ग्लूइंग अभिगृहीत

From Vigyanwiki

गणित में, ग्लूइंग अभिगृहीत को परिभाषित करने के लिए प्रस्तुत किया जाता है कि एक एक टोपोलॉजिकल स्पेस पर शीफ (गणित) को क्या संतुष्ट होना चाहिए, यह देखते हुए कि यह एक प्रीशेफ है, जो कि परिभाषा के अनुसार एक प्रतिपरिवर्तक फ़ैक्टर है।

एक श्रंखला के लिए जो शुरू में सेट की श्रंखला के रूप में लेता है। यहाँ समावेशन चित्रों द्वारा आदेशित के खुले सेट का आंशिक क्रम है; और एक अद्वितीय रूपवाद के साथ मानक तरीके से एक श्रंखला के रूप में माना जाता है।

यदि का उपसमुच्चय है, और कोई न हो।

जैसा कि शीफ (गणित) लेख में कहा गया है, एक निश्चित अभिगृहीत है कि के खुले सेट के किसी भी खुले कवर के लिए संतुष्ट होना चाहिए। उदाहरण के लिए, यूनियन (सेट सिद्धांत) और प्रतिच्छेद (सेट सिद्धांत) के साथ खुले सेट और दिए गए, आवश्यक शर्त यह है कि

में समान छवि के साथ का उपसमुच्चय है।

कम औपचारिक भाषा में, एक खंड (श्रेणी सिद्धांत) का ऊपर वर्गों की एक जोड़ी द्वारा समान रूप से अच्छी प्रकार से दिया गया है: पर और क्रमशः, जो इस अर्थ में 'सहमत' हैं कि और में एक सामान्य छवि है संबंधित प्रतिबंध चित्रों के अनुसार

और

.

शीफ थ्योरी में पहली बड़ी बाधा यह देखना है कि यह ग्लूइंग या पैचिंग अभिगृहीत ज्यामितीय स्थितियों में सामान्य विचार से एक सही अमूर्त है। उदाहरण के लिए, एक वेक्टर क्षेत्र एक चिकने मैनिफोल्ड पर स्पर्शरेखा बंडल का एक खंड है; यह कहता है कि दो खुले सेटों के मिलन पर एक सदिश क्षेत्र दो समुच्चयों पर सदिश क्षेत्रों (इससे अधिक और कम नहीं) है जो सहमत हैं कि वे कहाँ ओवरलैप करते हैं।

इस मूलभूत समझ को देखते हुए, सिद्धांत में और भी मुद्दे हैं, और कुछ को यहां संबोधित किया जाएगा। एक अलग दिशा ग्रोथेंडिक टोपोलॉजी की है, और दूसरी 'स्थानीय अस्तित्व' की तार्किक स्थिति है (क्रिप्के-जॉयल सिमेंटिक्स देखें)।

सी पर प्रतिबंध हटा रहा है

इस परिभाषा को इस प्रकार से बदलना जो किसी भी श्रंखला में काम करे इसकी पर्याप्त संरचना है, हम ध्यान दें कि हम उपरोक्त परिभाषा में सम्मिलित वस्तुओं और आकारिकी को एक आरेख में लिख सकते हैं जिसे हम ग्लूइंग के लिए (जी) कहेंगे:

यहां पहला नक्शा प्रतिबंध चित्रों का उत्पाद है

और तीरों की प्रत्येक जोड़ी दो प्रतिबंधों का प्रतिनिधित्व करती है

और

.

यह ध्यान देने योग्य है कि ये मानचित्र सभी संभावित प्रतिबंध चित्रों , , और यह को समाप्त कर देते है।

के लिए शर्त एक पूला होना किसी भी खुले सेट के लिए है और खुले सेट का कोई भी संग्रह जिसका मिलन है, उपरोक्त आरेख (G) एक तुल्यकारक_(गणित) है।

ग्लूइंग अभिगृहीत को समझने का एक तरीका यह है कि इस पर ध्यान दिया जाए निम्नलिखित आरेख का कोलिमिट है:

