यूक्लिडियन स्पेस

From Vigyanwiki
File:Coord system CA 0.svg
त्रि-आयामी यूक्लिडियन स्पेस में एक बिंदु तीन निर्देशांकों द्वारा स्थित हो सकता है.

यूक्लिडियन स्पेस ज्यामिति का एक ऐसा मूलभूत स्थान है, जिसका उद्देश्य भौतिक स्थान को निरूपित करना है। मूल रूप से, यूक्लिड के तत्वों में यह, यूक्लिडीय ज्यामिति का त्रि-विमीय अंतरिक्ष था, लेकिन आधुनिक गणित में किसी भी धनात्मक पूर्णांक विमा के यूक्लिडीय अंतरिक्ष हैं,[1] जिसमें त्रि-विमीय अंतरिक्ष और यूक्लिडीय समतल(दो विमाओं वाले) सम्मिलित हैं। क्वालीफायर "यूक्लिडीय" का उपयोग यूक्लिडीय अंतरिक्ष को अन्य अंतरिक्षों से अलग करने के लिए किया जाता है, जिसे बाद में भौतिकी और आधुनिक गणित में स्वीकृत किया गया था।

प्राचीन ग्रीक जियोमीटर ने भौतिक स्थान के प्रतिरूपण के लिए यूक्लिडीय अंतरिक्ष को प्रस्तुत किया। उनके कार्य को प्राचीन ग्रीक गणितज्ञ यूक्लिड ने अंतरिक्ष के सभी गुणों को प्रमेय के रूप में सिद्ध करने के महान नवाचार के साथ कुछ मौलिक गुणों से प्रारंभ करके अपने तत्वों में एकत्रित किया था,[2] जिन्हें अभिधारणा कहा जाता है, और इन्हें या तो स्पष्ट माना जाता था (उदाहरण के लिए, दो बिंदुओं से होकर जाने वाली एक सीधी रेखा अद्वितीय होती है), या इन्हें सिद्ध करना असंभव प्रतीत होता था (समानांतर अभिधारणा)।

19वीं शताब्दी के अंत में गैर-यूक्लिडीय ज्यामिति के प्रारंभ के बाद, अभिगृहीत सिद्धांत के माध्यम से यूक्लिडीय अंतरिक्ष को परिभाषित करने के लिए पुरानी अभिधारणाओं को पुनः औपचारिक रूप दिया गया। सदिश अंतरिक्ष और रैखिक बीजगणित के माध्यम से यूक्लिडीय अंतरिक्ष की एक अन्य परिभाषा को अभिगृहीत परिभाषा के समतुल्य दिखाया गया है। यह वह परिभाषा है जो आधुनिक गणित में अधिक सामान्य रूप से उपयोग की जाती है, और इस लेख में वर्णित है।[3] सभी परिभाषाओं में, यूक्लिडीय अंतरिक्ष में ऐसे बिंदु होते हैं, जो केवल उन गुणों से परिभाषित होते हैं जो यूक्लिडीय अंतरिक्ष के निर्माण के लिए उनके पास होने चाहिए।

अनिवार्य रूप से प्रत्येक विमा का केवल एक यूक्लिडीय अंतरिक्ष होता है; अर्थात्, किसी दी गई विमा के सभी यूक्लिडीय अंतरिक्ष समरूप होते हैं। इसलिए, कई स्थितियों में, एक विशिष्ट यूक्लिडीय अंतरिक्ष के साथ कार्य करना संभव है, जो सामान्यतः वास्तविक n-अंतरिक्ष है और बिंदु गुणन से सुसज्जित है। यूक्लिडीय अंतरिक्ष से के लिए एक समरूपता, प्रत्येक बिंदु के साथ यूक्लिडीय अंतरिक्ष में उस बिंदु का पता लगाने वाले वास्तविक संख्याओं के एक n-ट्यूपल को संबद्ध करती है, और ये उस बिंदु के कार्तीय निर्देशांक कहलाते हैं।

परिभाषा

परिभाषा का इतिहास

यूक्लिडीय अंतरिक्ष को प्राचीन यूनानियों द्वारा हमारे भौतिक स्थान के एक अमूर्त के रूप में प्रस्तुत किया गया था। यूक्लिड के तत्वों में दिखाई देने वाला उनका महान नवाचार, कुछ अत्यंत मौलिक गुणों से प्रारंभ करके सभी ज्यामितियों को निर्मित करने और सिद्ध करने के लिए था, जो भौतिक दुनिया से अलग हैं, और जिन्हें अधिक मौलिक उपकरणों की कमी के कारण गणितीय रूप से सिद्ध नहीं किया जा सकता है। इन गुणों को आधुनिक भाषा में अभिगृहीत या स्वयंसिद्ध कहा जाता है। यूक्लिडीय अंतरिक्ष को परिभाषित करने की यह विधि अभी भी अवास्तविक ज्यामिति के नाम से प्रयोग में है।

रेने डेसकार्टेस ने वर्ष 1637 में कार्तीय निर्देशांक प्रस्तुत किए और दिखाया कि यह संख्याओं के साथ बीजगणितीय संगणनाओं के लिए ज्यामितीय समस्याओं को कम करने की सुविधा प्रदान करते हैं। बीजगणित में ज्यामिति की यह कमी दृष्टिकोण में एक बड़ा बदलाव थी, क्योंकि तब तक, वास्तविक संख्याएँ लंबाई और दूरी के संदर्भ में परिभाषित की जाती थीं।

19वीं शताब्दी तक यूक्लिडीय ज्यामिति को तीन से अधिक विमाओं वाले अंतरिक्षों में प्रयुक्त नहीं किया गया था। लुडविग श्लाफली ने अवास्तविक और बीजगणितीय दोनों विधियों का उपयोग करते हुए विमा n वाले अंतरिक्ष के लिए यूक्लिडीय ज्यामिति को सामान्यीकृत किया, और ऐसे सभी सम-बहुफलकों (प्लेटोनिक ठोसों के उच्च-विमीय अनुरूप) की खोज की जो किसी भी विमा के यूक्लिडीय अंतरिक्ष में स्थित होते हैं।[4]

डेसकार्टेस के विश्लेषणात्मक ज्यामिति कहे जाने वाले दृष्टिकोण के व्यापक उपयोग के बाद भी यूक्लिडीय अंतरिक्ष की परिभाषा 19वीं सदी के अंत तक अपरिवर्तित रही। अमूर्त सदिश अंतरिक्ष के प्रारंभ ने यूक्लिडीय अंतरिक्ष को विशुद्ध रूप से बीजगणितीय परिभाषा के साथ परिभाषित करने में उनके उपयोग की सुविधा दी। इस नई परिभाषा को ज्यामितीय अभिगृहीतों के संदर्भ में चिरसम्मत परिभाषा के समतुल्य दिखाया गया है। यह बीजगणितीय परिभाषा है जो अब यूक्लिडीय अंतरिक्ष को प्रस्तुत करने के लिए सबसे अधिक उपयोग की जाती है।

