जनक फलन: Difference between revisions

From Vigyanwiki
(text)
(text)
Line 60: Line 60:


<math display="block">b_n := [x^n] \operatorname{LG}(a_n;x)</math>
<math display="block">b_n := [x^n] \operatorname{LG}(a_n;x)</math>
पूर्णांकों के लिए {{math|''n'' ≥ 1}} भाजक राशि से संबंधित हैं
पूर्णांकों के लिए {{math|''n'' ≥ 1}} भाजक योग से संबंधित हैं


<math display="block">b_n = \sum_{d|n} a_d.</math>
<math display="block">b_n = \sum_{d|n} a_d.</math>
Line 106: Line 106:


<math display="block">\sum_{n=0}^\infty x^n= \frac{1}{1-x}.</math>
<math display="block">\sum_{n=0}^\infty x^n= \frac{1}{1-x}.</math>
बाएँ हाथ की ओर दाईं ओर का मैक्लॉरिन श्रृंखला विस्तार है। वैकल्पिक रूप से, {{math|1 − ''x''}} बायीं ओर की घात श्रृंखला को गुणा करके समानता को न्यायोचित ठहराया जा सकता है, और जांच कर रहा है कि परिणाम निरंतर घात श्रृंखला 1 है (दूसरे शब्दों में, सभी गुणांकों में से एक को छोड़कर {{math|''x''<sup>0</sup>}} 0 के बराबर हैं)। इसके अलावा, इस संपत्ति के साथ कोई अन्य घात श्रृंखला नहीं हो सकती है। इसलिए बाईं ओर का गुणनात्मक प्रतिलोम  {{math|1 − ''x''}} घात श्रृंखला के वलय में निर्दिष्ट करता है।
बाएँ हाथ की ओर दाईं ओर का मैक्लॉरिन श्रृंखला विस्तार है। वैकल्पिक रूप से, {{math|1 − ''x''}} बायीं ओर की घात श्रृंखला को गुणा करके समानता को न्यायोचित ठहराया जा सकता है, और जांच कर रहा है कि परिणाम निरंतर घात श्रृंखला 1 है (दूसरे शब्दों में, सभी गुणांकों में से एक को छोड़कर {{math|''x''<sup>0</sup>}} 0 के बराबर हैं)। इसके अतिरिक्त, इस संपत्ति के साथ कोई अन्य घात श्रृंखला नहीं हो सकती है। इसलिए बाईं ओर का गुणनात्मक प्रतिलोम  {{math|1 − ''x''}} घात श्रृंखला के वलय में निर्दिष्ट करता है।


अन्य अनुक्रमों के साधारण जनक फलन के लिए भाव आसानी से इस एक से प्राप्त किए जाते हैं। उदाहरण के लिए, प्रतिस्थापन {{math|''x'' → ''ax''}} ज्यामितीय प्रगति के लिए जनक फलन {{math|1, ''a'', ''a''<sup>2</sup>, ''a''<sup>3</sup>, ...}}देता है  किसी भी स्थिरांक {{mvar|a}} के लिए :
अन्य अनुक्रमों के साधारण जनक फलन के लिए भाव आसानी से इस एक से प्राप्त किए जाते हैं। उदाहरण के लिए, प्रतिस्थापन {{math|''x'' → ''ax''}} ज्यामितीय प्रगति के लिए जनक फलन {{math|1, ''a'', ''a''<sup>2</sup>, ''a''<sup>3</sup>, ...}}देता है  किसी भी स्थिरांक {{mvar|a}} के लिए :
Line 214: Line 214:


<math display="block"> \sum_{j=0}^k \begin{Bmatrix} k \\ j \end{Bmatrix} z^j F^{(j)}(z) = \sum_{n = 0}^\infty n^k f_n z^n \quad\text{for all } k \in \mathbb{N}. </math>
<math display="block"> \sum_{j=0}^k \begin{Bmatrix} k \\ j \end{Bmatrix} z^j F^{(j)}(z) = \sum_{n = 0}^\infty n^k f_n z^n \quad\text{for all } k \in \mathbb{N}. </math>
बार-बार एकीकरण के संचालन के अनुरूप इस अनुक्रम घात सूत्र का एक नकारात्मक-क्रम उत्क्रमण व्युत्पादित रूपांतरण द्वारा परिभाषित किया गया है और इसके सामान्यीकरण को व्युत्पादित-आधारित जनक फलन रूपांतरण के रूप में परिभाषित किया गया है, या वैकल्पिक रूप से एक जनक फलन रूपांतरण द्वारा और अनुक्रम जनक फलन पर श्रृंखला परिवर्तन निष्पादित किया गया है। एक अनुक्रम उत्पन्न करने वाले फलन पर भिन्नात्मक कलन करने के संबंधित संचालन पर चर्चा की जाती है।
बार-बार एकीकरण के संचालन के अनुरूप इस अनुक्रम घात सूत्र का एक नकारात्मक-क्रम उत्क्रमण व्युत्पादित रूपांतरण द्वारा परिभाषित किया गया है और इसके सामान्यीकरण को व्युत्पादित-आधारित जनक फलन रूपांतरण के रूप में परिभाषित किया गया है, या वैकल्पिक रूप से एक जनक फलन रूपांतरण द्वारा और अनुक्रम जनक फलन पर श्रृंखला परिवर्तन निष्पादित किया गया है। एक अनुक्रम जनक फलन पर भिन्नात्मक कलन करने के संबंधित संचालन पर चर्चा की जाती है।


==== अनुक्रमों की अंकगणितीय प्रगति की गणना करना ====
==== अनुक्रमों की अंकगणितीय प्रगति की गणना करना ====
Line 258: Line 258:
==== साथ काम करने के लिए सॉफ्टवेयर {{mvar|P}}-पुनरावर्ती अनुक्रम और होलोनोमिक जनक फलन ====
==== साथ काम करने के लिए सॉफ्टवेयर {{mvar|P}}-पुनरावर्ती अनुक्रम और होलोनोमिक जनक फलन ====


प्रसंस्करण और साथ काम करने के लिए उपकरण {{mvar|P}}- [[Mathematica|गणितीय]] में पुनरावर्ती अनुक्रम में [https://www.risc.jku.at/research/combinat/software/ RISC साहचर्य समूह कलन विधि संयोजन सॉफ्टवेयर] साइट पर गैर-वाणिज्यिक उपयोग के लिए प्रदान किए गए सॉफ़्टवेयर संकुल सम्मिलित हैं। अधिकांशतः बंद-स्रोत होने के बावजूद, इस सॉफ़्टवेयर सूट में विशेष रूप से घातशाली उपकरण इसके द्वारा प्रदान किए जाते हैं <code>'''अनुमान'''</code> अनुमान लगाने के लिए संकुल {{mvar|P}}- स्वेच्छाचारी इनपुट अनुक्रमों के लिए पुनरावर्तन (प्रायोगिक गणित और अन्वेषण के लिए उपयोगी) और <code>'''सिग्मा'''</code> संकुल जो कई राशियों के लिए पी-पुनरावृत्ति खोजने में सक्षम है और बंद-रूप समाधानों के लिए हल करता है, {{mvar|P}}-पुनरावृत्ति सामान्यीकृत [[हार्मोनिक संख्या|सुसंगत संख्या]]ओं को सम्मिलित करती है।<ref>{{cite journal|last1=Schneider|first1=C.|title=प्रतीकात्मक योग कॉम्बिनेटरिक्स की सहायता करता है|journal=Sem. Lothar. Combin.|date=2007|volume=56|pages=1–36 |url=http://www.emis.de/journals/SLC/wpapers/s56schneider.html}}</ref> इस विशेष आरआईएससी साइट पर सूचीबद्ध अन्य संकुल विशेष रूप से होलोनोमिक जनक फलन के साथ काम करने के लिए लक्षित हैं।
प्रसंस्करण और साथ काम करने के लिए उपकरण {{mvar|P}}- [[Mathematica|गणितीय]] में पुनरावर्ती अनुक्रम में [https://www.risc.jku.at/research/combinat/software/ RISC साहचर्य समूह कलन विधि संयोजन सॉफ्टवेयर] साइट पर गैर-वाणिज्यिक उपयोग के लिए प्रदान किए गए सॉफ़्टवेयर संकुल सम्मिलित हैं। अधिकांशतः बंद-स्रोत होने के बावजूद, इस सॉफ़्टवेयर सूट में विशेष रूप से घातशाली उपकरण इसके द्वारा प्रदान किए जाते हैं <code>'''अनुमान'''</code> अनुमान लगाने के लिए संकुल {{mvar|P}}- स्वेच्छाचारी इनपुट अनुक्रमों के लिए पुनरावर्तन (प्रायोगिक गणित और अन्वेषण के लिए उपयोगी) और <code>'''सिग्मा'''</code> संकुल जो कई योग के लिए पी-पुनरावृत्ति खोजने में सक्षम है और बंद-रूप समाधानों के लिए हल करता है, {{mvar|P}}-पुनरावृत्ति सामान्यीकृत [[हार्मोनिक संख्या|सुसंगत संख्या]]ओं को सम्मिलित करती है।<ref>{{cite journal|last1=Schneider|first1=C.|title=प्रतीकात्मक योग कॉम्बिनेटरिक्स की सहायता करता है|journal=Sem. Lothar. Combin.|date=2007|volume=56|pages=1–36 |url=http://www.emis.de/journals/SLC/wpapers/s56schneider.html}}</ref> इस विशेष आरआईएससी साइट पर सूचीबद्ध अन्य संकुल विशेष रूप से होलोनोमिक जनक फलन के साथ काम करने के लिए लक्षित हैं।
<!--Depending on how in depth this article gets on the topic, there are many, many other examples of useful software tools that can be listed here or on this page in another section.-->
<!--Depending on how in depth this article gets on the topic, there are many, many other examples of useful software tools that can be listed here or on this page in another section.-->


Line 329: Line 329:
  & = 1 + c_1 z + \left(\text{ab}_2+c_1^2\right) z^2 + \left(2 \text{ab}_2 c_1+c_1^3 + \text{ab}_2 c_2\right) z^3 + \cdots
  & = 1 + c_1 z + \left(\text{ab}_2+c_1^2\right) z^2 + \left(2 \text{ab}_2 c_1+c_1^3 + \text{ab}_2 c_2\right) z^3 + \cdots
\end{align}</math>
\end{align}</math>
<math>z^n</math> के गुणांक, {{math|''j<sub>n</sub>'' ≔ [''z<sup>n</sup>''] ''J''<sup>[∞]</sup>(''z'')}} द्वारा आशुलिपि में निरूपित, पिछले समीकरणों में समीकरणों के मैट्रिक्स समाधान के अनुरूप हैं
<math>z^n</math> के गुणांक, {{math|''j<sub>n</sub>'' ≔ [''z<sup>n</sup>''] ''J''<sup>[∞]</sup>(''z'')}} द्वारा आशुलिपि में निरूपित, पिछले समीकरणों में समीकरणों के आव्यूह समाधान के अनुरूप हैं


<math display="block">\begin{bmatrix}k_{0,1} & k_{1,1} & 0 & 0 & \cdots \\ k_{0,2} & k_{1,2} & k_{2,2} & 0 & \cdots \\ k_{0,3} & k_{1,3} & k_{2,3} & k_{3,3} & \cdots \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix} =
<math display="block">\begin{bmatrix}k_{0,1} & k_{1,1} & 0 & 0 & \cdots \\ k_{0,2} & k_{1,2} & k_{2,2} & 0 & \cdots \\ k_{0,3} & k_{1,3} & k_{2,3} & k_{3,3} & \cdots \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix} =
Line 351: Line 351:
Q_h(z) & = (1-c_h z) Q_{h-1}(z) - \text{ab}_h z^2 Q_{h-2}(z) + (1-c_1 z) \delta_{h,1} + \delta_{0,1}.
Q_h(z) & = (1-c_h z) Q_{h-1}(z) - \text{ab}_h z^2 Q_{h-2}(z) + (1-c_1 z) \delta_{h,1} + \delta_{0,1}.
\end{align}</math>
\end{align}</math>
इसके अलावा, सभी {{math|''h'' ≥ 2}} के लिए अभिसारी फलन {{math|Conv<sub>''h''</sub>(''z'')}} की तार्किकता {{math|''j<sub>n</sub>''}} के अनुक्रम से संतुष्ट होने वाले अतिरिक्त परिमित अंतर समीकरणों और सर्वांगसम गुणों को दर्शाती है, और {{math|''M<sub>h</sub>'' ≔ ab<sub>2</sub> ⋯ ab<sub>''h'' + 1</sub>}} के लिए यदि {{math|''h'' ‖  ''M''<sub>''h''</sub>}} तो हमारे पास सर्वांगसमता है<math display="block">j_n \equiv [z^n] \operatorname{Conv}_h(z) \pmod h, </math>
इसके अतिरिक्त, सभी {{math|''h'' ≥ 2}} के लिए अभिसारी फलन {{math|Conv<sub>''h''</sub>(''z'')}} की तार्किकता {{math|''j<sub>n</sub>''}} के अनुक्रम से संतुष्ट होने वाले अतिरिक्त परिमित अंतर समीकरणों और सर्वांगसम गुणों को दर्शाती है, और {{math|''M<sub>h</sub>'' ≔ ab<sub>2</sub> ⋯ ab<sub>''h'' + 1</sub>}} के लिए यदि {{math|''h'' ‖  ''M''<sub>''h''</sub>}} तो हमारे पास सर्वांगसमता है<math display="block">j_n \equiv [z^n] \operatorname{Conv}_h(z) \pmod h, </math>




Line 431: Line 431:


<math display="block">\prod_{i=1}^{r}\prod_{j=1}^c\frac{1}{1-x_iy_j}.</math>
<math display="block">\prod_{i=1}^{r}\prod_{j=1}^c\frac{1}{1-x_iy_j}.</math>
द्विभाजित स्तिथि में, गैर-बहुपद डबल योग फॉर्म के तथाकथित युग्म या उत्कृष्ट जनक फलन के उदाहरण हैं
द्विभाजित स्तिथि में, गैर-बहुपद युग्म योग फॉर्म के तथाकथित युग्म या उत्कृष्ट जनक फलन के उदाहरण हैं


<math display="block">G(w, z) := \sum_{m,n \geq 0} g_{m,n} w^m z^n</math>
<math display="block">G(w, z) := \sum_{m,n \geq 0} g_{m,n} w^m z^n</math>
Line 447: Line 447:
== अनुप्रयोग ==
== अनुप्रयोग ==


===विभिन्न तकनीकें: राशियों का मूल्यांकन करना और कार्यों को उत्पन्न करने वाली अन्य समस्याओं से निपटना ===
===विभिन्न तकनीकें: योग का मूल्यांकन करना और कार्यों को उत्पन्न करने वाली अन्य समस्याओं से निपटना ===


==== उदाहरण 1: सुसंगत संख्याओं के योग के लिए एक सूत्र ====
==== उदाहरण 1: सुसंगत संख्याओं के योग के लिए एक सूत्र ====
Line 480: Line 480:
सभी {{math|''n'' ≥ 0}} के लिए, और पहले के संदर्भ में दूसरे योग को व्यक्त करना चाहते हैं। हम कार्यों को उत्पन्न करके एक दृष्टिकोण का सुझाव देते हैं।
सभी {{math|''n'' ≥ 0}} के लिए, और पहले के संदर्भ में दूसरे योग को व्यक्त करना चाहते हैं। हम कार्यों को उत्पन्न करके एक दृष्टिकोण का सुझाव देते हैं।


सबसे पहले, हम पहली राशि के लिए जनक फलन लिखने के लिए [[द्विपद परिवर्तन]] का उपयोग करते हैं
सबसे पहले, हम पहली योग के लिए जनक फलन लिखने के लिए [[द्विपद परिवर्तन]] का उपयोग करते हैं
<math display="block">S(z) = \frac{1}{1-3z} F\left(\frac{z}{1-3z}\right). </math>
<math display="block">S(z) = \frac{1}{1-3z} F\left(\frac{z}{1-3z}\right). </math>
{{math|⟨ (''n'' + 1)(''n'' + 2)(''n'' + 3) ''f<sub>n</sub>'' ⟩}} अनुक्रम के लिए जनक फलन के बाद से निम्न द्वारा दिया गया है
{{math|⟨ (''n'' + 1)(''n'' + 2)(''n'' + 3) ''f<sub>n</sub>'' ⟩}} अनुक्रम के लिए जनक फलन के बाद से निम्न द्वारा दिया गया है
<math display="block">6 F(z) + 18z F'(z) + 9z^2 F''(z) + z^3 F'''(z)</math>
<math display="block">6 F(z) + 18z F'(z) + 9z^2 F''(z) + z^3 F'''(z)</math>
हम ऊपर परिभाषित दूसरी राशि के लिए जनक फलन को निम्न स्वरुप में लिख सकते हैं
हम ऊपर परिभाषित दूसरी योग के लिए जनक फलन को निम्न स्वरुप में लिख सकते हैं
<math display="block">\tilde{S}(z) = \frac{6}{(1-3z)} F\left(\frac{z}{1-3z}\right)+\frac{18z}{(1-3z)^2} F'\left(\frac{z}{1-3z}\right)+\frac{9z^2}{(1-3z)^3} F''\left(\frac{z}{1-3z}\right)+\frac{z^3}{(1-3z)^4} F'''\left(\frac{z}{1-3z}\right). </math>
<math display="block">\tilde{S}(z) = \frac{6}{(1-3z)} F\left(\frac{z}{1-3z}\right)+\frac{18z}{(1-3z)^2} F'\left(\frac{z}{1-3z}\right)+\frac{9z^2}{(1-3z)^3} F''\left(\frac{z}{1-3z}\right)+\frac{z^3}{(1-3z)^4} F'''\left(\frac{z}{1-3z}\right). </math>
विशेष रूप से, हम इस संशोधित योग उत्पन्न करने वाले फलन को निम्न रूप में लिख सकते हैं
विशेष रूप से, हम इस संशोधित योग जनक फलन को निम्न रूप में लिख सकते हैं
<math display="block">a(z) \cdot S(z) + b(z) \cdot z S'(z) + c(z) \cdot z^2 S''(z) + d(z) \cdot z^3 S'''(z), </math>
<math display="block">a(z) \cdot S(z) + b(z) \cdot z S'(z) + c(z) \cdot z^2 S''(z) + d(z) \cdot z^3 S'''(z), </math>
{{math|''a''(''z'') {{=}} 6(1 − 3''z'')<sup>3</sup>}} के लिए , {{math|''b''(''z'') {{=}} 18(1 − 3''z'')<sup>3</sup>}}, {{math|''c''(''z'') {{=}} 9(1 − 3''z'')<sup>3</sup>}}, और {{math|''d''(''z'') {{=}} (1 − 3''z'')<sup>3</sup>}}, जहाँ {{math|(1 − 3''z'')<sup>3</sup> {{=}} 1 − 9''z'' + 27''z''<sup>2</sup> − 27''z''<sup>3</sup>}}.
{{math|''a''(''z'') {{=}} 6(1 − 3''z'')<sup>3</sup>}} के लिए , {{math|''b''(''z'') {{=}} 18(1 − 3''z'')<sup>3</sup>}}, {{math|''c''(''z'') {{=}} 9(1 − 3''z'')<sup>3</sup>}}, और {{math|''d''(''z'') {{=}} (1 − 3''z'')<sup>3</sup>}}, जहाँ {{math|(1 − 3''z'')<sup>3</sup> {{=}} 1 − 9''z'' + 27''z''<sup>2</sup> − 27''z''<sup>3</sup>}}.
Line 499: Line 499:
==== उदाहरण 3: परस्पर पुनरावर्ती अनुक्रमों के लिए कार्य उत्पन्न करना ====
==== उदाहरण 3: परस्पर पुनरावर्ती अनुक्रमों के लिए कार्य उत्पन्न करना ====


इस उदाहरण में, हम गणित की धारा 7.3 में दिए गए एक जनक फलन उदाहरण को सुधारते हैं (फलन श्रृंखला उत्पन्न करने के सुंदर चित्रों के लिए समान संदर्भ का अनुभाग 7.1 भी देखें)। विशेष रूप से, मान लीजिए कि हम 3-दर-एन आयत को अचिह्नित 2-दर-1 दूरगामी टुकड़ों के साथ टाइल करने के तरीकों की कुल संख्या (अन चिह्नित) की खोज करते हैं। सहायक अनुक्रम, अन, को पूर्ण आयत के 3-दर-एन आयत-ऋण-कोने वाले खंड को आच्छादित करने के तरीकों की संख्या के रूप में परिभाषित किया जाना चाहिए।। हम इन परिभाषाओं का उपयोग {{math|''U<sub>n</sub>''}} के लिए बंद-रूप अभिव्यक्ति सूत्र के लिए करना चाहते हैं  लंबवत बनाम क्षैतिज डोमिनोज़ की स्तिथि को संभालने के लिए इस परिभाषा को और अधिक तोड़े बिना। ध्यान दें कि हमारे दो अनुक्रमों के लिए सामान्य जनक फलन श्रृंखला के अनुरूप हैं
इस उदाहरण में, हम गणित के अनुच्छेद 7.3 में दिए गए एक जनक फलन उदाहरण को सुधारते हैं (फलन श्रृंखला उत्पन्न करने के सुंदर चित्रों के लिए समान संदर्भ का अनुभाग 7.1 भी देखें)। विशेष रूप से, मान लीजिए कि हम 3-दर-एन आयत को अचिह्नित 2-दर-1 दूरगामी टुकड़ों के साथ टाइल करने के तरीकों की कुल संख्या (अन चिह्नित) की खोज करते हैं। सहायक अनुक्रम, अन, को पूर्ण आयत के 3-दर-एन आयत-ऋण-कोने वाले खंड को आच्छादित करने के तरीकों की संख्या के रूप में परिभाषित किया जाना चाहिए।। हम इन परिभाषाओं का उपयोग {{math|''U<sub>n</sub>''}} के लिए बंद-रूप अभिव्यक्ति सूत्र के लिए करना चाहते हैं  लंबवत बनाम क्षैतिज डोमिनोज़ की स्तिथि को संभालने के लिए इस परिभाषा को और अधिक तोड़े बिना। ध्यान दें कि हमारे दो अनुक्रमों के लिए सामान्य जनक फलन श्रृंखला के अनुरूप हैं


