रचना श्रृंखला

From Vigyanwiki

सामान्य बीजगणित में, रचना श्रृंखला एक बीजगणितीय संरचना है जो समूह (गणित) या मापदंड (गणित) को सरल टुकड़ों में विभाजित करने का एक विधि प्रदान करती है। मापदंड के संदर्भ में रचना श्रृंखला पर विचार करने की आवश्यकता इस तथ्य से उत्पन्न होती है कि कई स्वाभाविक रूप से होने वाले मापदंड अर्ध-सरल मापदंड नहीं होते हैं, इसलिए उन्हें सरल मापदंड के प्रत्यक्ष योग में विघटित नहीं किया जा सकता है। मापदंड 'एम' की एक रचना श्रृंखला सबमापदंड द्वारा 'एम' का एक परिमित बढ़ता हुआ निस्पंदन ( सामान्य बीजगणित) है, जैसे कि क्रमिक भागफल सरल ( सामान्य बीजगणित) होते हैं और एम के प्रत्यक्ष योग अपघटन के सरल घटकों में प्रतिस्थापन के रूप में कार्य करते हैं।

एक रचना श्रृंखला उपस्थित नहीं हो सकती है, और जब यह होती है, तो यह अद्वितीय होने की आवश्यकता नहीं है। फिर भी, सामान्य नाम जॉर्डन-होल्डर प्रमेय के अनु सामान्य ज्ञात परिणामों का समूह प्रमाणित करता है कि जब भी रचना श्रृंखला उपस्थित होती है, तो सरल टुकड़ों के समरूपता वर्ग (चूँकि, संभवतः, रचना श्रृंखला में उनका स्थान नहीं होता है) ) और उनकी बहुलता विशिष्ट रूप से निर्धारित होती है। रचना श्रृंखला इस प्रकार परिमित समूह और आर्टिनियन मापदंड के अपरिवर्तनीय को परिभाषित करने के लिए उपयोग की जा सकती है।

एक संबंधित किन्तु विशिष्ट अवधारणा एक मुख्य श्रृंखला है: रचना श्रृंखला एक अधिकतम असामान्य श्रृंखला है | उपसामान्य श्रृंखला, जबकि एक मुख्य श्रृंखला एक अधिकतम सामान्य श्रृंखला है।

समूहों के लिए

यदि समूह G का सामान्य उपसमूह N है, तो कारक समूह G/N का गठन किया जा सकता है, और G की संरचना के अध्ययन के कुछ पहलुओं को छोटे समूहों G/N और N का अध्ययन करके तोड़ा जा सकता है। यदि G के पास है कोई सामान्य उपसमूह नहीं है जो G से और तुच्छ समूह से अलग है, तो G एक साधारण समूह है। अन्यथा, स्वाभाविक रूप से यह प्रश्न उठता है कि क्या G को सरल टुकड़ों में घटाया जा सकता है, और यदि हां, तो क्या इसे करने की विधि की कोई अलग विशेषताएं हैं?

अधिक औपचारिक रूप से, समूह (गणित) G की एक 'रचना श्रृंखला' परिमित लंबाई की असामान्य श्रृंखला है

सख्त समावेशन के साथ, जैसे कि प्रत्येक Hi Hi+1 का अधिकतम उपसमूह उचित सामान्य उपसमूह है. सामान्यतः, संरचना श्रृंखला एक असामान्य श्रृंखला है जैसे कि प्रत्येक कारक समूह Hi+1 / Hi साधारण समूह है। कारक समूहों को रचना कारक कहा जाता है।

असामान्य श्रृंखला एक संरचना श्रृंखला है यदि और केवल यदि यह अधिकतम लंबाई का है। अर्थात्, कोई अतिरिक्त उपसमूह नहीं हैं जिन्हें रचना श्रृंखला में सम्मिलित किया जा सकता है। श्रृंखला की लंबाई n को रचना की लंबाई कहा जाता है।