आधुनिक परिभाषा की प्रेरणा

यूक्लिडीय समतल के बारे में विचार करने की एक विधि, बिंदुओं के एक समुच्चय के रूप में है जो कुछ ऐसे संबंधों को संतुष्ट करती है, जिन्हें दूरी और कोणों के रूप में व्यक्त किया जा सकता है। उदाहरण के लिए, एक समतल पर दो मौलिक संक्रियाएँ (गति के रूप में संदर्भित) होती हैं। जिनमें से एक रूपान्तरण (ज्यामितीय) है, जिसका अर्थ समतल का इस प्रकार स्थानांतरण है, जिससे प्रत्येक बिंदु एक ही दिशा में और समान दूरी से स्थानांतरित हो; और दूसरी, समतल में एक निश्चित बिंदु के चारों ओर चक्रण है, जिसमें समतल के सभी बिंदु एक ही कोण से उस निश्चित बिंदु के चारों ओर घूमते हैं। यूक्लिडीय ज्यामिति के मूल सिद्धांतों में से एक यह है कि समतल के दो आरेखों (सामान्यतः उपसमुच्चय के रूप में माने जाते हैं) को समतुल्य (सर्वांगसम) माना जाना चाहिए, यदि इनमें से किसी एक को रूपान्तरण, चक्रण और परावर्तन के कुछ अनुक्रमों द्वारा दूसरे में रूपांतरित किया जा सकता है (नीचे देखें)।

इन सभी को गणितीय रूप से यथार्थ बनाने के लिए, सिद्धांत को स्पष्ट रूप से परिभाषित करना चाहिए कि यूक्लिडीय अंतरिक्ष क्या है, और दूरी कोण, रूपान्तरण और चक्रण की संबंधित धारणाएँ क्या हैं। भौतिक सिद्धांतों में उपयोग किए जाने के बाद भी, यूक्लिडीय अंतरिक्ष वास्तविक भौतिक स्थानों, विशिष्ट संदर्भ फ़्रेमों, माप उपकरणों, और इसी प्रकार के अन्य घटकों से अलग एक अमूर्त हैं। यूक्लिडीय अंतरिक्ष की विशुद्ध रूप से गणितीय परिभाषा भी लंबाई और अन्य भौतिक विमाओं की इकाइयों के प्रश्नों की उपेक्षा करती है: "गणितीय" स्थान में दूरी एक संख्या है, जो इंच या मीटर में व्यक्त नहीं कि गई है।

यूक्लिडीय अंतरिक्ष को गणितीय रूप से परिभाषित करने की मानक विधि, जैसा कि इस लेख के शेष भाग में किया गया है, बिंदुओं के एक समुच्चय के रूप में है, जिस पर एक वास्तविक सदिश अंतरिक्ष कार्य करता है, जो आंतरिक गुणन से सुसज्जित रूपान्तरण का स्थान है।[1] रूपान्तरण की क्रिया अंतरिक्ष को एक एफाइन अंतरिक्ष बनाती है, और यह रेखाओं, समतलों, उप-स्थानों, विमा और समानान्तरवाद को परिभाषित करने की सुविधा देती है। आंतरिक गुणन दूरी और कोणों को परिभाषित करने की प्रदान करता है।

वास्तविक संख्याओं के n-ट्यूपल का समुच्चय बिंदु गुणन से सुसज्जित n विमाओं वाला एक यूक्लिडीय अंतरिक्ष है। इसके विपरीत, एक बिंदु का चयन, जिसे मूलबिंदु कहा जाता है, और रूपान्तरण के स्थान का एक लम्ब आधार, n-विमाओं वाले यूक्लिडीय स्थान और के रूप के यूक्लिडीय स्थान के बीच एक समरूपता परिभाषित करने के समतुल्य है।

इससे पता चलता है कि यूक्लिडीय अंतरिक्ष के बारे में जो कुछ भी कहा जा सकता है, वह के बारे में भी कहा जा सकता है। इसलिए, कई लेखक, विशेष रूप से प्रारंभिक स्तर पर, को n-विमाओं वाला मानक यूक्लिडीय अंतरिक्ष,[5] या केवल n-विमाओं वाला यूक्लिडीय अंतरिक्ष कहते हैं।

के स्थान पर इसके साथ कार्य करने के लिए यूक्लिडीय अंतरिक्ष की ऐसी अमूर्त परिभाषा प्रस्तुत करने का एक कारण यह है कि इसमें निर्देशांक-मुक्त और मूलबिंदु-मुक्त विधि (अर्थात्, स्वेच्छ आधार और स्वेच्छ मूलबिंदु के चयन के बिना) से कार्य करना प्रायः बेहतर होता है। दूसरा कारण यह है कि भौतिक संसार में न तो कोई मूलबिंदु है और न ही कोई आधार।

तकनीकी परिभाषा

एक यूक्लिडीय सदिश अंतरिक्ष वास्तविक संख्याओं पर एक परिमित-विमीय आंतरिक गुणन स्थान है।

एक यूक्लिडीय अंतरिक्ष वास्तविक संख्याओं पर एक एफाइन अंतरिक्ष है जैसे कि संबद्ध सदिश अंतरिक्ष, एक यूक्लिडीय सदिश अंतरिक्ष है। यूक्लिडीय अंतरिक्ष को कभी-कभी यूक्लिडीय सदिश अंतरिक्ष से अलग करने के लिए यूक्लिडीय एफाइन अंतरिक्ष कहा जाता है।[6]

यदि E एक यूक्लिडीय अंतरिक्ष है, तो इससे सम्बद्ध सदिश अंतरिक्ष (यूक्लिडीय सदिश अंतरिक्ष) को प्रायः के रूप में दर्शाया जाता है। संबंधित सदिश अंतरिक्ष की विमा ही यूक्लिडीय अंतरिक्ष की विमा होती है।

E के तत्वों को बिंदु कहा जाता है और सामान्यतः बड़े अक्षरों द्वारा निरूपित किया जाता है। के तत्वों को यूक्लिडीय सदिश या मुक्त सदिश कहा जाता है। इन्हें रूपान्तरण भी कहा जाता है, हालांकि, उचित रूप से बोलते हुए, रूपान्तरण, यूक्लिडीय अंतरिक्ष पर यूक्लिडीय सदिश की क्रिया के परिणामस्वरूप एक ज्यामितीय परिवर्तन होता है।

एक बिंदु P पर रूपान्तरण v की क्रिया एक ऐसा बिंदु प्रदान करती है, जिसे P + v के रूप में निरूपित किया जाता है। यह क्रिया निम्न को संतुष्ट करती है:

नोट: बाईं ओर दूसरा + एक सदिश योग है; अन्य सभी + एक बिंदु पर एक सदिश की क्रिया को निरूपित करते हैं। यह संकेतन अस्पष्ट नहीं है, क्योंकि, + के दो अर्थों के बीच अंतर करने के लिए, इसके बाएँ तर्क की प्रकृति को देखना पर्याप्त है।


क्रिया स्वतंत्र और सकर्मक है, इस तथ्य का अर्थ है कि बिंदुओं के प्रत्येक युग्म (P, Q) के लिए यथार्थ एक सदिश v इस प्रकार है कि P + v = Q। इस सदिश v को QP या द्वारा निरूपित किया जाता है

जैसा कि पहले बताया गया है, यूक्लिडीय अंतरिक्ष के कुछ मूल गुण एफाइन अंतरिक्ष की संरचना का परिणाम हैं। ये § एफाइन संरचना और उसके उपखंडों में वर्णित हैं। आंतरिक गुणन से उत्पन्न गुणों को § मीट्रिक संरचना और उसके उपखंडों में वर्णित किया गया है।

प्रोटोटाइपिकल उदाहरण

किसी भी सदिश अंतरिक्ष के लिए, योग सदिश अंतरिक्ष पर स्वतंत्र और सकर्मक रूप से कार्य करता है। इस प्रकार एक यूक्लिडीय सदिश अंतरिक्ष को एक यूक्लिडीय अंतरिक्ष के रूप में माना जा सकता है, जो स्वयं संबंधित सदिश अंतरिक्ष के रूप में है।