<math display="block">\begin{align}
<math display="block">\begin{align}
Line 526: Line 526:
===संक्रमण (कॉची उत्पाद)===
===संक्रमण (कॉची उत्पाद)===


'''दो औपचारिक घात श्रृंखलाओं में शर्तों का एक असतत संवलन''' जनक फलन के उत्पाद को मूल अनुक्रम शब्दों के एक निश्चित योग की गणना करने वाले जनक फलन में बदल देता है (कॉची उत्पाद देखें)।
दो औपचारिक घात श्रृंखलाओं में शर्तों का एक असतत संवलन जनक फलन के उत्पाद को मूल अनुक्रम शब्दों के एक निश्चित योग की गणना करने वाले जनक फलन में बदल देता है (कॉची उत्पाद देखें)।


#विचार करना {{math|''A''(''z'')}} और {{math|''B''(''z'')}} साधारण जनक फलन हैं। <math display="block">C(z) = A(z)B(z) \Leftrightarrow [z^n]C(z) = \sum_{k=0}^{n}{a_k b_{n-k}}</math>
#मान लीजिये {{math|''A''(''z'')}} और {{math|''B''(''z'')}} साधारण जनक फलन हैं। <math display="block">C(z) = A(z)B(z) \Leftrightarrow [z^n]C(z) = \sum_{k=0}^{n}{a_k b_{n-k}}</math>
#विचार करना {{math|''A''(''z'')}} और {{math|''B''(''z'')}} घातीय जनक फलन हैं। <math display="block">C(z) = A(z)B(z) \Leftrightarrow \left[\frac{z^n}{n!}\right]C(z) = \sum_{k=0}^n \binom{n}{k} a_k b_{n-k}</math>
#मान लीजिये {{math|''A''(''z'')}} और {{math|''B''(''z'')}} घातीय जनक फलन हैं। <math display="block">C(z) = A(z)B(z) \Leftrightarrow \left[\frac{z^n}{n!}\right]C(z) = \sum_{k=0}^n \binom{n}{k} a_k b_{n-k}</math>
# तीन साधारण जनक फलन के उत्पाद के परिणामस्वरूप होने वाले त्रिगुणात्मक अनुक्रम पर विचार करें <math display="block">C(z) = F(z) G(z) H(z) \Leftrightarrow [z^n]C(z) = \sum_{j+k+ l=n} f_j g_k h_ l</math>
# तीन साधारण जनक फलन के उत्पाद के परिणामस्वरूप होने वाले त्रिगुणात्मक अनुक्रम पर विचार करें <math display="block">C(z) = F(z) G(z) H(z) \Leftrightarrow [z^n]C(z) = \sum_{j+k+ l=n} f_j g_k h_ l</math>
#इसपर विचार करें {{mvar|m}}-किसी अनुक्रम का स्वयं के साथ किसी धनात्मक पूर्णांक के लिए गुना संवलन {{math|''m'' ≥ 1}} (आवेदन के लिए नीचे उदाहरण देखें) <math display="block">C(z) = G(z)^m \Leftrightarrow [z^n]C(z) = \sum_{k_1+k_2+\cdots+k_m=n} g_{k_1} g_{k_2} \cdots g_{k_m}</math>
#किसी धनात्मक पूर्णांक m ≥ 1 के लिए स्वयं के साथ अनुक्रम के m-गुना संवलन पर विचार करें (आवेदन के लिए नीचे उदाहरण देखें) <math display="block">C(z) = G(z)^m \Leftrightarrow [z^n]C(z) = \sum_{k_1+k_2+\cdots+k_m=n} g_{k_1} g_{k_2} \cdots g_{k_m}</math>
जनक फलनों का गुणन, या उनके अंतर्निहित अनुक्रमों का संवलन, कुछ गिनती और संभाव्यता परिदृश्यों में स्वतंत्र घटनाओं की धारणा के अनुरूप हो सकता है। उदाहरण के लिए, यदि हम सांकेतिक परिपाटी अपनाते हैं कि प्रायिकता उत्पन्न करने वाला फलन, या pgf, एक यादृच्छिक चर का {{mvar|Z}} द्वारा दर्शाया जाता है {{math|''G<sub>Z</sub>''(''z'')}}, तो हम दिखा सकते हैं कि किसी भी दो यादृच्छिक चर के लिए <ref>{{harvnb|Graham|Knuth|Patashnik|1994|loc=§8.3}}</ref>
जनक फलनों का गुणन, या उनके अंतर्निहित अनुक्रमों का संवलन, कुछ गिनती और संभाव्यता परिदृश्यों में स्वतंत्र घटनाओं की धारणा के अनुरूप हो सकता है। उदाहरण के लिए, यदि हम सांकेतिक परिपाटी अपनाते हैं कि प्रायिकता उत्पन्न करने वाला फलन, या pgf, एक यादृच्छिक चर {{mvar|Z}} को {{math|''G<sub>Z</sub>''(''z'')}} द्वारा दर्शाया जाता है , तो हम दिखा सकते हैं कि किसी भी दो यादृच्छिक चर के लिए निम्न है <ref>{{harvnb|Graham|Knuth|Patashnik|1994|loc=§8.3}}</ref>
<math display="block">G_{X+Y}(z) = G_X(z) G_Y(z)\,, </math>
<math display="block">G_{X+Y}(z) = G_X(z) G_Y(z)\,, </math>
अगर {{mvar|X}} और {{mvar|Y}} स्वतंत्र हैं। इसी तरह, भुगतान करने के तरीकों की संख्या {{math|''n'' ≥ 0}} सेट {1, 5, 10, 25, 50} (यानी, पेनी, निकल, डाइम्स, क्वार्टर, और आधा डॉलर में क्रमशः) के मूल्यों के सिक्के मूल्यवर्ग में उत्पाद द्वारा उत्पन्न होता है
अगर {{mvar|X}} और {{mvar|Y}} स्वतंत्र हैं। इसी तरह, भुगतान करने के तरीकों की संख्या {{math|''n'' ≥ 0}} सम्मुच्चय {1, 5, 10, 25, 50} (यानी, पेनी, निकल, डाइम्स, क्वार्टर, और आधा डॉलर में क्रमशः) के मूल्यों के सिक्के मूल्यवर्ग में उत्पाद द्वारा उत्पन्न होता है
<math display="block">C(z) = \frac{1}{1-z} \frac{1}{1-z^5} \frac{1}{1-z^{10}} \frac{1}{1-z^{25}} \frac{1}{1-z^{50}}, </math>
<math display="block">C(z) = \frac{1}{1-z} \frac{1}{1-z^5} \frac{1}{1-z^{10}} \frac{1}{1-z^{25}} \frac{1}{1-z^{50}}, </math>
और इसके अलावा, अगर हम अनुमति देते हैं {{mvar|n}} किसी भी सकारात्मक पूर्णांक संप्रदाय के सिक्कों में भुगतान किए जाने वाले सेंट, हम विभाजन फलन (गणित) द्वारा उत्पन्न किए जा रहे परिवर्तन के ऐसे संयोजनों की संख्या के लिए उत्पन्निंग पर पहुंचते हैं, जो अनंत q-पोचहैमर प्रतीक द्वारा विस्तारित फलन उत्पन्न करते हैं|{{mvar|q}}-पोछाम्मेर सिंबल प्रोडक्ट ऑफ़
और इसके अतिरिक्त, यदि हम n सेंट को किसी भी सकारात्मक पूर्णांक संप्रदाय के सिक्कों में भुगतान करने की अनुमति देते हैं, तो हम अनंत q-पोचहैमर प्रतीक उत्पाद द्वारा विस्तारित विभाजन फलन उत्पादक फलन द्वारा उत्पन्न किए जा रहे परिवर्तन के ऐसे संयोजनों की संख्या के लिए उत्पादक पर पहुंचते हैं।
<math display="block">\prod_{n = 1}^\infty \left(1 - z^n\right)^{-1}\,.</math>
<math display="block">\prod_{n = 1}^\infty \left(1 - z^n\right)^{-1}\,.</math>


Line 542: Line 542:
==== उदाहरण: [[कैटलन नंबर|कैटलन संख्या]]ों के लिए जनक फलन ====
==== उदाहरण: [[कैटलन नंबर|कैटलन संख्या]]ों के लिए जनक फलन ====


एक उदाहरण जहां जनक फलन के संवलन उपयोगी होते हैं, हमें कैटलन संख्याों के लिए सामान्य जनक फलन का प्रतिनिधित्व करने वाले एक विशिष्ट संवृत रूप फलन के लिए हल करने की अनुमति देता है, {{math|''C<sub>n</sub>''}}. विशेष रूप से, इस अनुक्रम में उत्पाद में कोष्ठक सम्मिलित करने के तरीकों की संख्या के रूप में मिश्रित व्याख्या है {{math|''x''<sub>0</sub> · ''x''<sub>1</sub> ·⋯· ''x<sub>n</sub>''}} ताकि गुणा का क्रम पूरी तरह निर्दिष्ट हो। उदाहरण के लिए, {{math|''C''<sub>2</sub> {{=}} 2}} जो दो भावों से मेल खाता है {{math|''x''<sub>0</sub> · (''x''<sub>1</sub> · ''x''<sub>2</sub>)}} और {{math|(''x''<sub>0</sub> · ''x''<sub>1</sub>) · ''x''<sub>2</sub>}}. यह इस प्रकार है कि अनुक्रम द्वारा दिए गए पुनरावृत्ति संबंध को संतुष्ट करता है
एक उदाहरण जहां जनक फलन के संवलन उपयोगी होते हैं, हमें कैटलन संख्या {{math|''C<sub>n</sub>''}} के लिए सामान्य जनक फलन का प्रतिनिधित्व करने वाले एक विशिष्ट संवृत रूप फलन के लिए हल करने की अनुमति देता है। विशेष रूप से, इस अनुक्रम {{math|''x''<sub>0</sub> · ''x''<sub>1</sub> ·⋯· ''x<sub>n</sub>''}} में उत्पाद में कोष्ठक सम्मिलित करने के तरीकों की संख्या के रूप में मिश्रित व्याख्या है, ताकि गुणा का क्रम पूरी तरह निर्दिष्ट हो। उदाहरण के लिए, {{math|''C''<sub>2</sub> {{=}} 2}} जो दो भावों {{math|''x''<sub>0</sub> · (''x''<sub>1</sub> · ''x''<sub>2</sub>)}} और {{math|(''x''<sub>0</sub> · ''x''<sub>1</sub>) · ''x''<sub>2</sub>}} से मेल खाता है। यह इस प्रकार है कि अनुक्रम द्वारा दिए गए पुनरावृत्ति संबंध को संतुष्ट करता है
<math display="block">C_n = \sum_{k=0}^{n-1} C_k C_{n-1-k} + \delta_{n,0} = C_0 C_{n-1} + C_1 C_{n-2} + \cdots + C_{n-1} C_0 + \delta_{n,0}\,,\quad n \geq 0\,, </math>
<math display="block">C_n = \sum_{k=0}^{n-1} C_k C_{n-1-k} + \delta_{n,0} = C_0 C_{n-1} + C_1 C_{n-2} + \cdots + C_{n-1} C_0 + \delta_{n,0}\,,\quad n \geq 0\,, </math>
और इसी तरह एक संबंधित संकेंद्रित जनक फलन है, {{math|''C''(''z'')}}, संतुष्टि देने वाला
और इसी तरह एक संबंधित संकेंद्रित जनक फलन {{math|''C''(''z'')}} है, निम्न को संतुष्ट करता है
<math display="block">C(z) = z \cdot C(z)^2 + 1\,.</math>
<math display="block">C(z) = z \cdot C(z)^2 + 1\,.</math>
तब से {{math|''C''(0) {{=}} 1 ≠ ∞}}, फिर हम दिए गए इस जनक फलन के लिए एक सूत्र पर पहुंचते हैं
तब से {{math|''C''(0) {{=}} 1 ≠ ∞}}, फिर हम दिए गए इस जनक फलन के लिए एक सूत्र पर पहुंचते हैं
<math display="block">C(z) = \frac{1-\sqrt{1-4z}}{2z} = \sum_{n = 0}^\infty \frac{1}{n+1}\binom{2n}{n} z^n\,.</math>
<math display="block">C(z) = \frac{1-\sqrt{1-4z}}{2z} = \sum_{n = 0}^\infty \frac{1}{n+1}\binom{2n}{n} z^n\,.</math>
ध्यान दें कि पहला समीकरण स्पष्ट रूप से परिभाषित करता है {{math|''C''(''z'')}ऊपर } का तात्पर्य है
ध्यान दें कि पहला समीकरण स्पष्ट रूप से परिभाषित करता है ''C''(''z'') ऊपर } का तात्पर्य है
<math display="block">C(z) = \frac{1}{1-z \cdot C(z)} \,, </math>
<math display="block">C(z) = \frac{1}{1-z \cdot C(z)} \,, </math>
जो तब इस जनक फलन के एक और सरल (रूप का) निरंतर अंश विस्तार की ओर ले जाता है।
जो तब इस जनक फलन के एक और सरल (रूप का) निरंतर अंश विस्तार की ओर ले जाता है।


==== उदाहरण: पंखे के पेड़ फैलाना और संवलन के संवलन ====
==== उदाहरण: अनुरागी संवलन के विस्तरित तरु और संवलन ====


आदेश का प्रशंसक {{mvar|n}} को शिखर पर एक ग्राफ के रूप में परिभाषित किया गया है {{math|{0, 1,…, ''n''}<nowiki/>}} साथ {{math|2''n'' − 1}} किनारों को निम्नलिखित नियमों के अनुसार जोड़ा गया है: वर्टेक्स 0 एक किनारे से दूसरे में से जुड़ा हुआ है {{mvar|n}} शिखर, और शीर्ष <math>k</math> एक किनारे से अगले शीर्ष से जुड़ा हुआ है {{math|''k'' + 1}} सभी के लिए {{math|1 ≤ ''k'' < ''n''}}.<ref>{{harvnb|Graham|Knuth|Patashnik|1994|loc=Example 6 in §7.3}} for another method and the complete setup of this problem using generating functions. This more "convoluted" approach is given in Section 7.5 of the same reference.</ref> क्रम एक का एक प्रशंसक, क्रम दो के तीन प्रशंसक, क्रम तीन के आठ प्रशंसक, और इसी तरह। एक फैला हुआ पेड़ एक ग्राफ का एक सबग्राफ होता है जिसमें सभी मूल कोने होते हैं और जिसमें इस सबग्राफ को जोड़ने के लिए पर्याप्त किनारे होते हैं, लेकिन इतने सारे किनारे नहीं होते हैं कि सबग्राफ में एक चक्र हो। हम पूछते हैं कि कितने फैले हुए पेड़ हैं {{math|''f<sub>n</sub>''}} आदेश के एक प्रशंसक की {{mvar|n}} प्रत्येक के लिए संभव हैं {{math|''n'' ≥ 1}}.
{{mvar|n}} क्रम के पंखे को {{math|{0, 1,…, ''n''}<nowiki/>}} कोने पर एक आलेख के रूप में परिभाषित किया गया है, निम्नलिखित नियमों के अनुसार {{math|2''n'' − 1}} किनारे जुड़े हुए हैं: कोणबिंदु 0 एक किनारे से दूसरे {{mvar|n}} कोने में से जुड़ा हुआ है, और शीर्ष <math>k</math> सभी {{math|1 ≤ ''k'' < ''n''}} के लिए एक किनारे से अगले शीर्ष {{math|''k'' + 1}} से जुड़ा हुआ है। <ref>{{harvnb|Graham|Knuth|Patashnik|1994|loc=Example 6 in §7.3}} for another method and the complete setup of this problem using generating functions. This more "convoluted" approach is given in Section 7.5 of the same reference.</ref> क्रम एक का एक अनुरागी, क्रम दो के तीन अनुरागी, क्रम तीन के आठ अनुरागी, और इसी तरह। तरु अनुरागी आलेख का एक उपआलेख होता है जिसमें सभी मूल कोने होते हैं और जिसमें इस उपआलेख को जोड़ने के लिए पर्याप्त किनारे होते हैं, लेकिन इतने सारे किनारे नहीं होते हैं कि उपआलेख में एक चक्र हो। हम पूछते हैं कि कितने तरु अनुरागी {{math|''f<sub>n</sub>''}} क्रम के एक अनुरागी की {{mvar|n}} प्रत्येक {{math|''n'' ≥ 1}} के लिए संभव हैं।


एक अवलोकन के रूप में, हम शीर्षों के निकटवर्ती सेटों को जोड़ने के तरीकों की संख्या की गणना करके प्रश्न तक पहुँच सकते हैं। उदाहरण के लिए, कब {{math|''n'' {{=}} 4}}, हमारे पास वह है {{math|''f''<sub>4</sub> {{=}} 4 + 3 · 1 + 2 · 2 + 1 · 3 + 2 · 1 · 1 + 1 · 2 · 1 + 1 · 1 · 2 + 1 · 1 · 1 · 1 {{=}} 21}}, जो कि एक योग है {{mvar|m}}-अनुक्रम के गुना दृढ़ संकल्प {{math|''g<sub>n</sub>'' {{=}} ''n'' {{=}} [''z<sup>n</sup>''] {{sfrac|''z''|(1 − ''z'')<sup>2</sup>}}}} के लिए {{math|''m'' ≔ 1, 2, 3, 4}}. अधिक सामान्यतः, हम इस क्रम के लिए एक सूत्र लिख सकते हैं
एक अवलोकन के रूप में, हम शीर्षों के निकटवर्ती सम्मुच्चय को जोड़ने के तरीकों की संख्या की गणना करके प्रश्न तक पहुँच सकते हैं। उदाहरण के लिए, कब {{math|''n'' {{=}} 4}}, हमारे पास निम्न है {{math|''f''<sub>4</sub> {{=}} 4 + 3 · 1 + 2 · 2 + 1 · 3 + 2 · 1 · 1 + 1 · 2 · 1 + 1 · 1 · 2 + 1 · 1 · 1 · 1 {{=}} 21}}, जो अनुक्रम {{math|''g<sub>n</sub>'' {{=}} ''n'' {{=}} [''z<sup>n</sup>''] {{sfrac|''z''|(1 − ''z'')<sup>2</sup>}}}} के {{math|''m'' ≔ 1, 2, 3, 4}} गुना संवलन का योग है। अधिक सामान्यतः, हम इस क्रम के लिए एक सूत्र लिख सकते हैं
<math display="block">f_n = \sum_{m > 0} \sum_{\scriptstyle k_1+k_2+\cdots+k_m=n\atop\scriptstyle k_1, k_2, \ldots,k_m > 0} g_{k_1} g_{k_2} \cdots g_{k_m}\,, </math>
<math display="block">f_n = \sum_{m > 0} \sum_{\scriptstyle k_1+k_2+\cdots+k_m=n\atop\scriptstyle k_1, k_2, \ldots,k_m > 0} g_{k_1} g_{k_2} \cdots g_{k_m}\,, </math>
जिससे हम देखते हैं कि इस अनुक्रम के लिए सामान्य जनक फलन को संवलन के अगले योग के रूप में दिया गया है
जिससे हम देखते हैं कि इस अनुक्रम के लिए सामान्य जनक फलन को संवलन के अगले योग के रूप में दिया गया है
Line 562: Line 562:
जिससे हम अंतिम जनक फलन के [[आंशिक अंश विस्तार]] को लेकर अनुक्रम के लिए एक सटीक सूत्र निकालने में सक्षम हैं।
जिससे हम अंतिम जनक फलन के [[आंशिक अंश विस्तार]] को लेकर अनुक्रम के लिए एक सटीक सूत्र निकालने में सक्षम हैं।


=== अंतर्निहित जनक फलन और लैग्रेंज इनवर्जन फॉर्मूला ===
=== अंतर्निहित जनक फलन और लैग्रेंज प्रतिलोमन सूत्र ===
{{expand section|This section needs to be added to the list of techniques with generating functions|date=April 2017}}
{{expand section|This section needs to be added to the list of techniques with generating functions|date=April 2017}}


