इंजन: Difference between revisions
mNo edit summary |
mNo edit summary |
||
| Line 16: | Line 16: | ||
इंजन शब्द की उत्पत्ति पुराने फ्रांस इंजन से हुई है, जो लैटिन शब्द "उग्र" से आया है। युद्ध के पूर्व-औद्योगिक हथियार, जैसे कि [[गुलेल]], सीज इंजन कहलाते थे, और उनका निर्माण कैसे किया जाता है, इसका ज्ञान प्रायः एक सैन्य रहस्य के रूप में माना जाता था। [[औद्योगिक क्रांति]] के बीच आविष्कार किए गए अधिकांश यांत्रिक उपकरणों को इंजन के रूप में वर्णित किया गया था - भाप इंजन एक उल्लेखनीय उदाहरण है। हालांकि, मूल भाप इंजन, जैसे कि [[थॉमस सेवरी]] द्वारा, यांत्रिक इंजन नहीं बल्कि पंप थे। इस तरह, एक [[दमकल]] अपने मूल रूप में केवल एक पानी का पंप था, जिसमें इंजन को घोड़ों द्वारा आग तक पहुँचाया जाता था।<ref>{{Cite web|title=World Wide Words: Engine and Motor|url=http://www.worldwidewords.org/articles/engine.htm|website=World Wide Words|language=en-gb|access-date=2020-04-30}}</ref> | इंजन शब्द की उत्पत्ति पुराने फ्रांस इंजन से हुई है, जो लैटिन शब्द "उग्र" से आया है। युद्ध के पूर्व-औद्योगिक हथियार, जैसे कि [[गुलेल]], सीज इंजन कहलाते थे, और उनका निर्माण कैसे किया जाता है, इसका ज्ञान प्रायः एक सैन्य रहस्य के रूप में माना जाता था। [[औद्योगिक क्रांति]] के बीच आविष्कार किए गए अधिकांश यांत्रिक उपकरणों को इंजन के रूप में वर्णित किया गया था - भाप इंजन एक उल्लेखनीय उदाहरण है। हालांकि, मूल भाप इंजन, जैसे कि [[थॉमस सेवरी]] द्वारा, यांत्रिक इंजन नहीं बल्कि पंप थे। इस तरह, एक [[दमकल]] अपने मूल रूप में केवल एक पानी का पंप था, जिसमें इंजन को घोड़ों द्वारा आग तक पहुँचाया जाता था।<ref>{{Cite web|title=World Wide Words: Engine and Motor|url=http://www.worldwidewords.org/articles/engine.htm|website=World Wide Words|language=en-gb|access-date=2020-04-30}}</ref> | ||
आधुनिक उपयोग में, शब्द इंजन समान्यतः भाप इंजन और आंतरिक दहन इंजन जैसे उपकरणों का वर्णन करता है, जो आघूर्ण बल या रैखिक बल (समान्यतः जोर के रूप में) को बढ़ाकर [[यांत्रिक कार्य]] करने के लिए ईंधन को जलाते हैं या | आधुनिक उपयोग में, शब्द इंजन समान्यतः भाप इंजन और आंतरिक दहन इंजन जैसे उपकरणों का वर्णन करता है, जो आघूर्ण बल या रैखिक बल (समान्यतः जोर के रूप में) को बढ़ाकर [[यांत्रिक कार्य]] करने के लिए ईंधन को जलाते हैं या उन्हें खपत करते हैं। ऊष्मा ऊर्जा को गति में परिवर्तित करने वाले उपकरणों को समान्यतः केवल इंजन के रूप में संदर्भित किया जाता है।<ref>{{cite web |title=इंजन|work=Collins English Dictionary |access-date=2012-09-03 |url=http://www.collinsdictionary.com/dictionary/english/Engine}}</ref> इंजन के उदाहरण में केवल जो एक आघूर्ण बल लगाते हैं, स्वचालित वाहन, गैसोलीन और डीजल इंजन, साथ ही [[टर्बोशाफ्ट]] समिलित हैं। जोर पैदा करने वाले इंजनों के उदाहरणों में [[टर्बोफैन]] और प्रक्षेपात्र समिलित हैं। | ||
जब आंतरिक दहन इंजन का आविष्कार किया गया था, तो प्रेरक शब्द का उपयोग शुरू में इसे भाप इंजन से अलग करने के लिए किया गया था - जो उस समय व्यापक उपयोग में था, स्वचालित यंत्र और [[भाप चलित रोलर]] जैसे अन्य वाहनों को शक्ति प्रदान करता था। प्रेरक शब्द लैटिन क्रिया मोटो से निकला है जिसका अर्थ | जब आंतरिक दहन इंजन का आविष्कार किया गया था, तो प्रेरक शब्द का उपयोग शुरू में इसे भाप इंजन से अलग करने के लिए किया गया था - जो उस समय व्यापक उपयोग में था, स्वचालित यंत्र और [[भाप चलित रोलर]] जैसे अन्य वाहनों को शक्ति प्रदान करता था। प्रेरक शब्द लैटिन क्रिया "मोटो" से निकला है जिसका अर्थ 'गति में तय करना', या 'गति बनाए रखना' है। इस प्रकार प्रेरक एक उपकरण है जो गति प्रदान करता है। | ||
प्रेरक और इंजन मानक अंग्रेजी में विनिमेय हैं।<ref>Dictionary definitions: | प्रेरक और इंजन मानक अंग्रेजी में विनिमेय हैं।<ref>Dictionary definitions: | ||
Revision as of 18:11, 23 March 2023
- Induction (Fuel enters)
- Compression
- Ignition (Fuel is burnt)
- Emission (Exhaust out)
एक इंजन या प्रेरक एक यंत्र है जिसे ऊर्जा के एक या अधिक रूपों को यांत्रिक ऊर्जा (भौतिकी) में परिवर्तित करने के लिए प्रारुपण किया गया है।[1][2] उपलब्ध ऊर्जा स्रोतों में संभावित ऊर्जा (जैसे जलविद्युत ऊर्जा उत्पादन में उपयोग किए गए पृथ्वी के गुरुत्वाकर्षण क्षेत्र की ऊर्जा), ताप ऊर्जा (जैसे भूतापीय), रासायनिक ऊर्जा, विद्युत क्षमता और परमाणु ऊर्जा (परमाणु विखंडन या परमाणु संलयन से) समिलित हैं। इनमें से कई प्रक्रियाएँ मध्यवर्ती ऊर्जा के रूप में ऊष्मा उत्पन्न करती हैं, इसलिए ऊष्मा इंजनों का विशेष महत्व है। कुछ प्राकृतिक प्रक्रियाएँ, जैसे वायुमंडलीय संवहन कोशिका पर्यावरणीय ऊष्मा को गति में परिवर्तित करती हैं (उदाहरण के लिए बढ़ती वायु धाराओं के रूप में)। परिवहन में यांत्रिक ऊर्जा का विशेष महत्व है, लेकिन यह कई औद्योगिक प्रक्रियाओं जैसे काटने, पीसने, कुचलने और मिलाने में भी भूमिका निभाती है।
