपयोजना है{{supsub|1|'''C'''}} एक्स द्वारा परिभाषित<sup>2</sup> = 0, जिसे कभी-कभी फैट पॉइंट कहा जाता है। ''X'' पर नियमित कार्यों की अंगूठी है C[''x'']/(''x''<sup>2</sup>); विशेष रूप से, X पर नियमित फलन x शून्य-शक्ति है लेकिन शून्य नहीं है। इस योजना के अर्थ को इंगित करने के लिए: एफ़िन लाइन पर दो नियमित कार्यों में एक्स के लिए समान प्रतिबंध होता है यदि और केवल तभी उनका मूल्य समान होता है और मूल में पहला व्युत्पन्न होता है। ऐसी गैर-'घटित योजना' योजनाओं को अनुमति देने से [[ गणना ]] और [[ बहुत छोता ]] के विचार बीजगणितीय ज्यामिति में आ जाते हैं।
*नीलपोटेंट तत्व- मान ले कि ''X'' एफीन लाइन A . की सीमित उपयोजना है CX<sup>2</sup> = 0, जिसे कभी-कभी स्थूल बिन्दु कहा जाता है। ''X'' पर नियमित कार्यों का वलय है C[''x'']/(''x''<sup>2</sup>); विशेष रूप से, X पर नियमित फलन x शून्य-बल है लेकिन शून्य नहीं है। इस योजना के अर्थ को इंगित करने के लिए: एफ़िन लाइन पर दो नियमित कार्यों में एक्स के लिए समान प्रतिबंध होता है यदि और केवल तभी उनका मूल्य समान होता है और मूल में पहला व्युत्पन्न होता है। ऐसी गैर-'घटित योजना' योजनाओं को अनुमति देने से [[ गणना ]] और [[ बहुत छोता | अतिसूक्ष्म]] के विचार बीजगणितीय ज्यामिति में आ जाते हैं।
*एक अधिक विस्तृत उदाहरण के लिए, एक [[ चिकनी योजना ]] जटिल किस्म वाई में डिग्री 2 के सभी शून्य-आयामी बंद उप-योजनाओं का वर्णन कर सकते हैं। इस तरह की एक उप-योजना में वाई के दो अलग-अलग जटिल बिंदु होते हैं, या फिर एक्स = स्पेक के लिए एक उप-योजना आइसोमोर्फिक होती है। 'सी' [एक्स]/(एक्स<sup>2</sup>) पिछले पैराग्राफ की तरह। बाद वाले प्रकार की उप-योजनाएँ Y के एक जटिल बिंदु y द्वारा [[ स्पर्शरेखा स्थान ]] T में एक रेखा के साथ निर्धारित की जाती हैं<sub>''y''</sub>वाई{{sfn|Eisenbud|Harris|1998|loc=Example II-10}} यह फिर से इंगित करता है कि गैर-कम उप-योजनाओं का ज्यामितीय अर्थ है, डेरिवेटिव और स्पर्शरेखा वैक्टर से संबंधित है।
*एक अधिक विस्तृत उदाहरण के लिए, एक [[ चिकनी योजना | सरल योजना]] सम्मिश्र वर्ग वाई में अंश 2 के सभी शून्य-आयामी बंद उप-योजनाओं का वर्णन कर सकते हैं। इस तरह की एक उप-योजना में वाई के दो अलग-अलग सम्मिश्र बिंदु होते हैं, या फिर एक्स = स्पेक के लिए एक उप-योजना समरूप होती है। 'C' [X]/(X<sup>2</sup>) पिछले पैराग्राफ की तरह। बाद वाले प्रकार की उप-योजनाएँ के एक जटिल बिंदु y द्वारा [[ स्पर्शरेखा स्थान ]]T<sub>''y''</sub>{{sfn|Eisenbud|Harris|1998|loc=Example II-10}}Yमें एक रेखा के साथ निर्धारित की जाती है यह फिर से इंगित करता है कि गैर-कम उप-योजनाओं का ज्यामितीय अर्थ है, यौगिक और स्पर्शरेखा सदिश से संबंधित है।


== सुसंगत संग्राही ==
== सुसंगत संग्राही ==
{{Main|सुसंगत संग्राही }}
{{Main|सुसंगत संग्राही }}
योजना सिद्धांत का एक केंद्रीय हिस्सा [[ सुसंगत शीफ | '''सुसंगत संग्राही''']] की धारणा है, जो (बीजीय) [[ वेक्टर बंडल | वेक्टर समूहों]] की धारणा को सामान्य करता है। एक योजना X के लिए, एक ''O''<sub>''X''</sub> 'मापांक की एबेलियन श्रेणी पर विचार करके प्रारंभ होता है, जो ''X'' पर एबेलियन समूहों के समूह हैं जो नियमित कार्यों के संग्राही के ऊपर एक [[ मॉड्यूल (गणित) |मापांक]] बनाते हैं। विशेष रूप से, एक मापांक एम एक क्रमविनिमेय वलय आर पर O<sub>''X''</sub> मापांक से जुड़े एक संग्राही को निर्धारित करता है, एक्स = स्पेक (आर) पर योजना X पर '[[ अर्ध-सुसंगत शीफ |अर्ध-सुसंगत संग्राही]]' का अर्थ है  O<sub>''X''</sub> -मापांक  जो एक्स के प्रत्येक एफाइन विवृत उपसमुच्चय पर एक मापांक से जुड़ा संग्राही ​​है। अंत में, एक '''<nowiki/>'सुसंगत संग्राही'''' (नोथेरियन योजना एक्स पर, कहते हैं) एक O<sub>''X''</sub>-मापांक है जो एक्स के प्रत्येक एफ़िन विवृत उपसमुच्चय पर एक अंतिम रूप से प्रतिस्थापित किए गए मापांक से जुड़ा संग्राही ​​है।  
योजना सिद्धांत का एक केंद्रीय हिस्सा [[ सुसंगत शीफ | '''सुसंगत संग्राही''']] की धारणा है, जो (बीजीय) [[ वेक्टर बंडल | सदिश समूहों]] की धारणा को सामान्य करता है। एक योजना X के लिए, एक ''O''<sub>''X''</sub> 'मापांक की एबेलियन श्रेणी पर विचार करके प्रारंभ होता है, जो ''X'' पर एबेलियन समूहों के समूह हैं जो नियमित कार्यों के संग्राही के ऊपर एक [[ मॉड्यूल (गणित) |मापांक]] बनाते हैं। विशेष रूप से, एक मापांक एम एक क्रमविनिमेय वलय आर पर O<sub>''X''</sub> मापांक से जुड़े एक संग्राही को निर्धारित करता है, एक्स = स्पेक (आर) पर योजना X पर '[[ अर्ध-सुसंगत शीफ |अर्ध-सुसंगत संग्राही]]' का अर्थ है  O<sub>''X''</sub> -मापांक  जो एक्स के प्रत्येक एफाइन विवृत उपसमुच्चय पर एक मापांक से जुड़ा संग्राही ​​है। अंत में, एक '''<nowiki/>'सुसंगत संग्राही'''' (नोथेरियन योजना एक्स पर, कहते हैं) एक O<sub>''X''</sub>-मापांक है जो एक्स के प्रत्येक एफ़िन विवृत उपसमुच्चय पर एक अंतिम रूप से प्रतिस्थापित किए गए मापांक से जुड़ा संग्राही ​​है।  


