ब्राउनियन गति: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 63: Line 63:
[[File:Diffusion of Brownian particles.svg|thumb|300px|ब्राउनियन कणों के प्रसार की विशिष्ट घंटी के आकार की वक्र। वितरण [[डिराक डेल्टा समारोह]] के रूप में प्रारंभहोता है, यह दर्शाता है कि सभी कण समय टी = 0 पर मूल में स्थित हैं। जैसे ही टी बढ़ता है, वितरण समतल हो जाता है (चूँकि  घंटी के आकार का रहता है),और अंत में समय की सीमा में समान हो जाता है अनंत की ओर हो जाता है।]]आइंस्टीन के विचार का प्रथम भाग यह निर्धारित करना था कि ब्राउनियन कण निश्चित समय अंतराल में कितनी दूर तक यात्रा करता है।<ref name="Einstein1905"/>शास्त्रीय यांत्रिकी इस दूरी को निर्धारित करने में असमर्थ है क्योंकि भारी संख्या में बमबारी से ब्राउनियन कण निकलेगा, सामान्यतः  प्रति सेकंड 10<sup>14</sup> के क्रम में निकलेगा।<ref name=Feynman-41/>
[[File:Diffusion of Brownian particles.svg|thumb|300px|ब्राउनियन कणों के प्रसार की विशिष्ट घंटी के आकार की वक्र। वितरण [[डिराक डेल्टा समारोह]] के रूप में प्रारंभहोता है, यह दर्शाता है कि सभी कण समय टी = 0 पर मूल में स्थित हैं। जैसे ही टी बढ़ता है, वितरण समतल हो जाता है (चूँकि  घंटी के आकार का रहता है),और अंत में समय की सीमा में समान हो जाता है अनंत की ओर हो जाता है।]]आइंस्टीन के विचार का प्रथम भाग यह निर्धारित करना था कि ब्राउनियन कण निश्चित समय अंतराल में कितनी दूर तक यात्रा करता है।<ref name="Einstein1905"/>शास्त्रीय यांत्रिकी इस दूरी को निर्धारित करने में असमर्थ है क्योंकि भारी संख्या में बमबारी से ब्राउनियन कण निकलेगा, सामान्यतः  प्रति सेकंड 10<sup>14</sup> के क्रम में निकलेगा।<ref name=Feynman-41/>


उन्होंने समय के साथ कण की स्थिति में वृद्धि पर विचार किया <math>\tau</math> आयामी (x) स्थान में (चुने गए निर्देशांक के साथ जिससे कि मूल कण की प्रारंभिक स्थिति में हो) यादृच्छिक चर के रूप में (<math>\Delta</math>) कुछ संभाव्यता घनत्व समारोह के साथ <math>\varphi(\Delta)</math> (अर्थात, <math>\varphi(\Delta) </math> परिमाण की छलांग के लिए प्रायिकता घनत्व है <math>\Delta</math>, अर्थात , कण की प्रायिकता घनत्व से इसकी स्थिति में वृद्धि <math>x</math> को <math>x+\Delta</math> समय अंतराल में <math>\tau</math>). इसके अतिरिक्त, कण संख्या के संरक्षण को मानते हुए, उन्होंने [[संख्या घनत्व]] का विस्तार किया <math>\rho(x,t+\tau)</math> (चारों ओर प्रति इकाई आयतन कणों की संख्या <math>x</math>) समय पर <math>t + \tau</math> [[टेलर श्रृंखला]] में,
उन्होंने समय के साथ कण की स्थिति में वृद्धि पर विचार किया <math>\tau</math> आयामी (x) स्थान में (चयन किये गए निर्देशांक के साथ जिससे कि मूल कण की प्रारंभिक स्थिति में हो) यादृच्छिक चर के रूप में (<math>\Delta</math>) कुछ संभाव्यता घनत्व फंक्शन के साथ <math>\varphi(\Delta)</math> (अर्थात, <math>\varphi(\Delta) </math> परिमाण के लिए प्रायिकता घनत्व <math>\Delta</math> है, अर्थात, कण की प्रायिकता घनत्व से इसकी स्थिति में वृद्धि <math>x</math> को <math>x+\Delta</math> समय अंतराल में <math>\tau</math>). इसके अतिरिक्त, कण संख्या के संरक्षण को मानते हुए, उन्होंने [[संख्या घनत्व]] का विस्तार किया <math>\rho(x,t+\tau)</math> (चारों ओर प्रति इकाई आयतन कणों की संख्या <math>x</math>) समय पर <math>t + \tau</math> [[टेलर श्रृंखला]] में,


<math display="block">\begin{align}
<math display="block">\begin{align}

Revision as of 14:12, 13 March 2023

एजी (111) सतह पर सिल्वर एडटॉम का 2-आयामी यादृच्छिक चलना[1]
बड़े कण की ब्राउनियन गति का अनुकरण, धूल के कण के समान, जो छोटे कणों के बड़े समूह से टकराता है, गैस के अणुओं के समान होता है, जो भिन्न-भिन्न यादृच्छिक दिशाओं में विभिन्न वेगों के साथ चलते हैं।

ब्राउनियन गति, या पेडेसिस (से Ancient Greek: πήδησις /pɛ̌ːdɛːsis/ "लीपिंग"), माध्यम (तरल या गैस) में निलंबित कणों की यादृच्छिक गति है।[2]

गति के इस प्रारूप में सामान्यतः द्रव उप-डोमेन के अंदर कण की स्थिति में यादृच्छिक उतार-चढ़ाव होते हैं, इसके पश्चात दूसरे उप-डोमेन में स्थानांतरण होता है। प्रत्येक स्थानांतरण के पश्चात नई बंद मात्रा में अधिक उतार-चढ़ाव होता है। यह प्रारूप किसी दिए गए तापमान द्वारा परिभाषित थर्मल संतुलन पर तरल पदार्थ का वर्णन करता है। ऐसे तरल पदार्थ के अंदर, प्रवाह की कोई वरीयता दिशा उपस्थित नहीं होती है (जैसा कि परिवहन घटना में होता है)। अधिक विशेष रूप से, तरल पदार्थ की समग्र रैखिक गति और कोणीय गति समय के साथ शून्य रहती है। आणविक ब्राउनियन गतियों की गतिज ऊर्जा, आणविक घुमावों और कंपनों के साथ मिलकर, तरल पदार्थ की आंतरिक ऊर्जा (समविभाजन प्रमेय) के कैलोरी घटक के समान होती है।