यांत्रिक ऊष्मा इंजन विभिन्न ऊष्मागतिक प्रक्रियाओं के माध्यम से ऊष्मा को कार्य में परिवर्तित करते हैं। आंतरिक दहन इंजन कदाचित् एक यांत्रिक ताप इंजन का सबसे समान्यत उदाहरण है, जिसमें ईंधन के दहन से निकलने वाली गर्मी दहन कक्ष में गैसीय दहन उत्पादों के तेजी से दबाव का कारण बनती है, जिससे वे एक मुषली को फैलाने और चलाने के लिए, जो एक क्रैंकशाफ्ट को घुमाता है। आंतरिक दहन इंजनों के विपरीत, एक प्रतिक्रिया इंजन (जैसे जेट इंजन) न्यूटन के गति के तीसरे नियम के अनुसार, प्रतिक्रिया द्रव्यमान को बाहर निकालकर जोर पैदा करता है।
ताप इंजनों के अतिरिक्त, विद्युत प्रेरक विद्युत ऊर्जा को यांत्रिक गति में परिवर्तित करते हैं, वायवीय प्रेरक, संपीड़ित हवा का उपयोग करते हैं और उत्तेजित खिलौनों में लोचदार ऊर्जा का उपयोग करते हैं। जैविक पद्धतियों में, आणविक प्रेरक, मांसपेशियों में मायोसिन की तरह, रासायनिक ऊर्जा का उपयोग बल बनाने और अंततः गति (एक रासायनिक इंजन, लेकिन गर्मी इंजन नहीं) के लिए करते हैं।
रासायनिक ऊष्मा इंजन जो ईंधन प्रतिक्रिया के एक भाग के रूप में वायु (परिवेश वायुमंडलीय गैस) को नियोजित करते हैं, उन्हें वायुश्वसित्र इंजन माना जाता है। पृथ्वी के वायुमंडल के बाहर संचालित करने के लिए प्रारुपण किए गए रासायनिक ताप इंजन (जैसे प्रक्षेपात्र , गहराई से जलमग्न पनडुब्बियां) को आक्सीकारक नामक एक अतिरिक्त ईंधन घटक ले जाने की आवश्यकता होती है (हालाँकि इसमें सुपरऑक्सीडेंट उपस्थित हैं; या अनुप्रयोग को गैर-रासायनिक प्रकारों से गर्मी प्राप्त करने की आवश्यकता होती है, जैसे परमाणु प्रतिक्रियाओं के माध्यम से।
उत्सर्जन/उत्पादों द्वारा
सभी रासायनिक ईंधन वाले ऊष्मा इंजन निकास गैसों का उत्सर्जन करते हैं। सबसे साफ इंजन से ही पानी निकलता है। शून्य-उत्सर्जन का मतलब समान्यतः पानी और जल वाष्प के अतिरिक्त शून्य उत्सर्जन होता है। केवल ऊष्मा इंजन जो शुद्ध हाइड्रोजन (ईंधन) और शुद्ध ऑक्सीजन (आक्सीकारक) का दहन करते हैं, परिभाषा (व्यवहार में, एक प्रकार का प्रक्षेपात्र इंजन) द्वारा शून्य-उत्सर्जन प्राप्त करते हैं। यदि हाइड्रोजन को हवा (सभी वायु श्वास इंजन) के साथ जलाया जाता है, तो वायुमंडलीय ऑक्सीजन और वायुमंडलीय नाइट्रोजन के बीच एक अभिक्रिया होती है जिसके परिणामस्वरूप NOx, का कम उत्सर्जन होता हैं, जो कम मात्रा में भी प्रतिकूल है। यदि एक हाइड्रोकार्बन (जैसे शराब या गैसोलीन) को ईंधन के रूप में जलाया जाता है, तो बड़ी मात्रा में CO2 उत्सर्जित होती हैं, जो कि एक शक्तिशाली ग्रीनहाउस गैस है। NOx, के प्रस्तुतिकरण हवा के बिना ईंधन कोशिका द्वारा हवा से हाइड्रोजन और ऑक्सीजन को पानी में प्रतिक्रिया दी जा सकती है, लेकिन यह एक विद्युत रासायनिक इंजन है न कि उष्म इंजन।
शब्दावली
इंजन शब्द की उत्पत्ति पुराने फ्रांस इंजन से हुई है, जो लैटिन शब्द "उग्र" से आया है। युद्ध के पूर्व-औद्योगिक हथियार, जैसे कि गुलेल, सीज इंजन कहलाते थे, और उनका निर्माण कैसे किया जाता है, इसका ज्ञान प्रायः एक सैन्य रहस्य के रूप में माना जाता था। औद्योगिक क्रांति के बीच आविष्कार किए गए अधिकांश यांत्रिक उपकरणों को इंजन के रूप में वर्णित किया गया था - भाप इंजन एक उल्लेखनीय उदाहरण है। हालांकि, मूल भाप इंजन, जैसे कि थॉमस सेवरी द्वारा, यांत्रिक इंजन नहीं बल्कि पंप थे। इस तरह, एक दमकल अपने मूल रूप में केवल एक पानी का पंप था, जिसमें इंजन को घोड़ों द्वारा आग तक पहुँचाया जाता था।[3]
आधुनिक उपयोग में, शब्द इंजन समान्यतः भाप इंजन और आंतरिक दहन इंजन जैसे उपकरणों का वर्णन करता है, जो आघूर्ण बल या रैखिक बल (समान्यतः जोर के रूप में) को बढ़ाकर यांत्रिक कार्य करने के लिए ईंधन को जलाते हैं या उन्हें खपत करते हैं। ऊष्मा ऊर्जा को गति में परिवर्तित करने वाले उपकरणों को समान्यतः केवल इंजन के रूप में संदर्भित किया जाता है।[4] इंजन के उदाहरण में केवल जो एक आघूर्ण बल लगाते हैं, स्वचालित वाहन, गैसोलीन और डीजल इंजन, साथ ही टर्बोशाफ्ट समिलित हैं। जोर पैदा करने वाले इंजनों के उदाहरणों में टर्बोफैन और प्रक्षेपात्र समिलित हैं।
जब आंतरिक दहन इंजन का आविष्कार किया गया था, तो प्रेरक शब्द का उपयोग शुरू में इसे भाप इंजन से अलग करने के लिए किया गया था - जो उस समय व्यापक उपयोग में था, स्वचालित यंत्र और भाप चलित रोलर जैसे अन्य वाहनों को शक्ति प्रदान करता था। प्रेरक शब्द लैटिन क्रिया "मोटो" से निकला है जिसका अर्थ 'गति में तय करना', या 'गति बनाए रखना' है। इस प्रकार प्रेरक एक उपकरण है जो गति प्रदान करता है।
प्रेरक और इंजन मानक अंग्रेजी में विनिमेय हैं।[5] कुछ अभियान्त्रिकी शब्दजाल में, दो शब्दों के अलग-अलग अर्थ होते हैं, जिसमें इंजन एक ऐसा उपकरण है जो दहन या अन्यथा ईंधन की खपत करता है, इसकी रासायनिक संरचना को बदलता है, और एक प्रेरक बिजली, वायु प्रेरक, या द्रवचालित दबाव द्वारा संचालित एक उपकरण है, जो इसके ऊर्जा स्रोत की रासायनिक संरचना को नहीं बदलता है।[6][7] हालांकि, प्रक्षेपात्र प्रेरक शब्द का उपयोग करती है, भले ही वे ईंधन का उपभोग करते हैं।