सुसंगत संग्राही में 'वेक्टर समूहों' का महत्वपूर्ण वर्ग सम्मिलित है, जो कि वे संग्राही हैं जो स्थानीय रूप से अंतिम रूप से उत्पन्न मुक्त मापांक से आते हैं। एक क्षेत्र के ऊपर एक सरल विविध का [[ स्पर्शरेखा बंडल | स्पर्शरेखा समूह]] एक उदाहरण है। हालांकि, सुसंगत संग्राही अधिक समृद्ध हैं; उदाहरण के लिए, एक्स के सीमित उप-योजना वाई पर एक वेक्टर समूह को एक्स पर एक सुसंगत संग्राही के रूप में देखा जा सकता है जो वाई के बाहर शून्य है ([[ प्रत्यक्ष छवि ]] निर्माण द्वारा)। इस तरह, योजना X पर सुसंगत संग्राही में एक्स की सभी सीमित उप-योजनाओं के बारे में जानकारी सम्मिलित है। इसके अलावा, [[ शेफ कोहोलॉजी | संग्राही कोहोलॉजी]] में सुसंगत (और अर्ध-सुसंगत) संग्राही के लिए अच्छे गुण हैं। [[ सुसंगत शीफ कोहोलॉजी | सुसंगत संग्राही कोहोलॉजी]] का परिणामी सिद्धांत शायद बीजगणितीय ज्यामिति में मुख्य तकनीकी उपकरण है।{{sfn|Dieudonné|1985|loc=sections VIII.2 and VIII.3}}{{sfn|Hartshorne|1997|loc=Chapter III}}
सुसंगत संग्राही में 'वेक्टर समूहों' का महत्वपूर्ण वर्ग सम्मिलित है, जो कि वे संग्राही हैं जो स्थानीय रूप से अंतिम रूप से उत्पन्न मुक्त मापांक से आते हैं। एक क्षेत्र के ऊपर एक सरल विविध का [[ स्पर्शरेखा बंडल | स्पर्शरेखा समूह]] एक उदाहरण है। हालांकि, सुसंगत संग्राही अधिक समृद्ध हैं; उदाहरण के लिए, एक्स के सीमित उप-योजना वाई पर एक सदिश समूह को एक्स पर एक सुसंगत संग्राही के रूप में देखा जा सकता है जो वाई के बाहर शून्य है ([[ प्रत्यक्ष छवि ]] निर्माण द्वारा)। इस तरह, योजना X पर सुसंगत संग्राही में एक्स की सभी सीमित उप-योजनाओं के बारे में जानकारी सम्मिलित है। इसके अलावा, [[ शेफ कोहोलॉजी | संग्राही कोहोलॉजी]] में सुसंगत (और अर्ध-सुसंगत) संग्राही के लिए अच्छे गुण हैं। [[ सुसंगत शीफ कोहोलॉजी | सुसंगत संग्राही कोहोलॉजी]] का परिणामी सिद्धांत शायद बीजगणितीय ज्यामिति में मुख्य तकनीकी उपकरण है।{{sfn|Dieudonné|1985|loc=sections VIII.2 and VIII.3}}{{sfn|Hartshorne|1997|loc=Chapter III}}




== सामान्यीकरण ==
== सामान्यीकरण ==
बिन्दुओ के इसके कारक के रूप में माना जाता है, एक योजना एक कारक है जो कर्मवनिमे वलय की श्रेणी पर ज़ारिस्की टोपोलॉजी के लिए समुच्चय का एक समूह है, और जो स्थानीय रूप से ज़ारिस्की टोपोलॉजी में, एक एफ़िन योजना है। इसे कई तरीकों से सामान्यीकृत किया जा सकता है। एक एटेल टोपोलॉजी का उपयोग करना है। [[ माइकल आर्टिन ]] ने एक [[ बीजगणितीय स्थान ]] को एक अवच्छेदक के रूप में परिभाषित किया है जो कि एटेल टोपोलॉजी में एक शीफ है और जो स्थानीय रूप से एटल टोपोलॉजी में एक एफ़िन योजना है। समान रूप से, एक बीजगणितीय स्थान एक एटेल तुल्यता संबंध द्वारा एक योजना का भागफल है। एक शक्तिशाली परिणाम, आर्टिन प्रतिनिधित्व योग्यता प्रमेय, एक अवच्छेदक के लिए बीजीय स्थान द्वारा प्रतिनिधित्व करने के लिए सरल स्थितियां देता है।<ref name=St07Y1>{{Citation | title=Stacks Project, Tag 07Y1 | url=http://stacks.math.columbia.edu/tag/07Y1}}.</ref>
बिन्दुओ के इसके कारक के रूप में माना जाता है, एक योजना एक कारक है जो कर्मविनिमेय वलय की श्रेणी पर ज़ारिस्की सांस्थिति के लिए समुच्चय का एक समूह है, और जो स्थानीय रूप से ज़ारिस्की सांस्थिति में, एक एफ़िन योजना है। इसे कई तरीकों से सामान्यीकृत किया जा सकता है। एक एटेल सांस्थिति का उपयोग करना है। [[ माइकल आर्टिन |माइकल आर्टिन]] ने एक [[ बीजगणितीय स्थान ]] को एक अवच्छेदक के रूप में परिभाषित किया है जो कि एटेल सांस्थिति में एक संग्राही है और जो स्थानीय रूप से एटल सांस्थिति में एक एफ़िन योजना है। समान रूप से, एक बीजगणितीय स्थान एक एटेल तुल्यता संबंध द्वारा एक योजना का भागफल है। एक प्रबल परिणाम, आर्टिन प्रतिनिधित्व योग्यता प्रमेय, एक अवच्छेदक के लिए बीजीय स्थान द्वारा प्रतिनिधित्व करने के लिए सरल स्थितियां देता है।<ref name=St07Y1>{{Citation | title=Stacks Project, Tag 07Y1 | url=http://stacks.math.columbia.edu/tag/07Y1}}.</ref>


एक और सामान्यीकरण एक राशि का विचार है। अपरिष्कृत के अनुरूप, '''बीजगणितीय राशि'''' प्रत्येक बिंदु से जुड़े बीजगणितीय समूह के द्वारा बीजगणितीय रिक्त स्थान को सामान्यीकृत करते हैं, जिसे उस बिंदु के प्रतिधारण समूह के रूप में देखा जाता है। उदाहरण के लिए, बीजगणितीय समूह G की कोई भी समूह क्रिया बीजगणितीय विविधता X पर एक भागफल राशि  [X/G] निर्धारित करती है, जो G की क्रिया के लिए स्थायीकारक उपसमूह को याद रखता है । अधिक सामान्य तौर पर'','' बीजगणितीय ज्यामिति में सापेक्ष रिक्त स्थान को प्रायः राशि के रूप में देखा जाता है, जिससे वस्तुओं के प्रतिधारण समूहों को वर्गीकृत किया जाता है।
एक और सामान्यीकरण एक राशि का विचार है। अपरिष्कृत के अनुरूप, '''बीजगणितीय राशि'''' प्रत्येक बिंदु से जुड़े बीजगणितीय समूह के द्वारा बीजगणितीय रिक्त स्थान को सामान्यीकृत करते हैं, जिसे उस बिंदु के प्रतिधारण समूह के रूप में देखा जाता है। उदाहरण के लिए, बीजगणितीय समूह G की कोई भी समूह क्रिया बीजगणितीय विविधता X पर एक भागफल राशि  [X/G] निर्धारित करती है, जो G की क्रिया के लिए स्थायीकारक उपसमूह को प्राप्त करता है । अधिक सामान्यताः मे'','' बीजगणितीय ज्यामिति में सापेक्ष रिक्त स्थान को प्रायः संग्रह के रूप में देखा जाता है, जिससे वस्तुओं के प्रतिधारण समूहों को वर्गीकृत किया जाता है।


