चतुर्थक समीकरण: Difference between revisions

From Vigyanwiki
(text)
 
(10 intermediate revisions by 6 users not shown)
Line 1: Line 1:
{{short description|Polynomial equation}}
गणित में, '''चतुर्थक समीकरण''' वह होता है जिसे शून्य के बराबर '[[चतुर्थक समारोह|चतुर्थक फलन]]' के रूप में व्यक्त किया जा सकता है। चतुर्थक समीकरण का सामान्य रूप है
गणित में, चतुर्थक समीकरण वह होता है जिसे शून्य के बराबर '[[चतुर्थक समारोह]]' के रूप में व्यक्त किया जा सकता है। चतुर्थक समीकरण का सामान्य रूप है


[[Image:Polynomialdeg4.png|thumb|right|233px|डिग्री 4 के एक बहुपद समारोह का ग्राफ, इसकी 4 [[बहुपद जड़]] और 3 [[महत्वपूर्ण बिंदु (गणित)]] के साथ।]]:<math>ax^4+bx^3+cx^2+dx+e=0 \,</math>
[[Image:Polynomialdeg4.png|thumb|right|233px|डिग्री 4 के एक बहुपद फलन का ग्राफ, इसकी 4 [[बहुपद जड़]] और 3 [[महत्वपूर्ण बिंदु (गणित)]] के साथ।]]:<math>ax^4+bx^3+cx^2+dx+e=0 \,</math>
जहां एक ≠ 0।
जहां एक ≠ 0।


Line 18: Line 17:
<math>a_0x^4+a_1x^3+a_2x^2+a_3x+a_4=0 </math>: रूप में व्यक्त एक चतुर्थांश समीकरण पर विचार करें  
<math>a_0x^4+a_1x^3+a_2x^2+a_3x+a_4=0 </math>: रूप में व्यक्त एक चतुर्थांश समीकरण पर विचार करें  


चतुर्थक समीकरणों की जड़ों को खोजने के लिए एक सामान्य सूत्र मौजूद है, परंतु अग्रणी पद का गुणांक गैर-शून्य होना चाहिए। यद्यपि, चूंकि सामान्य विधि काफी जटिल है और निष्पादन में त्रुटियों के लिए अतिसंवेदनशील है, इसलिए यदि संभव हो तो नीचे सूचीबद्ध विशेष मामलों में से एक को लागू करना बेहतर होगा।
चतुर्थक समीकरणों की जड़ों को खोजने के लिए एक सामान्य सूत्र उस्थिपत है, परंतु अग्रणी पद का गुणांक गैर-शून्य होना चाहिए। यद्यपि, चूंकि सामान्य विधि काफी जटिल है और निष्पादन में त्रुटियों के लिए अतिसंवेदनशील है, इसलिए यदि संभव हो तो नीचे सूचीबद्ध विशेष मामलों में से एक को लागू करना बेहतर होगा।


=== [[पतित मामला]] ===
=== [[पतित मामला]] ===
यदि स्थिर पद a<sub>4</sub>= 0 है, तो जड़ों में से एक x = 0 है, और अन्य जड़ों को x से विभाजित करके और परिणामी घन समीकरण को हल करके पाया जा सकता है,
यदि स्थिर पद a<sub>4</sub>= 0 है, तो जड़ों में से एक x = 0 है, और अन्य जड़ों को x से विभाजित करके और परिणामी घन समीकरण को हल करके पाया जा सकता है,
:<math>a_0x^3+a_1x^2+a_2x+a_3=0. \,</math>
:<math>a_0x^3+a_1x^2+a_2x+a_3=0. \,</math>
=== प्रत्यक्ष मूल: 1 और -1 और -k ===
=== प्रत्यक्ष मूल: 1 और -1 और -k ===


Line 39: Line 36:
एक चतुर्थांश समीकरण जहाँ a<sub>3</sub> और a<sub>1</sub> 0 के बराबर हैं  
एक चतुर्थांश समीकरण जहाँ a<sub>3</sub> और a<sub>1</sub> 0 के बराबर हैं  


<!--The \,\! below is to format this as PNG instead of HTML. Please do not remove it-->
:<math>a_0x^4+a_2x^2+a_4=0\,\!</math> रूप लेता है
:<math>a_0x^4+a_2x^2+a_4=0\,\!</math> रूप लेता है
और इस प्रकार एक द्विघात समीकरण है, जिसे हल करना आसान है: चलो <math>z=x^2</math>, तो हमारा समीकरण बदल जाता है
और इस प्रकार एक द्विघात समीकरण है, जिसे हल करना आसान है: चलो <math>z=x^2</math>, तो हमारा समीकरण बदल जाता है
Line 71: Line 67:
शुरू करने के लिए, चतुर्थक को पहले एक  गर्त चतुर्थक में परिवर्तित किया जाना चाहिए।
शुरू करने के लिए, चतुर्थक को पहले एक  गर्त चतुर्थक में परिवर्तित किया जाना चाहिए।