ग्लूइंग अभिगृहीत कहता है ऐसे रेखाचित्रों की कोलिमिट को लिमिट में बदल देता है।

खुले सेट के आधार पर समूह

कुछ श्रेणियों में, इसके केवल कुछ वर्गों को निर्दिष्ट करके एक पूला बनाना संभव है। विशेष रूप से, मान ले टोपोलॉजिकल स्पेस के आधार पर एक टोपोलॉजिकल स्पेस हो. हम एक वर्ग O′(X) को परिभाषित कर सकते हैं, की पूर्ण उपश्रेणी होना, जिनकी वस्तुएँ हैं. एक बी-शेफ ऑन मूल्यों के साथ यह एक प्रतिपरिवर्ती संकारक है

जो सेट के लिए ग्लूइंग अभिगृहीत को संतुष्ट करता है। यानी के खुले सेट के चयन पर , एक पूले के सभी वर्गों को निर्दिष्ट करता है, और अन्य खुले सेटों पर, यह अनिर्धारित है।

बी-शेव्स शेव्स के बराबर हैं (यानी, शेव्स की श्रंखला बी-शेव्स की श्रंखला के बराबर है)।[1] स्पष्ट रूप से एक पुलिया पर बी-शेफ तक सीमित किया जा सकता है। दूसरी दिशा में बी-शेफ दिया हमें के वर्गों का निर्धारण करना चाहिए की अन्य वस्तुओं पर . ऐसा करने के लिए, ध्यान दें कि प्रत्येक खुले सेट के लिए, हम एक संग्रह पा सकते हैं जिसका मिलन है . स्पष्ट रूप से बोलना, यह चुनाव करता है की पूर्ण उपश्रेणी की कोलिमिट जिनकी वस्तुएं हैं. तब से विरोधाभासी है, हम परिभाषित करते हैं की अनुमानित सीमा होना प्रतिबंध मानचित्र के संबंध में। (यहां हमें यह मान लेना चाहिए कि यह सीमा में उपस्थित है।) यदि एक मूलभूत खुला सेट है, फिर की उपश्रेणी का टर्मिनल ऑब्जेक्ट है , और इसलिए . इसलिए, का विस्तार पर एक presheaf के लिए इसे सत्यापित किया जा सकता है एक शीफ है, अनिवार्य रूप से क्योंकि हर खुले कवर का हर तत्व आधार तत्वों का एक संघ है (एक आधार की परिभाषा के अनुसार), और तत्वों के प्रत्येक जोड़ीदार चौराहे के एक खुले आवरण में आधार तत्वों का एक संघ है (फिर से आधार की परिभाषा द्वारा)।

सी का तर्क

शीफ सिद्धांत की पहली जरूरत एबेलियन समूहों के पूलों के लिए थी; इसलिए श्रंखला ले रहा है क्योंकि एबेलियन समूहों की श्रंखला केवल प्राकृतिक थी। ज्यामिति के अनुप्रयोगों में, उदाहरण के लिए जटिल कई गुना और बीजगणितीय ज्यामिति, स्थानीय रिंगों के एक समूह का विचार केंद्रीय है। हालाँकि, यह बिल्कुल समान बात नहीं है; एक स्थानीय रूप से बजने वाले स्थान के अतिरिक्त बोलता है, क्योंकि यह सच नहीं है, केवल सामान्य स्थितयों को छोड़कर, कि इस प्रकार का एक पूला स्थानीय छल्लों की श्रंखला में एक मज़ेदार है। यह शीफ के डंठल हैं जो स्थानीय रिंग हैं, न कि वर्गों का संग्रह (स्थानीय वलय (गणित) हैं, किन्तु सामान्य रूप से स्थानीय होने के निकट नहीं हैं)। हम स्थानीय रूप से चक्राकार स्थान के बारे में सोच सकते हैं स्थानीय छल्लों के एक पैरामीट्रिज्ड परिवार में के रूप में, पर निर्भर करता है.