ग्रोथेंडिक ने मूल रूप से [[ वंश (गणित) | उत्पत्ति]] के सिद्धांत के लिए एक उपकरण के रूप में राशि प्रारंभ की। उस सूत्रीकरण में, राशि (अनौपचारिक रूप से) श्रेणियों की राशि होती हैं।{{sfn|Vistoli|2005|loc=Definition 4.6}} इस सामान्य धारणा से, आर्टिन ने बीजगणितीय राशि (या आर्टिन स्टैक्स) के संकुचित वर्ग को परिभाषित किया, जिसे ज्यामितीय वस्तुएं माना जा सकता है। इनमें डेलिग्ने-ममफोर्ड राशि (टोपोलॉजी में [[ ऑर्बिफोल्ड | ऑर्बिफोल्ड]] के समान) सम्मिलित हैं, जिसके लिए स्थायीकारक समूह परिमित हैं, और बीजीय रिक्त स्थान, जिसके लिए स्थायीकारक समूह साधारण हैं। कील-मोरी प्रमेय के अनुसार परिमित स्थायीकारक समूहों के साथ एक बीजगणितीय स्टैक में एक अपरिष्कृत सापेक्ष स्थान होता है जो एक बीजगणितीय स्थान होता है।
ग्रोथेंडिक ने मूल रूप से [[ वंश (गणित) | उत्पत्ति]] के सिद्धांत के लिए एक उपकरण के रूप में संग्रह करके प्रारंभ की। उस सूत्रीकरण में, राशि (अनौपचारिक रूप से) श्रेणियों की राशि होती हैं।{{sfn|Vistoli|2005|loc=Definition 4.6}} इस सामान्य धारणा से, आर्टिन ने बीजगणितीय राशि (या आर्टिन संग्रह) के संकुचित वर्ग को परिभाषित किया, जिसे ज्यामितीय वस्तुएं माना जा सकता है। इनमें डेलिग्ने-ममफोर्ड राशि (टोपोलॉजी में [[ ऑर्बिफोल्ड | ऑर्बिफोल्ड]] के समान) सम्मिलित हैं, जिसके लिए स्थायीकारक समूह परिमित हैं, और बीजीय रिक्त स्थान, जिसके लिए स्थायीकारक समूह साधारण हैं। कील-मोरी प्रमेय के अनुसार परिमित स्थायीकारक समूहों के साथ एक बीजगणितीय संग्रह में एक अपरिष्कृत सापेक्ष स्थान होता है जो एक बीजगणितीय स्थान होता है।


एक अन्य प्रकार का सामान्यीकरण संरचना शीफ ​​को बढ़ाना है, बीजगणितीय ज्यामिति को समरूप सिद्धांत के नजदीक लाना है। इस स्थिति में, व्युत्पन्न बीजगणितीय ज्यामिति या वर्णक्रमीय बीजगणितीय ज्यामिति के रूप में जाना जाता है, संरचना संग्राही ​​को क्रमविनिमेय वलय के एक संग्राही के समस्थानिक अनुरूप द्वारा प्रतिस्थापित किया जाता है (उदाहरण के लिए, [[ अत्यधिक संरचित रिंग स्पेक्ट्रम | अत्यधिक संरचित वलय वर्णक्रम का]] संग्राही । ये ब्लॉक बीजगणितीय संक्रियाओं को स्वीकार करते हैं जो केवल एक तुल्यता संबंध तक ही साहचर्य और क्रमविनिमेय हैं। इस तुल्यता संबंध से भागफल लेने पर एक साधारण योजना का संरचना का निर्माण होता है। हालांकि, भागफल को नहीं लेने से एक सिद्धांत की ओर जाता है जो उच्च जानकारी को याद रख सकता है, उसी तरह जैसे कि समरूप बीजगणित में व्युत्पन्न कारक [[ टेंसर उत्पाद |प्रदिश उत्पाद]] और मापांक पर उत्सर्ग अवच्छेदक संचालन के बारे में उच्च जानकारी प्राप्त करते हैं।
एक अन्य प्रकार का सामान्यीकरण संरचना संग्राही ​​को बढ़ाना है, बीजगणितीय ज्यामिति को समरूप सिद्धांत के पास लाना है। इस स्थिति में, व्युत्पन्न बीजगणितीय ज्यामिति या वर्णक्रमीय बीजगणितीय ज्यामिति के रूप में जाना जाता है, संरचना संग्राही ​​को क्रमविनिमेय वलय के एक संग्राही के समस्थानिक अनुरूप द्वारा प्रतिस्थापित किया जाता है (उदाहरण के लिए, [[ अत्यधिक संरचित रिंग स्पेक्ट्रम |अत्यधिक संरचित वलय वर्णक्रम का]] संग्राही । ये खंड बीजगणितीय संक्रियाओं को स्वीकार करते हैं जो केवल एक तुल्यता संबंध तक ही साहचर्य और क्रमविनिमेय हैं। इस तुल्यता संबंध से भागफल लेने पर एक साधारण योजना की संरचना का निर्माण होता है। हालांकि, भागफल को नहीं लेने से एक सिद्धांत की ओर जाता है जो उच्च जानकारी को प्राप्त कर सकता है, उसी तरह जैसे कि समरूप बीजगणित में व्युत्पन्न कारक [[ टेंसर उत्पाद |प्रदिश उत्पाद]] और मापांक पर उत्सर्ग अवच्छेदक संचालन के बारे में उच्च जानकारी प्राप्त करते हैं।


== यह भी देखें ==
== यह भी देखें ==
*चपटा रूपवाद, चिकना आकारवाद, उचित आकारवाद, [[ परिमित रूपवाद ]], कथा रूपवाद
*चपटा रूपवाद, चिकना आकारवाद, उचित आकारवाद, [[ परिमित रूपवाद ]], कथा रूपवाद
*[[ स्थिर वक्र ]]
*[[ स्थिर वक्र | स्थिर वक्र]]
*[[ बायरेशनल ज्यामिति ]]
*[[ बायरेशनल ज्यामिति ]]
*एटेल कोहोलॉजी, [[ चाउ ग्रुप ]], [[ हॉज सिद्धांत ]]
*एटेल कोहोलॉजी, [[ चाउ ग्रुप ]], [[ हॉज सिद्धांत ]]
Line 182: Line 183:


{{Authority control}}
{{Authority control}}
[[Category:योजना सिद्धांत| ]]


[[Category: Machine Translated Page]]
[[Category:AC with 0 elements]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Articles with short description]]
[[Category:Created On 14/11/2022]]
[[Category:Created On 14/11/2022]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:योजना सिद्धांत| ]]

Latest revision as of 14:49, 24 November 2022

गणित में, एक योजना एक गणितीय संरचना है जो कई तरीकों से बीजगणितीय विविधता की धारणा को विस्तृत करती है, जैसे कि गुणनखंडों को ध्यान मे रखते हुए समीकरण x = 0 और x2 = 0 एक ही बीजगणितीय विविधता लेकिन विभिन्न योजनाओं को परिभाषित करता है और किसी भी क्रमविनिमेय वलय पर परिभाषित विविधताओ की अनुमति देता है। उदाहरण के लिए, फर्मेट वक्र पूर्णांक पर परिभाषित होते हैं।

योजना सिद्धांत को अलेक्जेंडर ग्रोथेंडिक ने 1960 में अपने ग्रंथ ''एलिमेंट्स डी जियोमेट्री एल्जेब्रिक'' में पेश किया था; इसका एक उद्देश्य बीजगणितीय ज्यामिति की गहरी समस्याओं को हल करने के लिए आवश्यक औपचारिकता विकसित करना था, जैसे कि वेइल अनुमान जिनमें से अंतिम पियरे डेलिग्ने द्वारा सिद्ध किया गया था।[1] क्रमविनिमेय बीजगणित पर दृढ़ता से आधारित, योजना सिद्धांत सांस्थिति और समतुल्य बीजगणित के तरीकों के व्यवस्थित उपयोग की अनुमति देता है। योजना सिद्धांत बीजगणितीय ज्यामिति को बहुत अधिकसंख्या सिद्धांत के साथ एकीकृत करता है, जो अंततः विल्स के फ़र्मेट के अंतिम प्रमेय के प्रमाण का नेतृत्व करता है।