ऊष्मा इंजन एक विकट के रूप में भी काम कर सकता है: एक घटक जो द्रव यांत्रिकी के प्रवाह या परिवर्तन को यांत्रिक ऊर्जा में परिवर्तित करता है।[8] आंतरिक दहन इंजन द्वारा संचालित एक स्वचालित वाहन विभिन्न प्रेरकों और पंपों का उपयोग कर सकता है, लेकिन अंततः ऐसे सभी उपकरण इंजन से अपनी शक्ति प्राप्त करते हैं। इसे देखने का एक अन्य तरीका यह है कि एक प्रेरक बाहरी स्रोत से शक्ति प्राप्त करती है, और फिर इसे यांत्रिक ऊर्जा में परिवर्तित करती है, जबकि एक इंजन दबाव से शक्ति बनाता है (सीधे दहन के विस्फोटक बल या अन्य रासायनिक प्रतिक्रिया से प्राप्त होता है, या गौण रूप से अन्य पदार्थों जैसे हवा, पानी या भाप पर कुछ ऐसे बल की क्रिया)।[9]
इतिहास
पुरातनता
साधारण यंत्रें, जैसे मेस (बल्डगन) और ऊर (उत्तोलक के उदाहरण), प्रागितिहास हैं। मानव शक्ति, पशु शक्ति, जल शक्ति, पवन ऊर्जा यहाँ तक कि भाप इंजन का उपयोग करने वाले अधिक जटिल इंजन प्राचीन काल के है। मानव शक्ति को सरल इंजनों के उपयोग द्वारा केंद्रित किया गया था, जैसे कि कैपस्तान (समुद्री), हस्तचरखी या पद्धचलित यंत्र, और रस्सियों, पुलि व्यवस्था के साथ; यह शक्ति समान्यतः बलों के यांत्रिक लाभ और गति कम होने के साथ प्रसारित होती थी। इनका उपयोग प्राचीन ग्रीस में क्रेन (यंत्र) और जहाज पर, साथ ही साथ प्राचीन रोम में खनन, पंप और सीज इंजनों में किया जाता था। विट्रूवियस, फ्रंटिनस और प्लिनी द एल्डर सहित उस समय के लेखक इन इंजनों को सामान्य मानते हैं, इसलिए उनका आविष्कार अधिक प्राचीन हो सकता है। पहली शताब्दी ईस्वी तक, मिल (पीसने) में मवेशियों और घोड़ों का उपयोग किया जाता था, जो पहले के समय में मनुष्यों द्वारा संचालित यंत्रों के समान थे।
स्ट्रैबो के अनुसार, पहली शताब्दी ईसा पूर्व के दौरान पार्थियन साम्राज्य के कबीरिया में एक जल-संचालित मिल का निर्माण किया गया था। अगली कुछ शताब्दियों में मिलों में पानी के पहियों का उपयोग पूरे रोमन साम्राज्य में फैल गया। कुछ बहुत ही जटिल थे, जिनमें जलसेतु , बांध और पानी को बनाए रखने और प्रवाहित करने के लिए जलद्वार, साथ ही गियर की पद्धति, या रोटेशन की गति को नियंत्रित करने के लिए लकड़ी और धातु से बने दांतेदार पहिये थे। अधिक परिष्कृत छोटे उपकरण, जैसे कि एंटीकाइथेरा तंत्र ने कैलेंडर के रूप में कार्य करने या खगोलीय घटनाओं की भविष्यवाणी करने के लिए गियर और डायल की जटिल ट्रेनों का उपयोग किया। चौथी शताब्दी ईस्वी में ऑसोनियस की एक कविता में, उन्होंने पानी से संचालित एक पत्थर काटने वाली आरी का उल्लेख किया। अलेक्जेंड्रिया के हीरो को पहली शताब्दी ईस्वी में कई ऐसी हवा और भाप से चलने वाली यंत्रों का श्रेय दिया जाता है, जिसमें एओलिप को और व्यापारिक यंत्र समिलित हैं, प्रायः ये यंत्रें पूजा से जुड़ी होती थीं, जैसे कि एनिमेटेड वेदी और स्वचालित मंदिर के दरवाजे।
मध्ययुगीन
मध्यकालीन मुस्लिम इंजीनियरों ने मिलों और पानी उठाने वाली यंत्रों में गियर लगाए, और जल मिलों और पानी उठाने वाली यंत्रों को अतिरिक्त शक्ति प्रदान करने के लिए बांधों को जल शक्ति के स्रोत के रूप में उपयोग किया।[10] इस्लामी स्वर्ण युग में, इस तरह की प्रगति ने यंत्रीकरण को कई औद्योगिक कार्यों को संभव बना दिया जो पहले शारीरिक श्रम द्वारा किया जाता था।
1206 में, अल जजारी ने पानी बढ़ाने वाली अपनी दो यंत्रों के लिए क्रैंक (तंत्र)-कॉनरोड पद्धति का उपयोग किया। ताक़ी [11]1551 में अल-दीन और 1629 में जियोवानी ब्रांका द्वारा[12] एक अल्पविकसित भाप टर्बाइन उपकरण का वर्णन किया गया था।
13वीं सदी में प्रक्षेपात्र प्रेरक का आविष्कार चीन में हुआ था। बारूद से संचालित, आंतरिक दहन इंजन का यह सबसे सरल रूप निरंतर शक्ति प्रदान करने में असमर्थ था, लेकिन युद्ध में दुश्मनों की ओर तेज गति से हथियार चलाने और आतिशबाजी के लिए उपयोगी था। आविष्कार के बाद यह नवाचार पूरे यूरोप में फैल गया।
औद्योगिक क्रांति
वाॅट भाप इंजन पहला प्रकार का भाप इंजन था, जो आंशिक निर्वात द्वारा मुसली को चलाने के लिए वायुमंडलीय दबाव के ठीक ऊपर के दबाव पर भाप का उपयोग करता था। 1712 में न्यूकोमें भाप इंजन के प्रारुपण में सुधार, 1763 से 1775 तक छिटपुट रूप से विकसित वाट भाप इंजन, भाप इंजन के विकास में एक महान कदम था। ईंधन दक्षता में नाटकीय वृद्धि की प्रस्तुति करते हुए, जेम्स वॉट का प्रारुपण भाप इंजनों का पर्याय बन गया, क्योंकि उनके व्यापार भागीदार मैथ्यू बौल्टन के लिए कोई छोटा अंश नहीं था। इसने उन जगहों पर पहले अकल्पनीय मापदंड पर कुशल अर्ध-स्वचालित कारखानों के तेजी से विकास को सक्षम किया जहां जल शक्ति उपलब्ध नहीं थी। बाद के विकास ने भाप इंजनों और रेल परिवहन के महान विस्तार का नेतृत्व किया।
जहां तक आंतरिक दहन मुसली इंजन का सवाल है, इनका फ्रांस में 1807 में दे रिवाज़ द्वारा और स्वतंत्र रूप से नीएपसे बंधुओं द्वारा परीक्षण किया गया था। वे 1824 में निकोलस लियोनार्ड साडी कार्नोट द्वारा सैद्धांतिक रूप से उन्नत थे।[citation needed] 1853-57 में यूजेनियो बरसांती और फेलिस मट्टूसी ने फ्री-मुसली सिद्धांत का उपयोग करके एक इंजन का आविष्कार किया और पेटेंट कराया जो संभवत: पहला 4-चक्र इंजन था।[13]