यूक्लिडीय सदिश अंतरिक्ष की एक विशेष स्थिति को सदिश अंतरिक्ष के रूप में देखा जाना है, जिसमें आंतरिक गुणन के रूप में एक बिंदु गुणन होता है। यूक्लिडीय अंतरिक्ष के इस विशेष उदाहरण का महत्व इस तथ्य में निहित है कि प्रत्येक यूक्लिडीय अंतरिक्ष इसके लिए समरूप होता है। अधिक यथार्थ रूप से, दिये गए n-विमाओं वाले एक यूक्लिडीय अंतरिक्ष E के लिए, एक बिंदु का चयन, जिसे मूलबिंदु कहा जाता है, और का एक लम्ब आधार, E से के लिए यूक्लिडीय अंतरिक्ष की एक समरूपता को परिभाषित करता है।

चूंकि n-विमाओं वाला प्रत्येक यूक्लिडीय अंतरिक्ष इसके लिए समरूप है, यूक्लिडीय स्थान को कभी-कभी n-विमाओं का मानक यूक्लिडीय अंतरिक्ष कहा जाता है।[5]

एफाइन संरचना

यूक्लिडीय अंतरिक्ष के कुछ मूल गुण केवल इस तथ्य पर निर्भर करते हैं कि एक यूक्लिडीय अंतरिक्ष एक एफाइन अंतरिक्ष होता है। इन्हें एफाइन गुण कहा जाता है और इसमें रेखाएँ, उप-स्थानों और समानता की अवधारणाएँ सम्मिलित होती हैं, जो अगले उपखंडों में वर्णित हैं।

उप-स्थान

मान लीजिए E एक यूक्लिडीय अंतरिक्ष और इससे सम्बद्ध सदिश अंतरिक्ष है।E का एक समतलीय, यूक्लिडीय उप-स्थान या एफाइन उप-स्थान, E का एक ऐसा उपसमुच्चय F है, कि

क्योंकि F का संबद्ध सदिश अंतरिक्ष का एक रेखीय उप-स्थान (सदिश उप-समष्टि) है। एक यूक्लिडीय उप-स्थान F एक ऐसा यूक्लिडीय उप-स्थान है, जिसमें सदिश अंतरिक्ष के रूप में सम्बद्ध होता है। इस रैखिक उप-स्थान को F की दिशा भी कहा जाता है।

यदि P, F का एक बिंदु है, तब

इसके विपरीत यदि P, E का एक बिंदु है तथा , का एक रैखिक उप-स्थान है तब
दिशा का एक यूक्लिडीय उप-स्थान है, (इस उप-स्थान का संबद्ध सदिश अंतरिक्ष है।)

एक यूक्लिडीय सदिश अंतरिक्ष (अर्थात्, एक यूक्लिडीय अंतरिक्ष जो के बराबर है) में दो प्रकार के उप-स्थान होते हैं: इसके यूक्लिडीय उप-स्थान और रैखिक उप-स्थान। एक रैखिक उप-स्थान, एक यूक्लिडीय उप-स्थान और एक यूक्लिडीय उप-स्थान, एक रैखिक उप-स्थान होता है, यदि और केवल यदि इसमें शून्य सदिश सम्मिलित है।

रेखाएँ और खंड

यूक्लिडीय अंतरिक्ष में, एक रेखा एक विमा की यूक्लिडीय उप-स्थान होती है। चूँकि एक-विमीय सदिश अंतरिक्ष, किसी भी अशून्य सदिश द्वारा विस्तृत है, एक रेखा निम्न रूप का एक समुच्चय है,

जहाँ P तथा Q रेखा के एक भाग के रूप में यूक्लिडीय अंतरिक्ष के दो अलग-अलग बिंदु हैं।


इसका अर्थ है कि वास्तव में केवल एक ही रेखा होती है जो दो अलग-अलग बिंदुओं से होकर गुजरती है। इसका तात्पर्य है कि दो अलग-अलग रेखाएँ अधिकतम एक बिंदु पर प्रतिच्छेद करती हैं।P तथा Q से गुजरने वाली रेखा का अधिक सममित निरूपण है

जहाँ O एक स्वेच्छ बिंदु है (रेखा पर होना आवश्यक नहीं है)।
एक यूक्लिडीय सदिश अंतरिक्ष में, O के लिए सामान्यतः शून्य सदिश का चयन किया जाता है; यह पिछले सूत्र को सरल बनाने की सुविधा देता है
एक मानक परिपाटी प्रत्येक यूक्लिडीय अंतरिक्ष में इस सूत्र का उपयोग करने की अनुमति देती है, एफाइन अंतरिक्ष § एफाइन संयोजन और बैरीसेंटर देखें। बिंदु P और Q को मिलाने वाला रेखा खंड, या केवल खंड, पिछले सूत्रों में 0 ≤ 𝜆 ≤ 1 जैसे बिंदुओं का उपसमुच्चय है। इसे PQ या QP निरूपित किया जाता है; अतः

समानांतरवाद

एक यूक्लिडीय अंतरिक्ष में समान विमा के दो उपस्थान S और T समानांतर होते हैं यदि इनके पास समान दिशा होती है (अर्थात्, समान सम्बद्ध सदिश अंतरिक्ष)।[lower-alpha 1] समतुल्य रूप से, ये समानांतर होते हैं, यदि कोई रूपान्तरण सदिश v ऐसा है, जो एक दूसरे को प्रतिचित्रित करता है:

दिए गए एक बिंदु P और एक उप-स्थान S के लिए, यथार्थ रूप से एक उप-स्थान उपलब्ध है जिसमें P सम्मिलित है और जो S के समानांतर है, वह है, S के एक रेखा होने की स्थिति में (एकविमीय उप-स्थान), यह गुण प्लेफेयर अभिगृहीत है।

इसका अर्थ है कि एक यूक्लिडीय समतल में, दो रेखाएँ या तो एक बिंदु पर मिलती हैं या समानांतर होती हैं।

समांतर उप-स्थानों की अवधारणा को विभिन्न विमाओं के उप-स्थानों तक विस्तारित किया गया है: दो उप-स्थान समानांतर होते हैं यदि उनमें से एक की दिशा दूसरे की दिशा में निहित है।

मीट्रिक संरचना

यूक्लिडीय स्थान E से संबद्ध एक सदिश अंतरिक्ष , एक आंतरिक गुणन स्थान है। इसका तात्पर्य एक सममित द्विरैखिक रूप से है

जो यह धनात्मक परिमित है (अर्थात ,x ≠ 0 के लिए सदैव धनात्मक होता है)।


यूक्लिडीय अंतरिक्ष के आंतरिक गुणन को प्रायः बिंदु गुणन कहा जाता है और xy से निरूपित किया जाता है। यह विशेष रूप से वह स्थिति है, जहाँ एक कार्तीय निर्देशांक निकाय का चयन किया गया है, जैसा कि, इस स्थिति में, दो सदिशों का आंतरिक गुणन उनके निर्देशांक सदिशों का बिंदु गुणन है। इस कारण और ऐतिहासिक कारणों से, यूक्लिडीय अंतरिक्ष के आंतरिक गुणन के लिए कोष्ठक संकेतन की तुलना में बिंदु संकेतन का अधिक सामान्य रूप से उपयोग किया जाता है। यह लेख इस प्रयोग का अनुसरण करेगा; अर्थात् को इस लेख के शेष भाग में xy के रूप में प्रदर्शित किया जाएगा।

सदिश x का यूक्लिडीय मानक है:

आंतरिक गुणन और मानक, यूक्लिडीय ज्यामिति के मीट्रिक और सांस्थितीय गुणों को व्यक्त करने और सिद्ध करने की सुविधा प्रदान करता है। अगला उपखंड इनमें से सबसे मौलिक का वर्णन करता है। इन उपखंडों में, E एक स्वेच्छ यूक्लिडीय अंतरिक्ष को प्रदर्शित करता है, और , इसके रूपान्तरण के सदिश अंतरिक्ष को प्रदर्शित करता है

दूरी और लंबाई

यूक्लिडीय अंतरिक्ष के दो बिंदुओं के बीच की दूरी (अधिक यथार्थ रूप से यूक्लिडीय दूरी), रूपान्तरण सदिश की मानक है जो एक बिंदु को दूसरे बिंदु पर प्रतिचित्रित करती है; अर्थात्

एक खंड (रेखा-खंड) PQ की लंबाई, इसके अंत्य बिंदुओं के बीच की दूरी d(P, Q) है। इसे प्रायः से प्रदर्शित किया जाता है।


दूरी एक मीट्रिक होती है, क्योंकि यह धनात्मक निश्चित और सममित होती है और त्रिभुज की असमिका को संतुष्ट करती है:

इसके अतिरिक्त, समानता सत्य है यदि और केवल यदि R, खंड PQ पर स्थित है। इस असमानता का अर्थ है कि त्रिभुज की किसी भुजा की लंबाई अन्य भुजाओं की लंबाई के योग से छोटी होती है। यह त्रिभुज की असमिका शब्द की उत्पत्ति है।


यूक्लिडीय दूरी के साथ, प्रत्येक यूक्लिडीय अंतरिक्ष एक पूर्ण मीट्रिक स्थान होता है।

लम्बता

के दो गैर-शून्य सदिश u और v लंबवत या लम्ब होते हैं यदि उनका आंतरिक गुणन शून्य होता है:

के दो रेखीय उपस्थान लम्ब होते हैं यदि पहले उप-स्थान का प्रत्येक शून्येतर सदिश, दूसरे उप-स्थान के प्रत्येक शून्येतर सदिश के लंबवत हो। इसका तात्पर्य यह है कि रैखिक उप-स्थान का प्रतिच्छेदन शून्य सदिश के रूप में परिवर्तित हो जाता है।


दो रेखाएँ, और अधिक सामान्यतः दो यूक्लिडीय उप-स्थान लम्बवत् होते हैं यदि इनकी दिशाएँ (एक रेखा को एक यूक्लिडियन उप-स्थान के रूप में माना जा सकता है) लम्ब हैं। प्रतिच्छेद करने वाली दो लम्ब रेखाएँ, लम्बवत् कहलाती हैं।

दो खंड AB और AC, जो एक उभयनिष्ठ अंत्य बिंदु को साझा करते हैं, लंबवत होते हैं या एक समकोण बनाते हैं यदि सदिश और लम्ब हैं।

यदि AB और AC एक समकोण बनाते हैं, तब

यह पाइथागोरस प्रमेय है। इसे आंतरिक गुणन के पदों में व्यक्त करते हुए, इस संदर्भ में इसका प्रमाण आसान है, और आंतरिक गुणन की द्विरैखिकता और समरूपता का उपयोग करते हुए यह प्राप्त होता है:


कोण

File:45, -315, and 405 co-terminal angles.svg
उन्मुख तल पर धनात्मक और ऋणात्मक कोण

में दो अशून्य सदिशों x और y के बीच का (गैर-उन्मुख) कोण θ है

जहां arccos, आर्ककोज्या फलन का मुख्य मान है। कॉशी-श्वार्ज असमिका के अनुसार, आर्ककोज्या का कोणांक, अंतराल [−1, 1] में स्थित है। इसलिए θ वास्तविक और 0 ≤ θπ (या 0 ≤ θ ≤ 180 यदि कोणों को डिग्री में मापा जाता है) है।

यूक्लिडीय रेखा में कोण उपयोगी नहीं होते हैं, क्योंकि वे केवल 0 या π हो सकते हैं।

एक उन्मुख यूक्लिडीय समतल में, दो सदिशों के उन्मुख कोण को परिभाषित किया जा सकता है। दो सदिशों x और y का उन्मुख कोण, तब y और x के उन्मुख कोणों के विपरीत होता है। इस स्थिति में, दो सदिशों के कोण का कोई भी मान हो सकता है, जो 2π का एक पूर्णांक गुणज होता है। विशेष रूप से, एक प्रतिवर्ती कोण π < θ < 2π, ऋणात्मक कोण π < θ − 2π < 0 के बराबर होता है।

यदि दो सदिशों को धनात्मक संख्याओं से गुणा किया जाए तो उनका कोण नहीं बदलता है। अधिक यथार्थ रूप से, यदि x और y दो सदिश हैं, और λ और μ वास्तविक संख्याएँ हैं, तो

यदि A, B, और C एक यूक्लिडीय अंतरिक्ष में तीन बिंदु हैं, तो AB और AC खंडों का कोण, सदिशों और का कोण होता है, चूंकि सदिशों के धनात्मक संख्याओं द्वारा गुणन से कोण नहीं बदलता है, अतः प्रारंभिक बिंदु A वाली दो अर्ध-रेखाओं के कोण को परिभाषित किया जा सकता है: यह खंडों AB और AC का कोण है, जहाँ B और C, प्रत्येक अर्ध-रेखा पर एक स्वेच्छ बिंदु हैं। हालांकि इसका उपयोग कम किया जाता है, इसी प्रकार उन खंडों या अर्ध-रेखाओं के बीच के कोण को परिभाषित किया जा सकता है जो प्रारंभिक बिंदुओं को साझा नहीं करते हैं।


दो रेखाओं के कोण को इस प्रकार परिभाषित किया जाता है। यदि दो खंडों, प्रत्येक रेखा पर एक, के बीच का कोण θ है, तो किन्हीं भी दो अन्य खंडों, प्रत्येक रेखा पर एक, के बीच का कोण या तो θ या πθ होता है। इनमें से एक कोण अंतराल [0, π/2] में और दूसरा [π/2, π] में स्थित है। दो रेखाओं का गैर-उन्मुख कोण अंतराल [0, π/2] में एक होता है। एक उन्मुख यूक्लिडीय समतल में, दो रेखाओं का उन्मुख कोण अंतराल [−π/2, π/2] में स्थित होता है।

कार्तीय निर्देशांक

प्रत्येक यूक्लिडीय सदिश अंतरिक्ष का एक लम्ब आधार (वास्तव में, एक से अधिक विमा में अपरिमित और एक विमा में दो) होता है, जो इकाई सदिश () का एक आधार होता है, जो युग्मानुसार लम्ब ( ij के लिए) होते हैं। अधिक यथार्थ रूप से, किसी भी आधार के लिए, ग्राम-श्मिट प्रक्रिया एक ऐसे लम्ब आधार की गणना करती है, कि, प्रत्येक i के लिए, और के रैखिक विस्तार बराबर हैं।[7]

एक यूक्लिडीय अंतरिक्ष E के लिए, एक कार्तीय फ्रेम आंकड़ों का एक समुच्चय होता है जिसमें का एक लम्ब आधार और E का एक बिंदु, जिसे मूलबिंदु कहा जाता है और प्रायः O से निरूपित किया जाता है, सम्मिलित हैं।

एक कार्तीय फ्रेम , E और दोनों के लिए कार्तीय निर्देशांक को निम्नलिखित तरीके से परिभाषित करने की अनुमति देता है।