औपचारिक रूप से, एक योजना अपने सभी विवृत समुच्चय के लिए क्रमविनिमय वलय के साथ एक सांस्थितिक समष्टि है, जो उनके विवृत उपसमुच्चय के साथ क्रमविनिमेय वलय के वर्णक्रम(अभाज्य काल्पनिक के स्थान) को एक साथ जोड़ने से उत्पन्न होती है। दूसरे शब्दों में, यह एक वलयाकार स्थान है जो स्थानीय रूप से क्रमविनिमेय वलय का एक वर्णक्रम है।

ग्रोथेंडिक का सापेक्षिक दृष्टिकोण यह है कि अधिकांश बीजगणितीय ज्यामिति को आकारिकी X → Y योजनाओं के लिए विकसित किया जाना चाहिए (जिसे योजना X 'के ऊपर' Y कहा जाता है), न कि किसी विशिष्ट योजना के लिए। उदाहरण के लिए, बीजगणितीय सतहो का अध्ययन करने में, किसी योजना Y पर बीजगणितीय सतहों के वर्गों पर विचार करना उपयोगी हो सकता है। कई स्थितियों में, किसी दिए गए प्रकार की सभी प्रकारो के वर्गों को ही एक प्रकार या योजना के रूप में देखा जा सकता है, जिसे सापेक्ष स्थान के रूप में जाना जाता है।

योजनाओं के सिद्धांत की कुछ विस्तृत परिभाषाओं के लिए, योजना सिद्धांत की शब्दावली देखें।

विकास

बीजगणितीय ज्यामिति की उत्पत्ति अधिकतम वास्तविक संख्याओं पर बहुपद समीकरणों के अध्ययन में निहित है। 19वीं शताब्दी तक, यह स्पष्ट हो गया (विशेष रूप से जीन-विक्टर पोंसलेट और बर्नहार्ड रीमैन के काम में) कि बीजगणितीय ज्यामिति को सम्मिश्र संख्याओं के क्षेत्र पर क्रिया करके सरल बनाया गया था, जिसका बीजगणितीय रूप से सीमित होने का लाभ है।[2] 20वीं शताब्दी के प्रारंभ में दो मुद्दों ने धीरे-धीरे ध्यान आकर्षित किया, संख्या सिद्धांत में समस्याओं से प्रेरित होकर बीजगणितीय ज्यामिति को किसी भी बीजगणितीय रूप से सीमित क्षेत्र में कैसे विकसित किया जा सकता है, विशेष रूप से सकारात्मक विशेषताओ में और क्या एकपक्षीय क्षेत्र पर बीजगणितीय ज्यामिति के बारे में सम्मिश्र विविधताओ का अध्ययन करने के लिए प्रयुक्त सांस्थिति और सम्मिश्र विश्लेषण के उपकरण यहां लागू नहीं होते हैं।

हिल्बर्ट का शून्य स्थान प्रमेय किसी भी बीजगणितीय रूप से सीमित क्षेत्र k पर बीजगणितीय ज्यामिति के लिए एक दृष्टिकोण का सुझाव देते हैं: बहुपद वलय में अधिकतम काल्पनिक k[x1,...,xn] kn के तत्वों के n-टपल के समुच्चय के साथ,प्रत्येक के लिए अलग-अलग समानता मे है, और रूढ आदर्श kn में असमानेय बीजगणितीय समुच्चय के अनुरूप हैं, एफीन विविधताओ के रूप में जाना जाता है। इन विचारों से प्रेरित होकर, एमी नोथेर और वोल्फगैंग क्रूल ने 1920 और 1930 के दशक में 'क्रमविनिमेय बीजगणित' का विषय विकसित किया।[3] उनका काम बीजगणितीय ज्यामिति को विशुद्ध रूप से बीजगणितीय दिशा में सामान्यीकृत करता है: एक बहुपद वलय में प्रमुख आदर्शों का अध्ययन करने के बजाय, किसी भी क्रमविनिमेय वलय में प्रमुख आदर्शों का अध्ययन किया जा सकता है। उदाहरण के लिए, क्रुल ने प्रमुख आदर्शों के संदर्भ में किसी भी क्रमविनिमेय वलय के क्रुल आयाम को परिभाषित किया। कम से कम जब नोथेरियन वलय है, तो उन्होंने कई गुणों को सिद्ध किया जो कि आयाम की ज्यामितीय धारणा से हैं।

नोथेर और क्रुल के क्रमविनिमेय बीजगणित को एफीन बीजगणितीय विविधताओ के दृष्टिकोण के रूप में देखा जा सकता है। हालांकि, बीजगणितीय ज्यामिति में कई तर्क प्रक्षेपीय विविधताओ के लिए परस्पर क्रिया करते हैं, क्योंकि अनिवार्य रूप से प्रक्षेपीय विविधताए संक्षिप्त होती हैं। 1920 के दशक से 1940 के दशक तक, बार्टेल लिंडर्ट वैन डेर वेर्डन,आंद्रे वेइल और ऑस्कर ज़ारिस्की ने प्रक्षेपी(या अर्ध-प्रक्षेपी) विविधताओ की समृद्ध स्थापना में बीजगणितीय ज्यामिति के लिए एक नई नींव के रूप में क्रमविनिमेय बीजगणित लागू किया।[4] विशेष रूप से, ज़ारिस्की सांस्थिति किसी भी बीजगणितीय रूप से सीमित क्षेत्र पर विविधता पर एक उपयोगी सांस्थिति है, जो कुछ हद तक एक सम्मिश्र विविधता (सम्मिश्र संख्याओं के सांस्थिति के आधार पर) पर उत्कृष्ट सांस्थिति की जगह लेती है।

संख्या सिद्धांत के अनुप्रयोगों के लिए, वैन डेर वेर्डन और वील ने किसी भी क्षेत्र पर बीजगणितीय ज्यामिति तैयार की, जरूरी नहीं कि बीजगणितीय रूप से सीमित हो। टोपोलॉजी में विविध मॉडल पर विवृत उपसमुच्चय के साथ एफ़िन विविधताओ को चिपकाकर, एक अमूर्त विविधता (प्रक्षेप्य स्थान में अंतर्निहित नहीं) को परिभाषित करने वाला वेल पहला व्यक्ति था। किसी भी क्षेत्र में वक्र की जैकोबियन विविधता के अपने निर्माण के लिए उन्हें इस व्यापकता की आवश्यकता थी। बाद में, जेकोबियंस को वेइल, वी-एल इयान जीसी कैसे और तेरुहिसा मात्सुजाका द्वारा प्रक्षेपी विविधताओ के रूप में दिखाया गया।

इटालियन स्कूल के बीजगणितीय ज्यामितियो ने प्रायः बीजगणितीय विविधता के सामान्य बिंदु की कुछ अस्पष्ट अवधारणा का उपयोग करते थे। सामान्य बिंदु के लिए जो सत्य है वह विविधता के अधिकांश बिंदुओं के लिए सत्य है। बीजगणितीय ज्यामिति (1946) की वेइल की नींव में, एक बहुत बड़े बीजगणितीय रूप से सीमित क्षेत्र में बिंदुओं को लेकर सामान्य बिंदुओं का निर्माण किया जाता है, जिसे एक सार्वभौमिक डोमेन कहा जाता है।[4] हालांकि यह नींव के रूप में काम करता था, यह अजीब था: एक ही विविधता के लिए कई अलग-अलग सामान्य बिंदु थे। (योजनाओं के बाद के सिद्धांत में, प्रत्येक बीजगणितीय विविधता का एक सामान्य बिंदु होता है।)