इस गति का नाम वनस्पतिशास्त्री रॉबर्ट ब्राउन (वनस्पतिशास्त्री, जन्म 1773) के नाम पर रखा गया है, जिन्होंने पहली बार 1827 में इस घटना का वर्णन किया था, जब उन्होंने पानी में डूबे पौधे सुंदर क्लार्किया के पराग पर माइक्रोस्कोप से देखा। 1905 में, लगभग अस्सी वर्ष पश्चात, सैद्धांतिक भौतिक विज्ञानी अल्बर्ट आइंस्टीन ने Über die von dermolkularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten Susdierten Teilchen को प्रकाशित किया, जहां उन्होंने पराग कणों की गति को भिन्न-भिन्न पानी के अणुओं द्वारा स्थानांतरित किए जाने के रूप में प्रतिरूपित किया, जिससे उनका प्रथम प्रमुख वैज्ञानिक योगदानों में से एक था।[3] परमाणु बमबारी के बल की दिशा निरंतर परिवर्तित हो रही है, और भिन्न-भिन्न समय पर कण एक ओर से दूसरी ओर अधिक टकराते हैं, जिससे गति की यादृच्छिक प्रकृति प्रतीत होती है। ब्राउनियन गति की इस व्याख्या ने परमाणु और अणुओं के अस्तित्व के ठोस प्रमाण के रूप में कार्य किया और 1908 में जीन-बैप्टिस्ट पेरिन द्वारा प्रायोगिक रूप से इसे और सत्यापित किया गया। पेरिन को पदार्थ की असतत संरचना पर उनके कार्य के लिए 1926 में भौतिकी में नोबेल पुरस्कार से सम्मानित किया गया था।[4]

ब्राउनियन प्रारूप उत्पन्न करने वाले अनेक-निकाय इंटरैक्शन को प्रत्येक सम्मिलित अणु के लिए मॉडल लेखांकन द्वारा समाधान नहीं किया जा सकता है। परिणामस्वरूप, इसका वर्णन करने के लिए आणविक आबादी पर प्रस्तावित होने वाले संभाव्य मॉडल को नियोजित किया जा सकता है।[5] सांख्यिकीय यांत्रिकी के दो ऐसे मॉडल, आइंस्टीन और स्मोलुचोव्स्की के कारण, नीचे प्रस्तुत किए गए हैं। मॉडलों का और शुद्ध संभाव्य वर्ग स्टोकेस्टिक प्रक्रिया मॉडल का वर्ग है। सरल और अधिक जटिल स्टोकास्टिक प्रक्रियाओं दोनों के अनुक्रम उपस्थित हैं जो ब्राउनियन गति के लिए अभिसरण (फलन की सीमा में) करते हैं (यादृच्छिक चलना और डोंस्कर प्रमेय देखें)।[6][7]

इतिहास

जीन बैप्टिस्ट पेरिन, लेस एटम्स की पुस्तक से पुन: प्रस्तुत, माइक्रोस्कोप के नीचे देखे गए त्रिज्या 0.53 माइक्रोमीटर के कोलाइडल कणों की गति के तीन अनुरेखण प्रदर्शित किए गए हैं। प्रत्येक 30 सेकंड में क्रमिक स्थितियाँ सीधी रेखा खंडों से जुड़ती हैं (जाली का आकार 3.2 माइक्रोमीटर है)।[8]

रोमन दार्शनिक-कवि ल्यूक्रेटियस की वैज्ञानिक कविता "ऑन द नेचर ऑफ थिंग्स" (सी. 60 ई.पू.) में पुस्तक II के पद 113-140 में धूल के कणों की गति का उल्लेखनीय वर्णन है। वह इसे परमाणुओं के अस्तित्व के प्रमाण के रूप में उपयोग करता है:

निरीक्षण करें कि क्या होता है जब सूर्य की किरणें किसी भवन में प्रवेश करती हैं और उसके छायादार स्थानों पर प्रकाश डालती हैं। आप बहुत से छोटे कणों को अनेक प्रकार से मिश्रित होते हुए देखेंगे, उनका नाचना पदार्थ की अंतर्निहित गतिविधियों का वास्तविक संकेत है जो हमारी दृष्टि से छिपा हुआ है, यह उन परमाणुओं से उत्पन्न होता है जो स्वयं चलते हैं [अर्थात, अनायास ]। फिर वे छोटे यौगिक पिंड जो परमाणुओं के आवेग से अल्प से अल्प दूर होते हैं, उनके अदृश्य प्रहारों के प्रभाव से और थोड़े बड़े पिंडों के परिवर्तित तोप के प्रभाव से गति में आ जाते हैं। तो गति परमाणुओं से ऊपर उठती है और धीरे-धीरे हमारी इंद्रियों के स्तर तक उभरती है जिससे कि वे शरीर गति में हों जिन्हें हम सूर्य की किरणों में देखते हैं, जो अदृश्य रहने वाले प्रहारों से चलते हैं।

चूँकि धूल के कणों की आपस में टकराने, हिलने-डुलने की गति मुख्य रूप से हवा की धाराओं के कारण होती है, किन्तु छोटे धूल कणों की चमकदार, हिलती-डुलती गति मुख्य रूप से सच्चे ब्राउनियन गतिकी के कारण होती है; ल्युक्रेटियस त्रुटिपूर्ण उदाहरण द्वारा ब्राउनियन आंदोलन का प्रत्येक प्रकार से वर्णन और व्याख्या करता है।[9]

जबकि जान इंजेनहौज ने 1785 में इथेनॉल की सतह पर कोयले की धूल के कणों की अनियमित गति का वर्णन किया, इस घटना के शोध का श्रेय प्रायः 1827 में वनस्पतिशास्त्री रॉबर्ट ब्राउन (वनस्पतिशास्त्री, जन्म 1773) को दिया जाता है। ब्राउन क्लार्किया पौधे के पराग कणों का अध्ययन कर रहे थे। पल्चेला को सूक्ष्मदर्शी के नीचे पानी में निलंबित कर दिया गया जब उन्होंने सूक्ष्म कणों को देखा, जो पराग कणों द्वारा निकाले गए थे, झटकेदार गति को परिणाम दे रहे थे। अकार्बनिक पदार्थ के कणों के साथ प्रयोग को दोहराकर वह इस बात से इंकार करने में सक्षम था कि गति जीवन से संबंधित थी, चूँकि इसकी उत्पत्ति की व्याख्या अभी शेष थी।

ब्राउनियन गति के पीछे के गणित का वर्णन करने वाले प्रथम व्यक्ति थे थोरवाल्ड एन. थिएले ने 1880 में प्रकाशित अल्प से अल्प वर्गों की विधि पेपर में थी। इसके पश्चात स्वतंत्र रूप से 1900 में लुइस बैचलर ने अपनी पीएचडी थीसिस "द थ्योरी ऑफ स्पेकुलेशन" में स्वतंत्र रूप से अनुसरण किया, जिसमें उन्होंने प्रस्तुत किया स्टॉक और विकल्प बाजारों का स्टोकेस्टिक विश्लेषण प्रस्तुत किया। शेयर बाजार के ब्राउनियन गति मॉडल को प्रायः उद्धृत किया जाता है, किन्तु बेनोइट मंडेलब्रॉट ने शेयर की व्यय में उतार-चढ़ाव के लिए इसकी प्रयोज्यता को आंशिक रूप से बहिष्कृत कर दिया क्योंकि ये बंद हैं।[10]