=== प्रस्तुत है एक फ्री मापदण्ड (स्नेक ऑयल मेथड) ===
=== एक मुक्त मापदण्ड का परिचय ===
कभी-कभी राशि {{math|''s<sub>n</sub>''}} जटिल है, और इसका मूल्यांकन करना हमेशा आसान नहीं होता है। इन राशियों का मूल्यांकन करने के लिए फ्री मापदण्ड विधि एक अन्य विधि है (जिसे एच। विल्फ द्वारा स्नेक ऑयल कहा जाता है)।
कभी-कभी योग {{math|''s<sub>n</sub>''}} जटिल है, और इसका मूल्यांकन करना हमेशा आसान नहीं होता है। इन योग का मूल्यांकन करने के लिए मुक्त मापदण्ड विधि एक अन्य विधि है (जिसे एच। विल्फ द्वारा स्नेक ऑयल कहा जाता है)।


अब तक चर्चा की गई दोनों विधियों में है {{mvar|n}} योग में सीमा के रूप में। जब n योग में स्पष्ट रूप से प्रकट नहीं होता है, तो हम विचार कर सकते हैं {{mvar|n}} एक "मुक्त" मापदण्ड के रूप में और व्यवहार करें {{math|''s<sub>n</sub>''}} के गुणांक के रूप में {{math|''F''(''z'') {{=}} ∑ ''s<sub>n</sub>'' ''z<sup>n</sup>''}}, योगों के क्रम को बदलें {{mvar|n}} और {{mvar|k}}, और आंतरिक योग की गणना करने का प्रयास करें।
अब तक चर्चा की गई दोनों विधियों में {{mvar|n}} योग में सीमा के रूप में है। जब n योग में स्पष्ट रूप से प्रकट नहीं होता है, तो हम {{mvar|n}} एक "मुक्त" मापदण्ड के रूप में विचार कर सकते हैं और {{math|''s<sub>n</sub>''}} को {{math|''F''(''z'') {{=}} ∑ ''s<sub>n</sub>'' ''z<sup>n</sup>''}} के गुणांक के रूप में मान लेते हैं, योग के क्रम {{mvar|n}} और {{mvar|k}} को बदलें, और आंतरिक योग की गणना करने का प्रयास करें।


उदाहरण के लिए, यदि हम गणना करना चाहते हैं
उदाहरण के लिए, यदि हम गणना करना चाहते हैं
<math display="block">s_n = \sum_{k = 0}^\infty{\binom{n+k}{m+2k}\binom{2k}{k}\frac{(-1)^k}{k+1}}\,, \quad m,n \in \mathbb{N}_0\,,</math>
<math display="block">s_n = \sum_{k = 0}^\infty{\binom{n+k}{m+2k}\binom{2k}{k}\frac{(-1)^k}{k+1}}\,, \quad m,n \in \mathbb{N}_0\,,</math>
हम इलाज कर सकते हैं {{mvar|n}} एक नि: शुल्क मापदण्ड के रूप में, और सेट करें
हम {{mvar|n}} को एक मुक्त मापदण्ड के रूप में मान सकते हैं, और निम्न को निर्धारित कर सकते हैं
<math display="block">F(z) = \sum_{n = 0}^\infty{\left( \sum_{k = 0}^\infty{\binom{n+k}{m+2k}\binom{2k}{k}\frac{(-1)^k}{k+1}}\right) }z^n\,.</math>
<math display="block">F(z) = \sum_{n = 0}^\infty{\left( \sum_{k = 0}^\infty{\binom{n+k}{m+2k}\binom{2k}{k}\frac{(-1)^k}{k+1}}\right) }z^n\,.</math>
इंटरचेंजिंग योग ("स्नेक ऑयल") देता है
अंतर्विनिमय योग ("स्नेक ऑयल") देता है
<math display="block">F(z) = \sum_{k = 0}^\infty{\binom{2k}{k}\frac{(-1)^k}{k+1} z^{-k}}\sum_{n = 0}^\infty{\binom{n+k}{m+2k} z^{n+k}}\,.</math>
<math display="block">F(z) = \sum_{k = 0}^\infty{\binom{2k}{k}\frac{(-1)^k}{k+1} z^{-k}}\sum_{n = 0}^\infty{\binom{n+k}{m+2k} z^{n+k}}\,.</math>
अब आंतरिक योग है {{math|{{sfrac|''z''<sup>''m'' + 2''k''</sup>|(1 − ''z'')<sup>''m'' + 2''k'' + 1</sup>}}}}. इस प्रकार
अब आंतरिक योग {{math|{{sfrac|''z''<sup>''m'' + 2''k''</sup>|(1 − ''z'')<sup>''m'' + 2''k'' + 1</sup>}}}} है। इस प्रकार
<math display="block">\begin{align} F(z)
<math display="block">\begin{align} F(z)
&= \frac{z^m}{(1-z)^{m+1}}\sum_{k = 0}^\infty{\frac{1}{k+1}\binom{2k}{k}\left(\frac{-z}{(1-z)^2}\right)^k} \\[4px]
&= \frac{z^m}{(1-z)^{m+1}}\sum_{k = 0}^\infty{\frac{1}{k+1}\binom{2k}{k}\left(\frac{-z}{(1-z)^2}\right)^k} \\[4px]
&= \frac{z^m}{(1-z)^{m+1}}\sum_{k = 0}^\infty{C_k\left(\frac{-z}{(1-z)^2}\right)^k} &\text{where } C_k = k\text{th Catalan number} \\[4px]
&= \frac{z^m}{(1-z)^{m+1}}\sum_{k = 0}^\infty{C_k\left(\frac{-z}{(1-z)^2}\right)^k} &\text{जहाँ } C_k = k\text{th कैटलन संख्या है} \\[4px]
&= \frac{z^m}{(1-z)^{m+1}}\frac{1-\sqrt{1+\frac{4z}{(1-z)^2}}}{\frac{-2z}{(1-z)^2}} \\[4px]
&= \frac{z^m}{(1-z)^{m+1}}\frac{1-\sqrt{1+\frac{4z}{(1-z)^2}}}{\frac{-2z}{(1-z)^2}} \\[4px]
&= \frac{-z^{m-1}}{2(1-z)^{m-1}}\left(1-\frac{1+z}{1-z}\right) \\[4px]
&= \frac{-z^{m-1}}{2(1-z)^{m-1}}\left(1-\frac{1+z}{1-z}\right) \\[4px]
&= \frac{z^m}{(1-z)^m} = z\frac{z^{m-1}}{(1-z)^m}\,.
&= \frac{z^m}{(1-z)^m} = z\frac{z^{m-1}}{(1-z)^m}\,.
\end{align}</math>
\end{align}</math>
तब हम प्राप्त करते हैं
तब हम निम्न प्राप्त करते हैं
<math display="block">s_n = \begin{cases}
<math display="block">s_n = \begin{cases}
\displaystyle\binom{n-1}{m-1} & \text{for } m \geq 1 \,, \\ {}
\displaystyle\binom{n-1}{m-1} & \text{for } m \geq 1 \,, \\ {}
[n = 0] & \text{for } m = 0\,.
[n = 0] & \text{for } m = 0\,.
\end{cases}</math>
\end{cases}</math>
योग के लिए फिर से उसी विधि का उपयोग करना शिक्षाप्रद है, लेकिन इस बार समय लगेगा {{mvar|m}} इसके स्थान पर मुक्त मापदण्ड के रूप में {{mvar|n}}. हम इस प्रकार सेट करते हैं
योग के लिए फिर से उसी विधि का उपयोग करना शिक्षाप्रद है, लेकिन इस बार n के स्थान पर m को मुक्त मापदंड के रूप में लें। हम इस प्रकार निम्न सम्मुच्चय करते हैं
<math display="block">G(z) = \sum_{m = 0}^\infty\left( \sum_{k = 0}^\infty \binom{n+k}{m+2k}\binom{2k}{k}\frac{(-1)^k}{k+1} \right) z^m\,.</math>
<math display="block">G(z) = \sum_{m = 0}^\infty\left( \sum_{k = 0}^\infty \binom{n+k}{m+2k}\binom{2k}{k}\frac{(-1)^k}{k+1} \right) z^m\,.</math>
इंटरचेंजिंग योग (साँप का तेल) देता है
अंतर्विनिमय योग ("स्नेक ऑयल") देता है
<math display="block">G(z) = \sum_{k = 0}^\infty \binom{2k}{k}\frac{(-1)^k}{k+1} z^{-2k} \sum_{m = 0}^\infty \binom{n+k}{m+2k} z^{m+2k}\,.</math>
<math display="block">G(z) = \sum_{k = 0}^\infty \binom{2k}{k}\frac{(-1)^k}{k+1} z^{-2k} \sum_{m = 0}^\infty \binom{n+k}{m+2k} z^{m+2k}\,.</math>
अब आंतरिक योग है {{math|(1 + ''z'')<sup>''n'' + ''k''</sup>}}. इस प्रकार
अब आंतरिक योग {{math|(1 + ''z'')<sup>''n'' + ''k''</sup>}} है। इस प्रकार
<math display="block">\begin{align} G(z)
<math display="block">\begin{align} G(z)
&= (1+z)^n \sum_{k = 0}^\infty \frac{1}{k+1}\binom{2k}{k}\left(\frac{-(1+z)}{z^2}\right)^k \\[4px]
&= (1+z)^n \sum_{k = 0}^\infty \frac{1}{k+1}\binom{2k}{k}\left(\frac{-(1+z)}{z^2}\right)^k \\[4px]
&= (1+z)^n \sum_{k = 0}^\infty C_k \,\left(\frac{-(1+z)}{z^2}\right)^k &\text{where } C_k = k\text{th Catalan number} \\[4px]
&= (1+z)^n \sum_{k = 0}^\infty C_k \,\left(\frac{-(1+z)}{z^2}\right)^k &\text{जहाँ } C_k = k\text{th कैटलन संख्या है} \\[4px]
&= (1+z)^n \,\frac{1-\sqrt{1+\frac{4(1+z)}{z^2}}}{\frac{-2(1+z)}{z^2}} \\[4px]
&= (1+z)^n \,\frac{1-\sqrt{1+\frac{4(1+z)}{z^2}}}{\frac{-2(1+z)}{z^2}} \\[4px]
&= (1+z)^n \,\frac{z^2-z\sqrt{z^2+4+4z}}{-2(1+z)} \\[4px]
&= (1+z)^n \,\frac{z^2-z\sqrt{z^2+4+4z}}{-2(1+z)} \\[4px]
Line 602: Line 602:
&= (1+z)^n \,\frac{-2z}{-2(1+z)} = z(1+z)^{n-1}\,.
&= (1+z)^n \,\frac{-2z}{-2(1+z)} = z(1+z)^{n-1}\,.
\end{align}</math>
\end{align}</math>
इस प्रकार हम प्राप्त करते हैं
इस प्रकार हम निम्न प्राप्त करते हैं
<math display="block">s_n = \left[z^m\right] z(1+z)^{n-1} = \left[z^{m-1}\right] (1+z)^{n-1} = \binom{n-1}{m-1}\,,</math>
<math display="block">s_n = \left[z^m\right] z(1+z)^{n-1} = \left[z^{m-1}\right] (1+z)^{n-1} = \binom{n-1}{m-1}\,,</math>
के लिए {{math|''m'' ≥ 1}} पहले जैसा।
{{math|''m'' ≥ 1}} के लिए पहले जैसा।


===उत्पन्न करने वाले फलन सर्वांगसमता सिद्ध करते हैं===
===जनक फलन सर्वांगसमता सिद्ध करते हैं===
हम कहते हैं कि दो जनक फलन (घात श्रेणी) सर्वांगसम मॉड्यूल हैं {{mvar|m}}, लिखा हुआ {{math|''A''(''z'') ≡ ''B''(''z'') (mod ''m'')}} यदि उनके गुणांक सर्वांगसम मॉड्यूल हैं {{mvar|m}} सभी के लिए {{math|''n'' ≥ 0}}, अर्थात।, {{math|''a<sub>n</sub>'' ≡ ''b<sub>n</sub>'' (mod ''m'')}} पूर्णांकों के सभी प्रासंगिक मामलों के लिए {{mvar|n}} (ध्यान दें कि हमें यह मानने की आवश्यकता नहीं है {{mvar|m}} यहाँ एक पूर्णांक है - यह बहुत अच्छी तरह से बहुपद-मूल्यवान कुछ अनिश्चित में हो सकता है {{mvar|x}}, उदाहरण के लिए)। यदि सरल दाहिने हाथ की ओर उत्पन्न करने वाला कार्य, {{math|''B''(''z'')}}, का एक तर्कसंगत कार्य है {{mvar|z}}, तो इस अनुक्रम के रूप से पता चलता है कि अनुक्रम आवधिक कार्य मोडुलो है जो पूर्णांक-मान के विशेष स्तिथि तय करता है {{math|''m'' ≥ 2}}. उदाहरण के लिए, हम सिद्ध कर सकते हैं कि यूलर संख्याएँ,
हम कहते हैं कि दो जनक फलन (घात श्रेणी) सर्वांगसम इकाई {{mvar|m}} हैं, लिखा हुआ {{math|''A''(''z'') ≡ ''B''(''z'') (mod ''m'')}} यदि उनके गुणांक सर्वांगसम इकाई {{mvar|m}} हैं  सभी के लिए {{math|''n'' ≥ 0}}, अर्थात।, {{math|''a<sub>n</sub>'' ≡ ''b<sub>n</sub>'' (mod ''m'')}} पूर्णांकों के सभी प्रासंगिक मामलों के लिए {{mvar|n}} (ध्यान दें कि हमें यह मानने की आवश्यकता नहीं है {{mvar|m}} यहाँ एक पूर्णांक है - यह बहुत अच्छी तरह से बहुपद-मूल्यवान कुछ अनिश्चित में हो सकता है {{mvar|x}}, उदाहरण के लिए)। यदि सरल दाहिने हाथ की ओर जनक फलन, {{math|''B''(''z'')}}, का एक तर्कसंगत कार्य है {{mvar|z}}, तो इस अनुक्रम के रूप से पता चलता है कि अनुक्रम आवधिक कार्य मोडुलो है जो पूर्णांक-मान के विशेष स्तिथि तय करता है {{math|''m'' ≥ 2}}. उदाहरण के लिए, हम सिद्ध कर सकते हैं कि यूलर संख्याएँ,
<math display="block">\langle E_n \rangle = \langle 1, 1, 5, 61, 1385, \ldots \rangle \longmapsto \langle 1,1,2,1,2,1,2,\ldots \rangle \pmod{3}\,,</math>
<math display="block">\langle E_n \rangle = \langle 1, 1, 5, 61, 1385, \ldots \rangle \longmapsto \langle 1,1,2,1,2,1,2,\ldots \rangle \pmod{3}\,,</math>
निम्नलिखित सर्वांगसमता मॉड्यूल 3 को संतुष्ट करें:<ref>{{harvnb|Lando|2003|loc=§5}}</ref>
निम्नलिखित सर्वांगसमता इकाई 3 को संतुष्ट करें:<ref>{{harvnb|Lando|2003|loc=§5}}</ref>
<math display="block">\sum_{n = 0}^\infty E_n z^n = \frac{1-z^2}{1+z^2} \pmod{3}\,. </math>
<math display="block">\sum_{n = 0}^\infty E_n z^n = \frac{1-z^2}{1+z^2} \pmod{3}\,. </math>
सबसे उपयोगी तरीकों में से एक, यदि सर्वथा घातशाली नहीं है, तो विशेष जनक फलन द्वारा किसी भी पूर्णांक (यानी, न केवल प्रधान घातयाँ) द्वारा गणना किए गए अनुक्रमों के लिए सर्वांगसमता प्राप्त करने के तरीके {{math|''p<sup>k</sup>''}}) द्वारा (यहां तक ​​कि गैर-अभिसरण) साधारण जनक फलन के निरंतर अंश निरूपण पर अनुभाग में दिया गया है {{mvar|J}}-अंश ऊपर। हम उत्पादन कार्यों पर लैंडो के व्याख्यान से निरंतर अंश द्वारा प्रतिनिधित्व के माध्यम से विस्तारित श्रृंखला उत्पन्न करने से संबंधित एक विशेष परिणाम का हवाला देते हैं:
सबसे उपयोगी तरीकों में से एक, यदि सर्वथा घातशाली नहीं है, तो विशेष जनक फलन द्वारा किसी भी पूर्णांक (यानी, न केवल प्रधान घातयाँ) द्वारा गणना किए गए अनुक्रमों के लिए सर्वांगसमता प्राप्त करने के तरीके {{math|''p<sup>k</sup>''}}) द्वारा (यहां तक ​​कि गैर-अभिसरण) साधारण जनक फलन के निरंतर अंश निरूपण पर अनुभाग में दिया गया है {{mvar|J}}-अंश ऊपर। हम उत्पादन कार्यों पर लैंडो के व्याख्यान से निरंतर अंश द्वारा प्रतिनिधित्व के माध्यम से विस्तारित श्रृंखला उत्पन्न करने से संबंधित एक विशेष परिणाम का हवाला देते हैं:
Line 620: Line 620:
# if the integer {{mvar|p}} divides the product {{math|''p''<sub>1</sub>''p''<sub>2</sub>⋯''p''<sub>''k''</sub>}}, then we have {{math|''A''(''z'') ≡ ''A<sub>k</sub>''(''z'') (mod ''p'')}}.}}
# if the integer {{mvar|p}} divides the product {{math|''p''<sub>1</sub>''p''<sub>2</sub>⋯''p''<sub>''k''</sub>}}, then we have {{math|''A''(''z'') ≡ ''A<sub>k</sub>''(''z'') (mod ''p'')}}.}}


जनक फलनों का उनके गुणांकों के लिए सर्वांगसमता सिद्ध करने में अन्य उपयोग भी होते हैं। हम अगले दो विशिष्ट उदाहरणों का हवाला देते हैं जो [[पहली तरह की स्टर्लिंग संख्या]]ओं के लिए और विभाजन फलन (गणित) के लिए विशेष केस सर्वांगसमता प्राप्त करते हैं। विभाजन फलन {{math|''p''(''n'')}} जो [[पूर्णांक अनुक्रम]]ों से जुड़ी समस्याओं से निपटने में कार्यों को उत्पन्न करने की बहुमुखी प्रतिभा को दर्शाता है।
जनक फलनों का उनके गुणांकों के लिए सर्वांगसमता सिद्ध करने में अन्य उपयोग भी होते हैं। हम अगले दो विशिष्ट उदाहरणों का उल्लेख करते हैं जो [[पहली तरह की स्टर्लिंग संख्या]]ओं के लिए और विभाजन फलन (गणित) के लिए विशेष विषय सर्वांगसमता प्राप्त करते हैं। विभाजन फलन {{math|''p''(''n'')}} जो [[पूर्णांक अनुक्रम]]ों से जुड़ी समस्याओं से निपटने में कार्यों को उत्पन्न करने की बहुमुखी प्रतिभा को दर्शाता है।


====स्टर्लिंग संख्या मॉड्यूल छोटे पूर्णांक ====
====स्टर्लिंग संख्या इकाई छोटे पूर्णांक ====


पहली तरह की स्टर्लिंग संख्या# परिमित उत्पादों द्वारा उत्पन्न स्टर्लिंग संख्याओं पर अनुरूपता
परिमित उत्पादों द्वारा उत्पन्न स्टर्लिंग संख्याओं पर मुख्य लेख
<math display="block">S_n(x) := \sum_{k=0}^n \begin{bmatrix} n \\ k \end{bmatrix} x^k = x(x+1)(x+2) \cdots (x+n-1)\,,\quad n \geq 1\,, </math>
<math display="block">S_n(x) := \sum_{k=0}^n \begin{bmatrix} n \\ k \end{bmatrix} x^k = x(x+1)(x+2) \cdots (x+n-1)\,,\quad n \geq 1\,, </math>
Wilf के स्टॉक रेफरेंस उत्पन्निंगफंक्शनोलॉजी की धारा 4.6 में उनके जनक फलन के गुणों से सख्ती से प्राप्त इन संख्याों के लिए सर्वांगसमता का अवलोकन प्रदान करता है।
विल्फ के ख्याति सन्दर्भ उत्पादक फंक्शनोलॉजी के अनुच्छेद 4.6 में उनके जनक फलन के गुणों से कठोरता से प्राप्त इन संख्याों के लिए सर्वांगसमता का अवलोकन प्रदान करता है। हम मूल तर्क को दोहराते हैं और ध्यान देते हैं कि जब सापेक्ष 2 को कम करता है, तो ये परिमित उत्पाद जनक फलन प्रत्येक को संतुष्ट करते हैं
हम मूल तर्क को दोहराते हैं और ध्यान देते हैं कि जब मॉडुलो 2 को कम करता है, तो ये परिमित उत्पाद जनक फलन प्रत्येक को संतुष्ट करते हैं


<math display="block">S_n(x) = [x(x+1)] \cdot [x(x+1)] \cdots = x^{\left\lceil \frac{n}{2} \right\rceil} (x+1)^{\left\lfloor \frac{n}{2} \right\rfloor}\,, </math>
<math display="block">S_n(x) = [x(x+1)] \cdot [x(x+1)] \cdots = x^{\left\lceil \frac{n}{2} \right\rceil} (x+1)^{\left\lfloor \frac{n}{2} \right\rfloor}\,, </math>
Line 633: Line 632:


<math display="block">\begin{bmatrix} n \\ k \end{bmatrix} \equiv \binom{\left\lfloor \frac{n}{2} \right\rfloor}{k - \left\lceil \frac{n}{2} \right\rceil} \pmod{2}\,, </math>
<math display="block">\begin{bmatrix} n \\ k \end{bmatrix} \equiv \binom{\left\lfloor \frac{n}{2} \right\rfloor}{k - \left\lceil \frac{n}{2} \right\rceil} \pmod{2}\,, </math>
और फलस्वरूप यह दर्शाता है {{math|{{resize|150%|[}}{{su|p=''n''|b=''k''|a=c}}{{resize|150%|]}}}} भी जब भी है {{math|''k'' < ⌊ {{sfrac|''n''|2}} ⌋}}.
और फलस्वरूप यह दर्शाता है कि {{math|{{resize|150%|[}}{{su|p=''n''|b=''k''|a=c}}{{resize|150%|]}}}} जब भी {{math|''k'' < ⌊ {{sfrac|''n''|2}} ⌋}} है


इसी तरह, हम दाएँ हाथ के उत्पादों को कम कर सकते हैं जो स्टर्लिंग संख्या जनक फलनों मॉड्यूलो 3 को परिभाषित करते हैं ताकि थोड़ा और जटिल अभिव्यक्ति प्राप्त हो सके
इसी तरह, हम दाएँ हाथ के उत्पादों को कम कर सकते हैं जो स्टर्लिंग संख्या जनक फलन इकाई 3 को परिभाषित करते हैं ताकि थोड़ा और जटिल अभिव्यक्ति प्राप्त हो सके
<math display="block">\begin{align}
<math display="block">\begin{align}
\begin{bmatrix} n \\ m \end{bmatrix} & \equiv
\begin{bmatrix} n \\ m \end{bmatrix} & \equiv
Line 649: Line 648:




==== पार्टीशन फंक्शन के लिए बधाई ====
==== विभाजन फलन के लिए सर्वांगसमताएं ====


इस उदाहरण में, हम अनंत उत्पादों की कुछ मशीनरी को खींचते हैं जिनकी घात श्रृंखला विस्तार कई विशेष कार्यों के विस्तार और विभाजन कार्यों की गणना करता है। विशेष रूप से, हम याद करते हैं कि विभाजन कार्य (संख्या सिद्धांत) {{math|''p''(''n'')}} पारस्परिक अनंत q-पोचहैमर प्रतीक द्वारा उत्पन्न होता है{{mvar|q}}-पोछाम्मेर सिंबल प्रोडक्ट (और {{mvar|z}}-पोचममेर उत्पाद जैसा भी स्तिथि हो) द्वारा दिया गया है
इस उदाहरण में, हम अनंत उत्पादों की कुछ यंत्रगति को खींचते हैं जिनकी घात श्रृंखला विस्तार कई विशेष कार्यों के विस्तार और विभाजन कार्यों की गणना करता है। विशेष रूप से, हम याद करते हैं कि विभाजन कार्य (संख्या सिद्धांत) {{math|''p''(''n'')}} पारस्परिक अनंत q-पोचहैमर प्रतीक द्वारा उत्पन्न होता है। (और {{mvar|z}}-पोचममेर उत्पाद जैसा भी स्तिथि हो) निम्न द्वारा दिया गया है कि
<math display="block">\begin{align}
<math display="block">\begin{align}
\sum_{n = 0}^\infty p(n) z^n & = \frac{1}{\left(1-z\right)\left(1-z^2\right)\left(1-z^3\right) \cdots} \\[4pt]
\sum_{n = 0}^\infty p(n) z^n & = \frac{1}{\left(1-z\right)\left(1-z^2\right)\left(1-z^3\right) \cdots} \\[4pt]
Line 667: Line 666:
सबसे पहले, हम देखते हैं कि द्विपद गुणांक जनक फलन में
सबसे पहले, हम देखते हैं कि द्विपद गुणांक जनक फलन में
<math display=block>\frac{1}{(1-z)^5} = \sum_{i=0}^\infty \binom{4+i}{4}z^i\,,</math>
<math display=block>\frac{1}{(1-z)^5} = \sum_{i=0}^\infty \binom{4+i}{4}z^i\,,</math>
सभी गुणांक 5 से विभाज्य हैं सिवाय उनके जो घातों के संगत हैं {{math|1, ''z''<sup>5</sup>, ''z''<sup>10</sup>,…}} और इसके अलावा उन मामलों में गुणांक का शेष 1 सापेक्ष 5 है। इस प्रकार,
सभी गुणांक 5 से विभाज्य हैं सिवाय उनके जो घात {{math|1, ''z''<sup>5</sup>, ''z''<sup>10</sup>,…}} के संगत हैं और इसके अतिरिक्त उन स्तिथियों में गुणांक का शेष 1 सापेक्ष 5 है। इस प्रकार,
<math display="block">\frac{1}{(1-z)^5} \equiv \frac{1}{1-z^5} \pmod{5}\,,</math> या समकक्ष
<math display="block">\frac{1}{(1-z)^5} \equiv \frac{1}{1-z^5} \pmod{5}\,,</math> या समकक्ष
<math display="block"> \frac{1-z^5}{(1-z)^5} \equiv 1 \pmod{5}\,.</math>
<math display="block"> \frac{1-z^5}{(1-z)^5} \equiv 1 \pmod{5}\,.</math>
यह इस प्रकार है कि
यह इस प्रकार है कि
Line 675: Line 674:
  <math display="block">z \cdot \frac{\left(1-z^5\right)\left(1-z^{10}\right) \cdots }{\left(1-z\right)\left(1-z^2\right) \cdots } =
  <math display="block">z \cdot \frac{\left(1-z^5\right)\left(1-z^{10}\right) \cdots }{\left(1-z\right)\left(1-z^2\right) \cdots } =
z \cdot \left((1-z)\left(1-z^2\right) \cdots \right)^4 \times \frac{\left(1-z^5\right)\left(1-z^{10}\right) \cdots }{\left(\left(1-z\right)\left(1-z^2\right) \cdots \right)^5}\,,</math>
z \cdot \left((1-z)\left(1-z^2\right) \cdots \right)^4 \times \frac{\left(1-z^5\right)\left(1-z^{10}\right) \cdots }{\left(\left(1-z\right)\left(1-z^2\right) \cdots \right)^5}\,,</math>
यह दिखाया जा सकता है कि का गुणांक {{math|''z''<sup>5''m'' + 5</sup>}} में {{math|''z'' · ((1 − ''z'')(1 − ''z''<sup>2</sup>)⋯)<sup>4</sup>}} सभी के लिए 5 से विभाज्य है {{mvar|m}}.<ref>{{cite book |last1=Hardy |first1=G.H. |last2=Wright |first2=E.M.|title=An Introduction to the Theory of Numbers}} p.288, Th.361</ref> अंत में, चूंकि
यह दिखाया जा सकता है कि का गुणांक {{math|''z''<sup>5''m'' + 5</sup>}} में {{math|''z'' · ((1 − ''z'')(1 − ''z''<sup>2</sup>)⋯)<sup>4</sup>}} सभी {{mvar|m}} के लिए 5 से विभाज्य है। <ref>{{cite book |last1=Hardy |first1=G.H. |last2=Wright |first2=E.M.|title=An Introduction to the Theory of Numbers}} p.288, Th.361</ref> अंत में, चूंकि
<math display="block">\begin{align}
<math display="block">\begin{align}
\sum_{n = 1}^\infty p(n-1) z^n & = \frac{z}{(1-z)\left(1-z^2\right) \cdots} \\[6px]
\sum_{n = 1}^\infty p(n-1) z^n & = \frac{z}{(1-z)\left(1-z^2\right) \cdots} \\[6px]
& = z \cdot \frac{\left(1-z^5\right)\left(1-z^{10}\right) \cdots }{(1-z)\left(1-z^2\right) \cdots } \times \left(1+z^5+z^{10}+\cdots\right)\left(1+z^{10}+z^{20}+\cdots\right) \cdots
& = z \cdot \frac{\left(1-z^5\right)\left(1-z^{10}\right) \cdots }{(1-z)\left(1-z^2\right) \cdots } \times \left(1+z^5+z^{10}+\cdots\right)\left(1+z^{10}+z^{20}+\cdots\right) \cdots
\end{align}</math>
\end{align}</math>
हम के गुणांकों की बराबरी कर सकते हैं {{math|''z''<sup>5''m'' + 5</sup>}} पिछले समीकरणों में हमारे वांछित सर्वांगसमता परिणाम को सिद्ध करने के लिए, अर्थात् {{math|''p''(5''m'' + 4) ≡ 0 (mod 5)}} सभी के लिए {{math|''m'' ≥ 0}}.
हम पिछले समीकरणों में हमारे वांछित सर्वांगसमता परिणाम को सिद्ध करने के लिए {{math|''z''<sup>5''m'' + 5</sup>}} के गुणांकों की बराबरी कर सकते हैं, अर्थात् {{math|''p''(5''m'' + 4) ≡ 0 (mod 5)}} सभी के लिए {{math|''m'' ≥ 0}} है।


=== जनक फलन का रूपांतरण ===
=== जनक फलन का रूपांतरण ===
जनक फलन के कई रूपांतरण हैं जो अन्य एप्लिकेशन प्रदान करते हैं (जेनरेटिंग फलन रूपांतरण देखें)। एक अनुक्रम के सामान्य जनक फलन (ओजीएफ) का रूपांतरण एक अनुक्रम के लिए जनक फलन को दूसरे को एन्यूमरेट करने वाले जनक फलन में परिवर्तित करने की एक विधि प्रदान करता है। इन परिवर्तनों में सामान्यतः एक अनुक्रम ओजीएफ से जुड़े अभिन्न सूत्र सम्मिलित होते हैं (फलन रूपांतरण # इंटीग्रल रूपांतरण उत्पन्न करना देखें) या इन फलन के उच्च-क्रम व्युत्पादित्स पर भारित योग (फलन रूपांतरण # व्युत्पादित रूपांतरण उत्पन्न करना देखें)।
जनक फलन के कई रूपांतरण हैं जो अन्य एप्लिकेशन प्रदान करते हैं (उत्पादक फलन रूपांतरण देखें)। एक अनुक्रम के सामान्य जनक फलन (ओजीएफ) का रूपांतरण एक अनुक्रम के लिए जनक फलन को दूसरे को गणना करने वाले जनक फलन में परिवर्तित करने की एक विधि प्रदान करता है। इन परिवर्तनों में सामान्यतः एक अनुक्रम ओजीएफ से जुड़े अभिन्न सूत्र सम्मिलित होते हैं (फलन रूपांतरण देखें) या इन फलन के उच्च-क्रम व्युत्पादित्स पर भारित योग ( व्युत्पादित रूपांतरण उत्पन्न करना देखें)।


जब हम राशियों के लिए एक जनक फलन को व्यक्त करना चाहते हैं, तो फलन रूपांतरण उत्पन्न करना चलन में आ सकता है
जब हम योग के लिए एक जनक फलन को व्यक्त करना चाहते हैं, तो फलन रूपांतरण उत्पन्न करना चलन में आ सकता है


<math display="block">s_n := \sum_{m=0}^n \binom{n}{m} C_{n,m} a_m, </math>
<math display="block">s_n := \sum_{m=0}^n \binom{n}{m} C_{n,m} a_m, </math>
के रूप में {{math|''S''(''z'') {{=}} ''g''(''z'') ''A''(''f''(''z''))}} मूल अनुक्रम जनक फलन को सम्मिलित करना। उदाहरण के लिए, यदि योग हैं
{{math|''S''(''z'') {{=}} ''g''(''z'') ''A''(''f''(''z''))}} के रूप में जिसमें मूल अनुक्रम जनक फलन सम्मिलित है। उदाहरण के लिए, यदि योग हैं
<math display="block">s_n := \sum_{k = 0}^\infty \binom{n+k}{m+2k} a_k \,</math>
<math display="block">s_n := \sum_{k = 0}^\infty \binom{n+k}{m+2k} a_k \,</math>
तब संशोधित योग भावों के लिए जनक फलन द्वारा दिया गया है<ref>{{harvnb|Graham|Knuth|Patashnik|1994|p=535, exercise 5.71}}</ref>
तब संशोधित योग भावों के लिए जनक फलन द्वारा दिया गया है<ref>{{harvnb|Graham|Knuth|Patashnik|1994|p=535, exercise 5.71}}</ref>
Line 694: Line 693:
(द्विपद रूपांतरण और स्टर्लिंग रूपांतरण भी देखें)।
(द्विपद रूपांतरण और स्टर्लिंग रूपांतरण भी देखें)।


अनुक्रम के ओजीएफ के बीच परिवर्तित करने के लिए अभिन्न सूत्र भी हैं, {{math|''F''(''z'')}}, और इसका घातांकी जनक फलन, या EGF, {{math|''F̂''(''z'')}}, और इसके विपरीत द्वारा दिया गया
अनुक्रम के ओजीएफ के बीच परिवर्तित करने के लिए अभिन्न सूत्र {{math|''F''(''z'')}} भी हैं, और इसका घातांकी जनक फलन, या EGF, {{math|''F̂''(''z'')}}, और इसके विपरीत द्वारा दिया गया


<math display="block">\begin{align}
<math display="block">\begin{align}
Line 700: Line 699:
\hat{F}(z) &= \frac{1}{2\pi} \int_{-\pi}^\pi F\left(z e^{-i\vartheta}\right) e^{e^{i\vartheta}} \, d\vartheta \,,
\hat{F}(z) &= \frac{1}{2\pi} \int_{-\pi}^\pi F\left(z e^{-i\vartheta}\right) e^{e^{i\vartheta}} \, d\vartheta \,,
\end{align}</math>
\end{align}</math>
बशर्ते कि ये इंटीग्रल उचित मूल्यों के लिए अभिसरण करें {{mvar|z}}.
बशर्ते कि ये पूर्णांकी उचित मूल्यों के लिए अभिसरण करें {{mvar|z}}.


=== अन्य अनुप्रयोग ===
=== अन्य अनुप्रयोग ===
जनक फलन का उपयोग इसके लिए किया जाता है:
जनक फलन का उपयोग इसके लिए किया जाता है:


* पुनरावृत्ति संबंध में दिए गए अनुक्रम के लिए [[बंद सूत्र]] खोजें। उदाहरण के लिए, फाइबोनैचि संख्या # जनक फलन पर विचार करें।
* पुनरावृत्ति संबंध में दिए गए अनुक्रम के लिए [[बंद सूत्र|संवृत सूत्र]] खोजें। उदाहरण के लिए, फाइबोनैचि संख्या जनक फलन पर विचार करें।
* अनुक्रमों के लिए पुनरावर्तन संबंध खोजें—एक जनक फलन का रूप पुनरावृत्ति सूत्र का सुझाव दे सकता है।
* अनुक्रमों के लिए पुनरावर्तन संबंध खोजें—एक जनक फलन का रूप पुनरावृत्ति सूत्र का सुझाव दे सकता है।
* अनुक्रमों के बीच संबंधों का पता लगाएं - यदि दो अनुक्रमों के जनक कार्यों का एक समान रूप है, तो अनुक्रम स्वयं संबंधित हो सकते हैं।
* अनुक्रमों के बीच संबंधों का पता लगाएं - यदि दो अनुक्रमों के जनक कार्यों का एक समान रूप है, तो अनुक्रम स्वयं संबंधित हो सकते हैं।
* अनुक्रमों के स्पर्शोन्मुख व्यवहार का अन्वेषण करें।
* अनुक्रमों के स्पर्शोन्मुख व्यवहार का अन्वेषण करें।
* अनुक्रमों से संबंधित सर्वसमिका सिद्ध करें।
* अनुक्रमों से संबंधित सर्वसमिका सिद्ध करें।
* [[ साहचर्य ]] में [[गणना]] की समस्याओं को हल करें और उनके समाधान को कूटलेखनिंग करें। [[रूक बहुपद]] कॉम्बिनेटरिक्स में एक आवेदन का एक उदाहरण है।
* [[ साहचर्य ]] में [[गणना]] की समस्याओं को हल करें और उनके समाधान को कूटलेखन करें। [[रूक बहुपद]] साहचर्य में एक आवेदन का एक उदाहरण है।
* अनंत योग का मूल्यांकन करें।
* अनंत योग का मूल्यांकन करें।


Line 723: Line 722:
* [[अंतर बहुपद]]
* [[अंतर बहुपद]]
* सामान्यीकृत अपेल बहुपद
* सामान्यीकृत अपेल बहुपद
*क्यू-अंतर बहुपद|{{mvar|q}}-अंतर बहुपद
*{{mvar|q}}-अंतर बहुपद


अधिक जटिल जनक फलन द्वारा उत्पन्न अन्य क्रम:
अधिक जटिल जनक फलन द्वारा उत्पन्न अन्य क्रम:


* डबल घातीय जनक फलन। उदाहरण के लिए: [https://oeis.org/search?q=1%2C1%2C2%2C2%2C3%2C5%2C5%2C7%2C10%2C15%2C15&sort=&language=&go=Search Aitken's Array: Triangle of Numbers]
* युग्म घातीय जनक फलन। उदाहरण के लिए: [https://oeis.org/search?q=1%2C1%2C2%2C2%2C3%2C5%2C5%2C7%2C10%2C15%2C15&sort=&language=&go=Search ऐटकेन ऐरे: संख्याओं का त्रिभुज]
* जनक फलन और विकर्ण जनक फलन के हैडमार्ड उत्पाद, और उनके संगत जनक फलन रूपांतरण # हैडमार्ड उत्पाद और विकर्ण जनक फलन
* जनक फलन और विकर्ण जनक फलन के हैडमार्ड उत्पाद, और उनके संगत जनक फलन रूपांतरण और विकर्ण जनक फलन।


=== संवलन बहुपद ===
=== संवलन बहुपद ===


नुथ का आलेख जिसका शीर्षक कनवॉल्यूशन पॉलीनॉमियल्स है<ref>{{cite journal|last1=Knuth|first1=D. E.|title=कनवल्शन पॉलीनॉमियल्स|journal=Mathematica J.|date=1992|volume=2|pages=67–78|arxiv=math/9207221|bibcode=1992math......7221K}}</ref> संवलन बहुपद अनुक्रमों के एक सामान्यीकृत वर्ग को फॉर्म के उनके विशेष जनक फलन द्वारा परिभाषित करता है
नुथ का आलेख जिसका शीर्षक संवलन बहुपद है<ref>{{cite journal|last1=Knuth|first1=D. E.|title=कनवल्शन पॉलीनॉमियल्स|journal=Mathematica J.|date=1992|volume=2|pages=67–78|arxiv=math/9207221|bibcode=1992math......7221K}}</ref> संवलन बहुपद अनुक्रमों के एक सामान्यीकृत वर्ग को प्ररूप के उनके विशेष जनक फलन द्वारा परिभाषित करता है
<math display="block">F(z)^x = \exp\bigl(x \log F(z)\bigr) = \sum_{n = 0}^\infty f_n(x) z^n,</math>
<math display="block">F(z)^x = \exp\bigl(x \log F(z)\bigr) = \sum_{n = 0}^\infty f_n(x) z^n,</math>
कुछ विश्लेषणात्मक कार्यों के लिए {{mvar|F}} एक घात श्रृंखला विस्तार के साथ जैसे कि {{math|''F''(0) {{=}} 1}}.
कुछ विश्लेषणात्मक कार्यों के लिए {{mvar|F}} एक घात श्रृंखला विस्तार के साथ जैसे कि {{math|''F''(0) {{=}} 1}}.