1950 के दशक में, क्लाउड चेवेली, न्यायमूर्ति नागता और जीन पियरे सेरे, संख्या सिद्धांत और बीजगणितीय ज्यामिति से संबंधित वेइल अनुमानों से प्रेरित होकर, बीजगणितीय ज्यामिति की वस्तुओं को आगे बढ़ाया, उदाहरण के लिए आधार के छल्ले को सामान्य बनाने की अनुमति दी गई। योजना शब्द का प्रयोग पहली बार 1956 के शेवेली संगोष्ठी में किया गया था, जिसमें शेवेली ज़ारिस्की के विचारों का अनुसरण कर रहे थे।[5] पियरे कार्टियर (गणितज्ञ) के अनुसार, यह आंद्रे मार्टिन्यू थे जिन्होंने सेरे को बीजगणितीय ज्यामिति की नींव के रूप में एकपक्षीय ढंग से क्रमविनिमेय वलय वर्णक्रम का उपयोग करने की संभावना का सुझाव दिया था।[6]


योजनाओं की उत्पत्ति

ग्रोथेंडिक ने तब एक योजना की निर्णायक परिभाषा दी, जिससे प्रायोगिक सुझावों और आंशिक विकास की एक पीढ़ी का निष्कर्ष निकला।[7] उन्होंने एक प्राकृतिक टोपोलॉजी (ज़ारिस्की टोपोलॉजी के रूप में जाना जाता है) के साथ आर के प्रमुख आदर्शों के स्थान के रूप में एक क्रमविनिमेय वलय आर के एक वलय एक्स के वर्णक्रम को परिभाषित किया, लेकिन इसे वलयो के एक संग्राही के साथ संवर्धित किया: प्रत्येक विवृत उपसमुच्चय U के लिए उसने क्रमविनिमेय वलय OX(U) नियत किया, ये वस्तु युक्ति(R) एफीन योजना हैं; एक सामान्य योजना तब एक साथ जोड़कर एफीन योजनाओं द्वारा प्राप्त की जाती है।

अधिकांश बीजगणितीय ज्यामिति एक क्षेत्र k पर प्रक्षेपी या अर्ध-प्रक्षेपी प्रकार पर केंद्रित है; वास्तव में, k को प्रायः सम्मिश्र संख्या के रूप में लिया जाता है। एकपक्षीय योजनाओं की तुलना में उस तरह की योजनाएं बहुत महत्वपूर्ण हैं; नीचे दिए गए उदाहरणों की तुलना करें। फिर भी, यह उपयुक्त है कि ग्रोथेंडिक ने एकपक्षीय योजनाओं के लिए सिद्धांत का एक बड़ा निकाय विकसित किया। उदाहरण के लिए, एक योजना के रूप में पहले एक सापेक्ष स्थान का निर्माण करना सामान्य है, और केवल बाद में अध्ययन करें कि क्या यह एक अधिक ठोस वस्तु है जैसे कि प्रक्षेपी बहुरूपता। इसके अलावा, संख्या सिद्धांत के लिए अनुप्रयोग शीघ्रता से उन पूर्णांकों पर योजनाओं की ओर ले जाते हैं जो किसी भी क्षेत्र में परिभाषित नहीं होते हैं।

परिभाषा

एक एफीन योजना एक स्थानीय रूप से वलय किए हुए आकारिकी स्थान है जो एक क्रमविनिमेय वलय R के वलय स्थान (R) के वर्णक्रम के लिए है। एक योजना एक स्थानीय रूप से घेरा हुआ स्थान X है जो विवृत समुच्चय Ui,द्वारा समाविष्ट को स्वीकार करता है ऐसा है कि प्रत्येक Ui (स्थानीय रूप से वलय किए गए स्थान के रूप में) एक संबद्ध योजना है।[8] विशेष रूप से, X एक संग्राही OX के साथ आता है जो प्रत्येक विवृत उपसमुच्चय U को एक क्रमविनिमेय वलय OX(U) प्रदान करता है जिसे U पर 'नियमित कार्यों का वलय' कहा जाता है। एक योजना के बारे मे सोच सकते है कि समन्वय आरेख द्वारा समाविष्ट किया जा रहा है जो कि योजनाएं हैं। परिभाषा का प्रत्येक दृष्टि से तात्पर्य है कि योजनाओं को ज़ारिस्की सांस्थिति का उपयोग करके एक साथ जोड़ने वाली योजनाओं को प्राप्त करके प्राप्त किया जाता है।

प्रारम्भिक दिनों में, इसे एक पूर्व योजना कहा जाता था, और एक योजना को एक अलग योजना पूर्व योजना के रूप में परिभाषित किया गया था। पूर्वयोजना शब्द उपयोग से बाहर हो गया है, लेकिन अभी भी पुरानी किताबों में पाया जा सकता है, जैसे कि ग्रोथेंडिक के एलीमेंट्स डे जियोमेट्री अल्जेब्रिक और डेविड ममफोर्ड की रेड बुक।[9]

प्राकृतिक संख्या n के लिए एक एफीन योजना का एक मूल उदाहरण है एफीन n - एक क्षेत्र 'k' पर स्थान है। परिभाषा के अनुसार, A बहुपद वलय k[x1,...Xn] का वर्णक्रम है। योजना सिद्धांत के अर्थ में, एफीन n-स्थान वास्तव में किसी भी क्रमविनिमेय वलय R पर परिभाषित किया जा सकता है, जिसका अर्थ है युक्ति (R[x)1,...,Xn])।

योजनाओं की श्रेणी

योजनाएँ एक श्रेणी सिद्धांत बनाती हैं, जिसमें आकारिकी को स्थानीय रूप से घेरे हुए स्थानों के आकारिकी के रूप में परिभाषित किया जाता है। (यह भी देखें: योजनाओं की रूपरेखा।) एक योजना वाई के लिए, एक योजना एक्स 'के ऊपर' वाई (या एक वाई-'योजना') का अर्थ है योजनाओं का एक आकारिकी एक्स → वाई है। क्रमविनिमेय वलय R के ऊपर एक योजना X का अर्थ आकारिकी एक्स → युक्ति(आर) है।

क्षेत्र k पर एक बीजगणितीय बहुरूपता को कुछ गुणों के साथ k पर एक योजना के रूप में परिभाषित किया जा सकता है। वास्तव में किन योजनाओं को बहुरूपता कहा जाना चाहिए, इसके बारे में अलग-अलग परंपराएँ हैं। एक मानक विकल्प यह है कि k से अधिक 'बहुरूपता' का अर्थ परिमित प्रकार की एक अभिन्न पृथक योजना है। [10]

योजनाओं का एक आकारिकी f: X → Y नियमित कार्यों के छल्ले पर एक 'पश्च अपकर्ष समरूपता' निर्धारित करता है, f*: O(Y) → O(X)। एफ़िन योजनाओं के स्थिति में, यह निर्माण योजनाओं के आकारिकी युक्ति (ए) → युक्ति (बी) और क्रमविनिमेय समरूपता बी → ए के बीच एक-से-एक समानता है।[11] इस अर्थ में, योजना सिद्धांत पूरी तरह से क्रमविनिमेय वलय के सिद्धांत को समाहित करता है।

चूंकि Z क्रमविनिमेय वलय की श्रेणी में एक प्रारंभिक वस्तु है, योजनाओं की श्रेणी में एक आवधिक वस्तु के रूप में युक्ति(Z) है।