एक आंतरिक दहन इंजन का आविष्कार, जो बाद में व्यावसायिक रूप से सफल रहा, 1860 के दौरान एटिने लेनोर द्वारा किया गया था।[14]
1877 में ओटो चक्र भाप इंजनों की तुलना में वजन अनुपात में कहीं अधिक उच्च शक्ति देने में सक्षम था और कार और विमानों जैसे कई परिवहन अनुप्रयोगों के लिए अच्छा कार्य करता था।
स्वचालित वाहन
कार्ल बेंज द्वारा बनाई गई पहली व्यावसायिक रूप से सफल स्वचालित वाहन ने हल्के और शक्तिशाली इंजनों में रुचि बढ़ाई। हल्का गैसोलीन आंतरिक दहन इंजन, चार-स्ट्रोक ओटो चक्र पर काम करता है, और यह हल्के स्वचालित वाहन के लिए सबसे सफल रहा है, जबकि ट्रकों और बसों के लिए अधिक कुशल डीजल इंजन का उपयोग किया जाता है। हालांकि, हाल के वर्षों में, टर्बो डीजल इंजन तेजी से लोकप्रिय हो गए हैं, विशेष रूप से संयुक्त राज्य के बाहर, यहां तक कि बहुत छोटी कारों के लिए भी।
क्षैतिज रूप से विपरीत मुसली
1896 में, कार्ल बेंज को क्षैतिज रूप से विपरीत मुसली वाले पहले इंजन के प्रारुपण के लिए एकस्व दिया गया था। उनके प्रारुपण ने एक इंजन बनाया जिसमें संबंधित मुसली क्षैतिज सिलेंडरों में चलते हैं और एक साथ शीर्ष मृत केंद्र तक पहुंचते हैं, इस प्रकार स्वचालित रूप से एक दूसरे को अपनी व्यक्तिगत गति के संबंध में संतुलित करते हैं। इस प्रारुपण के इंजनों को उनके आकार और निचले वर्णन के कारण प्रायः समतल इंजन कहा जाता है। उनका उपयोग फॉक्सवैगन बीटल, सीट्रोएन 2CV, कुछ पोर्श और सुबारू कारों, कई BMW और होंडा प्रेरकसाइकिल और प्रेरक विमान इंजनों में किया गया था।
उन्नति
स्वचालित वाहन के लिए आंतरिक दहन इंजन के उपयोग की निरंतरता आंशिक रूप से इंजन नियंत्रण पद्धति के सुधार के कारण है। टर्बोचार्जिंग और सुपरचार्जिंग द्वारा जबरन वायु प्रेरण ने बिजली उत्पादन और इंजन क्षमता में वृद्धि की है। इसी तरह के परिवर्तन छोटे डीजल इंजनों पर लागू किए गए हैं, जिससे उन्हें गैसोलीन इंजनों के समान लगभग समान शक्ति विशेषताएँ मिलती हैं। यह यूरोप में छोटे डीजल इंजन वाली कारों की लोकप्रियता से विशेष रूप से स्पष्ट है। बड़े डीजल इंजन अभी भी प्रायः ट्रकों और भारी यंत्ररी में उपयोग किए जाते हैं, हालांकि उन्हें विशेष यंत्रिंग की आवश्यकता होती है जो अधिकांश कारखानों में उपलब्ध नहीं होती है। डीजल इंजन कम हाइड्रोकार्बन और CO2 उत्सर्जन का उत्पादन करते हैं, लेकिन अधिक वायुमंडलीय कण पदार्थ और NOx प्रदूषण, गैसोलीन इंजन की तुलना में।[15] तुलनीय गैसोलीन इंजनों की तुलना में डीजल इंजन भी 40% अधिक ईंधन कुशल हैं।[15]
बढ़ती शक्ति
20वीं शताब्दी के पूर्वार्द्ध में, इंजन की शक्ति में वृद्धि की प्रवृत्ति उत्पन्न हुई, विशेष रूप से U.S प्रारूप में।[clarification needed] प्रतिरूप परिवर्तनों में इंजन की क्षमता बढ़ाने के सभी ज्ञात प्रकारों को समिलित किया गया है, जिसमें दक्षता में सुधार के लिए सिलेंडरों में दबाव बढ़ाना, इंजन के आकार में वृद्धि करना और इंजन द्वारा कार्य करने की दर को बढ़ाना समिलित है। इन परिवर्तनों द्वारा उत्पन्न उच्च बलों और दबावों ने इंजन कंपन और आकार की समस्याएं पैदा कीं, जिसके कारण V के साथ अधिक संक्षिप्त इंजन और लंबी सीधी रेखा की व्यवस्था की जगह सिलेंडर अभिन्यास का विरोध किया।
दहन दक्षता
यात्री वाहनों में इष्टतम दहन दक्षता लगभग 110 °C (230 °F) के शीतलक तापमान के साथ पहुँच जाती है.[16]
इंजन विन्यास
पहले के स्वचालित वाहन इंजन के विकास ने आज के सामान्य उपयोग की तुलना में इंजनों की एक बड़ी श्रेणी का उत्पादन किया। इंजन 1- से लेकर 16-सिलेंडर प्रारुपण तक समग्र आकार, वजन, इंजन विस्थापन और सिलेंडर बोर (इंजन) में समान अंतर के साथ होते हैं। अधिकांश प्रतिरूपों में 19 से 120 hp (14 से 90 kW) तक चार सिलेंडर और शक्ति दर्ज़ा का पालन किया गया। कई तीन-सिलेंडर, दो-स्ट्रोक-चक्र प्रतिरूप बनाए गए थे जबकि अधिकांश इंजनों में सीधे या इन-लाइन सिलेंडर थे। कई V-प्रकार के प्रतिरूप थे और क्षैतिज रूप से दो- और चार-सिलेंडर बनाने का भी विरोध किया। छोटे इंजन समान्यतः वातानुकूलित होते थे और वाहन के पीछे स्थित होते थे; संपीड़न अनुपात अपेक्षाकृत कम थे। 1970 और 1980 के दशक में स्वचालित वाहन में बेहतर ईंधन अर्थव्यवस्था में रुचि देखी गई, जिससे दक्षता में सुधार के लिए प्रति सिलेंडर पांच वाल्वों के साथ छोटे V-6 और चार-सिलेंडर अभिन्यास की वापसी हुई। बुगाटी वेरॉन 16.4 एक W16 इंजन के साथ काम करता है, जिसका अर्थ है कि दो V 8 इंजन सिलेंडर अभिन्यास एक दूसरे के बगल में स्थित हैं ताकि समान क्रैंकशाफ्ट साझा करने वाले W आकार का निर्माण किया जा सके।
अब तक निर्मित सबसे बड़ा आंतरिक दहन इंजन वार्टसिला-सुल्जर RTA96-C, एक 14-सिलेंडर, 2-स्ट्रोक टर्बोचार्ज्ड डीजल इंजन है जिसे 2006 में प्रक्षेपण किए जाने पर दुनिया के सबसे बड़े जहाज एम्मा मर्सक को शक्ति देने के लिए प्रारुपण किया गया था। यह इंजन 2,300 टन का द्रव्यमान है, और 102 rpm (1.7 Hz) पर चलने पर 80 MW से अधिक का उत्पादन होता है, और प्रति दिन 250 टन ईंधन का उपयोग कर सकता है।
प्रकार
एक इंजन को दो मानदंडों के अनुसार एक श्रेणी में रखा जा सकता है: ऊर्जा का वह रूप जिसे वह गति पैदा करने के लिए स्वीकार करता है, और गति का प्रकार जो वह उत्पन्न करता है।