हम कहते हैं कि बहुपदों का एक परिवार, {{math|''f''<sub>0</sub>, ''f''<sub>1</sub>, ''f''<sub>2</sub>,…}}, एक दृढ़ संकल्प परिवार बनाता है if {{math|[[Degree of a polynomial|deg]] ''f<sub>n</sub>'' ≤ ''n''}} और यदि निम्नलिखित दृढ़ संकल्प की स्थिति सभी के लिए है {{mvar|x}}, {{mvar|y}} और सभी के लिए {{math|''n'' ≥ 0}}:
हम कहते हैं कि बहुपदों का एक परिवार, {{math|''f''<sub>0</sub>, ''f''<sub>1</sub>, ''f''<sub>2</sub>,…}}, एक दृढ़ संकल्प परिवार बनाता है यदि {{math|[[Degree of a polynomial|deg]] ''f<sub>n</sub>'' ≤ ''n''}} और यदि निम्नलिखित दृढ़ संकल्प की स्थिति सभी के लिए {{mvar|x}}, {{mvar|y}} है और सभी के लिए {{math|''n'' ≥ 0}} है:
<math display="block">f_n(x+y) = f_n(x) f_0(y) + f_{n-1}(x) f_1(y) + \cdots + f_1(x) f_{n-1}(y) + f_0(x) f_n(y). </math>
<math display="block">f_n(x+y) = f_n(x) f_0(y) + f_{n-1}(x) f_1(y) + \cdots + f_1(x) f_{n-1}(y) + f_0(x) f_n(y). </math>
हम देखते हैं कि गैर-समान रूप से शून्य संवलन परिवारों के लिए, यह परिभाषा आवश्यकता के बराबर है कि अनुक्रम में ऊपर दिए गए पहले रूप का एक सामान्य जनक फलन हो।
हम देखते हैं कि गैर-समान रूप से शून्य संवलन श्रेणी के लिए, यह परिभाषा आवश्यकता के बराबर है कि अनुक्रम में ऊपर दिए गए पहले रूप का एक सामान्य जनक फलन हो।


उपरोक्त अंकन में परिभाषित दृढ़ बहुपदों के अनुक्रम में निम्नलिखित गुण हैं:
उपरोक्त अंकन में परिभाषित दृढ़ बहुपदों के अनुक्रम में निम्नलिखित गुण हैं:


* क्रम {{math|''n''! · ''f<sub>n</sub>''(''x'')}} द्विपद प्रकार का है
* क्रम {{math|''n''! · ''f<sub>n</sub>''(''x'')}} द्विपद प्रकार का है
* अनुक्रम के विशेष मूल्यों में सम्मिलित हैं {{math|''f<sub>n</sub>''(1) {{=}} [''z<sup>n</sup>''] ''F''(''z'')}} और {{math|''f<sub>n</sub>''(0) {{=}} ''δ''<sub>''n'',0</sub>}}, और
* अनुक्रम के विशेष मूल्यों में {{math|''f<sub>n</sub>''(1) {{=}} [''z<sup>n</sup>''] ''F''(''z'')}} और {{math|''f<sub>n</sub>''(0) {{=}} ''δ''<sub>''n'',0</sub>}} सम्मिलित हैं, और
* स्वेच्छाचारी (निश्चित) के लिए {{math|''x'', ''y'', ''t'' ∈ ℂ}}, ये बहुपद रूप के संवलन सिद्धांतों को संतुष्ट करते हैं
* स्वेच्छाचारी (निश्चित) के लिए {{math|''x'', ''y'', ''t'' ∈ ℂ}}, ये बहुपद रूप के संवलन सिद्धांतों को संतुष्ट करते हैं
<math display="block">\begin{align}
<math display="block">\begin{align}
Line 753: Line 752:
एक निश्चित गैर-शून्य मापदण्ड के लिए {{math|''t'' ∈ ℂ}}, हमने दिए गए इन दृढ़ बहुपद अनुक्रमों के लिए जनक फलन को संशोधित किया है
एक निश्चित गैर-शून्य मापदण्ड के लिए {{math|''t'' ∈ ℂ}}, हमने दिए गए इन दृढ़ बहुपद अनुक्रमों के लिए जनक फलन को संशोधित किया है
<math display="block">\frac{z F_n(x+tn)}{(x+tn)} = \left[z^n\right] \mathcal{F}_t(z)^x, </math>
<math display="block">\frac{z F_n(x+tn)}{(x+tn)} = \left[z^n\right] \mathcal{F}_t(z)^x, </math>
जहाँ {{math|𝓕<sub>''t''</sub>(''z'')}} परोक्ष रूप से रूप के एक [[कार्यात्मक समीकरण]] द्वारा परिभाषित किया गया है {{math|𝓕<sub>''t''</sub>(''z'') {{=}} ''F''(''x''𝓕<sub>''t''</sub>(''z'')<sup>''t''</sup>)}}. इसके अलावा, हम मैट्रिक्स विधियों (संदर्भ के अनुसार) का उपयोग यह साबित करने के लिए कर सकते हैं कि दो दृढ़ बहुपद अनुक्रम दिए गए हैं, {{math|⟨ ''f<sub>n</sub>''(''x'') ⟩}} और {{math|⟨ ''g<sub>n</sub>''(''x'') ⟩}}, संबंधित संबंधित उत्पादन कार्यों के साथ, {{math|''F''(''z'')<sup>''x''</sup>}} और {{math|''G''(''z'')<sup>''x''</sup>}}, फिर मनमानी के लिए {{mvar|t}} हमारी सर्वसमिका है
जहाँ {{math|𝓕<sub>''t''</sub>(''z'')}} परोक्ष रूप से प्ररूप {{math|𝓕<sub>''t''</sub>(''z'') {{=}} ''F''(''x''𝓕<sub>''t''</sub>(''z'')<sup>''t''</sup>)}} के एक [[कार्यात्मक समीकरण]] द्वारा परिभाषित किया गया है. इसके अतिरिक्त, हम आव्यूह विधियों (संदर्भ के अनुसार) का उपयोग यह साबित करने के लिए कर सकते हैं कि दो दृढ़ बहुपद अनुक्रम {{math|⟨ ''f<sub>n</sub>''(''x'') ⟩}} और {{math|⟨ ''g<sub>n</sub>''(''x'') ⟩}} दिए गए हैं, संबंधित उत्पादन कार्य {{math|''F''(''z'')<sup>''x''</sup>}} और {{math|''G''(''z'')<sup>''x''</sup>}} के साथ, फिर स्वेच्छाचारी के लिए {{mvar|t}} हमारी सर्वसमिका है
<math display="block">\left[z^n\right] \left(G(z) F\left(z G(z)^t\right)\right)^x = \sum_{k=0}^n F_k(x) G_{n-k}(x+tk). </math>
<math display="block">\left[z^n\right] \left(G(z) F\left(z G(z)^t\right)\right)^x = \sum_{k=0}^n F_k(x) G_{n-k}(x+tk). </math>
दृढ़ बहुपद अनुक्रमों के उदाहरणों में द्विपद घात श्रृंखला सम्मिलित है, {{math|𝓑<sub>''t''</sub>(''z'') {{=}} 1 + ''z''𝓑<sub>''t''</sub>(''z'')<sup>''t''</sup>}}, तथाकथित पेड़ बहुपद, [[बेल नंबर|बेल संख्या]], {{math|''B''(''n'')}}, [[लैगुएरे बहुपद]], और [[स्टर्लिंग बहुपद]]
दृढ़ बहुपद अनुक्रमों के उदाहरणों में द्विपद घात श्रृंखला {{math|𝓑<sub>''t''</sub>(''z'') {{=}} 1 + ''z''𝓑<sub>''t''</sub>(''z'')<sup>''t''</sup>}} सम्मिलित है, तथाकथित तरू बहुपद, [[बेल नंबर|बेल संख्या]], {{math|''B''(''n'')}}, [[लैगुएरे बहुपद]], और [[स्टर्लिंग बहुपद]] सम्मिलित है।


=== विशेष जनक फलन की तालिकाएँ ===
=== विशेष जनक फलन की तालिकाएँ ===


विशेष गणितीय श्रृंखला की प्रारंभिक सूची मिली है [[गणितीय श्रृंखला की सूची]]। कंक्रीट गणित की धारा 5.4 और 7.4 में और विल्फ की जनक फलनोलॉजी की धारा 2.5 में कई उपयोगी और विशेष अनुक्रम जनक फलन पाए जाते हैं। नोट के अन्य विशेष जनक फलन में अगली तालिका में प्रविष्टियाँ सम्मिलित हैं, जो किसी भी तरह से पूर्ण नहीं हैं।<ref>See also the ''1031 Generating Functions'' found in {{cite thesis |first=Simon |last=Plouffe |title=Approximations de séries génératrices et quelques conjectures |trans-title=Approximations of generating functions and a few conjectures |year=1992 |type=Masters |publisher=Université du Québec à Montréal |language=fr |arxiv=0911.4975}}</ref>
विशेष गणितीय श्रृंखला की प्रारंभिक सूची यहाँ मिली है। द्रव्यार्थक गणित के अनुच्छेद 5.4 और 7.4 में और विल्फ की जनक कार्यप्रणाली के अनुच्छेद 2.5 में कई उपयोगी और विशेष अनुक्रम जनक फलन पाए जाते हैं। टिप्पणी के अन्य विशेष जनक फलन में अगली तालिका में प्रविष्टियाँ सम्मिलित हैं, जो किसी भी तरह से पूर्ण नहीं हैं।<ref>See also the ''1031 Generating Functions'' found in {{cite thesis |first=Simon |last=Plouffe |title=Approximations de séries génératrices et quelques conjectures |trans-title=Approximations of generating functions and a few conjectures |year=1992 |type=Masters |publisher=Université du Québec à Montréal |language=fr |arxiv=0911.4975}}</ref>


{{expand section|Lists of special and special sequence generating functions. The next table is a start|date=April 2017}}
{{expand section|Lists of special and special sequence generating functions. The next table is a start|date=April 2017}}
Line 765: Line 764:
:{| class="wikitable"
:{| class="wikitable"
|-
|-
! Formal power series !! Generating-function formula !! Notes
! औपचारिक घात श्रृंखला !! जनक-फलन सूत्र !! टिप्पणियाँ
|-
|-
| <math>\sum_{n = 0}^\infty \binom{m+n}{n} \left(H_{n+m}-H_m\right) z^n</math> || <math>\frac{1}{(1-z)^{m+1}} \ln \frac{1}{1-z}</math> || <math>H_n</math> is a first-order [[harmonic number]]
| <math>\sum_{n = 0}^\infty \binom{m+n}{n} \left(H_{n+m}-H_m\right) z^n</math> || <math>\frac{1}{(1-z)^{m+1}} \ln \frac{1}{1-z}</math> || <math>H_n</math> एक प्रथम-क्रम सुसंगत संख्या है
|-
|-
| <math>\sum_{n = 0}^\infty B_n \frac{z^n}{n!}</math> || <math>\frac{z}{e^z-1}</math> || <math>B_n</math> is a [[Bernoulli number]]
| <math>\sum_{n = 0}^\infty B_n \frac{z^n}{n!}</math> || <math>\frac{z}{e^z-1}</math> || <math>B_n</math> [[बरनौली संख्या]] है
|-
|-
| <math>\sum_{n = 0}^\infty F_{mn} z^n</math> || <math>\frac{F_m z}{1-(F_{m-1}+F_{m+1})z+(-1)^m z^2}</math> || <math>F_n</math> is a [[Fibonacci number]] and <math>m \in \mathbb{Z}^{+}</math>
| <math>\sum_{n = 0}^\infty F_{mn} z^n</math> || <math>\frac{F_m z}{1-(F_{m-1}+F_{m+1})z+(-1)^m z^2}</math> || <math>F_n</math> [[फाइबोनैचि संख्या]] है और <math>m \in \mathbb{Z}^{+}</math>
|-
|-
| <math>\sum_{n = 0}^\infty \left\{\begin{matrix} n \\ m \end{matrix} \right\} z^n</math> || <math>(z^{-1})^{\overline{-m}} = \frac{z^m}{(1-z)(1-2z)\cdots(1-mz)}</math> || <math>x^{\overline{n}}</math> denotes the [[rising factorial]], or [[Pochhammer symbol]] and some integer <math>m \geq 0</math>
| <math>\sum_{n = 0}^\infty \left\{\begin{matrix} n \\ m \end{matrix} \right\} z^n</math> || <math>(z^{-1})^{\overline{-m}} = \frac{z^m}{(1-z)(1-2z)\cdots(1-mz)}</math> || <math>x^{\overline{n}}</math> बढ़ते क्रमगुणित, या पोचममेर प्रतीक और कुछ पूर्णांक <math>m \geq 0</math> को दर्शाता है
|-
|-
| <math>\sum_{n = 0}^\infty \left[\begin{matrix} n \\ m \end{matrix} \right] z^n</math> || <math>z^{\overline{m}} = z(z+1) \cdots (z+m-1)</math>
| <math>\sum_{n = 0}^\infty \left[\begin{matrix} n \\ m \end{matrix} \right] z^n</math> || <math>z^{\overline{m}} = z(z+1) \cdots (z+m-1)</math>
|
|-
|-
| <math>\sum_{n = 1}^\infty \frac{(-1)^{n-1}4^n (4^n-2) B_{2n} z^{2n}}{(2n) \cdot (2n)!}</math> || <math>\ln \frac{\tan(z)}{z}</math>
| <math>\sum_{n = 1}^\infty \frac{(-1)^{n-1}4^n (4^n-2) B_{2n} z^{2n}}{(2n) \cdot (2n)!}</math> || <math>\ln \frac{\tan(z)}{z}</math>
Line 781: Line 781:
| <math>\sum_{n = 0}^\infty \frac{(1/2)^{\overline{n}} z^{2n}}{(2n+1) \cdot n!}</math> || <math>z^{-1} \arcsin(z)</math>
| <math>\sum_{n = 0}^\infty \frac{(1/2)^{\overline{n}} z^{2n}}{(2n+1) \cdot n!}</math> || <math>z^{-1} \arcsin(z)</math>
|-
|-
| <math>\sum_{n = 0}^\infty H_n^{(s)} z^n</math> || <math>\frac{\operatorname{Li}_s(z)}{1-z}</math> || <math>\operatorname{Li}_s(z)</math> is the [[polylogarithm]] function and <math>H_n^{(s)}</math> is a generalized [[harmonic number]] for <math>\Re(s) > 1</math>
| <math>\sum_{n = 0}^\infty H_n^{(s)} z^n</math> || <math>\frac{\operatorname{Li}_s(z)}{1-z}</math> || <math>\operatorname{Li}_s(z)</math> बहुलघुगणक फलन है और <math>H_n^{(s)}</math> <math>\Re(s) > 1</math> के लिए एक सामान्यीकृत सुसंगत संख्या है
|-
|-
| <math>\sum_{n = 0}^\infty n^m z^n</math> || <math>\sum_{0 \leq j \leq m} \left\{\begin{matrix} m \\ j \end{matrix} \right\} \frac{j! \cdot z^j}{(1-z)^{j+1}}</math> || <math>\left\{\begin{matrix} n \\ m \end{matrix} \right\}</math> is a [[Stirling number of the second kind]] and where the individual terms in the expansion satisfy <math>\frac{z^i}{(1-z)^{i+1}} = \sum_{k=0}^{i} \binom{i}{k} \frac{(-1)^{k-i}}{(1-z)^{k+1}}</math>
| <math>\sum_{n = 0}^\infty n^m z^n</math> || <math>\sum_{0 \leq j \leq m} \left\{\begin{matrix} m \\ j \end{matrix} \right\} \frac{j! \cdot z^j}{(1-z)^{j+1}}</math> || <math>\left\{\begin{matrix} n \\ m \end{matrix} \right\}</math> दूसरी तरह की एक स्टर्लिंग संख्या है और जहां विस्तार में अलग-अलग शर्तें <math>\frac{z^i}{(1-z)^{i+1}} = \sum_{k=0}^{i} \binom{i}{k} \frac{(-1)^{k-i}}{(1-z)^{k+1}}</math>को संतुष्ट करती हैं
|-
|-
| <math>\sum_{k < n} \binom{n-k}{k} \frac{n}{n-k} z^k</math> || <math>\left(\frac{1+\sqrt{1+4z}}{2}\right)^n + \left(\frac{1-\sqrt{1+4z}}{2}\right)^n</math> ||
| <math>\sum_{k < n} \binom{n-k}{k} \frac{n}{n-k} z^k</math> || <math>\left(\frac{1+\sqrt{1+4z}}{2}\right)^n + \left(\frac{1-\sqrt{1+4z}}{2}\right)^n</math> ||
|-
|-
| <math>\sum_{n_1, \ldots, n_m \geq 0} \min(n_1, \ldots, n_m) z_1^{n_1} \cdots z_m^{n_m}</math> || <math>\frac{z_1 \cdots z_m}{(1-z_1) \cdots (1-z_m) (1-z_1 \cdots z_m)}</math> || The two-variable case is given by <math>M(w, z) := \sum_{m,n \geq 0} \min(m, n) w^m z^n = \frac{wz}{(1-w)(1-z)(1-wz)}</math>
| <math>\sum_{n_1, \ldots, n_m \geq 0} \min(n_1, \ldots, n_m) z_1^{n_1} \cdots z_m^{n_m}</math> || <math>\frac{z_1 \cdots z_m}{(1-z_1) \cdots (1-z_m) (1-z_1 \cdots z_m)}</math> || दो चर वाली स्तिथि <math>M(w, z) := \sum_{m,n \geq 0} \min(m, n) w^m z^n = \frac{wz}{(1-w)(1-z)(1-wz)}</math> द्वारा दी गई है
|-
|-
| <math>\sum_{n = 0}^\infty \binom{s}{n} z^n</math> || <math>(1+z)^s</math> || <math>s \in \mathbb{C}</math>
| <math>\sum_{n = 0}^\infty \binom{s}{n} z^n</math> || <math>(1+z)^s</math> || <math>s \in \mathbb{C}</math>
Line 798: Line 798:


== इतिहास ==
== इतिहास ==
जॉर्ज पोल्या [[गणित और प्रशंसनीय तर्क]] में लिखते हैं:
जॉर्ज पोल्या [[गणित और प्रशंसनीय तर्क|गणित और युक्ति युक्त तर्क]] में लिखते हैं:
<blockquote>नेम जनक फलन [[लाप्लास]] के कारण है। फिर भी, इसे कोई नाम दिए बिना, [[यूलर]] ने लाप्लास [..] से बहुत पहले कार्यों को उत्पन्न करने के उपकरण का उपयोग किया। उन्होंने इस गणितीय उपकरण को संयोजन विश्लेषण और संख्या सिद्धांत की कई समस्याओं पर लागू किया।</blockquote>
<blockquote>नाम जनक फलन [[लाप्लास]] के कारण है। फिर भी, इसे कोई नाम दिए बिना, [[यूलर]] ने लाप्लास [..] से बहुत पहले कार्यों को उत्पन्न करने के उपकरण का उपयोग किया। उन्होंने इस गणितीय उपकरण को संयोजन विश्लेषण और संख्या सिद्धांत की कई समस्याओं पर लागू किया।</blockquote>


== यह भी देखें ==
== यह भी देखें ==
* [[क्षण-उत्पन्न करने वाला कार्य]]
* [[क्षण-उत्पन्न करने वाला कार्य|क्षण-जनक फलन]]
* संभावना पैदा करने वाला कार्य
* सम्भाविकी-जनक फलन
* फलन परिवर्तन उत्पन्न करना
* जनक फलन रूपांतरण
* स्टेनली की पारस्परिकता प्रमेय
* स्टेनली की पारस्परिकता प्रमेय
* विभाजन के लिए आवेदन (संख्या सिद्धांत)
* विभाजन के लिए आवेदन (संख्या सिद्धांत)
Line 810: Line 810:
* [[चक्रीय छलनी]]
* [[चक्रीय छलनी]]
* जेड-रूपांतरण
* जेड-रूपांतरण
* [[उम्ब्रल कैलकुलस]]
* [[उम्ब्रल कैलकुलस|उम्ब्रल कलन]]


==टिप्पणियाँ==
==टिप्पणियाँ==

Revision as of 11:41, 17 March 2023

गणित में, एक जनक फलन संख्याओं के एक अनंत अनुक्रम को एक औपचारिक घात श्रृंखला के गुणांक के रूप में मानकर कूटलेखन करने का एक तरीका (an) है। इस श्रृंखला को अनुक्रम का जनक फलन कहा जाता है। एक साधारण श्रृंखला के विपरीत, अभिसारी श्रृंखला के लिए औपचारिक घात श्रृंखला की आवश्यकता नहीं होती है: जनक फलन को वस्तुतः एक फलन (गणित) के रूप में नहीं माना जाता है, और चर एक अनिश्चित (चर) रहता है। सामान्य रेखीय पुनरावर्तन समस्या को हल करने के लिए 1730 में अब्राहम डी मोइवरे द्वारा जनक फलन को पहली बार प्रस्तुत किया गया था।[1] संख्याओं के अनंत बहु-आयामी सरणियों के बारे में जानकारी को सांकेतिक करने के लिए, एक से अधिक अनिश्चित में औपचारिक घात श्रृंखला का सामान्यीकरण किया जा सकता है।

विभिन्न प्रकार के जनक फलन हैं, जिनमें साधारण जनक फलन, घातांकी जनक फलन, लैम्बर्ट शृंखला, बेल शृंखला और डिरिचलेट शृंखला सम्मिलित हैं; परिभाषाएँ और उदाहरण नीचे दिए गए हैं। सिद्धांत रूप में प्रत्येक अनुक्रम में प्रत्येक प्रकार का एक जनक फलन होता है (सिवाय इसके कि लैम्बर्ट और डिरिचलेट श्रृंखला को 0 के स्थान पर 1 पर प्रारम्भ करने के लिए सूचकांक की आवश्यकता होती है), लेकिन जिस आसानी से उन्हें संभाला जा सकता है वह काफी भिन्न हो सकता है। विशेष जनक फलन, यदि कोई हो, जो किसी दिए गए संदर्भ में सबसे अधिक उपयोगी है, अनुक्रम की प्रकृति और संबोधित की जा रही समस्या के विवरण पर निर्भर करेगा।

औपचारिक श्रृंखला के लिए परिभाषित संचालन से जुड़े कुछ अभिव्यक्ति द्वारा उत्पन्न कार्यों को प्रायः बंद-रूप अभिव्यक्ति (श्रृंखला के स्थान पर) में व्यक्त किया जाता है। इन भावों को अनिश्चित के संदर्भ में x के संबंध में अंकगणितीय संचालन, भेदभाव सम्मिलित हो सकता हैx और संरचना के साथ (यानी, प्रतिस्थापन) अन्य जनक फलन; चूंकि इन कार्यों को कार्यों के लिए भी परिभाषित किया गया है, परिणाम एक कार्य की तरह दिखता हैx. वस्तुतः, बंद रूप की अभिव्यक्ति को प्रायः एक ऐसे फलन के रूप में व्याख्या किया जा सकता है जिसका मूल्यांकन (पर्याप्त रूप से छोटे) ठोस मूल्यों पर किया जा सकता है x, और जिसकी श्रृंखला विस्तार के रूप में औपचारिक श्रृंखला है; यह पदनाम जनक फलनों की व्याख्या करता है। हालाँकि, इस तरह की व्याख्या संभव नहीं है, क्योंकि एक गैर-संख्यात्मक मान के लिए प्रतिस्थापित किए जाने पर अभिसारी श्रृंखला देने के लिए औपचारिक श्रृंखला की आवश्यकता नहीं होती है।x. साथ ही, वे सभी व्यंजक नहीं हैं जो के फलन के रूप में अर्थपूर्ण हैंx अर्थपूर्ण हैं क्योंकि अभिव्यक्तियाँ औपचारिक श्रृंखला को निर्दिष्ट करती हैं; उदाहरण के लिए, की नकारात्मक और भिन्नात्मक घातयाँx ऐसे कार्यों के उदाहरण हैं जिनके पास संबंधित औपचारिक घात श्रृंखला नहीं है।

किसी फलन के डोमेन से कोडोमेन तक मैपिंग के औपचारिक अर्थ में जनक फलन फलन नहीं हैं। जनक फलन को कभी-कभी उत्पन्निंग शृंखला कहा जाता है,[2] इसमें शब्दों की एक श्रृंखला को शब्द गुणांकों के अनुक्रम का जनक कहा जा सकता है।

परिभाषाएँ

'जनक फलन एक उपकरण है जो कुछ हद तक एक बैग के समान होता है। बहुत सी छोटी वस्तुओं को अलग-अलग ले जाने के स्थान पर, जो लज्जाजनक हो सकता है, हम उन सभी को एक बैग में रख देते हैं, और फिर हमारे पास ले जाने के लिए केवल एक ही वस्तु होती है, बैग.