एक योजना X के लिए एक क्रमविनिमेय वलय R पर, एक R-'X के बिंदु का अर्थ है आकारिकी X→ युक्ति( आर) का एक अनुभाग X(R) R बिन्दुओ के समुच्चय के लिए लिखा जाता है। उदाहरण के लिए, यह परिभाषा 'R' में मानों के साथ 'X के परिभाषित समीकरणों के समाधान के समुच्चय की पुरानी धारणा का पुनर्निर्माण करती है। जब R एक क्षेत्र k हो, X(k) को X के तर्कसंगत बिंदु k का समुच्चय भी कहा जाता है ।

अधिकतम सामान्यताः, एक योजना X के लिए एक क्रमविनिमेय वलय R पर और किसी भी क्रमविनिमेय R-बीजगणित वलय S पर, एक S- बिन्दु का अर्थ है आकारिकी युक्ति S → X के ऊपर R। कोई S के समुच्चय के लिए X(S) लिखा जाता है - X के बिन्दु। (यह पुराने अवलोकन का सामान्यीकरण करता है जिसमें 'k क्षेत्र पर कुछ समीकरण दिए गए हैं, कोई भी 'k के किसी भी क्षेत्र विस्तारण E में समीकरणों के समाधान के समुच्चय पर विचार कर सकता है।) एक योजना के लिए ' 'R के ऊपर 'X, असाइनमेंट S X(S) क्रमविनिमेय R-बीजगणित से समुच्चय तक एक प्रकार्यक है। यह एक महत्वपूर्ण अवलोकन है कि एक योजना Xके ऊपर R से अधिक बिन्दुओ के इस कारक द्वारा निर्धारित की जाती है।[12]

योजनाओं का प्राकृतिक उत्पाद सदैव सम्मिलित रहता है। यही है, किसी भी योजना X और Z के लिए एक योजना Y, प्राकृतिक उत्पाद X× के आकारिकी के साथYZ ( (श्रेणी सिद्धांत) के अर्थ में) योजनाओं की श्रेणी में सम्मिलित है। यदि X और Z एक क्षेत्र k पर योजनाएँ हैं, तो युक्ति (k) पर उनके प्राकृतिक उत्पाद को k-योजनाओं की श्रेणी में 'उत्पाद' X × Z कहा जा सकता है। उदाहरण के लिए, एफाइन स्थान A AM का उत्पाद और An के ऊपर kका गुणनफल एफीन स्थान AAM+AN के ऊपर K है।

चूंकि योजनाओं की श्रेणी में प्राकृतिक उत्पाद हैं और एक आवधिक वस्तु युक्ति ('Z') भी है, इसमें सभी सीमित सीमा (श्रेणी सिद्धांत) हैं।

उदाहरण

  • प्रत्येक एफीन योजना युक्ति(R) एक योजना है। (यहाँ और नीचे, माने गए सभी छल्ले क्रमविनिमेय हैं।)
  • क्षेत्र k पर एक बहुपद f, fk[x1, ..., xn], एक सीमित उपयोजना f = 0निर्धारित करता है एफ़िन स्थान में An के ऊपर k, जिसे एफ़िन ऊनविम पृष्ठ कहा जाता है। औपचारिक रूप से, इसे परिभाषित किया जा सकता है
    उदाहरण के लिए, k को सम्मिश्र संख्या मानते हुए, समीकरण x2 = y2(y+1) एफीन तल A2C में एक विलक्षण वक्र को परिभाषित करता है जिसे वास्तविक घनीय वक्र कहा जाता है।
  • किसी भी क्रमविनिमेय वलय R और प्राकृतिक संख्या n के लिए, 'प्रक्षेपी स्थान' 'P' विवृत उपसमुच्चय के साथ R के ऊपर एफीन n-स्थान की n + 1 प्रतियों को चिपकाकर एक योजना के रूप में निर्मित किया जा सकता है। यह मौलिक उदाहरण है जो एफ़िन योजनाओं से परे जाने के लिए प्रेरित करता है। प्रक्षिप्त स्थान की तुलना में प्रक्षेपी स्थान का मुख्य लाभ यह है कि 'P' आर पर उचित आकारिकी है; यह सघनता बीजगणित-ज्यामितीय संस्करण है। एक संबंधित प्रेक्षण यह है कि जटिल प्रक्षेपी स्थान 'CP'n उत्कृष्ट सांस्थिति ('C' की टोपोलॉजी पर आधारित) में एक सघन स्थान है, जबकि 'C'n नहीं है (n > 0 के लिए)।
  • बहुपद वलय में सकारात्मक अंश का एक सजातीय बहुपद f R[x0, ..., xn] एक बंद उपयोजना निर्धारित करता है f = 0 प्रक्षेपी स्थान में Pn के ऊपर R, जिसे प्रक्षेपी ऊनविम पृष्ठ कहा जाता है। परियोजना निर्माण के संदर्भ में, इस उपयोजना को इस प्रकार लिखा जा सकता है
    उदाहरण के लिए, सीमित उपयोजना x3 + y3 = z3 पी. का परिमेय संख्याओं पर एक अर्धवृत्ताकार वक्र है।
  • दो मूल के साथ लाइन (एक क्षेत्र के पर) पर एफाइन लाइन की दो प्रतियों के साथ प्रारंभ करके परिभाषित योजना है, और दो विवृत उपसमुच्चय को एक साथ जोड़कर A1 − 0 पहचान मानचित्र द्वारा। यह एक गैर-पृथक योजना का एक सरल उदाहरण है। विशेष रूप से, यह एफ़िन नहीं है।[13]
  • एफ़िन योजनाओं से परे जाने का एक सरल कारण यह है कि एक एफ़िन योजना के एक विवृत उपसमुच्चय को एफ़िन होने की आवश्यकता नहीं है। उदाहरण के लिए, मन ले कि X = An − 0, सम्मिश्र संख्या C पर ; तब X n 2 के लिए एफीन नहीं है। ('n पर प्रतिबंध आवश्यक है: एफीन लाइन ऋणात्मक मूल एफीन योजना के लिए समरूप है Spec(C[x, x−1]). यह दिखाने के लिए कि एक्स एफ़िन नहीं है, एक गणना करता है कि एक्स पर प्रत्येक नियमित कार्य ए पर एक नियमित कार्य तक विस्तारित होता हैn, जब n ≥ 2. (यह जटिल विश्लेषण में हार्टोग्स के लेम्मा के अनुरूप है, हालांकि साबित करना आसान है।) अर्थात समावेशन f: X → An से एक समाकृतिकता को प्रेरित करता है O(An) = C[x1, ...., xn] प्रति O(X). यदि X सजातीय थे, तो यह अनुसरण करेगा कि f एक तुल्याकारिता थी। लेकिन f आच्छादक नहीं है और इसलिए एक तुल्याकारिता नहीं है। इसलिए, योजना X एफ़िन नहीं है।[14]
  • मान लीजिए k एक क्षेत्र है। फिर योजना एक एफ़िन योजना है जिसका अंतर्निहित सांस्थितिक स्थान धनात्मक पूर्णांकों (असतत टोपोलॉजी के साथ) का कठोर-ईच सघनता है। वास्तव में, इस वलय के प्रमुख आदर्श धनात्मक पूर्णांक पर अतिसूक्ष्म निस्यंदक के साथ एक-से-एक तद्विषयक में हैं, आदर्श के साथ धनात्मक पूर्णांक n से जुड़े प्रमुख अतिसूक्ष्म निस्यंदक के अनुरूप है।[15] यह सांस्थितिकी स्थान शून्य-आयामी है, और विशेष रूप से, प्रत्येक बिंदु एक अलघुकरणीय घटक है। चूँकि एफीन योजनाएँ अर्ध-सघन होती हैं, यह एक अर्ध-सम्बद्ध योजना का एक उदाहरण है जिसमें असीम रूप से कई अलघुकरणीय घटक होते हैं। (इसके विपरीत, एक नोथेरियन योजना में केवल बहुत से अप्रासंगिक घटक होते हैं।)

आकारिकी के उदाहरण

आकारिकी के उदाहरणों पर योजना के उदाहरण के रूप में विचार करना भी उपयोगी है क्योंकि वे बीजगणितीय और अंकगणितीय ज्यामिति में अध्ययन की कई वस्तुओं को समाहित करने के लिए अपनी तकनीकी प्रभावशीलता प्रदर्शित करते हैं।

अंकगणितीय सतह

यदि हम एक बहुपद पर विचार करें तो एफीन योजना करने के लिए एक विहित आकारिकी है और अंकगणितीय सतह कहलाती है। सूत्र फिर परिमित क्षेत्रों पर बीजगणितीय वक्र हैं . यदि एक अर्धवृत्ताकार वक्र है तो उसके द्वारा उत्पन्न विवेचक स्थान पर सूत्र जहां

[16] सभी विलक्षण योजनाएँ हैं। उदाहरण के लिए, यदि एक अभाज्य संख्या है और
तो इसका विवेचक है . विशेष रूप से, यह वक्र अभाज्य संख्याओं पर विलक्षण है .