उष्म इंजन
दहन इंजन
दहन इंजन ऊष्मा इंजन होते हैं जो दहन प्रक्रिया की ऊष्मा द्वारा संचालित होते हैं।
आंतरिक दहन इंजन
आंतरिक दहन इंजन एक इंजन है जिसमें दहन कक्ष में एक ऑक्सीकारक (समान्यतः हवा) के साथ एक ईंधन (समान्यतः, जीवाश्म ईंधन) का दहन होता है। एक आंतरिक दहन इंजन में उच्च तापमान और उच्च दबाव गैसों का विस्तार, जो दहन द्वारा उत्पन्न होते हैं, सीधे इंजन के घटकों पर बल लागू करते हैं, जैसे कि मुसली या टर्बाइन ब्लेड या टोंटी, और इसे कुछ दूरी पर ले जाकर, यांत्रिक कार्य (भौतिकी) उत्पन्न करता है।[17][18][19][20]
बाहरी दहन इंजन
एक बाहरी दहन इंजन (EC इंजन) एक ताप इंजन है जहां इंजन की दीवार या उष्मा का आदान प्रदान करने के माध्यम से बाहरी स्रोत के दहन से आंतरिक कार्यशील तरल पदार्थ गर्म होता है। द्रव तब, इंजन के तंत्र (इंजीनियरिंग) पर विस्तार और अभिनय करके गति और प्रयोग करने योग्य यांत्रिक कार्य उत्पन्न करता है।[21] द्रव को तब ठंडा, संपीड़ित और पुन: उपयोग किया जाता है, और ठंडा तरल पदार्थ (खुले चक्र वायु इंजन) में खींच लिया जाता है।
दहन गर्मी की आपूर्ति करने के लिए, ऑक्सीकारक के साथ जलने वाले ईंधन को संदर्भित करता है। समान (या समान) विन्यास और संचालन के इंजन अन्य स्रोतों जैसे परमाणु, सौर, भूतापीय या उष्माक्षेपी प्रतिक्रियाओं से गर्मी की आपूर्ति का उपयोग कर सकते हैं जिसमें दहन समिलित नहीं है; लेकिन तब सख्ती से बाहरी दहन इंजन के रूप में वर्गीकृत नहीं किया जाता है, बल्कि बाहरी ऊष्मीय इंजन के रूप में वर्गीकृत किया जाता है।
स्टर्लिंग इंजन की तरह काम करने वाला द्रव गैस हो सकता है, या भाप इंजन की तरह भाप या जैविक रैनकिन चक्र में n-पेंटेन जैसा जैविक तरल हो सकता है। द्रव किसी भी रचना का हो सकता है; गैस अब तक सबसे आम है, हालांकि कभी-कभी एकल-चरण तरल का भी उपयोग किया जाता है। भाप इंजन के स्थिति में, द्रव तरल और गैस के बीच चरण (पदार्थ) को बदलता है।
वायुश्सित्र दहन इंजन
वायुश्सित्र दहन इंजन, दहन इंजन होते हैं जो वायुमंडलीय हवा में ऑक्सीजन का उपयोग ईंधन को ऑक्सीकरण ('जला') करने के लिए करते हैं, स्थान पर आक्सीकारक ले जाने के, जैसा कि एक प्रक्षेपात्र में होता है। सैद्धांतिक रूप से, इसका परिणाम प्रक्षेपात्र इंजनों की तुलना में बेहतर विशिष्ट आवेग होना चाहिए।
वायुश्सित्र इंजन के माध्यम से हवा की एक सतत धारा बहती है। यह हवा संपीड़ित होती है, ईंधन के साथ मिश्रित होती है, प्रज्वलित होती है और निकास गैस के रूप में बाहर निकलती है। प्रतिक्रिया इंजनों में, अधिकांश दहन ऊर्जा (गर्मी) इंजन से निकास गैस के रूप में निकलती है, जो सीधे जोर प्रदान करती है।
- उदाहरण
विशिष्ट वायुश्सित्र इंजनों में समिलित हैं:
- प्रत्यागामी इंजन
- भाप का इंजन
- गैस टर्बाइन
- वायुश्सित्र जेट इंजन
- टर्बोप्रॉप इंजन
- पल्स विस्फोट इंजन
- पल्स जेट
- रामजेट
- स्क्रैमजेट
- तरल वायु चक्र इंजन / प्रतिक्रिया इंजन SABRE
पर्यावरणीय प्रभाव
इंजनों के संचालन का समान्यतः वायु गुणवत्ता और परिवेश ध्वनि प्रदूषण पर नकारात्मक प्रभाव पड़ता है। स्वचालित पावर पद्धति की प्रदूषण पैदा करने वाली विशेषताओं पर जोर दिया जा रहा है। इसने वैकल्पिक ऊर्जा स्रोतों और आंतरिक-दहन इंजन शोधन में नई रुचि पैदा की है। हालांकि कुछ सीमित-उत्पादन वाली बैटरी चालित विद्युतीय वाहन सामने आए हैं, लेकिन लागत और परिचालन विशेषताओं के कारण वे प्रतिस्पर्धी साबित नहीं हुए हैं।[citation needed] 21वीं सदी में स्वचालित वाहन मालिकों के बीच डीजल इंजन की लोकप्रियता बढ़ती जा रही है। हालांकि, उत्सर्जन प्रदर्शन में सुधार के लिए अपने नए उत्सर्जन-नियंत्रण उपकरणों के साथ गैसोलीन इंजन और डीजल इंजन को अभी तक महत्वपूर्ण चुनौती नहीं दी गई है।[citation needed] कई निर्माताओं ने संकर इंजन पेश किए हैं, जिनमें मुख्य रूप से एक विद्युतीय प्रेरक और एक बड़े बैटरी बैंक के साथ मिलकर एक छोटा गैसोलीन इंजन समिलित है, ये उनकी पर्यावरण जागरूकता के कारण एक लोकप्रिय विकल्प बनने लगे हैं।
वायु गुणवत्ता
स्पार्क प्रज्वलन इंजन से निकलने वाली गैस में निम्न समिलित हैं: नाइट्रोजन 70 से 75% (मात्रा के अनुसार), जल वाष्प 10 से 12%, कार्बन डाईऑक्साइड 10 से 13.5%, हाइड्रोजन 0.5 से 2%, ऑक्सीजन 0.2 से 2%, कार्बन मोनोआक्साइड : 0.1 से 6%, बिना जले हाइड्रोकार्बन और आंशिक ऑक्सीकरण उत्पाद (जैसे एल्डिहाइड) 0.5 से 1%, नाइट्रोजन मोनोऑक्साइड 0.01 से 0.4%, नाइट्रस ऑक्साइड <100 ppm, सल्फर डाइऑक्साइड 15 से 60 ppm, अन्य यौगिकों के निशान जैसे कि ईंधन योजक और स्नेहक, हलोजन और धात्विक यौगिक, और अन्य कण भी।[22] कार्बन मोनोऑक्साइड अत्यधिक विषैला होता है, और कार्बन मोनोऑक्साइड विषाक्तता पैदा कर सकता है, इसलिए सीमित स्थान में गैस के किसी भी निर्माण से बचना महत्वपूर्ण है। उत्प्रेरक परिवर्तक जहरीले उत्सर्जन को कम कर सकते हैं, लेकिन उन्हें खत्म नहीं कर सकते। इसके अतिरिक्त, आधुनिक औद्योगिक दुनिया में इंजनों के व्यापक उपयोग से उत्पन्न ग्रीनहाउस गैस उत्सर्जन, मुख्य रूप से कार्बन डाइऑक्साइड, वैश्विक ग्रीनहाउस प्रभाव में योगदान दे रहा है - ग्लोबल वार्मिंग के संबंध में एक प्राथमिक चिंता।