सदिश v के कार्तीय निर्देशांक, के आधार पर v के गुणांक होते हैं। चूँकि आधार लम्ब है, अतः iवाँ गुणांक बिंदु गुणन होता है।

E के बिंदु P के कार्तीय निर्देशांक, सदिश के कार्तीय निर्देशांक होते हैं।

अन्य निर्देशांक

File:Repere espace.png
त्रि-विमीय तिरछे निर्देशांक

चूँकि यूक्लिडीय अंतरिक्ष एक एफाइन अंतरिक्ष होता है, अतः उस पर एक एफाइन फ्रेम पर लिया जा सकता है, जो यूक्लिडीय फ्रेम के समान होता है, इसको छोड़कर, कि आधार को लम्ब होने की आवश्यकता नहीं होती है। यह एफाइन निर्देशांक को परिभाषित करता है, कभी-कभी इस बात पर बल देने के लिए इसे तिरछे निर्देशांक भी कहा जाता है कि आधार सदिश युग्मानुसार लम्ब नहीं होते हैं।

n विमाओं वाले यूक्लिडीय अंतरिक्ष का एक एफाइन आधार, n + 1 बिंदुओं का एक समुच्चय होता है जो एक हाइपरप्लेन में समाहित नहीं होते है। एक एफाइन आधार, प्रत्येक बिंदु के लिए बैरीसेंट्रिक निर्देशांकों को परिभाषित करता है।

कई अन्य निर्देशांक निकायों को निम्नलिखित तरीके से n विमाओं वाले यूक्लिडीय अंतरिक्ष E पर परिभाषित किया जा सकता है। माना f , E के सघन खुले उपसमुच्चय से के खुले उपसमुच्चय में एक समरूपता (या प्रायः एक डिफियोमोर्फिज्म) है। E के बिंदु x के निर्देशांक f(x) के घटक होते हैं। ध्रुवीय निर्देशांक निकाय (द्विविमीय) और गोलाकार एवं बेलनाकार निर्देशांक निकायों (त्रि-विमीय) को इस प्रकार परिभाषित किया गया है।

उन बिंदुओं के लिए, जो f के प्रांत के बाहर हैं, निर्देशांक को कभी-कभी निकट बिंदुओं के निर्देशांकों की सीमा के रूप में परिभाषित किया जा सकता है, लेकिन ये निर्देशांक विशिष्ट रूप से परिभाषित नहीं हो सकते हैं, और बिंदु के निकट में सतत नहीं हो सकते हैं। उदाहरण के लिए, गोलाकार निर्देशांक निकाय के लिए, देशांतर को ध्रुव पर परिभाषित नहीं किया गया है, और प्रतियाम्योत्तर (एंटीमैरीडियन) पर देशांतर, -180° से +180° तक असतत रूप से गुजरता है।

निर्देशांकों को परिभाषित करने की यह विधि, आसानी से अन्य गणितीय संरचनाओं तक और विशेष रूप से मैनिफोल्ड तक विस्तृत है।

सममिति

दो मीट्रिक स्थानों के बीच एक सममिति, दूरी को संरक्षित करने वाली एक आक्षेप है,[lower-alpha 2] अर्थात्

यूक्लिडीय सदिश अंतरिक्ष की स्थिति में, एक सममिति जो मानक को संरक्षित करते हुए मूलबिंदु को मूलबिंदु से प्रतिचित्रित करती है,
चूँकि सदिश का मानक इसकी शून्य सदिश से दूरी है। यह आंतरिक गुणन को भी संरक्षित करता है
क्योंकि
यूक्लिडीय सदिश अंतरिक्ष की एक सममिति, एक रैखिक समरूपता होती है।[lower-alpha 3][8]


यूक्लिडीय अंतरिक्ष की एक सममिति , सम्बद्ध यूक्लिडीय सदिश अंतरिक्ष की एक सममिति को परिभाषित करती है। इसका तात्पर्य है कि दो सममित यूक्लिडीय अंतरिक्ष समान विमा वाले होते हैं। इसके विपरीत, यदि E और F यूक्लिडीय अंतरिक्ष हैं, तो OE, O'F, और एक सममिति है, तो प्रतिचित्रण द्वारा परिभाषित

यूक्लिडीय अंतरिक्ष की एक सममिति है।


यह पूर्ववर्ती परिणामों का अनुसरण करता है कि यूक्लिडीय अंतरिक्ष की एक सममिति, रेखाओं को रेखाओं में और अधिक सामान्यतः समान विमाओं वाले यूक्लिडीय उप-स्थानों को यूक्लिडीय उप-स्थानों में प्रतिचित्रित करती है, और यह कि इन उप-स्थानों पर सममिति के प्रतिबंध, इन उप-स्थानों के सममित होते हैं।

प्रोटोटाइपिकल उदाहरणों के साथ सममिति

यदि E एक यूक्लिडीय अंतरिक्ष है, तो इससे सम्बद्ध सदिश अंतरिक्ष को यूक्लिडीय अंतरिक्ष माना जा सकता है। प्रत्येक बिंदु OE यूक्लिडीय अंतरिक्ष की एक सममिति को परिभाषित करता है

जो O को शून्य सदिश पर प्रतिचित्रित करता है और सम्बद्ध रैखिक प्रतिचित्रण के रूप में पहचान रखता है। निम्न प्रतिचित्रण व्युत्क्रम सममिति है
एक यूक्लिडीय फ्रेम निम्न प्रतिचित्रण को परिभाषित करने की सुविधा प्रदान करता है
जो यूक्लिडीय अंतरिक्ष की एक सममिति है। निम्न व्युत्क्रम सममिति है
इसका अर्थ है कि, एक तुल्याकारिता तक, दी गई विमा का एक यथार्थ यूक्लिडीय अंतरिक्ष होता है।


यह इस तथ्य को सत्य सिद्ध करता है कि कई लेखक को n-विमाओं के यूक्लिडीय अंतरिक्ष के रूप में मानकर बात करते हैं।

यूक्लिडीय समूह

यूक्लिडीय अंतरिक्ष से स्वयं पर एक सममिति को यूक्लिडीय सममिति, यूक्लिडीय रूपान्तरण या जटिल रूपान्तरण कहा जाता है। यूक्लिडीय अंतरिक्ष के जटिल रूपान्तरण एक समूह (रचना के तहत) का निर्माण करते हैं, जिसे यूक्लिडीय समूह कहा जाता है और प्रायः ISO(n) के E(n) से निरूपित किया जाता है।

सबसे सरल यूक्लिडीय परिवर्तन रूपान्तरण होते हैं

ये सदिश के साथ आक्षेपित संगतता में होते हैं। रूपान्तरण के स्थान को यूक्लिडीय स्थान से सम्बद्ध सदिश अंतरिक्ष कहने का यह एक कारण है। ये रूपान्तरण यूक्लिडीय समूह का एक सामान्य उपसमूह बनाते हैं।


यूक्लिडीय अंतरिक्ष E की एक यूक्लिडीय सममिति f , सम्बद्ध सदिश अंतरिक्ष की रैखिक सममिति(रैखिक सममिति द्वारा, इसका अर्थ एक सममिति है जो एक रेखीय प्रतिचित्रण भी है) को निम्नलिखित विधि से परिभाषित करती है: सदिश को QP द्वारा निरूपित करते हुए, यदि O, E का एक स्वेच्छ बिंदु है, तब

यह सिद्ध करना सरल है कि यह एक रैखिक प्रतिचित्रण है जो O के चयन पर निर्भर नहीं करता है।