अल्बर्ट आइंस्टीन (ऊष्मा के आणविक-गतिज सिद्धांत द्वारा आवश्यक तरल पदार्थ में निलंबित कणों की गति पर) और मैरियन स्मोलुचोव्स्की (1906) ने भौतिकविदों के ध्यान में समस्या का समाधान किया, और इसे के रूप में प्रस्तुत किया। अप्रत्यक्ष रूप से परमाणुओं और अणुओं के अस्तित्व की पुष्टि करने की विधि के रूप में प्रस्तुत किया। ब्राउनियन गति का वर्णन करने वाले उनके समीकरण अंत में 1908 में जीन बैप्टिस्ट पेरिन के प्रायोगिक कार्य द्वारा सत्यापित किए गए।

सांख्यिकीय यांत्रिकी सिद्धांत

आइंस्टीन का सिद्धांत

आइंस्टीन के सिद्धांत के दो भाग हैं: प्रथम भाग में ब्राउनियन कणों के लिए प्रसार समीकरण प्रस्तुत करना सम्मिलित है, जिसमें प्रसार गुणांक ब्राउनियन कण के औसत वर्ग विस्थापन से संबंधित है, जबकि दूसरा भाग प्रसार गुणांक से संबंधित है,जो मापने योग्य भौतिक मात्रा के लिए है।[11] इस प्रकार आइंस्टीन परमाणुओं के आकार को निर्धारित करने में सक्षम थे, और गैस के मोल में कितने परमाणु हैं, या ग्राम में कितने आणविक भार हैं।[12] अवोगाद्रो के नियम के अनुसार, यह आयतन सभी आदर्श गैसों के लिए समान होता है, जो मानक तापमान और दबाव पर 22.414 लीटर होता है। इस आयतन में निहित परमाणुओं की संख्या को अवोगाद्रो संख्या के रूप में संदर्भित किया जाता है, और इस संख्या का निर्धारण परमाणु के द्रव्यमान के ज्ञान के समान है, क्योंकि उत्तरार्द्ध को गैस के द्रव्यमान को अवोगाद्रो नियतांक द्वारा विभाजित करके प्राप्त किया जाता है।

ब्राउनियन कणों के प्रसार की विशिष्ट घंटी के आकार की वक्र। वितरण डिराक डेल्टा समारोह के रूप में प्रारंभहोता है, यह दर्शाता है कि सभी कण समय टी = 0 पर मूल में स्थित हैं। जैसे ही टी बढ़ता है, वितरण समतल हो जाता है (चूँकि घंटी के आकार का रहता है),और अंत में समय की सीमा में समान हो जाता है अनंत की ओर हो जाता है।

आइंस्टीन के विचार का प्रथम भाग यह निर्धारित करना था कि ब्राउनियन कण निश्चित समय अंतराल में कितनी दूर तक यात्रा करता है।[3]शास्त्रीय यांत्रिकी इस दूरी को निर्धारित करने में असमर्थ है क्योंकि भारी संख्या में बमबारी से ब्राउनियन कण निकलेगा, सामान्यतः प्रति सेकंड 1014 के क्रम में निकलेगा।[2]

उन्होंने समय के साथ कण की स्थिति में वृद्धि पर विचार किया आयामी (x) स्थान में (चयन किये गए निर्देशांक के साथ जिससे कि मूल कण की प्रारंभिक स्थिति में हो) यादृच्छिक चर के रूप में () कुछ संभाव्यता घनत्व फंक्शन के साथ (अर्थात, परिमाण के लिए प्रायिकता घनत्व है, अर्थात, कण की प्रायिकता घनत्व से इसकी स्थिति में वृद्धि को समय अंतराल में ). इसके अतिरिक्त, कण संख्या के संरक्षण को मानते हुए, उन्होंने संख्या घनत्व का विस्तार किया (चारों ओर प्रति इकाई आयतन कणों की संख्या ) समय पर टेलर श्रृंखला में,

जहां दूसरी समानता की परिभाषा के अनुसार है, संभाव्यता की परिभाषा के अनुसार प्रथम पद में समाकलन के समान है, और दूसरा और अन्य सम पद (अर्थात् प्रथमऔर अन्य विषम क्षण (गणित)) अंतरिक्ष समरूपता के कारण लुप्त हो जाते हैं। जो बचा है वह निम्नलिखित संबंध को जन्म देता है:

जहां लाप्लासियन के पश्चात गुणांक, विस्थापन की संभावना का दूसरा क्षण , बड़े पैमाने पर प्रसार D के रूप में व्याख्या की जाती है:

पुनः ब्राउनियन कणों का घनत्व ρ बिंदु x पर समय t पर प्रसार समीकरण को संतुष्ट करता है:

यह मानते हुए कि N कण प्रारंभिक समय t = 0 पर मूल से प्रारंभ होते हैं, प्रसार समीकरण का समाधान होता है

यह अभिव्यक्ति (जो माध्य के साथ सामान्य वितरण है और विचरण सामान्यतः ब्राउनियन गति कहा जाता है) आइंस्टीन को पल (गणित) की सीधे गणना करने की अनुमति दी। प्रथम क्षण को लुप्त होते हुए देखा जाता है, जिसका अर्थ है कि ब्राउनियन कण के बाईं ओर जाने की उतनी ही संभावना है जितनी कि दाईं ओर जाने की संभावना है। चूँकि, दूसरा क्षण अन्य-लुप्त है, द्वारा दिया जा रहा है।

यह समीकरण बीता हुआ समय और विसारकता के संदर्भ में माध्य वर्ग विस्थापन को व्यक्त करता है। इस अभिव्यक्ति से आइंस्टीन ने विचार दिया कि ब्राउनियन कण का विस्थापन बीता हुआ समय के समानुपाती नहीं है, जबकि इसके वर्गमूल के समानुपाती है।[11]उनका विचार ब्राउनियन कणों के "संयोजन" से "एकल" ब्राउनियन कण तक वैचारिक स्विच पर आधारित है: हम एक ही पल में कणों की सापेक्ष संख्या के साथ-साथ ब्राउनियन कण को ​​​​एक निश्चित बिंदु तक पहुंचने में लगने वाले समय के विषय में बात कर सकते हैं।[13]

आइंस्टीन के सिद्धांत का दूसरा भाग प्रसार स्थिरांक को शारीरिक रूप से मापने योग्य मात्राओं से संबंधित करता है, जैसे कि निश्चित समय अंतराल में कण का औसत वर्ग विस्थापन होता है। यह परिणाम अवोगाद्रो संख्या के प्रायोगिक निर्धारण और इसलिए अणुओं के आकार को सक्षम बनाता है। आइंस्टीन ने विरोधी बलों के मध्य स्थापित होने वाले गतिशील संतुलन का विश्लेषण किया। उनके विचार की सुंदरता यह है कि अंतिम परिणाम इस विषय पर निर्भर नहीं करता है कि गतिशील संतुलन स्थापित करने में कौन से बल सम्मिलित हैं।