गैर दहन ताप इंजन
कुछ इंजन गैर-दहनशील प्रक्रियाओं से गर्मी को यांत्रिक कार्यों में परिवर्तित करते हैं, उदाहरण के लिए एक परमाणु ऊर्जा संयंत्र भाप का उत्पादन करने के लिए परमाणु प्रतिक्रिया से गर्मी का उपयोग करता है और भाप इंजन चलाता है, या प्रक्षेपात्र इंजन में गैस टरबाइन को हाइड्रोजन पेरोक्साइड को विघटित करके चलाया जा सकता है। विभिन्न ऊर्जा स्रोत के अतिरिक्त, इंजन को प्रायः आंतरिक या बाहरी दहन इंजन के समान ही अभियन्ता किया जाता है।
गैर-दहनशील इंजनों के एक अन्य समूह में तापध्वनिक उष्म इंजन (कभी-कभी TA इंजन कहा जाता है) समिलित होते हैं जो तापध्वनिक उपकरण होते हैं जो गर्मी को एक स्थान से दूसरे स्थान पर पंप करने के लिए उच्च-आयाम ध्वनि तरंगों का उपयोग करते हैं, या इसके विपरीत उच्च-आयाम ध्वनि तरंगों को प्रेरित करने के लिए गर्मी के अंतर का उपयोग करते हैं। सामान्यतः, तापध्वनिक इंजनों को स्थायी तरंग और यात्रा तरंग उपकरणों में विभाजित किया जा सकता है।[23]
स्टर्लिंग इंजन गैर-दहनशील ताप इंजन का दूसरा रूप हो सकता है। गर्मी को काम में बदलने के लिए वे स्टर्लिंग ऊष्मागतिक चक्र का उपयोग करते हैं। एक उदाहरण अल्फा प्रकार का स्टर्लिंग इंजन है, जिससे गैस एक गर्म सिलेंडर और एक ठंडे सिलेंडर के बीच एक ऋण संग्राहक के माध्यम से प्रवाहित होती है, जो 90° चरण से बाहर घूमने वाले मुसली से जुड़े होते हैं। गैस गर्म सिलेंडर पर गर्मी प्राप्त करती है और क्रैंकशाफ्ट को घुमाने वाले मुसली को चलाते हुए फैलती है। ऋण संग्राहक के माध्यम से विस्तार और प्रवाहित होने के बाद, गैस ठंडे सिलेंडर में गर्मी को बहिष्कृत कर देती है और दबाव में आने वाली गिरावट दूसरे (विस्थापन) मुसली द्वारा इसके संपीड़न की ओर ले जाती है, जो इसे गर्म सिलेंडर पर वापस जाने के लिए मजबूर करती है।[24]
गैर-थर्मल रासायनिक रूप से संचालित प्रेरक
गैर-तापीय प्रेरक्स समान्यतः एक रासायनिक प्रतिक्रिया द्वारा संचालित होते हैं, लेकिन उष्म इंजन नहीं होते हैं। उदाहरणों में समिलित:
- आणविक प्रेरक - जीवित चीजों में पाई जाने वाली प्रेरकें
- कृत्रिम आणविक प्रेरक।
विद्युतीय प्रेरक
एक विद्युत प्रेरक यांत्रिक ऊर्जा का उत्पादन करने के लिए विद्युत ऊर्जा का उपयोग करती है, समान्यतः चुंबकीय क्षेत्र और विद्युत कंडक्टर के संपर्क के माध्यम से। विपरीत प्रक्रिया, यांत्रिक ऊर्जा से विद्युत ऊर्जा का उत्पादन, विद्युत जनित्र या डाइनेमो द्वारा पूरा किया जाता है। वाहनों में उपयोग होने वाली कर्षण प्रेरक प्रायः दोनों काम करती हैं। विद्युतीय ऊर्जा को जनित्र के रूप में और इसके विपरीत चलाया जा सकता है, हालांकि यह हमेशा व्यावहारिक नहीं होता है।
विद्युतीय प्रेरक्स सर्वव्यापी हैं, औद्योगिक पंखे, ब्लोअर और पंप, यंत्र, घरेलू उपकरण, बिजली उपकरण जैसे विविध अनुप्रयोगों में पाए जा रहे हैं। वे प्रत्यक्ष धारा (उदाहरण के लिए एक बैटरी संचालित सुवाह्य उपकरण या प्रेरक वाहन) या एक केंद्रीय विद्युत वितरण ग्रिड से वैकल्पिक धारा द्वारा संचालित हो सकते है। सबसे छोटे प्रेरकें विद्युतीय कलाई घड़ी में पाई जा सकती हैं। अत्यधिक मानकीकृत आयामों और विशेषताओं के मध्यम आकार के प्रेरक्स औद्योगिक उपयोगों के लिए सुविधाजनक यांत्रिक शक्ति प्रदान करते हैं। सबसे बड़े विद्युतीय प्रेरक्स का उपयोग बड़े जहाजों के प्रणोदन के लिए किया जाता है, और पाइपलाइन संपीडक जैसे उद्देश्यों के लिए, हजारों वाट (यूनिट) में श्रेणि निर्धारण के साथ। विद्युत प्रेरकों को विद्युत शक्ति के स्रोत, उनके आंतरिक निर्माण और उनके अनुप्रयोग द्वारा वर्गीकृत किया जा सकता है।
विद्युत धारा और चुंबकीय क्षेत्र की परस्पर क्रियाओं द्वारा यांत्रिक बल के उत्पादन का भौतिक सिद्धांत 1821 के आरंभ में ही जाना जाता था। बढ़ती दक्षता वाली विद्युत प्रेरकों का निर्माण 19वीं शताब्दी के बीच बढ़ती दक्षता के विद्युतीय प्रेरक्स का निर्माण किया गया था, लेकिन बड़े मापदंड पर विद्युत प्रेरकों के व्यावसायिक उपयोग के लिए कुशल विद्युत जनित्र और विद्युत वितरण नेटवर्क की आवश्यकता थी।
प्रेरकों से विद्युत ऊर्जा की खपत और उनसे जुड़े कार्बन पदचिह्न को कम करने के लिए, कई देशों में विभिन्न नियामक प्राधिकरणों ने उच्च दक्षता वाली विद्युतीय प्रेरकों के निर्माण और उपयोग को प्रोत्साहित करने के लिए कानून प्रस्तुत और कार्यान्वित किए हैं। एक अच्छी तरह से प्रारुपण की गई प्रेरक अपनी निविष्ट ऊर्जा का 90% से अधिक दशकों तक उपयोगी शक्ति में परिवर्तित कर सकती है।[25] जब एक प्रेरक की दक्षता कुछ प्रतिशत अंकों से भी बढ़ जाती है, तो किलोवाट घंटे (और इसलिए लागत में) में बचत बहुत अधिक होती है। एक विशिष्ट औद्योगिक प्रेरण प्रेरक की विद्युत ऊर्जा दक्षता में सुधार किया जा सकता है: 1) स्थिरक वाइंडिंग्स में बिजली के नुकसान को कम करना (उदाहरण के लिए, विद्युत कंडक्टर के क्रॉस अनुभागीय क्षेत्र को बढ़ाकर, घुमावदार तकनीक में सुधार करके, और उच्च विद्युत चालकता वाली सामग्री का उपयोग करके), जैसे तांबा), 2) घूर्णक वक्र में विद्युत नुकसान को कम करना (उदाहरण के लिए, उच्च विद्युत चालकता वाली सामग्री का उपयोग करके, जैसे तांबा), 3) बेहतर गुणवत्ता वाले चुंबकीय इस्पात का उपयोग करके चुंबकीय नुकसान को कम करना , 4) प्रेरकों के वायुगतिकी में सुधार करना ताकि यांत्रिक वायु घर्षण नुकसान को कम किया जा सके, 5) घर्षण नुकसान को कम करने के लिए व्यवहार (यांत्रिक) में सुधार किया जा सके, और 6) विनिर्माण उत्पादन सहिष्णुता को कम किया जा सके। इस विषय पर आगे की चर्चा के लिए, अधिमूल्य दक्षता देखें।)