यदि किसी समूह G के लिए कोई रचना श्रृंखला उपस्थित है, तो G की किसी भी उपसामान्य श्रृंखला को रचना श्रृंखला के लिए परिष्कृत किया जा सकता है, अनौपचारिक रूप से, उपसमूहों को अधिकतमता तक श्रृंखला में सम्मिलित करके किया जा सकता है। प्रत्येक परिमित समूह की एक रचना श्रृंखला होती है, किन्तु प्रत्येक अनंत समूह में एक नहीं होती है। उदाहरण के लिए, कोई रचना श्रृंखला नहीं है।

विशिष्टता: जॉर्डन-होल्डर प्रमेय

एक समूह में एक से अधिक रचना श्रृंखला हो सकती है। चूँकि, जॉर्डन-होल्डर प्रमेय (केमिली जॉर्डन और ओटो होल्डर के नाम पर) में कहा गया है कि किसी दिए गए समूह की कोई भी दो रचना श्रृंखला समकक्ष हैं। यही है,क्रमपरिवर्तन और समरूपता तक उनके पास समान रचना लंबाई और समान रचना कारक हैं, । इस प्रमेय को श्रेयर शोधन प्रमेय का उपयोग करके सिद्ध किया जा सकता है। जॉर्डन-होल्डर प्रमेय ट्रांसफिनिट इंडक्शन आरोही रचना श्रृंखला के लिए भी सही है, किन्तु ट्रांसफिनिट अवरोही रचना श्रृंखला नहीं (बिरखॉफ 1934).

बॉम्सलैग (2006) जॉर्डन-होल्डर प्रमेय का एक संक्षिप्त प्रमाण देता है जिसमें एक सबनॉर्मल शृंखला में अन्य शृंखला के शब्दों को प्रतिच्छेद किया जाता है।

उदाहरण

क्रम n के एक चक्रीय समूह के लिए, संरचना श्रृंखला n के क्रमित प्रमुख गुणनखंडों के अनुरूप होती है, और वास्तव में अंकगणित के मौलिक प्रमेय का प्रमाण देती है।

उदाहरण के लिए, चक्रीय समूह है और तीन अलग-अलग रचना श्रृंखला के रूप में है। संबंधित स्थितियों में प्राप्त रचना कारकों के क्रम हैं और है |

मापदंड के लिए

मापदंड के लिए रचना श्रृंखला की परिभाषा सबमापदंड पर सभी का ध्यान केंद्रित करती है, सभी योगात्मक उपसमूहों की नजरअंदाज करती है जो सबमापदंड नहीं हैं। रिंग आर और आर-मापदंड एम को देखते हुए, एम के लिए एक रचना श्रृंखला सबमापदंड की एक श्रृंखला है |

जहां सभी समावेशन सख्त हैं और Jk प्रत्येक के लिए Jk+1 का अधिकतम सबमापदंड है। जहां तक ​​समूहों की बात है, यदि एम के पास कोई रचना श्रृंखला है, तो एम के सबमापदंड्स की किसी भी परिमित रूप से बढ़ती हुई श्रृंखला को रचना श्रृंखला में परिष्कृत किया जा सकता है, और एम के लिए कोई भी दो संयोजन श्रृंखला समतुल्य हैं। उस स्थिति में, (सरल) भागफल मापदंड Jk+1/Jk एम के संघटन कारकों के रूप में जाने जाते हैं और जॉर्डन-होल्डर प्रमेय यह सुनिश्चित करता है कि संरचना कारक के रूप में सरल आर-मापदंड के प्रत्येक समरूपता प्रकार की घटनाओं की संख्या रचना श्रृंखला की पसंद पर निर्भर नहीं करती है ।

ये सब जानते हैं[1] कि एक मापदंड में एक सीमित संरचना श्रृंखला होती है यदि और केवल यदि यह आर्टिनियन मापदंड और नोथेरियन मापदंड दोनों है। यदि R एक आर्टिनियन वलय है, तो प्रत्येक परिमित रूप से उत्पन्न R-मापदंड आर्टिनियन रिंग नोथेरियन है, और इस प्रकार इसकी परिमित रचना श्रृंखला है। विशेष रूप से, किसी भी क्षेत्र K के लिए, K पर परिमित-विमीय बीजगणित के लिए किसी भी परिमित-आयामी मापदंड की एक संरचना श्रृंखला होती है, जो तुल्यता तक अद्वितीय होती है।