एक जनक फलन एक अलगनी है जिस पर हम प्रदर्शन के लिए संख्याओं का एक क्रम लटकाते हैं.

साधारण जनक फलन (OF)

अनुक्रम का सामान्य जनक फलन an है

जब बिना किसी योग्यता के जनन फलन शब्द का प्रयोग किया जाता है, तो इसे सामान्यतः सामान्य जनन फलन के रूप में लिया जाता है।

अगर an एक असतत यादृच्छिक चर का प्रायिकता द्रव्यमान कार्य है, तो इसके साधारण जनन फलन को प्रायिकता-उत्पन्न करने वाला फलन कहा जाता है।

साधारण जनक फलन को कई सूचकांकों के साथ सरणियों के लिए सामान्यीकृत किया जा सकता है। उदाहरण के लिए, द्वि-आयामी सरणी का सामान्य जनक फलन am,n (जहाँ n और m प्राकृतिक संख्याएँ हैं) है


घातीय जनक फलन (ईजीएफ)

किसी अनुक्रम का चरघातांकी जनन फलन an है

घातीय जनक फलन सामान्यतः संयुक्त गणना समस्याओं के लिए साधारण जनक फलन की तुलना में अधिक सुविधाजनक होते हैं जिनमें वर्गीकृत किए गए वस्तुनिष्ठ सम्मिलित होते हैं।[3] घातांकी जनक फलन का एक अन्य लाभ यह है कि वे रैखिक पुनरावृत्ति संबंधों को अंतर समीकरणों के दायरे में स्थानांतरित करने में उपयोगी होते हैं। उदाहरण के लिए, फाइबोनैचि अनुक्रम {fn} लें जो रैखिक पुनरावृत्ति संबंध fn+2 = fn+1 + fn को संतुष्ट करता है। संबंधित घातीय जनक फलन का रूप है

और इसके व्युत्पादित को अवकलन समीकरण को संतुष्ट करने के लिए उपरोक्त पुनरावृत्ति संबंध के साथ प्रत्यक्ष अनुरूप के रूप में EF″(x) = EF′(x) + EF(x) आसानी से दिखाया जा सकता है। इस दृष्टि से, भाज्य शब्द n! व्युत्पादित संचालक को सामान्य करने के लिए केवल एक विपरीत-अवधि xn है।

पोइसन जनक फलन

एक अनुक्रम का पोइसन जनक फलन an है


लैम्बर्ट श्रृंखला

अनुक्रम की लैम्बर्ट श्रृंखला an है

घात श्रेणी विस्तार में लैम्बर्ट श्रृंखला गुणांक

पूर्णांकों के लिए n ≥ 1 भाजक योग से संबंधित हैं

मुख्य लेख संख्या सिद्धांत में विशेष अंकगणितीय कार्यों से संबंधित कई और शास्त्रीय, या कम से कम प्रसिद्ध उदाहरण प्रदान करता है।

लैम्बर्ट श्रृंखला में तालिका n 1 से प्रारम्भ होता है, 0 से नहीं, क्योंकि पहला पद अन्यथा अपरिभाषित होगा।

बेल श्रृंखला

एक क्रम की बेल श्रृंखला an एक अनिश्चित दोनों के संदर्भ में एक अभिव्यक्ति x है और एक प्रधान p निम्न द्वारा दिया गया है[4]


डिरिचलेट श्रृंखला जनक फलन (डीजीएफ)

औपचारिक डिरिचलेट श्रृंखला को प्रायः उत्पादक कार्यों के रूप में वर्गीकृत किया जाता है, हालांकि वे कठोरता से औपचारिक घात श्रृंखला नहीं हैं। डिरिचलेट श्रृंखला एक अनुक्रम का कार्य an उत्पन्न करती है[5]

डिरिचलेट श्रृंखला जनक फलन विशेष रूप से तब उपयोगी होता है जब an एक गुणन फलन है, जिस स्थिति में इसमें एक यूलर गुणनफल व्यंजक होता है [6] फलन की बेल श्रृंखला के संदर्भ में

अगर an एकडिरिचलेट चरित्र है तो इसके डिरिचलेट श्रृंखला जनक फलन को डाइरिचलेट एल-शृंखला कहा जाता है। उपरोक्त लैम्बर्ट श्रृंखला विस्तार और उनके डीजीएफ में गुणांक की जोड़ी के बीच भी हमारा संबंध है। अर्थात्, हम यह सिद्ध कर सकते हैं

अगर और केवल अगर

जहाँ ζ(s) रीमैन जीटा फलन है।[7]


बहुपद अनुक्रम जनक फलन

जनक फलन के विचार को अन्य वस्तुओं के अनुक्रमों तक बढ़ाया जा सकता है। इस प्रकार, उदाहरण के लिए, द्विपद प्रकार के बहुपद अनुक्रम द्वारा उत्पन्न होते हैं

जहाँ pn(x) बहुपदों का एक क्रम है और f(t) एक निश्चित रूप का कार्य है। शेफ़र क्रम इसी तरह से उत्पन्न होते हैं। अधिक जानकारी के लिए मुख्य लेख सामान्यीकृत अपेल बहुपद देखें।

साधारण उत्पादन कार्य

सरल अनुक्रम जनक फलन के उदाहरण

बहुपद साधारण जनक फलन की एक विशेष स्तिथि है, जो परिमित अनुक्रमों के अनुरूप है, या समतुल्य अनुक्रम जो एक निश्चित बिंदु के बाद गायब हो जाते हैं। ये इस मायने में महत्वपूर्ण हैं कि कई परिमित अनुक्रमों को जनक फलन के रूप में उपयोगी रूप से व्याख्यायित किया जा सकता है, जैसे कि पॉइनकेयर बहुपद और अन्य।

एक मौलिक जनक फलन निरंतर अनुक्रम 1, 1, 1, 1, 1, 1, 1, 1, 1, ..., का है जिसका साधारण जनक फलन गुणोत्तर श्रेणी है

बाएँ हाथ की ओर दाईं ओर का मैक्लॉरिन श्रृंखला विस्तार है। वैकल्पिक रूप से, 1 − x बायीं ओर की घात श्रृंखला को गुणा करके समानता को न्यायोचित ठहराया जा सकता है, और जांच कर रहा है कि परिणाम निरंतर घात श्रृंखला 1 है (दूसरे शब्दों में, सभी गुणांकों में से एक को छोड़कर x0 0 के बराबर हैं)। इसके अतिरिक्त, इस संपत्ति के साथ कोई अन्य घात श्रृंखला नहीं हो सकती है। इसलिए बाईं ओर का गुणनात्मक प्रतिलोम 1 − x घात श्रृंखला के वलय में निर्दिष्ट करता है।

अन्य अनुक्रमों के साधारण जनक फलन के लिए भाव आसानी से इस एक से प्राप्त किए जाते हैं। उदाहरण के लिए, प्रतिस्थापन xax ज्यामितीय प्रगति के लिए जनक फलन 1, a, a2, a3, ...देता है किसी भी स्थिरांक a के लिए :

(समानता इस तथ्य से भी प्रत्यक्ष रूप से अनुसरण करती है कि बाएँ हाथ की ओर दाईं ओर का मैकलॉरिन श्रृंखला विस्तार है।) विशेष रूप से,

अनुक्रम में नियमित अंतराल को प्रतिस्थापित करके भी प्रस्तुत किया जा सकता है , तो उदाहरण के लिए अनुक्रम 1, 0, 1, 0, 1, 0, 1, 0, ... (जो रुक जाता है x, x3, x5, ...) को जनक फलन मिलता है

आरंभिक जनक फलन का वर्ग करके, या इसके संबंध में दोनों पक्षों का अवकलज ज्ञात करके x और संचालन परिवर्ती nn + 1 में बदलाव करता है, कोई देखता है कि गुणांक अनुक्रम 1, 2, 3, 4, 5, ... बनाते हैं, तो किसी के पास है

और तीसरी घात के गुणांक के रूप में त्रिकोणीय संख्याएँ 1, 3, 6, 10, 15, 21, ... हैं, जिसका कार्यकाल n द्विपद गुणांक (n + 2
2
)
है, ताकि

अधिक सामान्यतः, किसी भी गैर-ऋणात्मक पूर्णांक के लिए k और गैर-शून्य वास्तविक मान a, यह सच है कि

तब से

वर्ग संख्याओं के अनुक्रम 0, 1, 4, 9, 16, ... के लिए सामान्य जनक फलन द्विपद-गुणांक उत्पन्न करने वाले अनुक्रमों के रैखिक संयोजन द्वारा पा सकते हैं। }:

हम निम्नलिखित रूप में ज्यामितीय श्रृंखला के व्युत्पादित के योग के रूप में वर्गों के इसी क्रम को उत्पन्न करने के लिए वैकल्पिक रूप से विस्तार भी कर सकते हैं:

प्रेरण द्वारा, हम सकारात्मक पूर्णांक m ≥ 1 के लिए इसी तरह दिखा सकते हैं कि[8][9]

जहाँ {n
k
}
दूसरी तरह की स्टर्लिंग संख्या और जहां जनक फलन को दर्शाता है

ताकि हम उपरोक्त वर्ग स्तिथि में परिणाम को सामान्यीकृत करने वाली अभिन्न mth घात पर अनुरूप जनक फलन बना सकें। विशेष रूप से, चूंकि हम लिख सकते हैं

हम इसे प्राप्त करने के लिए स्टर्लिंग संख्याओं से संबंधित एक प्रसिद्ध परिमित योग सर्वसमिका लागू कर सकते हैं[10]


तर्कसंगत कार्य

एक अनुक्रम के सामान्य जनक फलन को एक तर्कसंगत फलन (दो परिमित-डिग्री बहुपदों का अनुपात) के रूप में व्यक्त किया जा सकता है यदि और केवल यदि अनुक्रम निरंतर गुणांक के साथ एक रैखिक पुनरावर्ती अनुक्रम है; यह उपरोक्त उदाहरणों का सामान्यीकरण करता है। इसके विपरीत, बहुपदों के एक अंश द्वारा उत्पन्न प्रत्येक अनुक्रम निरंतर गुणांकों के साथ एक रैखिक पुनरावृत्ति को संतुष्ट करता है; ये गुणांक अंश भाजक बहुपद के गुणांक के समान हैं (इसलिए उन्हें सीधे पढ़ा जा सकता है)। इस अवलोकन से पता चलता है कि निरंतर गुणांक वाले रैखिक परिमित अंतर समीकरण द्वारा परिभाषित अनुक्रमों के कार्यों को उत्पन्न करने के लिए हल करना आसान है। यहाँ प्रतिमानिकल उदाहरण फलन तकनीकों को उत्पन्न करके फाइबोनैचि संख्याओं के लिए बिनेट के सूत्र को प्राप्त करना है।

हम यह भी ध्यान देते हैं कि तर्कसंगत जनक फलनों का वर्ग निश्चित रूप से उन जनक फलनों से मेल खाता है जो प्रपत्र के अर्ध-बहुपद अनुक्रमों की गणना करते हैं [11]

जहां पारस्परिक जड़ें, ρi ∈ ℂ, स्थिर अदिश हैं और जहाँ pi(n) में एक बहुपद n सभी 1 ≤ il के लिए है।

सामान्यतः, जनक फलन रूपांतरण हैडमार्ड उत्पाद और तर्कसंगत फलन के विकर्ण जनक फलन का उत्पादन करते हैं। इसी प्रकार यदि

एक द्विभाजित तर्कसंगत जनक फलन है, तो इसका संगत विकर्ण जनक फलन,

बीजीय है। उदाहरण के लिए, अगर हम करते हैं[12]

तब यह जनक फलन विकर्ण गुणांक जनक फलन सुप्रसिद्ध OF सूत्र द्वारा दिया जाता है

इस परिणाम की कई तरह से गणना की जाती है, जिसमें कॉची का अभिन्न सूत्र या समोच्च एकीकरण, जटिल अवशेष (जटिल विश्लेषण) लेना, या दो चरों में औपचारिक घात श्रृंखला के प्रत्यक्ष क्रमभंग द्वारा सम्मिलित है।

जनक फलन संचालन

गुणन से संवलन मिलता है

साधारण जनक फलन का गुणन अनुक्रमों के असतत संवलन (कॉची उत्पाद) का उत्पादन करता है। उदाहरण के लिए, संचयी योग का क्रम (थोड़ा अधिक सामान्य यूलर-मैकलॉरिन सूत्र की तुलना में)

साधारण जनक फलन G(an; x) के साथ अनुक्रम का निम्न जनक फलन है
क्योंकि 1/1 − x अनुक्रम के लिए सामान्य जनक फलन (1, 1, ...) है। नीचे दिए गए इस आलेख के अनुप्रयोग अनुभाग में जनक फलन संवलन (कॉची उत्पाद) भी देखें, जिससे समस्याओं को हल करने के और उदाहरणों के लिए जनक फलन और व्याख्याओं को हल किया जा सके।

अनुक्रम सूचकांक स्थानांतरण

पूर्णांकों m ≥ 1 के लिए, हमारे पास स्थानान्तरित किए गए अनुक्रम परिवर्ती की गणना करने वाले संशोधित जनक फलन के लिए निम्नलिखित gnm और gn + m दो समान सर्वसमिका हैं। क्रमश:


सृजन कार्यों का विभेदीकरण और एकीकरण

हमारे पास जनक फलन के पहले व्युत्पन्न और इसके अभिन्न अंग के लिए निम्नलिखित संबंधित घात श्रृंखला विस्तार हैं:

दूसरी सर्वसमिका की अवकलन-गुणन संक्रिया को k बार अनुक्रम nk को गुणा करने के लिए दोहराया जा सकता है, लेकिन इसके लिए विभेदन और गुणन के बीच प्रत्यावर्तन करने की आवश्यकता होती है। यदि क्रम में k विभेदीकरण करने के बजाय, प्रभाव kवें अवपाती भाज्य से गुणा करना है:

दूसरी तरह की स्टर्लिंग संख्याओं का उपयोग करके, जिसे गुणा करने के लिए दूसरे सूत्र में बदला जा सकता है इस प्रकार है (जनक फलन रूपांतरण पर मुख्य लेख देखें):

बार-बार एकीकरण के संचालन के अनुरूप इस अनुक्रम घात सूत्र का एक नकारात्मक-क्रम उत्क्रमण व्युत्पादित रूपांतरण द्वारा परिभाषित किया गया है और इसके सामान्यीकरण को व्युत्पादित-आधारित जनक फलन रूपांतरण के रूप में परिभाषित किया गया है, या वैकल्पिक रूप से एक जनक फलन रूपांतरण द्वारा और अनुक्रम जनक फलन पर श्रृंखला परिवर्तन निष्पादित किया गया है। एक अनुक्रम जनक फलन पर भिन्नात्मक कलन करने के संबंधित संचालन पर चर्चा की जाती है।

अनुक्रमों की अंकगणितीय प्रगति की गणना करना

इस खंड में हम अनुक्रम {fan + b} की गणना करने वाले कार्यों को उत्पन्न करने के सूत्र देते हैं, एक सामान्य जनक फलन F(z) दिया गया है जहाँ a, b ∈ ℕ, a ≥ 2, और 0 ≤ b < a (जनक फलन रूपांतरण देखें)। a = 2 के लिए, यह केवल सम और विषम कार्यों (यानी, सम और विषम घातयों) में एक फलन का परिचित अपघटन है:

अधिक सामान्यतः, मान लीजिए a ≥ 3 ओर ωa = exp 2πi/a एकता के साधारण जड़ को दर्शाता है। फिर, असतत फूरियर रूपांतरण के अनुप्रयोग के रूप में, हमारे पास निम्न सूत्र है[13]

पूर्णांकों m ≥ 1 के लिए, एक अन्य उपयोगी सूत्र है जो कुछ हद तक उत्क्रमित सतह वाली अंकगणितीय प्रगति प्रदान करता है - प्रभावी रूप से प्रत्येक गुणांक को m बार दोहराता है — निम्न सर्वसमिका से उत्पन्न होते हैं[14]


P-पुनरावर्ती अनुक्रम और होलोनोमिक जनक फलन

परिभाषाएं

एक औपचारिक घात श्रृंखला (या फलन) F(z) को होलोनोमिक कहा जाता है यदि यह फॉर्म के रैखिक अंतर समीकरण को संतुष्ट करता है[15]

जहां गुणांक ci(z) तर्कसंगत कार्यों के क्षेत्र में हैं, ℂ(z). समान रूप से, F(z) होलोनोमिक है यदि सदिश स्थान समाप्त हो गया है ℂ(z) इसके सभी व्युत्पादित्स के सेट द्वारा परिमित आयामी है।

चूंकि पिछले समीकरण में आवश्यकता पड़ने पर हम हर (डिनोमिनेटर) को स्पष्ट कर सकते हैं, हम मान सकते हैं कि फलन, ci(z) में z बहुपद हैं। इस प्रकार हम एक समतुल्य स्थिति देख सकते हैं कि एक जनन फलन होलोनोमिक है यदि इसके गुणांक a P-रूप की पुनरावृत्ति को संतुष्ट करते हैं

सभी के लिए nn0 काफी बड़ा है और जहाँ ĉi(n) निश्चित परिमित-डिग्री बहुपद n हैं। दूसरे शब्दों में, गुण जो अनुक्रम हो P-पुनरावर्ती और एक होलोनोमिक जनक फलन समतुल्य हैं। होलोनोमिक फलन जनक फलन रूपांतरण और विकर्ण जनक फलन संचालन के तहत बंद हैं कार्यों को उत्पन्न करने पर।

उदाहरण

कार्य ez, log z, cos z, arcsin z, 1 + z, डिलोगरिथ्म फलन Li2(z), सामान्यीकृत हाइपरज्यामितीय कार्य pFq(...; ...; z) और घात श्रेणी द्वारा परिभाषित कार्य

और गैर-अभिसरण

सभी होलोनोमिक हैं।

इसके उदाहरण P-होलोनोमिक जनक फलन के साथ पुनरावर्ती अनुक्रम fn1/n + 1 (2n
n
)
और fn2n/n2 + 1 में सम्मिलित हैं जहां अनुक्रम जैसे n और log n नहीं हैं P-उनके संबंधित उत्पादन कार्यों में विलक्षणताओं की प्रकृति के कारण पुनरावर्ती। इसी तरह, असीम रूप से कई विलक्षणताओं के साथ कार्य करता है जैसे tan z, sec z, और गामा फलन |Γ(z) होलोनोमिक कार्य नहीं हैं।

साथ काम करने के लिए सॉफ्टवेयर P-पुनरावर्ती अनुक्रम और होलोनोमिक जनक फलन

प्रसंस्करण और साथ काम करने के लिए उपकरण P- गणितीय में पुनरावर्ती अनुक्रम में RISC साहचर्य समूह कलन विधि संयोजन सॉफ्टवेयर साइट पर गैर-वाणिज्यिक उपयोग के लिए प्रदान किए गए सॉफ़्टवेयर संकुल सम्मिलित हैं। अधिकांशतः बंद-स्रोत होने के बावजूद, इस सॉफ़्टवेयर सूट में विशेष रूप से घातशाली उपकरण इसके द्वारा प्रदान किए जाते हैं अनुमान अनुमान लगाने के लिए संकुल P- स्वेच्छाचारी इनपुट अनुक्रमों के लिए पुनरावर्तन (प्रायोगिक गणित और अन्वेषण के लिए उपयोगी) और सिग्मा संकुल जो कई योग के लिए पी-पुनरावृत्ति खोजने में सक्षम है और बंद-रूप समाधानों के लिए हल करता है, P-पुनरावृत्ति सामान्यीकृत सुसंगत संख्याओं को सम्मिलित करती है।[16] इस विशेष आरआईएससी साइट पर सूचीबद्ध अन्य संकुल विशेष रूप से होलोनोमिक जनक फलन के साथ काम करने के लिए लक्षित हैं।