योजनाओं के लिए प्रेरणा

यहाँ कुछ ऐसे तरीके दिए गए हैं जिनमें योजनाएँ बीजगणितीय बहुरूपता की पुरानी धारणाओं और उनके महत्व के आगे जाती हैं।

  • क्षेत्र विस्तारण -क्षेत्र k पर n चर में कुछ बहुपद समीकरणों को देखते हुए, उत्पाद समुच्चय k'n में समीकरणों के समाधान के सेट X(k) का अध्ययन किया जा सकता है। . यदि क्षेत्र k बीजगणितीय रूप से सीमित है (उदाहरण के लिए सम्मिश्र संख्या), तो कोई भी समुच्चय पर बीजगणितीय ज्यामिति को आधार बना सकता है X(k): X(k) पर ज़ारिस्की टोपोलॉजी को परिभाषित करें, इस प्रकार के विभिन्न समुच्चय के बीच बहुपद मानचित्रण पर विचार करें, और इसी तरह। लेकिन अगर k बीजगणितीय रूप से सीमित नहीं है, तो समुच्चय X(k) पर्याप्त समृद्ध नहीं है। वास्तव में, दिए गए समीकरणों के समाधान X(E) का अध्ययन k के किसी भी क्षेत्र विस्तार E में किया जा सकता है, लेकिन ये समुच्चय किसी भी उचित अर्थ में X(k) द्वारा निर्धारित नहीं किए जाते हैं। उदाहरण के लिए, x . द्वारा परिभाषित वास्तविक संख्याओं पर समतल वक्र X2 + y2 = -1 में X('R') रिक्त है, लेकिन X('C') रिक्त नहीं है। (वास्तव में, एक्स ('सी') को 'सी' - 0 के साथ पहचाना जा सकता है।) इसके विपरीत, क्षेत्र K पर एक योजना एक्स में प्रत्येक विस्तार के लिए ई-तर्कसंगत बिंदुओं के समुच्चय (ई) को निर्धारित करने के लिए पर्याप्त जानकारी है। x2 + y2 = -1 एक गैर-खाली सामयिक स्थान है।)
  • सामान्य बिंदु- एफ़िन लाइन ए के बिंदु, एक योजना के रूप में, इसके सम्मिश्र बिंदु हैं (प्रत्येक सम्मिश्र संख्या के लिए एक) एक साथ एक सामान्य बिंदु (जिसका समापन पूरी योजना है)। सामान्य बिंदु एक प्राकृतिक आकृतिवाद की छवि है Spec(C(x)) → A, जहाँ C(x) एक चर में तर्कसंगत कार्य का क्षेत्र है। यह देखने के लिए कि योजना में वास्तविक सामान्य बिंदु होना क्यों उपयोगी है, निम्नलिखित उदाहरण पर विचार करें।
  • मान लें कि X समतल वक्र y है2 = x(x−1)(x−5) सम्मिश्र संख्याओं पर। यह A की एक सीमित उपयोजना है. इसे एफ़िन लाइन ए के दोहरे समावेशन को समावेश करने वाले एक बड़े आकार के रूप में देखा जा सकता है x-निर्देशांक को प्रक्षेपित करके आकारिकी का तंतु X → A1 A . के सामान्य बिंदु पर1 वास्तव में X का सामान्य बिंदु है, जो आकारिकी प्रदान करता है
    यह बदले में क्षेत्र विस्तारण -2 क्षेत्र के विस्तार की डिग्री के बराबर है
    इस प्रकार, एक विविधता का वास्तविक सामान्य बिंदु होने से बीजगणितीय वर्गों के डिग्री -2 आकारिकी और बीजीय किस्म के कार्य क्षेत्र के संबंधित डिग्री -2 विस्तार के बीच एक ज्यामितीय संबंध उत्पन्न होता है। यह मौलिक समूह (जो टोपोलॉजी में रिक्त स्थान को वर्गीकृत करता है) और गैलोइस समूह (जो कुछ क्षेत्र विस्तारण को वर्गीकृत करता है) के बीच संबंध को सामान्य करता है। लेकिन, ग्रोथेंडिक का एटले मौलिक समूह का सिद्धांत मौलिक समूह और गैलोइस समूह को एक ही आधार पर मानता है।
  • नीलपोटेंट तत्व- मान ले कि X एफीन लाइन A . की सीमित उपयोजना है CX2 = 0, जिसे कभी-कभी स्थूल बिन्दु कहा जाता है। X पर नियमित कार्यों का वलय है C[x]/(x2); विशेष रूप से, X पर नियमित फलन x शून्य-बल है लेकिन शून्य नहीं है। इस योजना के अर्थ को इंगित करने के लिए: एफ़िन लाइन पर दो नियमित कार्यों में एक्स के लिए समान प्रतिबंध होता है यदि और केवल तभी उनका मूल्य समान होता है और मूल में पहला व्युत्पन्न होता है। ऐसी गैर-'घटित योजना' योजनाओं को अनुमति देने से गणना और अतिसूक्ष्म के विचार बीजगणितीय ज्यामिति में आ जाते हैं।
  • एक अधिक विस्तृत उदाहरण के लिए, एक सरल योजना सम्मिश्र वर्ग वाई में अंश 2 के सभी शून्य-आयामी बंद उप-योजनाओं का वर्णन कर सकते हैं। इस तरह की एक उप-योजना में वाई के दो अलग-अलग सम्मिश्र बिंदु होते हैं, या फिर एक्स = स्पेक के लिए एक उप-योजना समरूप होती है। 'C' [X]/(X2) पिछले पैराग्राफ की तरह। बाद वाले प्रकार की उप-योजनाएँ के एक जटिल बिंदु y द्वारा स्पर्शरेखा स्थान Ty[17]Yमें एक रेखा के साथ निर्धारित की जाती है यह फिर से इंगित करता है कि गैर-कम उप-योजनाओं का ज्यामितीय अर्थ है, यौगिक और स्पर्शरेखा सदिश से संबंधित है।

सुसंगत संग्राही

योजना सिद्धांत का एक केंद्रीय हिस्सा सुसंगत संग्राही की धारणा है, जो (बीजीय) सदिश समूहों की धारणा को सामान्य करता है। एक योजना X के लिए, एक OX 'मापांक की एबेलियन श्रेणी पर विचार करके प्रारंभ होता है, जो X पर एबेलियन समूहों के समूह हैं जो नियमित कार्यों के संग्राही के ऊपर एक मापांक बनाते हैं। विशेष रूप से, एक मापांक एम एक क्रमविनिमेय वलय आर पर OX मापांक से जुड़े एक संग्राही को निर्धारित करता है, एक्स = स्पेक (आर) पर योजना X पर 'अर्ध-सुसंगत संग्राही' का अर्थ है OX -मापांक जो एक्स के प्रत्येक एफाइन विवृत उपसमुच्चय पर एक मापांक से जुड़ा संग्राही ​​है। अंत में, एक 'सुसंगत संग्राही' (नोथेरियन योजना एक्स पर, कहते हैं) एक OX-मापांक है जो एक्स के प्रत्येक एफ़िन विवृत उपसमुच्चय पर एक अंतिम रूप से प्रतिस्थापित किए गए मापांक से जुड़ा संग्राही ​​है।