प्रतिचित्रण , यूक्लिडीय समूह से रैखिक सममिति के समूह पर एक समूह समरूपता है, जिसे लम्ब समूह कहा जाता है। रूपान्तरण समूह, इस समरूपता का मूल है, जो यह दर्शाता है कि यह यूक्लिडीय समूह का एक सामान्य उपसमूह है।

किसी दिए गए बिंदु P को स्थाई करने वाली सममितियाँ, P के संबंध में यूक्लिडीय समूह के स्टेबलाइजर उपसमूह का निर्माण करती हैं। उपरोक्त समूह समरूपता के इस स्टेबलाइज़र के लिए प्रतिबंध, एक समरूपता है। अतः वे सममितियाँ, जो किसी दिए गए बिंदु को स्थाई करती हैं, लम्ब समूह के लिए एक समरूप समूह का निर्माण करती हैं।

माना P एक बिंदु, f, एक सममिति, और t, P को f(P) में प्रतिचित्रित करने वाला एक रूपान्तरण है। सममिति , P को स्थाई करती है। इसलिए और यूक्लिडीय समूह, रूपान्तरण समूह और लम्ब समूह का अर्ध-प्रत्यक्ष गुणन होता है

विशेष लम्ब समूह, लम्ब समूह का सामान्य उपसमूह होता है, जो अभिविन्यास को व्यवस्थित रखता है। यह लम्ब समूह के क्रम दो का एक उपसमूह होता है। समूह समरूपता द्वारा इसका प्रतिलोम प्रतिबिम्ब यूक्लिडीय समूह के क्रम दो का एक सामान्य उपसमूह होता है, जिसे विशेष यूक्लिडीय समूह या विस्थापन समूह कहा जाता है। इसके तत्वों को दृढ़ गति या विस्थापन कहा जाता है।

दृढ़ गतियों में तत्समता, रूपान्तरण, चक्रण (दृढ गति, जो कम से कम एक बिंदु को स्थाई करती है), और पेंच गतियाँ भी सम्मिलित होती हैं।

दृढ़ रूपान्तरणों के विशिष्ट उदाहरण, जो दृढ़ गति नहीं हैं, प्रतिबिंब हैं, जो ऐसे दृढ़ परिवर्तन हैं जो हाइपरप्लेन को स्थाई करते हैं और तत्समक नहीं हैं। ये कुछ यूक्लिडीय फ्रेमों पर एक निर्देशांक के चिह्न को बदलने में सम्मिलित परिवर्तन भी होते हैं।

चूँकि विशेष यूक्लिडीय समूह, यूक्लिडीय समूह के क्रम दो का एक उपसमूह होता है, अतः एक प्रतिबिंब के लिए, प्रत्येक दृढ़ रूपान्तरण, जो दृढ़ गति नहीं है, और दृढ़ गति का गुणन होता है। ग्लाइड प्रतिबिम्ब, दृढ़ रूपान्तरण का एक उदाहरण है जो दृढ़ गति या प्रतिबिंब नहीं है।

इस खंड में जिन सभी समूहों पर विचार किया गया है, वे ली-समूह और बीजगणितीय समूह हैं।

सांस्थिति

यूक्लिडीय दूरी, यूक्लिडीय अंतरिक्ष को एक मीट्रिक स्थान, और इस प्रकार एक सांस्थितीय स्थान बनाती है। इस सांस्थिति को यूक्लिडीय सांस्थिति कहा जाता है। की स्थिति में, यह सांस्थिति भी गुणन सांस्थिति है।

खुले समुच्चय, वे उपसमुच्चय होते हैं जिनमें उनके प्रत्येक बिंदु के चारों ओर एक खुली गेंद होती है। दूसरे शब्दों में, खुली गेंदें सांस्थिति का आधार बनाती हैं।

यूक्लिडीय अंतरिक्ष की सांस्थितीय विमा इसके विमा के बराबर होती है। इसका तात्पर्य है कि विभिन्न विमाओं के यूक्लिडीय अंतरिक्ष समरूप नहीं होते हैं। इसके अतिरिक्त, प्रान्त की निश्चरता की प्रमेय का दावा है कि एक यूक्लिडीय अंतरिक्ष का एक उपसमुच्चय खुला होता है (उप-स्थान सांस्थिति के लिए) यदि और केवल यदि यह समान विमा के यूक्लिडीय अंतरिक्ष के एक खुले उपसमुच्चय के लिए समरूप है।

यूक्लिडीय अंतरिक्ष पूर्ण और स्थानीय रूप से सघन होते हैं। अर्थात्, यूक्लिडीय अंतरिक्ष का एक बंद उपसमुच्चय सघन होता है यदि यह परिबद्ध है (अर्थात, एक गेंद में समाहित है)। विशेष रूप से, बंद गेंदें सघन होती हैं।

अभिगृहीतीय परिभाषाएँ

इस आलेख में वर्णित यूक्लिडीय अंतरिक्ष की परिभाषा मौलिक रूप से यूक्लिड की परिभाषा से भिन्न है। वास्तव में, यूक्लिड ने औपचारिक रूप से अंतरिक्ष को परिभाषित नहीं किया, क्योंकि यह भौतिक दुनिया के वर्णन के रूप में सोचा गया था जो मानव बुद्धि से स्वतंत्र रूप से विद्यमान है। एक औपचारिक परिभाषा की आवश्यकता केवल 19वीं शताब्दी के अंत में गैर-यूक्लिडीय ज्यामिति के प्रारंभ के साथ दिखाई दी।

इसमें दो अलग-अलग विधियों का उपयोग किया गया है। फेलिक्स क्लेन ने ज्यामिति को उनकी सममितियों के माध्यम से परिभाषित करने का सुझाव दिया। इस आलेख में दी गई यूक्लिडीय अंतरिक्ष की प्रस्तुति अनिवार्य रूप से उनके एरलांगेन कार्यक्रम से जारी की गई है, जिसमें रूपान्तरण और सममिति के समूहों पर जोर दिया गया है।

दूसरी ओर, डेविड हिल्बर्ट ने यूक्लिड की अभिधारणाओं से प्रेरित होकर अभिगृहीतों का एक समूह प्रस्तावित किया। ये अवास्तविक ज्यामिति से संबंधित हैं, क्योंकि इनमें वास्तविक संख्याओं की कोई परिभाषा सम्मिलित नहीं है। बाद में जी.डी. बिरखॉफ और अल्फ्रेड टार्स्की ने अभिगृहीतों के सरल समूह प्रस्तावित किए, जो वास्तविक संख्याओं का उपयोग करते हैं (बिरखॉफ के अभिगृहीत और टार्स्की के अभिगृहीत देखें)।

ज्यामितीय बीजगणित में, एमिल आर्टिन ने सिद्ध किया है कि यूक्लिडीय अंतरिक्ष की ये सभी परिभाषाएँ समतुल्य हैं।[9] यह सिद्ध करना आसान है कि यूक्लिडीय अंतरिक्ष की सभी परिभाषाएँ हिल्बर्ट के अभिगृहीतों को संतुष्ट करती हैं, और वास्तविक संख्याओं (ऊपर दी गई परिभाषा सहित) को सम्मिलित करने वाली परिभाषाएँ समतुल्य हैं। आर्टिन के प्रमाण का कठिन भाग निम्नलिखित है। हिल्बर्ट के अभिगृहीतों में, सर्वांगसमता , खंडों पर एक तुल्यता संबंध है। इस प्रकार एक खंड की लंबाई को इसके समतुल्य वर्ग के रूप में परिभाषित किया जा सकता है। इस प्रकार यह सिद्ध किया जाना चाहिए कि यह लंबाई उन गुणों को संतुष्ट करती है जो गैर-ऋणात्मक वास्तविक संख्याओं को दर्शाते हैं। आर्टिन ने इसे हिल्बर्ट के समतुल्य अभिगृहीतों के साथ सिद्ध किया।