असतत-समय फूरियर रूपांतरण से संबंध

जब श्रृंखला निरपेक्ष अभिसरण,

अनुक्रम का असतत-समय फूरियर रूपांतरण a0, a1, ... है।

अनुक्रम की स्पर्शोन्मुख वृद्धि

कलन में, प्रायः घात श्रृंखला के गुणांकों की वृद्धि दर का उपयोग घात श्रृंखला के लिए अभिसरण की त्रिज्या निकालने के लिए किया जा सकता है। उल्टा भी धारण कर सकता है; अंतर्निहित अनुक्रम के अनंतस्पर्शी विश्लेषण को निकालने के लिए प्रायः जनक फलन के अभिसरण के त्रिज्या का उपयोग किया जा सकता है।

उदाहरण के लिए, यदि कोई सामान्य जनक फलन G(an; x) जिसके अभिसरण की परिमित त्रिज्या r है, निम्न रूप में लिखा जा सकता है

जहां प्रत्येक A(x) और B(x) एक ऐसा फलन है जो अभिसरण की त्रिज्या से अधिक का विश्लेषणात्मक फलन r है (या संपूर्ण कार्य है), और जहाँ B(r) ≠ 0 तब

गामा फलन, एक द्विपद गुणांक या एक बहुसम्मुच्चय गुणांक का उपयोग करता है।

प्रायः इस दृष्टिकोण को एक स्पर्शोन्मुख श्रृंखला में कई शब्द उत्पन्न करने के लिए an पुनरावृत्त किया जा सकता है। विशेष रूप से,

इस जनक फलन के गुणांकों की स्पर्शोन्मुख वृद्धि को खोज के माध्यम से जनक फलन का वर्णन करने के लिए A, B, α, β, और r के रूप में खोजा जा सकता है।

घातीय जनक फलन के लिए समान स्पर्शोन्मुख विश्लेषण संभव है; एक घातीय जनक फलन के साथ, यह an/n! है जो इन स्पर्शोन्मुख सूत्रों के अनुसार बढ़ता है। सामान्यतः, यदि एक अनुक्रम का जनक फलन माइनस दूसरे अनुक्रम के जनक फलन में अभिसरण का त्रिज्या होता है जो व्यक्तिगत जनक फलन के अभिसरण के त्रिज्या से बड़ा होता है तो दो अनुक्रमों में एक ही स्पर्शोन्मुख वृद्धि होती है।

वर्गों के अनुक्रम की स्पर्शोन्मुख वृद्धि

जैसा कि ऊपर व्युत्पन्न किया गया है, वर्गों के अनुक्रम के लिए सामान्य जनक फलन है

साथ r = 1, α = −1, β = 3, A(x) = 0, और B(x) = x + 1, हम यह सत्यापित कर सकते हैं कि वर्ग अपेक्षित रूप से बढ़ते हैं, वर्गों की तरह:


कैटलन संख्या की स्पर्शोन्मुख वृद्धि

कैटलन संख्या ों के लिए सामान्य जनक फलन है

r = 1/4, α = 1, β = −1/2, A(x) = 1/2, और B(x) = −1/2 के साथ, हम यह निष्कर्ष निकाल सकते हैं कि कैटलन संख्याों के लिए,


द्विचर और बहुभिन्नरूपी जनक फलन

कोई भी कई सूचकांकों के साथ सरणियों के लिए कई चर में जनक फलन को परिभाषित कर सकता है। इन्हें बहुभिन्नरूपी जनक फलन या, कभी-कभी, अति जनक फलन कहा जाता है। दो चरों के लिए, इन्हें प्रायः द्विभाजित जनक फलन कहा जाता है।

उदाहरण के लिए, चूंकि (1 + x)n एक निश्चित के लिए द्विपद गुणांक के लिए सामान्य जनक फलन n है, कोई एक द्विभाजित जनक फलन के लिए पूछ सकता है जो सभी k और n के लिए द्विपद गुणांक (n
k
)
उत्पन्न करता है। ऐसा करने के लिए विचार करें (1 + x)n स्वयं में एक अनुक्रम के रूप में n, और इसमें जनक फलन खोजें y जिसमें ये अनुक्रम मान गुणांक के रूप में हैं। चूंकि an के लिए जनक फलन है

द्विपद गुणांक के लिए जनक फलन है:


निरंतर अंशों द्वारा प्रतिनिधित्व (जैकोबी-प्रकारJ-अंश)

परिभाषाएँ

(औपचारिक) जैकोबी-प्रकार और स्टिल्टजेस-प्रकार सामान्यीकृत निरंतर अंश का विस्तार (J-भिन्न औरS-भिन्न, क्रमशः) जिसका h परिमेय अभिसरण सटीकता के क्रम का प्रतिनिधित्व करता है। 2h-आदेश सटीक घात श्रृंखला कई विशेष एक और दो-चर अनुक्रमों के लिए सामान्यतः अलग-अलग सामान्य उत्पादन कार्यों को व्यक्त करने का एक और तरीका है। जैकोबी-प्रकार के निरंतर अंशों का विशेष रूप (J-अंश) निम्नलिखित समीकरण के रूप में विस्तारित हैं और इसके संबंध में अगली संगत घात श्रृंखला विस्तार z है। कुछ विशिष्ट, अनुप्रयोग-निर्भर घटक अनुक्रमों के लिए, {abi} और {ci}, जहाँ z ≠ 0 नीचे दिए गए दूसरे घात श्रृंखला विस्तार में औपचारिक चर को दर्शाता है:[17]

के गुणांक, jn ≔ [zn] J[∞](z) द्वारा आशुलिपि में निरूपित, पिछले समीकरणों में समीकरणों के आव्यूह समाधान के अनुरूप हैं

जहाँ j0k0,0 = 1, jn = k0,n के लिए n ≥ 1, kr,s = 0 अगर r > s, और जहाँ सभी पूर्णांकों के लिए p, q ≥ 0 है, हमारे द्वारा दिया गया एक अतिरिक्त सूत्र संबंध है


h वें अभिसरण कार्यों के गुण

h ≥ 0 के लिए (हालांकि अभ्यास में जब h ≥ 2), हम h वें परिमेय अभिसरण को अनंत J-अंश में परिभाषित कर सकते हैं , J[∞](z), द्वारा विस्तारित

अनुक्रमों के माध्यम से घटक-वार, Ph(z) और Qh(z), द्वारा पुनरावर्ती रूप से परिभाषित किया गया

इसके अतिरिक्त, सभी h ≥ 2 के लिए अभिसारी फलन Convh(z) की तार्किकता jn के अनुक्रम से संतुष्ट होने वाले अतिरिक्त परिमित अंतर समीकरणों और सर्वांगसम गुणों को दर्शाती है, और Mh ≔ ab2 ⋯ abh + 1 के लिए यदि hMh तो हमारे पास सर्वांगसमता है


गैर-प्रतीकात्मक के लिए, जब h ≥ 2 है तब मापदण्ड अनुक्रम {abi}और {ci} के विकल्पों का निर्धारण करें , अर्थात्, जब ये अनुक्रम q, x, या R जैसे सहायक मापदण्ड पर निहित रूप से निर्भर नहीं करते हैं, जैसा कि नीचे दी गई तालिका में दिए गए उदाहरणों में है।

उदाहरण

अगली तालिका संगणनात्मक रूप से पाए गए घटक अनुक्रमों के लिए संवृत रूप सिद्धांतों के उदाहरण प्रदान करती है (और बाद में उद्धृत संदर्भों में सही साबित हुई[18]) निर्धारित अनुक्रमों की कई विशेष स्तिथियों में, jn, के सामान्य विस्तार द्वारा उत्पन्न J-अंश पहले उपखंड में परिभाषित किए गए हैं। यहाँ हम 0 < |a|, |b|, |q| परिभाषित करते हैं <1 और पैरामीटर आर, α ∈ ℤ+ और x को इन विस्तारों के संबंध में अनिश्चित होना चाहिए, जहां इन के विस्तार से निर्धारित अनुक्रमों की गणना की जाती है J-अंशों को q-पोचममेर प्रतीक के संदर्भ में परिभाषित किया गया है q-पोचममेर प्रतीक, पोखमर प्रतीक और द्विपद गुणांक।

जैकोबी-प्रकार की परिभाषा के अनुरूप इन श्रृंखलाओं के अभिसरण की त्रिज्या J-ऊपर दिए गए अंश सामान्य रूप से इन अनुक्रमों के सामान्य उत्पादन कार्यों को परिभाषित करने वाली संबंधित घात श्रृंखला विस्तार से भिन्न होते हैं।

उदाहरण

वर्ग संख्याओं an = n2 के अनुक्रम के लिए फलन उत्पन्न करना है:

साधारण जनक फलन


घातीय जनक फलन


लैम्बर्ट श्रृंखला

लैम्बर्ट श्रृंखला सर्वसमिका के उदाहरण के रूप में लैम्बर्ट श्रृंखला में नहीं दी गई है, हम दिखा सकते हैं कि |x|, |xq| < 1 के लिए हमारे पास निम्न है [19]

जहां हमारे पास भाजक फलन d(n) ≡ σ0(n) के जनक फलन के लिए विशेष स्तिथि सर्वसमिका है, निम्न द्वारा दिए गए


बेल श्रृंखला


डिरिचलेट श्रृंखला जनक फलन

रीमैन ज़ेटा फलन का उपयोग करना।

क्रम ak एक डिरिचलेट श्रृंखला ़ जनक फलन (DGF) द्वारा उत्पन्न होता है:

जहाँ ζ(s) रीमैन ज़ेटा फलन है, जिसमें साधारण जनक फलन है:


बहुभिन्नरूपी जनन कार्य

निर्दिष्ट पंक्ति और स्तंभ योग के साथ गैर-नकारात्मक पूर्णांकों की आकस्मिक तालिकाओं की संख्या की गणना करते समय बहुभिन्नरूपी जनक फलन व्यवहार में उत्पन्न होते हैं। मान लीजिए तालिका में r पंक्तियाँ और c कॉलम है; t1, t2 ... tr पंक्ति योग हैं और s1, s2 ... sc स्तंभ योग हैं फिर, आई. जे. गुड के अनुसार,[20] ऐसी तालिकाओं की संख्या का गुणांक है

में

द्विभाजित स्तिथि में, गैर-बहुपद युग्म योग फॉर्म के तथाकथित युग्म या उत्कृष्ट जनक फलन के उदाहरण हैं

द्विपद गुणांकों, स्टर्लिंग संख्याओं और यूलेरियन संख्याओं के लिए निम्नलिखित दो-चर जनक फलन सम्मिलित करें:[21]


अनुप्रयोग

विभिन्न तकनीकें: योग का मूल्यांकन करना और कार्यों को उत्पन्न करने वाली अन्य समस्याओं से निपटना

उदाहरण 1: सुसंगत संख्याओं के योग के लिए एक सूत्र

जनक फलन हमें योगों में क्रमभंग करने और योगों के बीच तत्समक स्थापित करने की कई विधियाँ प्रदान करते हैं।

सबसे सरल स्तिथि तब होती है जब sn = ∑n
k = 0
ak
. हम तब जानते हैं कि इसी सामान्य उत्पादन कार्यों के लिए S(z) = A(z)/1 − z है।

उदाहरण के लिए, हम क्रमभंग कर सकते हैं

जहाँ Hk = 1 + 1/2 + ⋯ + 1/k सुसंगत संख्या हैं। मान लीजिये
सुसंगत संख्याओं का सामान्य जनन फलन हो। तब
और इस तरह
का उपयोग करते हुए
जनक फलन अंश के साथ संवलन प्राप्त होता है
जिसे इस रूप में भी लिखा जा सकता है


उदाहरण 2: संशोधित द्विपद गुणांक योग और द्विपद रूपांतरण

एक स्वेच्छाचारी अनुक्रम के लिए अनुक्रमों से संबंधित और योग में क्रमभंग करने के लिए जनक फलन का उपयोग करने का एक और उदाहरण fn है, हम योग के दो क्रमों को परिभाषित करते हैं

सभी n ≥ 0 के लिए, और पहले के संदर्भ में दूसरे योग को व्यक्त करना चाहते हैं। हम कार्यों को उत्पन्न करके एक दृष्टिकोण का सुझाव देते हैं।

सबसे पहले, हम पहली योग के लिए जनक फलन लिखने के लिए द्विपद परिवर्तन का उपयोग करते हैं

⟨ (n + 1)(n + 2)(n + 3) fn अनुक्रम के लिए जनक फलन के बाद से निम्न द्वारा दिया गया है
हम ऊपर परिभाषित दूसरी योग के लिए जनक फलन को निम्न स्वरुप में लिख सकते हैं
विशेष रूप से, हम इस संशोधित योग जनक फलन को निम्न रूप में लिख सकते हैं
a(z) = 6(1 − 3z)3 के लिए , b(z) = 18(1 − 3z)3, c(z) = 9(1 − 3z)3, और d(z) = (1 − 3z)3, जहाँ (1 − 3z)3 = 1 − 9z + 27z2 − 27z3.

अंत में, यह इस प्रकार है कि हम निम्नलिखित रूप में पहली योग के माध्यम से दूसरी योग व्यक्त कर सकते हैं:


उदाहरण 3: परस्पर पुनरावर्ती अनुक्रमों के लिए कार्य उत्पन्न करना

इस उदाहरण में, हम गणित के अनुच्छेद 7.3 में दिए गए एक जनक फलन उदाहरण को सुधारते हैं (फलन श्रृंखला उत्पन्न करने के सुंदर चित्रों के लिए समान संदर्भ का अनुभाग 7.1 भी देखें)। विशेष रूप से, मान लीजिए कि हम 3-दर-एन आयत को अचिह्नित 2-दर-1 दूरगामी टुकड़ों के साथ टाइल करने के तरीकों की कुल संख्या (अन चिह्नित) की खोज करते हैं। सहायक अनुक्रम, अन, को पूर्ण आयत के 3-दर-एन आयत-ऋण-कोने वाले खंड को आच्छादित करने के तरीकों की संख्या के रूप में परिभाषित किया जाना चाहिए।। हम इन परिभाषाओं का उपयोग Un के लिए बंद-रूप अभिव्यक्ति सूत्र के लिए करना चाहते हैं लंबवत बनाम क्षैतिज डोमिनोज़ की स्तिथि को संभालने के लिए इस परिभाषा को और अधिक तोड़े बिना। ध्यान दें कि हमारे दो अनुक्रमों के लिए सामान्य जनक फलन श्रृंखला के अनुरूप हैं

यदि हम संभावित समाकृति पर विचार करते हैं जो 3-बाय-n के बाएं किनारे से प्रारम्भ किया जा सकता है आयत, हम निम्नलिखित पारस्परिक रूप से निर्भर, या पारस्परिक रूप से पुनरावर्ती, हमारे दो अनुक्रमों के लिए पुनरावृत्ति संबंधों को व्यक्त करने में सक्षम हैं जब n ≥ 2 ऊपर के रूप U0 = 1, U1 = 0, V0 = 0, और V1 = 1 में परिभाषित किया गया है :
चूँकि हमारे पास वह सभी पूर्णांकों m ≥ 0 के लिए है, इंडेक्स-स्थानान्तरित जनक फलन संतुष्ट करते हैं[note 1]
हम ऊपर निर्दिष्ट प्रारंभिक स्थितियों और पिछले दो पुनरावृत्ति संबंधों का उपयोग यह देखने के लिए कर सकते हैं कि हमारे पास इन अनुक्रमों के लिए जनक फलन से संबंधित अगले दो समीकरण हैं
जो तब समीकरणों की प्रणाली को हल करने से निकलता है (और यह हमारी विधि के लिए विशेष चाल है) कि
इस प्रकार पिछले समीकरण में जनक फलन के दूसरे आंशिक भिन्न विस्तार से उत्पन्न अनुक्रम का बीजगणितीय सरलीकरण करके, हम पाते हैं कि U2n + 1 ≡ 0 ओर वो
सभी पूर्णांकों के लिए n ≥ 0. हम यह भी ध्यान देते हैं कि फाइबोनैचि संख्याओं के लिए दूसरे क्रम के पुनरावर्तन संबंध पर लागू वही स्थानान्तरित जनक फलन तकनीक पहले से ही आच्छादित किए गए एक चर में पुनरावृत्ति संबंधों को हल करने के लिए जनक फलन का उपयोग करने का प्रतिमान उदाहरण है, या कम से कम उपखंड में संकेत दिया गया है। ऊपर दिए गए तर्कसंगत कार्य

संक्रमण (कॉची उत्पाद)

दो औपचारिक घात श्रृंखलाओं में शर्तों का एक असतत संवलन जनक फलन के उत्पाद को मूल अनुक्रम शब्दों के एक निश्चित योग की गणना करने वाले जनक फलन में बदल देता है (कॉची उत्पाद देखें)।

  1. मान लीजिये A(z) और B(z) साधारण जनक फलन हैं।
  2. मान लीजिये A(z) और B(z) घातीय जनक फलन हैं।
  3. तीन साधारण जनक फलन के उत्पाद के परिणामस्वरूप होने वाले त्रिगुणात्मक अनुक्रम पर विचार करें
  4. किसी धनात्मक पूर्णांक m ≥ 1 के लिए स्वयं के साथ अनुक्रम के m-गुना संवलन पर विचार करें (आवेदन के लिए नीचे उदाहरण देखें)

जनक फलनों का गुणन, या उनके अंतर्निहित अनुक्रमों का संवलन, कुछ गिनती और संभाव्यता परिदृश्यों में स्वतंत्र घटनाओं की धारणा के अनुरूप हो सकता है। उदाहरण के लिए, यदि हम सांकेतिक परिपाटी अपनाते हैं कि प्रायिकता उत्पन्न करने वाला फलन, या pgf, एक यादृच्छिक चर Z को GZ(z) द्वारा दर्शाया जाता है , तो हम दिखा सकते हैं कि किसी भी दो यादृच्छिक चर के लिए निम्न है [22]

अगर X और Y स्वतंत्र हैं। इसी तरह, भुगतान करने के तरीकों की संख्या n ≥ 0 सम्मुच्चय {1, 5, 10, 25, 50} (यानी, पेनी, निकल, डाइम्स, क्वार्टर, और आधा डॉलर में क्रमशः) के मूल्यों के सिक्के मूल्यवर्ग में उत्पाद द्वारा उत्पन्न होता है
और इसके अतिरिक्त, यदि हम n सेंट को किसी भी सकारात्मक पूर्णांक संप्रदाय के सिक्कों में भुगतान करने की अनुमति देते हैं, तो हम अनंत q-पोचहैमर प्रतीक उत्पाद द्वारा विस्तारित विभाजन फलन उत्पादक फलन द्वारा उत्पन्न किए जा रहे परिवर्तन के ऐसे संयोजनों की संख्या के लिए उत्पादक पर पहुंचते हैं।


उदाहरण: कैटलन संख्याों के लिए जनक फलन

एक उदाहरण जहां जनक फलन के संवलन उपयोगी होते हैं, हमें कैटलन संख्या Cn के लिए सामान्य जनक फलन का प्रतिनिधित्व करने वाले एक विशिष्ट संवृत रूप फलन के लिए हल करने की अनुमति देता है। विशेष रूप से, इस अनुक्रम x0 · x1 ·⋯· xn में उत्पाद में कोष्ठक सम्मिलित करने के तरीकों की संख्या के रूप में मिश्रित व्याख्या है, ताकि गुणा का क्रम पूरी तरह निर्दिष्ट हो। उदाहरण के लिए, C2 = 2 जो दो भावों x0 · (x1 · x2) और (x0 · x1) · x2 से मेल खाता है। यह इस प्रकार है कि अनुक्रम द्वारा दिए गए पुनरावृत्ति संबंध को संतुष्ट करता है

और इसी तरह एक संबंधित संकेंद्रित जनक फलन C(z) है, निम्न को संतुष्ट करता है
तब से C(0) = 1 ≠ ∞, फिर हम दिए गए इस जनक फलन के लिए एक सूत्र पर पहुंचते हैं
ध्यान दें कि पहला समीकरण स्पष्ट रूप से परिभाषित करता है C(z) ऊपर } का तात्पर्य है
जो तब इस जनक फलन के एक और सरल (रूप का) निरंतर अंश विस्तार की ओर ले जाता है।

उदाहरण: अनुरागी संवलन के विस्तरित तरु और संवलन

n क्रम के पंखे को {0, 1,…, n} कोने पर एक आलेख के रूप में परिभाषित किया गया है, निम्नलिखित नियमों के अनुसार 2n − 1 किनारे जुड़े हुए हैं: कोणबिंदु 0 एक किनारे से दूसरे n कोने में से जुड़ा हुआ है, और शीर्ष सभी 1 ≤ k < n के लिए एक किनारे से अगले शीर्ष k + 1 से जुड़ा हुआ है। [23] क्रम एक का एक अनुरागी, क्रम दो के तीन अनुरागी, क्रम तीन के आठ अनुरागी, और इसी तरह। तरु अनुरागी आलेख का एक उपआलेख होता है जिसमें सभी मूल कोने होते हैं और जिसमें इस उपआलेख को जोड़ने के लिए पर्याप्त किनारे होते हैं, लेकिन इतने सारे किनारे नहीं होते हैं कि उपआलेख में एक चक्र हो। हम पूछते हैं कि कितने तरु अनुरागी fn क्रम के एक अनुरागी की n प्रत्येक n ≥ 1 के लिए संभव हैं।