सुसंगत संग्राही में 'वेक्टर समूहों' का महत्वपूर्ण वर्ग सम्मिलित है, जो कि वे संग्राही हैं जो स्थानीय रूप से अंतिम रूप से उत्पन्न मुक्त मापांक से आते हैं। एक क्षेत्र के ऊपर एक सरल विविध का स्पर्शरेखा समूह एक उदाहरण है। हालांकि, सुसंगत संग्राही अधिक समृद्ध हैं; उदाहरण के लिए, एक्स के सीमित उप-योजना वाई पर एक सदिश समूह को एक्स पर एक सुसंगत संग्राही के रूप में देखा जा सकता है जो वाई के बाहर शून्य है (प्रत्यक्ष छवि निर्माण द्वारा)। इस तरह, योजना X पर सुसंगत संग्राही में एक्स की सभी सीमित उप-योजनाओं के बारे में जानकारी सम्मिलित है। इसके अलावा, संग्राही कोहोलॉजी में सुसंगत (और अर्ध-सुसंगत) संग्राही के लिए अच्छे गुण हैं। सुसंगत संग्राही कोहोलॉजी का परिणामी सिद्धांत शायद बीजगणितीय ज्यामिति में मुख्य तकनीकी उपकरण है।[18][19]


सामान्यीकरण

बिन्दुओ के इसके कारक के रूप में माना जाता है, एक योजना एक कारक है जो कर्मविनिमेय वलय की श्रेणी पर ज़ारिस्की सांस्थिति के लिए समुच्चय का एक समूह है, और जो स्थानीय रूप से ज़ारिस्की सांस्थिति में, एक एफ़िन योजना है। इसे कई तरीकों से सामान्यीकृत किया जा सकता है। एक एटेल सांस्थिति का उपयोग करना है। माइकल आर्टिन ने एक बीजगणितीय स्थान को एक अवच्छेदक के रूप में परिभाषित किया है जो कि एटेल सांस्थिति में एक संग्राही है और जो स्थानीय रूप से एटल सांस्थिति में एक एफ़िन योजना है। समान रूप से, एक बीजगणितीय स्थान एक एटेल तुल्यता संबंध द्वारा एक योजना का भागफल है। एक प्रबल परिणाम, आर्टिन प्रतिनिधित्व योग्यता प्रमेय, एक अवच्छेदक के लिए बीजीय स्थान द्वारा प्रतिनिधित्व करने के लिए सरल स्थितियां देता है।[20]

एक और सामान्यीकरण एक राशि का विचार है। अपरिष्कृत के अनुरूप, बीजगणितीय राशि' प्रत्येक बिंदु से जुड़े बीजगणितीय समूह के द्वारा बीजगणितीय रिक्त स्थान को सामान्यीकृत करते हैं, जिसे उस बिंदु के प्रतिधारण समूह के रूप में देखा जाता है। उदाहरण के लिए, बीजगणितीय समूह G की कोई भी समूह क्रिया बीजगणितीय विविधता X पर एक भागफल राशि [X/G] निर्धारित करती है, जो G की क्रिया के लिए स्थायीकारक उपसमूह को प्राप्त करता है । अधिक सामान्यताः मे, बीजगणितीय ज्यामिति में सापेक्ष रिक्त स्थान को प्रायः संग्रह के रूप में देखा जाता है, जिससे वस्तुओं के प्रतिधारण समूहों को वर्गीकृत किया जाता है।

ग्रोथेंडिक ने मूल रूप से उत्पत्ति के सिद्धांत के लिए एक उपकरण के रूप में संग्रह करके प्रारंभ की। उस सूत्रीकरण में, राशि (अनौपचारिक रूप से) श्रेणियों की राशि होती हैं।[21] इस सामान्य धारणा से, आर्टिन ने बीजगणितीय राशि (या आर्टिन संग्रह) के संकुचित वर्ग को परिभाषित किया, जिसे ज्यामितीय वस्तुएं माना जा सकता है। इनमें डेलिग्ने-ममफोर्ड राशि (टोपोलॉजी में ऑर्बिफोल्ड के समान) सम्मिलित हैं, जिसके लिए स्थायीकारक समूह परिमित हैं, और बीजीय रिक्त स्थान, जिसके लिए स्थायीकारक समूह साधारण हैं। कील-मोरी प्रमेय के अनुसार परिमित स्थायीकारक समूहों के साथ एक बीजगणितीय संग्रह में एक अपरिष्कृत सापेक्ष स्थान होता है जो एक बीजगणितीय स्थान होता है।

एक अन्य प्रकार का सामान्यीकरण संरचना संग्राही ​​को बढ़ाना है, बीजगणितीय ज्यामिति को समरूप सिद्धांत के पास लाना है। इस स्थिति में, व्युत्पन्न बीजगणितीय ज्यामिति या वर्णक्रमीय बीजगणितीय ज्यामिति के रूप में जाना जाता है, संरचना संग्राही ​​को क्रमविनिमेय वलय के एक संग्राही के समस्थानिक अनुरूप द्वारा प्रतिस्थापित किया जाता है (उदाहरण के लिए, अत्यधिक संरचित वलय वर्णक्रम का संग्राही । ये खंड बीजगणितीय संक्रियाओं को स्वीकार करते हैं जो केवल एक तुल्यता संबंध तक ही साहचर्य और क्रमविनिमेय हैं। इस तुल्यता संबंध से भागफल लेने पर एक साधारण योजना की संरचना का निर्माण होता है। हालांकि, भागफल को नहीं लेने से एक सिद्धांत की ओर जाता है जो उच्च जानकारी को प्राप्त कर सकता है, उसी तरह जैसे कि समरूप बीजगणित में व्युत्पन्न कारक प्रदिश उत्पाद और मापांक पर उत्सर्ग अवच्छेदक संचालन के बारे में उच्च जानकारी प्राप्त करते हैं।

यह भी देखें

उद्धरण

  1. Introduction of the first edition of "Éléments de géométrie algébrique".
  2. Dieudonné 1985, Chapters IV and V.
  3. Dieudonné 1985, sections VII.2 and VII.5.
  4. 4.0 4.1 Dieudonné 1985, section VII.4.
  5. Chevalley, C. (1955–1956), Les schémas, Séminaire Henri Cartan, vol. 8
  6. Cartier 2001, note 29.
  7. Dieudonné 1985, sections VII.4, VIII.2, VIII.3.
  8. Hartshorne 1997, section II.2.
  9. Mumford 1999, Chapter II.
  10. Stacks Project, Tag 020D.
  11. Hartshorne 1997, Proposition II.2.3.
  12. Eisenbud & Harris 1998, Proposition VI-2.
  13. Hartshorne 1997, Example II.4.0.1.
  14. Hartshorne 1997, Exercises I.3.6 and III.4.3.
  15. Arapura 2011, section 1.
  16. "अण्डाकार वक्र" (PDF). p. 20.
  17. Eisenbud & Harris 1998, Example II-10.
  18. Dieudonné 1985, sections VIII.2 and VIII.3.
  19. Hartshorne 1997, Chapter III.
  20. Stacks Project, Tag 07Y1.
  21. Vistoli 2005, Definition 4.6.


संदर्भ


बाहरी संबंध