अपने मूल उपचार में, आइंस्टीन ने आसमाटिक दबाव प्रयोग माना, किन्तु अन्य विधियों से भी यही निष्कर्ष निकाला जा सकता है।

उदाहरण के लिए, गुरुत्वाकर्षण क्षेत्र में चिपचिपे द्रव में निलंबित कणों पर विचार करें। यह गुरुत्वाकर्षण कणों को व्यवस्थित करने के लिए किया जाता है, जबकि प्रसार उन्हें समरूप बनाने के लिए कार्य करता है, जिससे उन्हें अल्प सांद्रता वाले क्षेत्रों में ले जाया जाता है। गुरुत्वाकर्षण की क्रिया के अनुसार, कण v = μmg की नीचे की गति प्राप्त करता है, जहाँ m कण का द्रव्यमान है, g गुरुत्वाकर्षण के कारण त्वरण है, और μ द्रव में कण का आइंस्टीन संबंध (काइनेटिक सिद्धांत) है। सर जॉर्ज स्टोक्स, प्रथम बैरोनेट ने दिखाया था कि त्रिज्या r वाले गोलाकार कण के लिए ,गतिशीलता है, जहां η द्रव की गतिशील चिपचिपाहट है। गतिशील संतुलन की स्थिति में, और इज़ोटेर्मल द्रव की परिकल्पना के अनुसार, कणों को बैरोमेट्रिक सूत्र के अनुसार वितरित किया जाता है

जहां ρ - ρo ऊंचाई के अंतर से पृथक किए गए कणों के घनत्व में अंतर है, kB बोल्ट्ज़मैन स्थिरांक है (सार्वभौमिक गैस स्थिरांक, R का अवोगाद्रो स्थिरांक, NA से अनुपात), और T थर्मोडायनामिक तापमान है।

गैंबोगे के कणों के लिए संतुलन वितरण गुरुत्वाकर्षण से प्रभावित होने पर अल्प सांद्रता वाले क्षेत्रों में जाने के लिए कणिकाओं की प्रवृत्ति को दर्शाता है।

गतिशील संतुलन स्थापित होता है क्योंकि जितना अधिक कण गुरुत्वाकर्षण द्वारा नीचे खींचे जाते हैं, कणों की अल्प सांद्रता वाले क्षेत्रों में प्रवास करने की प्रवृत्ति उतनी ही अधिक होती है। फ़्लक्स फ़िक के विसरण के नियमों द्वारा दिया गया है | फ़िक का नियम,

जहां J = ρv, ρ के सूत्र को प्रस्तुत करने पर, हम पाते हैं कि

गतिशील संतुलन की स्थिति में, यह गति भी v = μmg के समान होनी चाहिए। v के लिए दोनों भाव mg के समानुपाती हैं, यह दर्शाता है कि व्युत्पत्ति माने जाने वाले बलों के प्रकार से स्वतंत्र है। इसी प्रकार, परिमाण E के एकसमान विद्युत क्षेत्र में आवेश q के समान आवेशित कणों के लिए तुल्य सूत्र व्युत्पन्न किया जा सकता है, जहाँ mg को विद्युतस्थैतिक बल qE से प्रतिस्थापित किया जाता है। इन दो भावों की समानता करने से mg या qE या ऐसे अन्य बलों से स्वतंत्र विसरणशीलता के लिए आइंस्टीन संबंध उत्पन्न होता है:

यहाँ प्रथम समानता आइंस्टीन के सिद्धांत के प्रथम भाग से आती है, तीसरी समानता बोल्ट्जमैन स्थिरांक की परिभाषा से kB = R / NA के रूप में आती है, और चौथी समानता गतिशीलता के लिए स्टोक्स के सूत्र से आती है। सार्वभौमिक गैस स्थिरांक R, तापमान T, चिपचिपाहट η, और कण त्रिज्या r, के साथ एक समय अंतराल पर माध्य वर्ग विस्थापन को मापकर अवोगाद्रो स्थिरांक NA निर्धारित किया जा सकता है।

आइंस्टीन द्वारा प्रस्तावित गतिशील संतुलन का प्रकार नया नहीं था। यह प्रथमजे जे थॉमसन द्वारा बताया गया था[14] मई 1903 में येल विश्वविद्यालय में अपने व्याख्यान की श्रृंखला में जे. जे. थॉमसन द्वारा पूर्व में यह बताया गया था कि फिक के नियम द्वारा दिए गए सांद्रण प्रवणता द्वारा उत्पन्न वेग और आयनों के गतिमान होने पर आंशिक दबाव की भिन्नता के कारण वेग के मध्य गतिशील संतुलन हमें विधि देता है अवोगाद्रो स्थिरांक का निर्धारण करना जो अणुओं के आकार या आकार के रूप में किसी भी परिकल्पना से स्वतंत्र है, या जिस प्रकार से वे एक दूसरे पर कार्य करते हैं।[14]

प्रसार गुणांक के लिए आइंस्टीन के सूत्र की समान अभिव्यक्ति 1888 में वाल्थर नर्नस्ट द्वारा भी पाई गई थी।[15] जिसमें उन्होंने प्रसार गुणांक को आसमाटिक दबाव के अनुपात के रूप में घर्षण के अनुपात और जिस गति से यह वृद्धि देता है, के रूप में व्यक्त किया। पूर्व को वैन' टी हॉफ के कानून के समान किया गया था जबकि पश्चात वाले को स्टोक्स के कानून द्वारा दिया गया था। वह लिखता है प्रसार गुणांक k' के लिए, जहाँ आसमाटिक दबाव है और k आणविक चिपचिपाहट के लिए घर्षण बल का अनुपात है जिसे वह मानते हैं कि चिपचिपाहट के लिए स्टोक्स के सूत्र द्वारा दिया गया है। आसमाटिक दबाव के लिए आदर्श गैस नियम प्रति इकाई आयतन प्रस्तुत करने पर, सूत्र आइंस्टीन के समान हो जाता है।[16] नर्नस्ट की स्थिति में स्टोक्स के नियम का उपयोग, साथ ही साथ आइंस्टीन और स्मोलुचोव्स्की में, सख्ती से प्रस्तावित नहीं होता है क्योंकि यह उस स्थिति पर प्रस्तावित नहीं होता है जहां औसत मुक्त पथ की तुलना में गोले की त्रिज्या छोटी होती है।[17]