परिपाटी के अनुसार, विद्युतीय इंजन एक विद्युतीय प्रेरक के स्थान पर एक घूर्णक (बिजली) संचलनशील को संदर्भित करता है।
शारीरिक रूप से संचालित प्रेरक
कुछ प्रेरक संभावित या गतिज ऊर्जा द्वारा संचालित होते हैं, उदाहरण के लिए कुछ रज्जुगुरुत्वाकर्षण विमान ने चलते हुए पानी या चट्टानों से ऊर्जा का उपयोग किया है, और कुछ घड़ियों का वजन गुरुत्वाकर्षण के अंतर्गत आता है। संभावित ऊर्जा के अन्य रूपों में संपीड़ित गैसें (जैसे वायुचालित प्रेरक्स), स्प्रिंग्स और रबर बैंड समिलित हैं।
ऐतिहासिक सैन्य सीज इंजनों में बड़े कैटापुल्ट्स, ट्रेब्यूचेट्स और (कुछ सीमा तक) बैटरिंग मेढ़े समिलित थे जो संभावित ऊर्जा द्वारा संचालित थे।
वायुचालित प्रेरक
वायुचालित प्रेरक एक यंत्र है जो संभावित ऊर्जा को संपीड़ित हवा के रूप में यांत्रिक कार्य में परिवर्तित करती है। वायुचालित प्रेरक समान्यतः संपीड़ित हवा को रैखिक या रोटरी गति के माध्यम से यांत्रिक कार्य में परिवर्तित करते हैं। रैखिक गति या तो एक मध्यपट या मुसली प्रवर्तक से आ सकती है। वायुचालित प्रेरक को हाथ से चलने वाले उपकरण उद्योग में व्यापक सफलता मिली है और परिवहन उद्योग में उनके उपयोग का विस्तार करने के लिए लगातार प्रयास किए जा रहे हैं। हालांकि, परिवहन उद्योग में एक व्यवहार्य विकल्प के रूप में देखे जाने से पहले वायुचालित प्रेरक को दक्षता की कमियों को दूर करना होगा।
हाइड्रोलिक प्रेरक
एक हाइड्रोलिक प्रेरक दबाव वाले तरल से अपनी शक्ति प्राप्त करती है। इस प्रकार के इंजन का उपयोग भारी भार और यंत्ररी को चलाने के लिए किया जाता है।[26]
संकर
कुछ प्रेरक इकाइयों में ऊर्जा के कई स्रोत हो सकते हैं। उदाहरण के लिए, एक प्लगिनीय संकर विद्युतीय वाहन की विद्युतीय प्रेरक एक आंतरिक दहन इंजन और एक जनित्र के माध्यम से बैटरी या जीवाश्म ईंधन निविष्ट से बिजली का स्रोत हो सकती है।
प्रदर्शन
इंजन के प्रदर्शन के आकलन में निम्नलिखित का उपयोग किया जाता है।
गति
गति मुसली इंजन में क्रैंकशाफ्ट क्रमावर्न और संपीड़क/टरबाइन घूर्णक और विद्युतीय प्रेरक घूर्णक की गति को संदर्भित करता है। इसे प्रति मिनिट चक्र (rpm) में मापा जाता है।
जोर
जोर एक हवाई जहाज पर उसके प्रेरक या जेट इंजन के माध्यम से गुजरने वाली हवा को तेज करने के परिणामस्वरूप लगाया गया बल है। यह एक जहाज पर लगने वाला बल भी है, जो इसके प्रेरक द्वारा इसके माध्यम से गुजरने वाले पानी को तेज करने के परिणामस्वरूप होता है।
आघूर्ण बल
आघूर्ण बल एक शाफ्ट पर एक परिवर्तन क्षण है और इसकी गणना शाफ्ट से इसकी दूरी के कारण पल पैदा करने वाले बल को गुणा करके की जाती है।
शक्ति
शक्ति (भौतिकी) वह माप है कि काम कितनी तेजी से किया जाता है।
दक्षता
दक्षता इस बात का माप है कि बिजली उत्पादन में कितना ईंधन बर्बाद होता है।
ध्वनि स्तर
वाहन का शोर मुख्य रूप से इंजन से कम वाहन की गति और टायरों से और उच्च गति पर वाहन के पीछे बहने वाली हवा से होता है।[27] आंतरिक दहन इंजन की तुलना में विद्युतीय प्रेरक्स शांत हैं। जोर-उत्पादक इंजन, जैसे कि टर्बोफैन, टर्बोजेट और प्रक्षेपात्र उनके जोर-उत्पादक, उच्च-वेग निकास धाराओं के आसपास की स्थिर हवा के साथ बातचीत करने के प्रकार के कारण सबसे बड़ी मात्रा में शोर का उत्सर्जन करते हैं।
शोर में कमी प्रौद्योगिकी में गैसोलीन और डीजल इंजनों पर सेवन और निकास पद्धति गुलबंद (रवशामक) और टर्बोफैन सिरों में शोर क्षीणन लाइनर समिलित हैं।
उपयोग द्वारा इंजन
विशेष रूप से उल्लेखनीय प्रकार के इंजनों में समिलित हैं:
- विमान का इंजन
- स्वचालित वाहन इंजन
- प्रतिरूप इंजन
- मोटरसाइकिल का इंजन
- समुद्री प्रणोदन इंजन जैसे जहाज़ के बाहर मोटर
- गैर-सड़क इंजन वह शब्द है जिसका उपयोग उन इंजनों को परिभाषित करने के लिए किया जाता है जो सड़क मार्ग पर वाहनों द्वारा उपयोग नहीं किए जाते हैं।
- रेलवे गतिशील इंजन
- अंतरिक्ष यान प्रणोदन इंजन जैसे प्रक्षेपात्र इंजन
- कर्षण इंजन
यह भी देखें
- विमान का इंजन
- ऑटोमोबाइल इंजन प्रतिस्थापन
- विद्युत मोटर
- इंजन ठंडा करना
- इंजन स्वैप
- पेट्रोल इंजन
- एचसीसीआई
- हेसलमैन इंजन
- हॉट बल्ब इंजन
- आईआरआईएस इंजन
- माइक्रोमोटर
- कशाभिका - कुछ सूक्ष्मजीवों द्वारा उपयोग की जाने वाली जैविक मोटर
- नैनोमोटर
- आणविक मोटर
- सिंथेटिक आणविक मोटर
- एडियाबेटिक क्वांटम मोटर
- बहुईंधन
- प्रतिक्रिया इंजन
- सॉलिड-स्टेट इंजन
- ताप इंजन प्रौद्योगिकी की समयरेखा
- मोटर और इंजन प्रौद्योगिकी की समयरेखा
संदर्भ
उद्धरण
- ↑ "मोटर". Dictionary.reference.com. Retrieved 2011-05-09.