एक अधिक सावधानीपूर्वक चर्चा यहाँ किसी भी रहस्य को दूर करती है। एबेलियन समूहों, या अंगूठियों के समूह के बारे में कोई स्वतंत्र रूप से बात कर सकता है, क्योंकि वे बीजगणितीय संरचनाएं हैं (परिभाषित, यदि कोई एक स्पष्ट हस्ताक्षर (तर्क) द्वारा जोर देता है)। कोई भी श्रंखला उत्पाद (श्रेणी सिद्धांत) होने से समूह वस्तु के विचार का समर्थन होता है, जिसे कुछ लोग समूह को कॉल करना पसंद करते हैं. इस प्रकार की विशुद्ध रूप से बीजगणितीय संरचना के मामले में, हम या तो एबेलियन समूहों की श्रंखला में मान रखने वाले पूले की बात कर सकते हैं, या समुच्चय के समूहों की श्रंखला में एबेलियन समूह की बात कर सकते हैं; यह वास्तव में मायने नहीं रखता।

स्थानीय रिंग मामले में, यह मायने रखता है। एक मूलभूत स्तर पर हमें परिभाषा की दूसरी शैली का उपयोग करना चाहिए, यह वर्णन करने के लिए कि किसी श्रंखला में स्थानीय रिंग का क्या अर्थ है। यह एक तार्किक मामला है: एक स्थानीय वलय के लिए अभिगृहीतों को अस्तित्वगत परिमाणीकरण के उपयोग की आवश्यकता होती है, इस रूप में कि किसी के लिए रिंग में, एक और उलटा है। यह किसी को यह निर्दिष्ट करने की अनुमति देता है कि श्रंखला में पर्याप्त संरचना का समर्थन करने वाले मामले में 'श्रेणी में स्थानीय वलय' क्या होनी चाहिए।

शेफिफिकेशन

दिए गए प्रीशेफ को चालू करने के लिए एक पूले में , शेफिफिकेशन या शेविंग नामक एक मानक उपकरण है। किसी को क्या करना चाहिए, इसका मोटा अंतर्ज्ञान, कम से कम सेट के प्रीशेफ के लिए, एक समानता संबंध प्रस्तुत करना है, जो कवर को परिष्कृत करके ओवरलैप पर अलग-अलग कवर द्वारा दिए गए समकक्ष डेटा बनाता है। इसलिए एक तरीका यह है कि एक पूले के डंठल # एक पूले के डंठल पर जाएं और 'सर्वश्रेष्ठ संभव' पूले की जगह से उत्पादित को पुनः प्राप्त करें.

भाषा के इस प्रयोग से दृढ़ता से पता चलता है कि हम यहां आसन्न फ़ैक्टरों के साथ काम कर रहे हैं। इसलिए, यह देखने के लिए समझ में आता है कि शीशों पर प्रीशेव ऑन की पूरी उपश्रेणी बनाएं. इसमें निहित यह कथन है कि शीशों का एक रूपवाद, मज़दूरों के रूप में माने जाने वाले शीशों के प्राकृतिक परिवर्तन से अधिक कुछ नहीं है। इसलिए, हमें समावेशन के बगल में बाईं ओर शेफिफिकेशन का एक अमूर्त लक्षण वर्णन मिलता है। कुछ अनुप्रयोगों में, स्वाभाविक रूप से, किसी को विवरण की आवश्यकता होती है।

अधिक सारगर्भित भाषा में, समूहों पर प्रीशेव्स की एक चिंतनशील उपश्रेणी बनाते हैं (मैक लेन-आईके मोरडिज्क शीव्स इन ज्योमेट्री एंड लॉजिक पी. 86)। टोपोस सिद्धांत में, एक लॉवरे-टिएर्नी टोपोलॉजी और उसके समूहों के लिए, एक अनुरूप परिणाम होता है (ibid. पृ. 227)।

अन्य ग्लूइंग अभिगृहीत

शीफ थ्योरी का ग्लूइंग अभिगृहीत सामान्य है। कोई यह नोट कर सकता है कि होमोटॉपी सिद्धांत का मेयर-विएटोरिस अभिगृहीत, उदाहरण के लिए, एक विशेष मामला है।

यह भी देखें

टिप्पणियाँ


संदर्भ

  • Grothendieck, Alexandre; Dieudonné, Jean (1960). "Éléments de géométrie algébrique: I. Le langage des schémas". Publications Mathématiques de l'IHÉS. 4. doi:10.1007/bf02684778. MR 0217083.