सबसे पहले, आइंस्टीन के सूत्र की भविष्यवाणियों को 1906 और 1907 में स्वेडबर्ग द्वारा प्रयोगों की श्रृंखला द्वारा खंडन किया गया था, जिसने कणों के विस्थापन को अनुमानित मान से 4 से 6 गुना और हेनरी द्वारा 1908 में विस्थापन को 3 गुना अधिक पाया। आइंस्टीन के सूत्र की भविष्यवाणी की।[18] किन्तु आइंस्टीन की भविष्यवाणियों की अंततः 1908 में चाउडेसिग्यूज और 1909 में पेरिन द्वारा किए गए प्रयोगों की श्रृंखला में पुष्टि की गई। आइंस्टीन के सिद्धांत की पुष्टि ने गैसों के गतिज सिद्धांत के लिए अनुभवजन्य प्रगति का गठन किया। संक्षेप में, आइंस्टीन ने दिखाया कि गति की भविष्यवाणी सीधे थर्मल संतुलन के गतिज मॉडल से की जा सकती है। सिद्धांत का महत्व इस तथ्य में निहित है कि यह अनिवार्य रूप से सांख्यिकीय कानून होने के नाते उष्मागतिकी के दूसरे नियम के गतिज सिद्धांत के खाते की पुष्टि करता है।[19]

पानी में डाई के कण के प्रक्षेपवक्र का ब्राउनियन गति मॉडल।

स्मोलुचोव्स्की मॉडल

स्मोलुचोव्स्की का ब्राउनियन गति का सिद्धांत[20] आइंस्टीन के समान आधार से प्रारंभ होता है और समय t में x के साथ ब्राउनियन कण के विस्थापन के लिए समान संभावना वितरण ρ(x, t) प्राप्त करता है। इसलिए उन्हें औसत वर्ग विस्थापन के लिए समान अभिव्यक्ति मिलती है: चूँकि, जब वह इसे वेग से गतिमान द्रव्यमान m के कण से संबंधित करता है जो स्टोक्स के नियम द्वारा शासित घर्षण बल का परिणाम है, वह पाता है

जहां μ चिपचिपापन गुणांक है, और कण की त्रिज्या है। गतिज ऊर्जा को संबद्ध करना तापीय ऊर्जा RT/N के साथ, माध्य वर्ग विस्थापन के लिए व्यंजक आइंस्टीन द्वारा शोध किये गए व्यंजक का 64/27 गुना है। अंश 27/64 पर अर्नोल्ड सोमरफेल्ड ने स्मोलुचोव्स्की पर अपने नेक्रोलॉजी में टिप्पणी की थी: आइंस्टीन का संख्यात्मक गुणांक, जो 27/64 से स्मोलुचोव्स्की से भिन्न है, केवल संदेह में रखा जा सकता है।[21]

स्मोलुचोव्स्की[22] इस प्रश्न का उत्तर देने का प्रयास करता है कि ब्राउनियन कण को ​​छोटे कणों की बमबारी से विस्थापित क्यों किया जाना चाहिए जब अग्रिम और पीछे की दिशाओं में इससे टकराने की संभावनाएँ समान होती हैं।

यदि m लाभ और n−m हानियों की प्रायिकता द्विपद बंटन के पश्चात होती है,

1/2 की समान प्राथमिक संभावनाओं के साथ, औसत कुल लाभ है

यदि n इतना बड़ा है कि स्टर्लिंग के सन्निकटन को रूप में प्रयोग किया जा सके

तो अपेक्षित कुल लाभ होगा[citation needed]

यह दर्शाता है कि यह कुल जनसंख्या के वर्गमूल के रूप में बढ़ता है।

मान लीजिए कि द्रव्यमान M का ब्राउनियन कण द्रव्यमान m के हल्के कणों से घिरा हुआ है जो गति u से यात्रा कर रहे हैं। फिर, स्मोलुचोव्स्की के कारण, निकट के और ब्राउनियन कणों के मध्य किसी भी टक्कर में, अंत वाले का प्रेषित वेग mu/M होगा। यह अनुपात 10−7 cm/s/ के क्रम का है। किन्तु हमें यह भी ध्यान रखना होगा कि गैस में एक सेकंड में 1016 से अधिक टकराव होंगे, और तरल में उससे भी अधिक जहां हम उम्मीद करते हैं कि एक सेकंड में 1020 टकराव होंगे। इनमें से कुछ टक्करों की प्रवृत्ति ब्राउनियन कण को ​​गति देने की होगी; अन्य इसे धीमा करने के लिए प्रवृत्त होंगे। यदि एक सेकंड में 108 से 1010 टक्करों के क्रम में एक प्रकार की टक्कर या दूसरे की औसत अधिकता है, तो ब्राउनियन कण का वेग कहीं भी 10 और 1000 cm/s के मध्य हो सकता है। इस प्रकार, भले ही आगे और पीछे की टक्करों के लिए समान संभावनाएं हों, ब्राउनियन कण को ​​गति में रखने की शुद्ध प्रवृत्ति होगी, जैसा कि मतपत्र प्रमेय भविष्यवाणी करता है।

परिमाण के ये आदेश त्रुटिहीन नहीं हैं क्योंकि वे ब्राउनियन कण, U के वेग को ध्यान में नहीं रखते हैं, जो उन टक्करों पर निर्भर करता है जो इसे तीव्र और मंद करते हैं। U जितना बड़ा होगा, टक्कर उतनी ही अधिक होगी जो इसे मंद कर देगी जिससे कि ब्राउनियन कण का वेग बिना सीमा के कभी नहीं बढ़ सकता। क्या ऐसी प्रक्रिया हो सकती है, यह दूसरे प्रकार की सतत गति के समान होगी। और चूँकि ऊर्जा का समविभाजन प्रस्तावित होता है, ब्राउनियन कण की गतिज ऊर्जा, , औसतन, आसपास के द्रव कण की गतिज ऊर्जा, के समान होगा।

1906 में स्मोलुचोव्स्की ने ब्राउनियन गति से गुजर रहे कण का वर्णन करने के लिए आयामी मॉडल प्रकाशित किया।[23] मॉडल M ≫ m के साथ टकराव मानता है जहां M परीक्षण कण का द्रव्यमान है और द्रव बनाने वाले व्यक्तिगत कणों में से एक का द्रव्यमान है। यह माना जाता है कि कण टकराव आयाम तक ही सीमित हैं और परीक्षण कण के बाईं ओर से हिट होने की समान संभावना है। यह भी माना जाता है कि प्रत्येक टक्कर सदैव ΔV का समान परिमाण प्रदान करती है। यदि NR दाईं ओर से टकरावों की संख्या है और NL बाईं ओर से टक्करों की संख्या N टक्करों के पश्चात कण के वेग में ΔV(2NRN) का परिवर्तन होगा। बहुलता (गणित) तब सरलता से दी जाती है:

और संभावित राज्यों की कुल संख्या 2N द्वारा दी गई है। इसलिए, कण के दाएँ NR बार से हिट होने की संभावना है:

इसकी सादगी के परिणामस्वरूप, स्मोलुचोव्स्की का 1D मॉडल केवल गुणात्मक रूप से ब्राउनियन गति का वर्णन कर सकता है। तरल पदार्थ में ब्राउनियन गति से गुजरने वाले यथार्थवादी कण के लिए, अनेक धारणाएँ प्रस्तावित नहीं होती हैं। उदाहरण के लिए, यह धारणा है कि कण के गति में होने पर औसतन दाईं ओर से उतनी ही संख्या में टक्कर होती है जितनी बाईं ओर से गिरती है। साथ ही, यथार्थवादी स्थिति में सदैव केवल विभिन्न संभावित ΔV का वितरण होगा।

आंशिक अवकल समीकरणों का उपयोग करने वाले अन्य भौतिकी मॉडल

प्रसार समीकरण भौतिक परिभाषा के अंतर्गत ब्राउनियन आंदोलन के अंतर्गत जाने वाले कण की स्थिति से जुड़े संभाव्यता घनत्व फलन के समय के विकास का अनुमान लगाता है। सन्निकटन अल्प समय के पर मान्य है।

ब्राउनियन कण की स्थिति के समय विकास को लैंगविन समीकरण का उपयोग करके सबसे अच्छा वर्णित किया गया है, समीकरण जिसमें कण पर विलायक के थर्मल उतार-चढ़ाव के प्रभाव का प्रतिनिधित्व करने वाला यादृच्छिक बल क्षेत्र सम्मिलित है।

ब्राउनियन गति से गुजर रहे कण का विस्थापन उचित सीमा स्थितियों के अंतर्गत प्रसार समीकरण का समाधान करके और समाधान के rms को ज्ञात करके प्राप्त किया जाता है। इससे ज्ञात होता है कि विस्थापन समय के वर्गमूल (रैखिक रूप से नहीं) के रूप में भिन्न होता है, जो बताता है कि ब्राउनियन कणों के वेग से संबंधित प्राचीन प्रायोगिक परिणामों ने निरर्थक परिणाम क्यों दिए। रेखीय समय निर्भरता को त्रुटिपूर्ण प्रकार से ग्रहण किया गया था।

चूँकि, बहुत अल्प समय के पैमाने पर, कण की गति इसकी जड़ता से प्रभावित होती है और इसका विस्थापन रैखिक रूप से समय पर निर्भर करेगा: Δx = vΔt तो ब्राउनियन गति के तात्कालिक वेग को v = Δx/Δt के रूप में मापा जा सकता है, जब Δt << τ, जहां τ संवेग विश्राम समय है। 2010 में, ब्राउनियन कण (ऑप्टिकल चिमटी के साथ हवा में फंसा कांच का माइक्रोस्फीयर) का तात्कालिक वेग सफलतापूर्वक मापा गया था।[24] वेग डेटा ने मैक्सवेल-बोल्ट्ज़मैन वेग वितरण, और ब्राउनियन कण के समविभाजन प्रमेय को सत्यापित किया।

खगोल भौतिकी: आकाशगंगाओं के अंदर तारों की गति

तारकीय गतिशीलता में, विशाल पिंड (तारा, ब्लैक होल, आदि) ब्राउनियन गति का अनुभव कर सकता है क्योंकि यह निकट के सितारों से गुरुत्वाकर्षण के प्रति प्रतिक्रिया करता है।[25] बड़े पैमाने पर वस्तु का rms वेग V, द्रव्यमान M का, rms वेग से संबंधित है द्वारा पृष्ठभूमि सितारों की

जहाँ पृष्ठभूमि सितारों का द्रव्यमान है। विशाल वस्तु से गुरुत्वाकर्षण बल निकट के सितारों को तीव्रता से आगे बढ़ने का कारण बनता है, अन्यथा और V दोनों में वृद्धि होती है।[25] मिल्की वे आकाशगंगा के केंद्र में अत्यधिक द्रव्यमान वाला ब्लैक होल Sgr A* का ब्राउनियन वेग, इस सूत्र से 1 km s-1 अल्प होने का अनुमान लगाया गया है।[26]

गणित

टोरस्र्स पर ब्राउनियन गति जैसी यादृच्छिक चाल का एनिमेटेड उदाहरण। स्केलिंग सीमा में, डोंस्कर प्रमेय के अनुसार रैंडम वॉक वीनर प्रक्रिया तक पहुंचता है।

गणित में, ब्राउनियन गति का वर्णन वीनर प्रक्रिया द्वारा किया जाता है, नॉर्बर्ट वीनर के सम्मान में नामित निरंतर-समय की स्टोकेस्टिक प्रक्रिया है। यह सबसे प्रसिद्ध लेवी प्रक्रियाओं में से है, (स्थिर स्वतंत्र वेतन वृद्धि के साथ कैडलैग स्टोकेस्टिक प्रक्रिया) और प्रायः शुद्ध और अनुप्रयुक्त गणित, अर्थव्यवस्था और भौतिकी में होती है।

0 ≤ t ≤ 2 के समय के लिए त्रि-आयामी ब्राउनियन गति का एकल अहसास

वीनर प्रक्रिया Wt की विशेषता चार तथ्यों से है:[27]

  1. W0 = 0
  2. Wtलगभग निश्चित रूप से निरंतर है
  3. Wt की स्वतंत्र वृद्धि होती है
  4. (के लिए ).

अपेक्षित मान μ और विचरण σ2 के साथ सामान्य वितरण को दर्शाता है</उप>। शर्त यह है कि इसमें स्वतंत्र वेतन वृद्धि है, इसका तात्पर्य है कि यदि तब और स्वतंत्र यादृच्छिक चर हैं। इसके अतिरिक्त, कुछ निस्पंदन (संभावना सिद्धांत) के लिए , है सभी के लिए मापने योग्य है।

वीनर प्रक्रिया का वैकल्पिक लक्षण वर्णन तथाकथित लेवी लक्षण वर्णन है जो कहता है कि वीनर प्रक्रिया W0 = 0 और द्विघात भिन्नता के साथ लगभग निश्चित रूप से निरंतर मार्टिंगेल है।

तीसरा लक्षण वर्णन यह है कि वीनर प्रक्रिया में साइन श्रृंखला के रूप में वर्णक्रमीय प्रतिनिधित्व होता है जिसके गुणांक स्वतंत्र होते हैं यादृच्छिक चर हैं। यह प्रतिनिधित्व कोसंबी-करहुनेन-लोव प्रमेय का उपयोग करके प्राप्त किया जा सकता है।

वीनर प्रक्रिया को यादृच्छिक चलने की स्केलिंग सीमा, या स्थिर स्वतंत्र वेतन वृद्धि के साथ अन्य असतत-समय स्टोकेस्टिक प्रक्रियाओं के रूप में बनाया जा सकता है। इसे डोंस्कर प्रमेय के रूप में जाना जाता है। रैंडम वॉक के जैसे, वीनर प्रक्रिया एक या दो आयामों में आवर्तक होती है (जिसका अर्थ है कि यह निश्चित रूप से मूल के किसी भी निश्चित निकट में असीम रूप से लौटती है) जबकि यह तीन और उच्चतर आयामों में आवर्तक नहीं है। रैंडम वॉक के विपरीत, यह स्केल इनवेरियन है।