उपयोग

प्राचीन यूनानियों के बाद से, यूक्लिडीय अंतरिक्ष का उपयोग भौतिक दुनिया में प्रतिरूपण आकृतियों के लिए किया जाता है। इस प्रकार यह भौतिकी, यांत्रिकी और खगोल विज्ञान जैसे कई विज्ञानों में प्रयोग किया जाता है। यह वास्तुकला, भूगणित, स्थलाकृति, पथ प्रदर्शन (नेविगेशन), औद्योगिक संरचना या तकनीकी कला जैसे तकनीकी क्षेत्रों में भी व्यापक रूप से उपयोग किया जाता है, जो आकार, आकृति, स्थान और स्थिति से संबंधित होते हैं।

भौतिकी के कई आधुनिक सिद्धांतों में तीन से अधिक विमाओं वाले अंतरिक्ष होते हैं; उच्च विमा देखें। ये भौतिक प्रणालियों के विन्यास स्थानों में भी होते हैं।

यूक्लिडीय ज्यामिति के अतिरिक्त, यूक्लिडीय अंतरिक्ष भी गणित के अन्य क्षेत्रों में व्यापक रूप से उपयोग किए जाते हैं। अवकलनीय मैनिफोल्ड के स्पर्शरेखा अंतरिक्ष, यूक्लिडीय सदिश अंतरिक्ष हैं। अधिक सामान्यतः, मैनिफोल्ड एक ऐसा स्थान है जो यूक्लिडीय अंतरिक्ष द्वारा स्थानीय रूप से अनुमानित होता है। अधिकांश गैर-यूक्लिडीय ज्यामिति को मैनिफोल्ड द्वारा प्रतिरूपित किया जा सकता है, और उच्च विमाओं वाले यूक्लिडीय अंतरिक्ष में अंतर्निहित किया जा सकता है। उदाहरण के लिए, एक दीर्घवृत्तीय स्थान को दीर्घवृत्ताभ द्वारा प्रतिरूपित किया जा सकता है। यूक्लिडीय अंतरिक्ष में ऐसी गणितीय वस्तुओं का निरूपित करना सामान्य है जो एक ज्यामितीय प्रकृति की प्राथमिकता नहीं है। आलेखों (असतत गणित) का सामान्य निरूपण कई स्थानों के बीच एक उदाहरण है।

अन्य ज्यामितीय अंतरिक्ष

19वीं शताब्दी के अंत में, गैर-यूक्लिडीय ज्यामितियों के प्रारंभ के बाद से, कई प्रकार के अंतरिक्षों पर विचार किया गया है, जिसके बारे में यूक्लिडीय अंतरिक्ष के समान ही ज्यामितीय तर्क किये जा सकते हैं। सामान्य रूप से, ये यूक्लिडीय अंतरिक्ष के साथ कुछ गुण साझा करते हैं, लेकिन इनके पास कुछ असामान्य गुण भी हो सकते हैं। इनमें से कुछ अंतरिक्ष अपनी परिभाषा के लिए यूक्लिडीय ज्यामिति का उपयोग करते हैं, या उच्च विमाओं वाले यूक्लिडीय अंतरिक्ष के उप-स्थान के रूप में तैयार किए जा सकते हैं। जब ऐसे अंतरिक्ष को ज्यामितीय सिद्धांतों द्वारा परिभाषित किया जाता है, तो यूक्लिडीय अंतरिक्ष में स्थान को अंतर्निहित करना इसकी परिभाषा की स्थिरता को सिद्ध करने, या अधिक यथार्थ रूप से यह सिद्ध करने की एक मानक विधि है, कि इसका सिद्धांत सुसंगत है, यदि यूक्लिडीय ज्यामिति सुसंगत है (जिसे सिद्ध नहीं किया जा सकता है)।

एफाइन अंतरिक्ष

यूक्लिडीय अंतरिक्ष एक मीट्रिक से सुसज्जित एक एफाइन अंतरिक्ष है। गणित में एफाइन अंतरिक्ष के कई अन्य उपयोग हैं। विशेष रूप से, किसी भी क्षेत्र में परिभाषित होने के कारण ये अन्य संदर्भों में ज्यामिति करने की सुविधा प्रदान करते हैं।

जैसे ही गैर-रैखिक प्रश्नों पर विचार किया जाता है, यह सामान्य रूप से यूक्लिडीय अंतरिक्ष के विस्तार के रूप में सम्मिश्र संख्याओं के परिबद्ध स्थानों पर विचार करने के लिए उपयोगी होता है। उदाहरण के लिए, जटिल एफाइन अंतरिक्ष में एक वृत्त और एक रेखा में सदैव दो प्रतिच्छेद बिंदु (संभवतः अलग नहीं) होते हैं। इसलिए, बीजगणितीय ज्यामिति का अधिकांश भाग बीजगणितीय रूप से परिबद्ध क्षेत्रों पर जटिल एफाइन अंतरिक्षों और एफाइन अंतरिक्षों में निर्मित किया गया है। इन एफाइन स्थानों में बीजगणितीय ज्यामिति में जिन आकृतियों का अध्ययन किया जाता है, उन्हें एफाइन बीजगणितीय विविधताएँ कहा जाता है।

परिमेय संख्याओं और अधिक सामान्यतः बीजगणितीय संख्या क्षेत्रों पर एफाइन अंतरिक्ष, (बीजगणितीय) ज्यामिति और संख्या सिद्धांत के बीच एक संयोजन प्रदान करते हैं। उदाहरण के लिए, फ़र्मेट की अंतिम प्रमेय को इस प्रकार कहा जा सकता है "दो से अधिक कोटि के एक फर्मेट वक्र का परिमेय संख्याओं पर एफाइन तल में कोई बिंदु नहीं है।"

परिमित क्षेत्रों पर एफाइन स्थानों की ज्यामिति का भी व्यापक अध्ययन किया गया है। उदाहरण के लिए, क्रिप्टोग्राफी में परिमित क्षेत्रों पर दीर्घवृत्तीय वक्रों का व्यापक रूप से उपयोग किया जाता है।

प्रक्षेपीय अंतरिक्ष

मूल रूप से, यूक्लिडीय अंतरिक्ष में और अधिक सामान्य रूप से "दो समतलीय रेखाएँ बिल्कुल एक बिंदु पर मिलती हैं" कथन को सत्य सिद्ध करने के लिए एफाइन अंतरिक्ष में "अनंतता पर बिंदु" को जोड़कर प्रक्षेपीय अंतरिक्ष को प्रस्तुत किया गया है। प्रक्षेपीय अंतरिक्ष, समदैशिक (आइसोट्रोपिक) होने के गुण को यूक्लिडीय और एफाइन अंतरिक्ष के साथ साझा करता है, अर्थात् अंतरिक्ष में ऐसा कोई गुण नहीं है जो दो बिंदुओं या दो रेखाओं के बीच अंतर को स्पष्ट करने की सुविधा प्रदान करता है। इसलिए, सामान्यतः एक अधिक समदैशिक परिभाषा का उपयोग किया जाता है, जिसमें एक प्रक्षेपीय अंतरिक्ष को एक सदिश अंतरिक्ष में सदिश रेखाओं के समुच्चय के रूप में परिभाषित किया जाता है।

एफाइन अंतरिक्ष के समान, प्रक्षेपीय अंतरिक्ष भी किसी भी क्षेत्र पर परिभाषित होते हैं, और बीजगणितीय ज्यामिति के मौलिक अंतरिक्ष होते हैं।