एक व्यक्ति या वस्तु जो गति प्रदान करती है, esp। एक युक्ति, एक भाप इंजन के रूप में, जो किसी स्रोत से ऊर्जा प्राप्त करती है और इसे ड्राइविंग मशीनरी में उपयोग करने के लिए संशोधित करती है।
- ↑ Dictionary.com: (World heritage) "3. any device that converts another form of energy into mechanical energy so as to produce motion"
- ↑ "World Wide Words: Engine and Motor". World Wide Words (in British English). Retrieved 2020-04-30.
- ↑ "इंजन". Collins English Dictionary. Retrieved 2012-09-03.
- ↑ Dictionary definitions:
- "motor". Oxford English Dictionary (Online ed.). Oxford University Press. (Subscription or participating institution membership required.)
- "engine". Oxford English Dictionary (Online ed.). Oxford University Press. (Subscription or participating institution membership required.)
- "motor". Merriam-Webster Dictionary.
- "engine". Merriam-Webster Dictionary.
- "motor". Dictionary.com Unabridged (Online). n.d.
- "engine". Dictionary.com Unabridged (Online). n.d.
- ↑ "Engine", McGraw-Hill Concise Encyclopedia of Science and Technology, Third Edition, Sybil P. Parker, ed. McGraw-Hill, Inc., 1994, p. 714.
- ↑ Quinion, Michael. "World Wide Words: Engine and Motor". Worldwide Words. Retrieved 2018-02-03.
- ↑ "Prime mover", McGraw-Hill Concise Encyclopedia of Science and Technology, Third Edition, Sybil P. Parker, ed. McGraw-Hill, Inc., 1994, p. 1498.
- ↑ Press, AIP, Associated (2007). स्टाइलबुक और मीडिया लॉ पर ब्रीफिंग (42nd ed.). New York: Basic Books. p. 84. ISBN 978-0-465-00489-8.
{{cite book}}: CS1 maint: multiple names: authors list (link) - ↑ Hassan, Ahmad Y. इस्लामिक इंजीनियरिंग का प्रसारण. Archived from the original on 2008-02-18.
{{cite book}}:|work=ignored (help) - ↑ Hassan, Ahmad Y. (1976). Taqi al-Din and Arabic Mechanical Engineering, pp. 34–35. Institute for the History of Arabic Science, University of Aleppo.
- ↑ "Power plant engineering". P.K. Nag (2002). Tata McGraw-Hill. p. 432. ISBN 0-07-043599-5
- ↑ "खोज के एट्रिब्यूशन के लिए आवश्यक दस्तावेज".
A later request was presented to the Patent Office of the Reign of Piedmont, under No. 700 of Volume VII of that Office. The text of this patent request is not available, only a photo of the table containing a drawing of the engine. This may have been either a new patent or an extension of a patent granted three days earlier, on 30 December 1857, at Turin.
- ↑ Victor Albert Walter Hillier, Peter Coombes – Hillier's Fundamentals of Motor Vehicle Technology, Book 1 Nelson Thornes, 2004 ISBN 0-7487-8082-3 [Retrieved 2016-06-16]
- ↑ 15.0 15.1 Harrison, Roy M. (2001), Pollution: Causes, Effects and Control (4th ed.), Royal Society of Chemistry, ISBN 978-0-85404-621-8
- ↑ McKnight, Bill (August 2017). "विद्युत सहायता प्राप्त थर्मोस्टेट". MOTOR (in English). Retrieved 2021-03-13.
{{cite web}}: CS1 maint: url-status (link) - ↑ Proctor II, Charles Lafayette. "आंतरिक जलन ऊजाएं". Encyclopædia Britannica Online. Retrieved 2011-05-09.
- ↑ "आंतरिक दहन इंजन". Answers.com. Retrieved 2011-05-09.
- ↑ "Columbia encyclopedia: Internal combustion engine". Inventors.about.com. Archived from the original on 2012-07-21. Retrieved 2011-05-09.
- ↑ "आंतरिक दहन इंजन". Infoplease.com. 2007. Retrieved 2011-05-09.
- ↑ "बाहरी दहन". Merriam-Webster Online Dictionary. 2010-08-13. Retrieved 2011-05-09.
- ↑ Paul Degobert, Society of Automotive Engineers (1995), Automobiles and Pollution
- ↑ Emam, Mahmoud (2013). स्टैंडिंग-वेव थर्मोकॉस्टिक इंजन पर प्रायोगिक जांच, M.Sc. थीसिस. Egypt: Cairo University. Retrieved 2013-09-26.
- ↑ Bataineh, Khaled M. (2018). "अल्फा-टाइप स्टर्लिंग इंजन का न्यूमेरिकल थर्मोडायनामिक मॉडल". Case Studies in Thermal Engineering. 12: 104–116. doi:10.1016/j.csite.2018.03.010. ISSN 2214-157X.
- ↑ "Motors". American Council for an Energy-Efficient Economy. http://www.aceee.org/topics/motors
- ↑ "Howstuffworks "Engineering"". Reference.howstuffworks.com. 2006-01-29. Archived from the original on 2009-08-21. Retrieved 2011-05-09.
- ↑ Hogan, C. Michael (September 1973). "राजमार्ग शोर का विश्लेषण". Journal of Water, Air, and Soil Pollution. 2 (3): 387–92. Bibcode:1973WASP....2..387H. doi:10.1007/BF00159677. ISSN 0049-6979. S2CID 109914430.
स्रोत
- जे.जी. लैंडल्स, प्राचीन दुनिया में इंजीनियरिंग, ISBN 0-520-04127-5