ब्राउनियन कण की स्थिति के समय के विकास को लगभग लैंग्विन समीकरण द्वारा वर्णित किया जा सकता है, समीकरण जिसमें यादृच्छिक बल क्षेत्र सम्मिलित होता है जो ब्राउनियन कण पर विलायक के थर्मल उतार-चढ़ाव के प्रभाव का प्रतिनिधित्व करता है। लंबे समय के पैमाने पर, गणितीय ब्राउनियन गति को लैंगविन समीकरण द्वारा अच्छे प्रकार से वर्णित किया गया है। छोटे समय के पैमाने पर, लैंग्विन समीकरण में जड़त्वीय प्रभाव प्रचलित हैं। चूँकि गणितीय ब्राउनियन गति ऐसे जड़त्वीय प्रभावों से मुक्त है। लैंगविन समीकरण में जड़त्वीय प्रभावों पर विचार करना होगा, अन्यथा समीकरण एकवचन बन जाता है।[clarification needed] जिससे कि इस समीकरण से केवल जड़ता शब्द को विस्थापित करने से त्रुटिहीन विवरण न मिले, जबकि विलक्षण व्यवहार जिसमें कण पूर्णतः गति नहीं करता है।[clarification needed]

सांख्यिकी

ब्राउनियन गति को यादृच्छिक चाल द्वारा प्रतिरूपित किया जा सकता है।[28]

सामान्य स्थिति में, ब्राउनियन गति मार्कोव प्रक्रिया है और स्टोचैस्टिक कैलकुलस द्वारा वर्णित है।[29]

लेवी लक्षण वर्णन

फ्रांसीसी गणितज्ञ पॉल लेवी ने निम्नलिखित प्रमेय को सिद्ध किया, जो निरंतर Rn-मूल्यवान स्टोकेस्टिक प्रक्रिया X के लिए वास्तव में n-आयामी ब्राउनियन गति होने के लिए आवश्यक और पर्याप्त स्थिति देता है। इसलिए, लेवी की स्थिति वास्तव में ब्राउनियन गति की वैकल्पिक परिभाषा के रूप में उपयोग की जा सकती है।

माना X= (X1, ...,Xn) Rn में मान लेने वाले प्रायिकता स्थान (Ω, Σ, P) पर सतत स्टोकेस्टिक प्रक्रिया हो। उसके पश्चात निम्न समान हैं:

  1. X, 'P' के संबंध में ब्राउनियन गति है, अर्थात, 'P' के संबंध में X का नियम n-आयामी ब्राउनियन गति के नियम के समान है, अर्थात, पुश-फॉरवर्ड माप X(P) C0([0, +∞); Rn) पर शास्त्रीय वीनर माप है।
  2. दोनों
    1. X, 'P' (और अपने स्वयं के प्राकृतिक निस्पंदन) के संबंध में मार्टिंगेल है; और
    2. सभी के लिए 1 ≤ i, j ≤ n, Xi(t) Xj(t) -δijt 'P' (और अपने स्वयं के प्राकृतिक निस्पंदन) के संबंध में मार्टिंगेल है, जहां δij क्रोनकर डेल्टा को दर्शाता है।

वर्णक्रमीय सामग्री

स्टोकेस्टिक प्रक्रिया की वर्णक्रमीय सामग्री औपचारिक रूप से परिभाषित शक्ति वर्णक्रमीय घनत्व से पाया जा सकता है

जहाँ अपेक्षित मान दर्शाता है। ब्राउनियन गति का शक्ति वर्णक्रमीय घनत्व पाया जाता है[30]

जहाँ , का प्रसार गुणांक है। स्वाभाविक रूप से होने वाले संकेतों के लिए, वर्णक्रमीय सामग्री को एकल प्राप्ति के शक्ति वर्णक्रमीय घनत्व से परिमित उपलब्ध समय के साथ पाया जा सकता है। अर्थात,

जो ब्राउनियन गति प्रक्षेपवक्र के व्यक्तिगत अहसास के लिए,[31] यह अपेक्षित मान पाया जाता है

और विचरण [31]

पर्याप्त रूप से लंबे अहसास के समय के लिए, एकल प्रक्षेपवक्र के पावर स्पेक्ट्रम का अपेक्षित मान औपचारिक रूप से परिभाषित पावर वर्णक्रमीय घनत्व में परिवर्तित हो जाता है, किन्तु इसकी भिन्नता का गुणांक की ओर जाता है इसका तात्पर्य वितरण से है, जो अनंत समय सीमा में भी व्यापक है।

रीमानियन मैनिफोल्ड

गोले पर ब्राउनियन गति

Rn पर ब्राउनियन गति का अत्यल्प जनित्र (और इसलिए विशिष्ट संकारक) की गणना सरलता से ½Δ के रूप में की जाती है, जहां Δ लाप्लास संकारक को दर्शाता है। मूर्ति प्रोद्योगिकी और कंप्यूटर दृष्टि में, लाप्लासियन ऑपरेटर का उपयोग ब्लॉब और एज डिटेक्शन जैसे विभिन्न कार्यों के लिए किया गया है। यह अवलोकन ब्राउनियन गति को एम-आयामी रीमैनियन मैनिफोल्ड (M, g) पर परिभाषित करने में उपयोगी है: 'M पर ब्राउनियन गति' को एम पर प्रसार के रूप में परिभाषित किया गया है जिसका विशेषता ऑपरेटर स्थानीय निर्देशांक में xi, 1 ≤ i ≤ m, ½ΔLB द्वारा दिया जाता है, जहां ΔLB द्वारा स्थानीय निर्देशांक में दिया गया लाप्लास-बेल्ट्रामी ऑपरेटर है

जहां [gij] = [gij]-1 वर्ग आव्यूह के अर्थ में है।

संकीर्ण पलायन

संकरे पलायन की समस्या जीव विज्ञान, जीवभौतिकी और कोशिकीय जीव विज्ञान में सर्वव्यापी समस्या है जिसका निम्नलिखित सूत्रीकरण है: ब्राउनियन कण (आयन, अणु, या प्रोटीन) परावर्तक सीमा द्वारा परिबद्ध डोमेन (कक्ष या कोशिका) तक सीमित है, छोटी सी खिड़की को छोड़कर जिसके माध्यम से वह बच सकता है। संकीर्ण पलायन समस्या माध्य पलायन समय की गणना करना है। यह समय खिड़की के सिकुड़ने के कारण अलग हो जाता है, इस प्रकार गणना को विलक्षण गड़बड़ी की समस्या के रूप में प्रस्तुत करता है।