गैर-यूक्लिडीय ज्यामिति

गैर-यूक्लिडीय ज्यामिति सामान्यतः ज्यामितीय अंतरिक्ष को संदर्भित करती है जहां समांतर अभिधारणा असत्य होती है। इनमें दीर्घवृत्तीय ज्यामिति, जिसमें त्रिभुज के कोणों का योग 180° से अधिक होता है, और अतिपरवलयिक ज्यामिति, जिसमें यह योग 180° से कम होता है, सम्मिलित हैं। 19वीं शताब्दी के उत्तरार्ध में इनका आगमन, और यह प्रमाण कि इनका सिद्धांत सुसंगत है (यदि यूक्लिडीय ज्यामिति विरोधाभासी नहीं है) उन विरोधाभासों में से एक है, जो 20वीं शताब्दी के प्रारंभ के गणित में मूलभूत संकट के मूल में हैं, और जिन्होंने गणित में अभिगृहीतीय सिद्धांतों के व्यवस्थीकरण को प्रेरित किया।

वक्राकार स्थान

मैनिफोल्ड एक ऐसा स्थान है जो प्रत्येक बिंदु के निकट में एक यूक्लिडीय अंतरिक्ष जैसा दिखता है। तकनीकी शब्दों में, मैनिफोल्ड एक ऐसा सांस्थितीय अंतरिक्ष है, कि प्रत्येक बिंदु का एक ऐसा निकट क्षेत्र है जो यूक्लिडीय अंतरिक्ष के एक खुले उपसमुच्चय के लिए समरूप होता है। मैनिफोल्ड को सांस्थितीय मैनिफोल्ड, अवकलनीय मैनिफोल्ड, कोमल मैनिफोल्ड और विश्लेषणात्मक मैनिफोल्ड में इस "समानता" की बढ़ती हुई कोटि द्वारा वर्गीकृत किया जा सकता है। हालाँकि, इनमें से किसी भी प्रकार की "समानता" दूरियों और कोणों, यहाँ तक कि सन्निकटता पर भी ध्यान केन्द्रित नहीं करती है।

मैनिफोल्ड के बिंदुओं पर स्पर्शरेखा स्थान पर सुचारू रूप से भिन्न यूक्लिडीय मीट्रिक प्रदान करके दूरियों और कोणों को एक कोमल मैनिफोल्ड पर परिभाषित किया जा सकता है (ये स्पर्शरेखा स्थान इस प्रकार यूक्लिडीय सदिश अंतरिक्ष हैं)। रीमैनियन मैनिफोल्ड इसका परिणाम होता है। सामान्यतः, सीधी रेखाएँ रिमेंनियन मैनिफोल्ड में विद्यमान नहीं होती हैं, लेकिन इनकी भूमिका जियोडेसिक्स द्वारा निभाई जाती है, जो दो बिंदुओं के बीच "सबसे छोटा पथ" होता है। यह जियोडेसिक्स के साथ मापी जाने वाली दूरियों और जियोडेसिक्स के बीच के कोण, जो स्पर्शरेखा स्थान में उनके प्रतिच्छेद बिन्दु पर उनकी स्पर्शरेखाओं के कोण हैं, को परिभाषित करने की सुविधा प्रदान करता है। अतः रीमैनियन मैनिफोल्ड स्थानीय रूप से एक मुड़े हुए यूक्लिडीय अंतरिक्ष के समान व्यवहार करते हैं।

यूक्लिडीय अंतरिक्ष तुच्छ रूप से रीमैनियन मैनिफोल्ड होते हैं। गोले की सतह, इसको अच्छी प्रकार से दर्शाने वाला एक उदाहरण है। इस स्थिति में, जियोडेसिक्स वृहत वृत्त के चाप होते हैं, जिन्हें नेविगेशन के संदर्भ में ऑर्थोड्रोम कहा जाता है। अधिक सामान्यतः, गैर-यूक्लिडीय ज्यामिति के अंतरिक्ष को रीमैनियन मैनिफोल्ड के रूप में समझा जा सकता है।

छद्म-यूक्लिडीय अंतरिक्ष

धनात्मक निश्चित द्विरैखिक रूप, वास्तविक सदिश अंतरिक्ष का एक आंतरिक गुणन है, और इस प्रकार एक धनात्मक निश्चित द्विघात रूप की विशेषता है। छद्म-यूक्लिडीय अंतरिक्ष, एक गैर-विकृत द्विघात रूप (जो अनिश्चित हो सकता है) से सुसज्जित वास्तविक सदिश अंतरिक्ष के साथ एक एफाइन अंतरिक्ष है।

इस प्रकार के अंतरिक्ष का एक मौलिक उदाहरण मिंकोस्की अंतरिक्ष है, जो अल्बर्ट आइंस्टीन की विशेष सापेक्षता का समष्टि-काल है। यह एक चार विमीय अंतरिक्ष है, जहाँ मीट्रिक को द्विघात रूप से परिभाषित किया गया है

जहाँ अंतिम निर्देशांक (t) अस्थायी है, और अन्य तीन (x, y, z) स्थायी हैं।


गुरुत्वाकर्षण को ध्यान में रखने के लिए, सामान्य सापेक्षता एक छद्म-रीमैनियन मैनिफोल्ड का उपयोग करती है जिसमें मिन्कोस्की अंतरिक्ष को स्पर्शरेखा स्थान के रूप में रखा गया है। एक बिंदु पर इस मैनिफोल्ड की वक्रता, इस बिंदु पर गुरुत्वाकर्षण क्षेत्र के मान का एक फलन होती है।

यह भी देखें

फुटनोट्स

  1. It may depend on the context or the author whether a subspace is parallel to itself
  2. If the condition of being a bijection is removed, a function preserving the distance is necessarily injective, and is an isometry from its domain to its image.
  3. Proof: one must prove that . For that, it suffices to prove that the square of the norm of the left-hand side is zero. Using the bilinearity of the inner product, this squared norm can be expanded into a linear combination of and As f is an isometry, this gives a linear combination of and which simplifies to zero.


संदर्भ

  1. 1.0 1.1 Solomentsev 2001.
  2. Ball 1960, pp. 50–62.
  3. Berger 1987.
  4. Coxeter 1973.
  5. 5.0 5.1 Berger 1987, Section 9.1.
  6. Berger 1987, Chapter 9.
  7. Anton (1987, pp. 209–215)
  8. Berger 1987, Proposition 9.1.3.
  9. Artin 1988.
  • Anton, Howard (1987), Elementary Linear Algebra (5th ed.), New York: Wiley, ISBN 0-471-84819-0
  • Artin, Emil (1988) [1957], Geometric Algebra, Wiley Classics Library, New York: John Wiley & Sons Inc., pp. x+214, doi:10.1002/9781118164518, ISBN 0-471-60839-4, MR 1009557
  • Ball, W.W. Rouse (1960) [1908]. A Short Account of the History of Mathematics (4th ed.). Dover Publications. ISBN 0-486-20630-0.
  • Berger, Marcel (1987), Geometry I, Berlin: Springer, ISBN 3-540-11658-3
  • Coxeter, H.S.M. (1973) [1948]. Regular Polytopes (3rd ed.). New York: Dover. Schläfli ... discovered them before 1853 -- a time when Cayley, Grassman and Möbius were the only other people who had ever conceived of the possibility of geometry in more than three dimensions.
  • Solomentsev, E.D. (2001) [1994], "Euclidean space", Encyclopedia of Mathematics, EMS Press