सामान्यीकरण

ऑपरेटरों के साथ समूह समूह क्रियाओं का सामान्यीकरण करता है और समूह पर क्रियाओं को रिंग करता है। समूहों और मापदंड दोनों के लिए एकीकृत दृष्टिकोण का पालन किया जा सकता है (बोरबाकी 1974, Ch. 1) या (आइज़ैक 1994, Ch. 10), कुछ प्रदर्शनी को सरल बनाना है। समूह G को समुच्चय Ω से तत्वों (ऑपरेटरों) द्वारा क्रियान्वित होने के रूप में देखा जाता है। ध्यान पूरी तरह से Ω से तत्वों की कार्रवाई के अनु सामान्य अपरिवर्तनीय उपसमूहों तक सीमित है, जिसे Ω-उपसमूह कहा जाता है। इस प्रकार Ω-संरचना श्रृंखला को केवल Ω-उपसमूहों का उपयोग करना चाहिए, और Ω-रचना कारकों को केवल Ω-सरल होना चाहिए। उपरोक्त मानक परिणाम, जैसे कि जॉर्डन-होल्डर प्रमेय, लगभग समान प्रमाणों के साथ स्थापित किए गए हैं।

पुनर्प्राप्त किए गए विशेष स्थितियों में सम्मिलित हैं जब Ω = G जिससे G स्वयं पर कार्य कर रहा हो। इसका एक महत्वपूर्ण उदाहरण है जब G के तत्व संयुग्मन द्वारा कार्य करते हैं, जिससे ऑपरेटरों के समुच्चय में आंतरिक ऑटोमोर्फिज्म होते हैं। इस क्रिया के अनु सामान्य रचना श्रृंखला बिल्कुल मुख्य श्रृंखला है। मापदंड संरचनाएं Ω-क्रियाओं की स्थिति है जहां Ω एक वलय है और कुछ अतिरिक्त अभिगृहीत संतुष्ट हैं।

एबेलियन श्रेणी में वस्तुओं के लिए

एबेलियन श्रेणी में एक वस्तु (श्रेणी सिद्धांत) की एक रचना श्रृंखला उप-वस्तुओं का एक क्रम है

ऐसा है कि प्रत्येक भागफल वस्तु Xi/Xi+1 सरल है (0 ≤ i < n के लिए). यदि A की रचना श्रृंखला है, तो पूर्णांक n केवल A पर निर्भर करता है और इसे A की वस्तु की लंबाई कहा जाता है।[2]

यह भी देखें

  • क्रोहन-रोड्स सिद्धांत, एक सेमीग्रुप एनालॉग है |
  • श्रेयर शोधन प्रमेय, किसी भी दो समतुल्य उपसामान्य श्रृंखला में समतुल्य रचना श्रृंखला शोधन है |
  • ज़सेनहॉस लेम्मा, श्रेयर शोधन प्रमेय को सिद्ध करने के लिए प्रयोग किया जाता है |

टिप्पणियाँ

  1. Isaacs 1994, p.146.
  2. Kashiwara & Schapira 2006, exercise 8.20


संदर्भ

  • Birkhoff, Garrett (1934), "Transfinite subgroup series", Bulletin of the American Mathematical Society, 40 (12): 847–850, doi:10.1090/S0002-9904-1934-05982-2
  • Baumslag, Benjamin (2006), "A simple way of proving the Jordan-Hölder-Schreier theorem", American Mathematical Monthly, 113 (10): 933–935, doi:10.2307/27642092
  • Bourbaki, N. (1974), Algebra, Hermann, Paris; Addison-Wesley Publishing Co., Reading Mass.
  • Isaacs, I. Martin (1994), Algebra: A Graduate Course, Brooks/Cole, ISBN 978-0-534-19002-6
  • Kashiwara, Masaki; Schapira, Pierre (2006), Categories and sheaves