यह भी देखें

संदर्भ

  1. Meyburg, Jan Philipp; Diesing, Detlef (2017). "कंप्यूटर प्रयोगों में नैनोसंरचनाओं के विकास, पकने और समूह को पढ़ाना". Journal of Chemical Education. 94 (9): 1225–1231. Bibcode:2017JChEd..94.1225M. doi:10.1021/acs.jchemed.6b01008.
  2. 2.0 2.1 Feynman, R. (1964). "The Brownian Movement". The Feynman Lectures of Physics, Volume I. pp. 41–1.
  3. 3.0 3.1 Einstein, Albert (1905). "Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen" [On the Movement of Small Particles Suspended in Stationary Liquids Required by the Molecular-Kinetic Theory of Heat] (PDF). Annalen der Physik (in Deutsch). 322 (8): 549–560. Bibcode:1905AnP...322..549E. doi:10.1002/andp.19053220806. Archived (PDF) from the original on 2022-10-09.
  4. "The Nobel Prize in Physics 1926". NobelPrize.org (in English). Retrieved 2019-05-29.
  5. Tsekov, Roumen (1995). "Brownian motion of molecules: the classical theory". Ann. Univ. Sofia. 88: 57. arXiv:1005.1490. Bibcode:1995AUSFC..88...57T. the behavior of a Brownian particle is quite irregular and can be described only in the frames of a statistical approach.
  6. Knight, Frank B. (1962-02-01). "रैंडम वॉक और ब्राउनियन मोशन पर". Transactions of the American Mathematical Society (in English). 103 (2): 218–228. doi:10.1090/S0002-9947-1962-0139211-2. ISSN 0002-9947.
  7. "डोंस्कर इनवेरियन सिद्धांत - गणित का विश्वकोश". encyclopediaofmath.org. Retrieved 2020-06-28.
  8. Perrin, Jean (1914). परमाणुओं. London : Constable. p. 115.
  9. Tabor, D. (1991). Gases, Liquids and Solids: And Other States of Matter (3rd ed.). Cambridge: Cambridge University Press. p. 120. ISBN 978-0-521-40667-3.
  10. Mandelbrot, B.; Hudson, R. (2004). The (Mis)behavior of Markets: A Fractal View of Risk, Ruin, and Reward. Basic Books. ISBN 978-0-465-04355-2.
  11. 11.0 11.1 Einstein, Albert (1956) [1926]. Investigations on the Theory of the Brownian Movement (PDF). Dover Publications. Archived (PDF) from the original on 2022-10-09. Retrieved 2013-12-25.
  12. Stachel, J., ed. (1989). "Einstein's Dissertation on the Determination of Molecular Dimensions" (PDF). The Collected Papers of Albert Einstein, Volume 2. Princeton University Press. Archived (PDF) from the original on 2022-10-09.
  13. Lavenda, Bernard H. (1985). Nonequilibrium Statistical Thermodynamics. John Wiley & Sons. p. 20. ISBN 978-0-471-90670-4.
  14. 14.0 14.1 Thomson, J. J. (1904). Electricity and Matter. Yale University Press. pp. 80–83.
  15. Nernst, Walther (1888). "Zur Kinetik der in Lösung befindlichen Körper". Zeitschrift für Physikalische Chemie (in Deutsch). 9: 613–637.
  16. Leveugle, J. (2004). La Relativité, Poincaré et Einstein, Planck, Hilbert. Harmattan. p. 181.
  17. Townsend, J.E.S. (1915). Electricity in Gases. Clarendon Press. p. 254.
  18. See P. Clark 1976, p. 97
  19. See P. Clark 1976 for this whole paragraph
  20. Smoluchowski, M. M. (1906). "Sur le chemin moyen parcouru par les molécules d'un gaz et sur son rapport avec la théorie de la diffusion" [On the average path taken by gas molecules and its relation with the theory of diffusion]. Bulletin International de l'Académie des Sciences de Cracovie (in français): 202.
  21. See p. 535 in Sommerfeld, A. (1917). "Zum Andenken an Marian von Smoluchowski" [In Memory of Marian von Smoluchowski]. Physikalische Zeitschrift (in Deutsch). 18 (22): 533–539.
  22. Smoluchowski, M. M. (1906). "Essai d'une théorie cinétique du mouvement Brownien et des milieux troubles" [Test of a kinetic theory of Brownian motion and turbid media]. Bulletin International de l'Académie des Sciences de Cracovie (in français): 577.
  23. von Smoluchowski, M. (1906). "Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen". Annalen der Physik (in Deutsch). 326 (14): 756–780. Bibcode:1906AnP...326..756V. doi:10.1002/andp.19063261405.
  24. Li, Tongcang; Kheifets, Simon; Medellin, David; Raizen, Mark (2010). "Measurement of the instantaneous velocity of a Brownian particle" (PDF). Science. 328 (5986): 1673–1675. Bibcode:2010Sci...328.1673L. CiteSeerX 10.1.1.167.8245. doi:10.1126/science.1189403. PMID 20488989. S2CID 45828908. Archived from the original (PDF) on 2011-03-31.
  25. 25.0 25.1 Merritt, David (2013). Dynamics and Evolution of Galactic Nuclei. Princeton University Press. p. 575. ISBN 9781400846122. OL 16802359W.
  26. Reid, M. J.; Brunthaler, A. (2004). "The Proper Motion of Sagittarius A*. II. The Mass of Sagittarius A*". The Astrophysical Journal. 616 (2): 872–884. arXiv:astro-ph/0408107. Bibcode:2004ApJ...616..872R. doi:10.1086/424960. S2CID 16568545.
  27. Bass, Richard F. (2011). स्टचास्तिक प्रोसेसेज़. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge: Cambridge University Press. doi:10.1017/cbo9780511997044. ISBN 978-1-107-00800-7.
  28. Weiss, G. H. (1994). Aspects and applications of the random walk. North Holland.
  29. Morozov, A. N.; Skripkin, A. V. (2011). "Spherical particle Brownian motion in viscous medium as non-Markovian random process". Physics Letters A. 375 (46): 4113–4115. Bibcode:2011PhLA..375.4113M. doi:10.1016/j.physleta.2011.10.001.
  30. Karczub, D. G.; Norton, M. P. (2003). एमपी नॉर्टन द्वारा इंजीनियरों के लिए शोर और कंपन विश्लेषण के बुनियादी सिद्धांत (in English). doi:10.1017/cbo9781139163927. ISBN 9781139163927.
  31. 31.0 31.1 Krapf, Diego; Marinari, Enzo; Metzler, Ralf; Oshanin, Gleb; Xu, Xinran; Squarcini, Alessio (2018). "Power spectral density of a single Brownian trajectory: what one can and cannot learn from it". New Journal of Physics (in English). 20 (2): 023029. arXiv:1801.02986. Bibcode:2018NJPh...20b3029K. doi:10.1088/1367-2630/aaa67c. ISSN 1367-2630. S2CID 485685.


अग्रिम पठन


बाहरी संबंध