एक अवलोकन के रूप में, हम शीर्षों के निकटवर्ती सम्मुच्चय को जोड़ने के तरीकों की संख्या की गणना करके प्रश्न तक पहुँच सकते हैं। उदाहरण के लिए, कब n = 4, हमारे पास निम्न है f4 = 4 + 3 · 1 + 2 · 2 + 1 · 3 + 2 · 1 · 1 + 1 · 2 · 1 + 1 · 1 · 2 + 1 · 1 · 1 · 1 = 21, जो अनुक्रम gn = n = [zn] z/(1 − z)2 के m ≔ 1, 2, 3, 4 गुना संवलन का योग है। अधिक सामान्यतः, हम इस क्रम के लिए एक सूत्र लिख सकते हैं

जिससे हम देखते हैं कि इस अनुक्रम के लिए सामान्य जनक फलन को संवलन के अगले योग के रूप में दिया गया है
जिससे हम अंतिम जनक फलन के आंशिक अंश विस्तार को लेकर अनुक्रम के लिए एक सटीक सूत्र निकालने में सक्षम हैं।

अंतर्निहित जनक फलन और लैग्रेंज प्रतिलोमन सूत्र

एक मुक्त मापदण्ड का परिचय

कभी-कभी योग sn जटिल है, और इसका मूल्यांकन करना हमेशा आसान नहीं होता है। इन योग का मूल्यांकन करने के लिए मुक्त मापदण्ड विधि एक अन्य विधि है (जिसे एच। विल्फ द्वारा स्नेक ऑयल कहा जाता है)।

अब तक चर्चा की गई दोनों विधियों में n योग में सीमा के रूप में है। जब n योग में स्पष्ट रूप से प्रकट नहीं होता है, तो हम n एक "मुक्त" मापदण्ड के रूप में विचार कर सकते हैं और sn को F(z) = ∑ sn zn के गुणांक के रूप में मान लेते हैं, योग के क्रम n और k को बदलें, और आंतरिक योग की गणना करने का प्रयास करें।

उदाहरण के लिए, यदि हम गणना करना चाहते हैं

हम n को एक मुक्त मापदण्ड के रूप में मान सकते हैं, और निम्न को निर्धारित कर सकते हैं
अंतर्विनिमय योग ("स्नेक ऑयल") देता है
अब आंतरिक योग zm + 2k/(1 − z)m + 2k + 1 है। इस प्रकार
तब हम निम्न प्राप्त करते हैं
योग के लिए फिर से उसी विधि का उपयोग करना शिक्षाप्रद है, लेकिन इस बार n के स्थान पर m को मुक्त मापदंड के रूप में लें। हम इस प्रकार निम्न सम्मुच्चय करते हैं
अंतर्विनिमय योग ("स्नेक ऑयल") देता है
अब आंतरिक योग (1 + z)n + k है। इस प्रकार
इस प्रकार हम निम्न प्राप्त करते हैं
m ≥ 1 के लिए पहले जैसा।

जनक फलन सर्वांगसमता सिद्ध करते हैं

हम कहते हैं कि दो जनक फलन (घात श्रेणी) सर्वांगसम इकाई m हैं, लिखा हुआ A(z) ≡ B(z) (mod m) यदि उनके गुणांक सर्वांगसम इकाई m हैं सभी के लिए n ≥ 0, अर्थात।, anbn (mod m) पूर्णांकों के सभी प्रासंगिक मामलों के लिए n (ध्यान दें कि हमें यह मानने की आवश्यकता नहीं है m यहाँ एक पूर्णांक है - यह बहुत अच्छी तरह से बहुपद-मूल्यवान कुछ अनिश्चित में हो सकता है x, उदाहरण के लिए)। यदि सरल दाहिने हाथ की ओर जनक फलन, B(z), का एक तर्कसंगत कार्य है z, तो इस अनुक्रम के रूप से पता चलता है कि अनुक्रम आवधिक कार्य मोडुलो है जो पूर्णांक-मान के विशेष स्तिथि तय करता है m ≥ 2. उदाहरण के लिए, हम सिद्ध कर सकते हैं कि यूलर संख्याएँ,

निम्नलिखित सर्वांगसमता इकाई 3 को संतुष्ट करें:[24]
सबसे उपयोगी तरीकों में से एक, यदि सर्वथा घातशाली नहीं है, तो विशेष जनक फलन द्वारा किसी भी पूर्णांक (यानी, न केवल प्रधान घातयाँ) द्वारा गणना किए गए अनुक्रमों के लिए सर्वांगसमता प्राप्त करने के तरीके pk) द्वारा (यहां तक ​​कि गैर-अभिसरण) साधारण जनक फलन के निरंतर अंश निरूपण पर अनुभाग में दिया गया है J-अंश ऊपर। हम उत्पादन कार्यों पर लैंडो के व्याख्यान से निरंतर अंश द्वारा प्रतिनिधित्व के माध्यम से विस्तारित श्रृंखला उत्पन्न करने से संबंधित एक विशेष परिणाम का हवाला देते हैं:

Theorem: congruences for series generated by expansions of continued fractions — Suppose that the generating function A(z) is represented by an infinite continued fraction of the form

and that Ap(z) denotes the pth convergent to this continued fraction expansion defined such that an = [zn] Ap(z) for all 0 ≤ n < 2p. Then:

  1. the function Ap(z) is rational for all p ≥ 2 where we assume that one of divisibility criteria of p | p1, p1p2, p1p2p3 is met, that is, p | p1p2pk for some k ≥ 1; and
  2. if the integer p divides the product p1p2pk, then we have A(z) ≡ Ak(z) (mod p).

जनक फलनों का उनके गुणांकों के लिए सर्वांगसमता सिद्ध करने में अन्य उपयोग भी होते हैं। हम अगले दो विशिष्ट उदाहरणों का उल्लेख करते हैं जो पहली तरह की स्टर्लिंग संख्याओं के लिए और विभाजन फलन (गणित) के लिए विशेष विषय सर्वांगसमता प्राप्त करते हैं। विभाजन फलन p(n) जो पूर्णांक अनुक्रमों से जुड़ी समस्याओं से निपटने में कार्यों को उत्पन्न करने की बहुमुखी प्रतिभा को दर्शाता है।

स्टर्लिंग संख्या इकाई छोटे पूर्णांक

परिमित उत्पादों द्वारा उत्पन्न स्टर्लिंग संख्याओं पर मुख्य लेख

विल्फ के ख्याति सन्दर्भ उत्पादक फंक्शनोलॉजी के अनुच्छेद 4.6 में उनके जनक फलन के गुणों से कठोरता से प्राप्त इन संख्याों के लिए सर्वांगसमता का अवलोकन प्रदान करता है। हम मूल तर्क को दोहराते हैं और ध्यान देते हैं कि जब सापेक्ष 2 को कम करता है, तो ये परिमित उत्पाद जनक फलन प्रत्येक को संतुष्ट करते हैं

जिसका तात्पर्य है कि इन स्टर्लिंग संख्याओं की समानता द्विपद गुणांक से मेल खाती है

और फलस्वरूप यह दर्शाता है कि [n
k
]
जब भी k < ⌊ n/2 है

इसी तरह, हम दाएँ हाथ के उत्पादों को कम कर सकते हैं जो स्टर्लिंग संख्या जनक फलन इकाई 3 को परिभाषित करते हैं ताकि थोड़ा और जटिल अभिव्यक्ति प्राप्त हो सके


विभाजन फलन के लिए सर्वांगसमताएं

इस उदाहरण में, हम अनंत उत्पादों की कुछ यंत्रगति को खींचते हैं जिनकी घात श्रृंखला विस्तार कई विशेष कार्यों के विस्तार और विभाजन कार्यों की गणना करता है। विशेष रूप से, हम याद करते हैं कि विभाजन कार्य (संख्या सिद्धांत) p(n) पारस्परिक अनंत q-पोचहैमर प्रतीक द्वारा उत्पन्न होता है। (और z-पोचममेर उत्पाद जैसा भी स्तिथि हो) निम्न द्वारा दिया गया है कि

यह विभाजन कार्य कई ज्ञात रामानुजन की सर्वांगसमताओं को संतुष्ट करता है, जिनमें विशेष रूप से निम्नलिखित परिणाम सम्मिलित हैं, हालांकि फलन के लिए संबंधित पूर्णांक सर्वांगसमताओं के रूपों के बारे में अभी भी कई खुले प्रश्न हैं:[25]
हम दिखाते हैं कि ऊपर सूचीबद्ध इन सर्वांगसमताओं में से पहले का अत्यधिक प्रारंभिक प्रमाण देने के लिए औपचारिक घात श्रृंखला के लिए जनक फलन और सर्वांगसमता के क्रमभंग का उपयोग कैसे करें।

सबसे पहले, हम देखते हैं कि द्विपद गुणांक जनक फलन में

सभी गुणांक 5 से विभाज्य हैं सिवाय उनके जो घात 1, z5, z10,… के संगत हैं और इसके अतिरिक्त उन स्तिथियों में गुणांक का शेष 1 सापेक्ष 5 है। इस प्रकार,
या समकक्ष
यह इस प्रकार है कि
के अनंत उत्पाद विस्तार का उपयोग करना

यह दिखाया जा सकता है कि का गुणांक z5m + 5 में z · ((1 − z)(1 − z2)⋯)4 सभी m के लिए 5 से विभाज्य है। [26] अंत में, चूंकि

हम पिछले समीकरणों में हमारे वांछित सर्वांगसमता परिणाम को सिद्ध करने के लिए z5m + 5 के गुणांकों की बराबरी कर सकते हैं, अर्थात् p(5m + 4) ≡ 0 (mod 5) सभी के लिए m ≥ 0 है।

जनक फलन का रूपांतरण

जनक फलन के कई रूपांतरण हैं जो अन्य एप्लिकेशन प्रदान करते हैं (उत्पादक फलन रूपांतरण देखें)। एक अनुक्रम के सामान्य जनक फलन (ओजीएफ) का रूपांतरण एक अनुक्रम के लिए जनक फलन को दूसरे को गणना करने वाले जनक फलन में परिवर्तित करने की एक विधि प्रदान करता है। इन परिवर्तनों में सामान्यतः एक अनुक्रम ओजीएफ से जुड़े अभिन्न सूत्र सम्मिलित होते हैं (फलन रूपांतरण देखें) या इन फलन के उच्च-क्रम व्युत्पादित्स पर भारित योग ( व्युत्पादित रूपांतरण उत्पन्न करना देखें)।

जब हम योग के लिए एक जनक फलन को व्यक्त करना चाहते हैं, तो फलन रूपांतरण उत्पन्न करना चलन में आ सकता है

S(z) = g(z) A(f(z)) के रूप में जिसमें मूल अनुक्रम जनक फलन सम्मिलित है। उदाहरण के लिए, यदि योग हैं
तब संशोधित योग भावों के लिए जनक फलन द्वारा दिया गया है[27]
(द्विपद रूपांतरण और स्टर्लिंग रूपांतरण भी देखें)।

अनुक्रम के ओजीएफ के बीच परिवर्तित करने के लिए अभिन्न सूत्र F(z) भी हैं, और इसका घातांकी जनक फलन, या EGF, (z), और इसके विपरीत द्वारा दिया गया

बशर्ते कि ये पूर्णांकी उचित मूल्यों के लिए अभिसरण करें z.

अन्य अनुप्रयोग

जनक फलन का उपयोग इसके लिए किया जाता है:

  • पुनरावृत्ति संबंध में दिए गए अनुक्रम के लिए संवृत सूत्र खोजें। उदाहरण के लिए, फाइबोनैचि संख्या जनक फलन पर विचार करें।
  • अनुक्रमों के लिए पुनरावर्तन संबंध खोजें—एक जनक फलन का रूप पुनरावृत्ति सूत्र का सुझाव दे सकता है।
  • अनुक्रमों के बीच संबंधों का पता लगाएं - यदि दो अनुक्रमों के जनक कार्यों का एक समान रूप है, तो अनुक्रम स्वयं संबंधित हो सकते हैं।
  • अनुक्रमों के स्पर्शोन्मुख व्यवहार का अन्वेषण करें।
  • अनुक्रमों से संबंधित सर्वसमिका सिद्ध करें।
  • साहचर्य में गणना की समस्याओं को हल करें और उनके समाधान को कूटलेखन करें। रूक बहुपद साहचर्य में एक आवेदन का एक उदाहरण है।
  • अनंत योग का मूल्यांकन करें।

अन्य जनक फलन

उदाहरण

अधिक जटिल जनक फलन द्वारा उत्पन्न बहुपद अनुक्रमों के उदाहरणों में सम्मिलित हैं:

अधिक जटिल जनक फलन द्वारा उत्पन्न अन्य क्रम:

  • युग्म घातीय जनक फलन। उदाहरण के लिए: ऐटकेन ऐरे: संख्याओं का त्रिभुज
  • जनक फलन और विकर्ण जनक फलन के हैडमार्ड उत्पाद, और उनके संगत जनक फलन रूपांतरण और विकर्ण जनक फलन।

संवलन बहुपद

नुथ का आलेख जिसका शीर्षक संवलन बहुपद है[28] संवलन बहुपद अनुक्रमों के एक सामान्यीकृत वर्ग को प्ररूप के उनके विशेष जनक फलन द्वारा परिभाषित करता है

कुछ विश्लेषणात्मक कार्यों के लिए F एक घात श्रृंखला विस्तार के साथ जैसे कि F(0) = 1.

हम कहते हैं कि बहुपदों का एक परिवार, f0, f1, f2,…, एक दृढ़ संकल्प परिवार बनाता है यदि deg fnn और यदि निम्नलिखित दृढ़ संकल्प की स्थिति सभी के लिए x, y है और सभी के लिए n ≥ 0 है:

हम देखते हैं कि गैर-समान रूप से शून्य संवलन श्रेणी के लिए, यह परिभाषा आवश्यकता के बराबर है कि अनुक्रम में ऊपर दिए गए पहले रूप का एक सामान्य जनक फलन हो।

उपरोक्त अंकन में परिभाषित दृढ़ बहुपदों के अनुक्रम में निम्नलिखित गुण हैं:

  • क्रम n! · fn(x) द्विपद प्रकार का है
  • अनुक्रम के विशेष मूल्यों में fn(1) = [zn] F(z) और fn(0) = δn,0 सम्मिलित हैं, और
  • स्वेच्छाचारी (निश्चित) के लिए x, y, t ∈ ℂ, ये बहुपद रूप के संवलन सिद्धांतों को संतुष्ट करते हैं

एक निश्चित गैर-शून्य मापदण्ड के लिए t ∈ ℂ, हमने दिए गए इन दृढ़ बहुपद अनुक्रमों के लिए जनक फलन को संशोधित किया है
जहाँ 𝓕t(z) परोक्ष रूप से प्ररूप 𝓕t(z) = F(x𝓕t(z)t) के एक कार्यात्मक समीकरण द्वारा परिभाषित किया गया है. इसके अतिरिक्त, हम आव्यूह विधियों (संदर्भ के अनुसार) का उपयोग यह साबित करने के लिए कर सकते हैं कि दो दृढ़ बहुपद अनुक्रम fn(x) ⟩ और gn(x) ⟩ दिए गए हैं, संबंधित उत्पादन कार्य F(z)x और G(z)x के साथ, फिर स्वेच्छाचारी के लिए t हमारी सर्वसमिका है
दृढ़ बहुपद अनुक्रमों के उदाहरणों में द्विपद घात श्रृंखला 𝓑t(z) = 1 + z𝓑t(z)t सम्मिलित है, तथाकथित तरू बहुपद, बेल संख्या, B(n), लैगुएरे बहुपद, और स्टर्लिंग बहुपद सम्मिलित है।

विशेष जनक फलन की तालिकाएँ

विशेष गणितीय श्रृंखला की प्रारंभिक सूची यहाँ मिली है। द्रव्यार्थक गणित के अनुच्छेद 5.4 और 7.4 में और विल्फ की जनक कार्यप्रणाली के अनुच्छेद 2.5 में कई उपयोगी और विशेष अनुक्रम जनक फलन पाए जाते हैं। टिप्पणी के अन्य विशेष जनक फलन में अगली तालिका में प्रविष्टियाँ सम्मिलित हैं, जो किसी भी तरह से पूर्ण नहीं हैं।[29]

औपचारिक घात श्रृंखला जनक-फलन सूत्र टिप्पणियाँ
एक प्रथम-क्रम सुसंगत संख्या है
बरनौली संख्या है
फाइबोनैचि संख्या है और
बढ़ते क्रमगुणित, या पोचममेर प्रतीक और कुछ पूर्णांक को दर्शाता है
बहुलघुगणक फलन है और के लिए एक सामान्यीकृत सुसंगत संख्या है
दूसरी तरह की एक स्टर्लिंग संख्या है और जहां विस्तार में अलग-अलग शर्तें को संतुष्ट करती हैं
दो चर वाली स्तिथि द्वारा दी गई है


इतिहास

जॉर्ज पोल्या गणित और युक्ति युक्त तर्क में लिखते हैं:

नाम जनक फलन लाप्लास के कारण है। फिर भी, इसे कोई नाम दिए बिना, यूलर ने लाप्लास [..] से बहुत पहले कार्यों को उत्पन्न करने के उपकरण का उपयोग किया। उन्होंने इस गणितीय उपकरण को संयोजन विश्लेषण और संख्या सिद्धांत की कई समस्याओं पर लागू किया।

यह भी देखें

टिप्पणियाँ

  1. Incidentally, we also have a corresponding formula when m < 0 given by


संदर्भ

  1. Knuth, Donald E. (1997). "§1.2.9 Generating Functions". मौलिक एल्गोरिदम. The Art of Computer Programming. Vol. 1 (3rd ed.). Addison-Wesley. ISBN 0-201-89683-4.
  2. This alternative term can already be found in E.N. Gilbert (1956), "Enumeration of Labeled graphs", Canadian Journal of Mathematics 3, p. 405–411, but its use is rare before the year 2000; since then it appears to be increasing.
  3. Flajolet & Sedgewick 2009, p. 95
  4. Apostol, Tom M. (1976), Introduction to analytic number theory, Undergraduate Texts in Mathematics, New York-Heidelberg: Springer-Verlag, ISBN 978-0-387-90163-3, MR 0434929, Zbl 0335.10001 pp.42–43
  5. Wilf 1994, p. 56
  6. Wilf 1994, p. 59
  7. Hardy, G.H.; Wright, E.M.; Heath-Brown, D.R; Silverman, J.H. (2008). संख्या के सिद्धांत का परिचय (6th ed.). Oxford University Press. p. 339. ISBN 9780199219858.
  8. Spivey, Michael Z. (2007). "संयुक्त योग और परिमित अंतर". Discrete Math. 307 (24): 3130–3146. doi:10.1016/j.disc.2007.03.052. MR 2370116.
  9. Mathar, R. J. (2012). "फिर भी इंटीग्रल की एक और तालिका". arXiv:1207.5845 [math.CA]. v4 eq. (0.4)
  10. Graham, Knuth & Patashnik 1994, Table 265 in §6.1 for finite sum identities involving the Stirling number triangles.
  11. Lando 2003, §2.4
  12. Example from Stanley, Richard P.; Fomin, Sergey (1997). "§6.3". Enumerative Combinatorics: Volume 2. Cambridge Studies in Advanced Mathematics. Vol. 62. Cambridge University Press. ISBN 978-0-521-78987-5.
  13. Knuth 1997, §1.2.9
  14. Solution to Graham, Knuth & Patashnik 1994, p. 569, exercise 7.36
  15. Flajolet & Sedgewick 2009, §B.4
  16. Schneider, C. (2007). "प्रतीकात्मक योग कॉम्बिनेटरिक्स की सहायता करता है". Sem. Lothar. Combin. 56: 1–36.
  17. For more complete information on the properties of J-fractions see:
  18. See the following articles:
  19. "लैम्बर्ट श्रृंखला पहचान". Math Overflow. 2017.
  20. Good, I. J. (1986). "सममित डिरिचलेट वितरण और आकस्मिक तालिकाओं के लिए उनके मिश्रण के अनुप्रयोगों पर". Annals of Statistics. 4 (6): 1159–1189. doi:10.1214/aos/1176343649.
  21. See the usage of these terms in Graham, Knuth & Patashnik 1994, §7.4 on special sequence generating functions.
  22. Graham, Knuth & Patashnik 1994, §8.3
  23. Graham, Knuth & Patashnik 1994, Example 6 in §7.3 for another method and the complete setup of this problem using generating functions. This more "convoluted" approach is given in Section 7.5 of the same reference.
  24. Lando 2003, §5
  25. Hardy et al. 2008, §19.12
  26. Hardy, G.H.; Wright, E.M. An Introduction to the Theory of Numbers. p.288, Th.361
  27. Graham, Knuth & Patashnik 1994, p. 535, exercise 5.71
  28. Knuth, D. E. (1992). "कनवल्शन पॉलीनॉमियल्स". Mathematica J. 2: 67–78. arXiv:math/9207221. Bibcode:1992math......7221K.
  29. See also the 1031 Generating Functions found in Plouffe, Simon (1992). Approximations de séries génératrices et quelques conjectures [Approximations of generating functions and a few conjectures] (Masters) (in français). Université du Québec à Montréal. arXiv:0911.4975.



उद्धरण


बाहरी संबंध