==== डिप्रेस्ड चतुर्थक में बदलना ====
==== अवनमित चतुर्थक में बदलना ====
{{NumBlk|:|<math> A x^4 + B x^3 + C x^2 + D x + E = 0</math>|{{EquationRef|1'}}}}
{{NumBlk|:|<math> A x^4 + B x^3 + C x^2 + D x + E = 0</math>|{{EquationRef|1'}}}}
सामान्य चतुर्थक समीकरण है जिसे हल करना वांछित है। दोनों पक्षों को A से विभाजित करें,
सामान्य चतुर्थक समीकरण है जिसे हल करना वांछित है। दोनों पक्षों को A से विभाजित करें,
Line 183: Line 179:
::नोट: अगर β ≠ 0 तो α + 2y ≠ 0. अगर β = 0 तो यह द्विवर्गीय समीकरण होगा, जिसे हमने पहले हल किया था।
::नोट: अगर β ≠ 0 तो α + 2y ≠ 0. अगर β = 0 तो यह द्विवर्गीय समीकरण होगा, जिसे हमने पहले हल किया था।
इसलिए समीकरण ({{EquationNote|3}}) बन जाता है
इसलिए समीकरण ({{EquationNote|3}}) बन जाता है
{{NumBlk|:|<math>\left(u^2 + \alpha + y\right)^2 = \left( \left(\sqrt{\alpha + 2 y}\right)u - {\beta \over 2\sqrt{\alpha + 2 y}} \दाएं)^2. </गणित>|{{EquationRef|5}}}}
समीकरण ({{EquationNote|5}}) में मुड़े हुए पूर्ण वर्गों की एक जोड़ी है, जो समीकरण के प्रत्येक तरफ एक है। दो पूर्ण वर्ग एक दूसरे को संतुलित करते हैं।


यदि दो वर्ग बराबर हैं, तो दोनों वर्गों की भुजाएँ भी बराबर होती हैं, जैसा कि निम्न द्वारा दिखाया गया है:
:समीकरण (5) में मुड़े हुए पूर्ण वर्गों की एक जोड़ी है, समीकरण के प्रत्येक तरफ एक है। दो पूर्ण वर्ग एक दूसरे को संतुलित करते हैं।  यदि दो वर्ग बराबर हैं, तो दोनों वर्गों की भुजाएँ भी बराबर होती हैं, जैसा कि निम्न द्वारा दिखाया गया है:
{{NumBlk|:|<math>\left(u^2 + \alpha + y\right) = \pm\left( \left(\sqrt{\alpha + 2 y}\right)u - {\beta \over 2\sqrt{\alpha + 2 y}} \सही)। </गणित>|{{EquationRef|5'}}}}
:: नोट: का सबस्क्रिप्ट एस <math>\pm_s</math> तथा यह ध्यान रखना है कि वे निर्भर हैं।
यू की शक्तियों को एकत्रित करने से पैदा होता है
समीकरण ({{EquationNote|6}}) u के लिए एक [[द्विघात समीकरण]] है। इसका समाधान है
{{NumBlk|:|<math>u^2 + \left(\mp_s \sqrt{\alpha + 2 y}\right)u + \left( \alpha + y \pm_s {\beta \over 2\sqrt{\alpha + 2 y}} \right) = 0. </math>|{{EquationRef|6}}}}
::नोट: का सबस्क्रिप्ट एस <math>\pm_s</math> तथा <math>\mp_s</math> यह ध्यान रखना है कि वे निर्भर हैं।
समीकरण ({{EquationNote|6}}) यू के लिए एक [[द्विघात समीकरण]] है। इसका समाधान है
:<math>u=\frac{\pm_s\sqrt{\alpha + 2 y} \pm_t \sqrt{(\alpha + 2y) - 4\left(\alpha + y \pm_s {\beta \over 2\sqrt{\alpha + 2 y}}\right)}}{2}.</math>
:<math>u=\frac{\pm_s\sqrt{\alpha + 2 y} \pm_t \sqrt{(\alpha + 2y) - 4\left(\alpha + y \pm_s {\beta \over 2\sqrt{\alpha + 2 y}}\right)}}{2}.</math>
सरलीकरण, एक हो जाता है
सरलीकरण, एक हो जाता है
:<math>u={\pm_s\sqrt{\alpha + 2 y} \pm_t \sqrt{-\left(3\alpha + 2y \pm_s {2\beta \over \sqrt{\alpha + 2 y}} \right)} \over 2}.</math>
:<math>u={\pm_s\sqrt{\alpha + 2 y} \pm_t \sqrt{-\left(3\alpha + 2y \pm_s {2\beta \over \sqrt{\alpha + 2 y}} \right)} \over 2}.</math>
<nowiki>यह  गर्त चतुर्थक का समाधान है, इसलिए मूल चतुर्थक समीकरण के समाधान हैं
याद रखें: दो समीकरण (5') में एक ही जगह से आते हैं, और दोनों का एक ही चिन्ह होना चाहिए। यद्यपि <math>\mp_t</math> स्वतंत्र है।
{{NumBlk|:|</nowiki><math>x=-{B \over 4A} + {\pm_s\sqrt{\alpha + 2 y} \pm_t \sqrt{-\left(3\alpha + 2y \pm_s {2\beta \over \sqrt{\alpha + 2 y}} \right)} \over 2}. </गणित>|{{EquationRef|6'}}}}
:: याद रखें: दो <math>\pm_s</math> समीकरण में एक ही स्थान से आते हैं ({{EquationNote|5'}}), और दोनों का एक ही चिन्ह होना चाहिए, जबकि का चिन्ह <math>\pm_t</math> स्वतंत्र है।


==== फेरारी की विधि का सारांश ====
==== फेरारी की विधि का सारांश ====
Line 229: Line 218:


:<math> x^4 + 6 x^2 - 60 x + 36 = 0 </math>
:<math> x^4 + 6 x^2 - 60 x + 36 = 0 </math>
जो पहले से ही डिप्रेस्ड फॉर्म में था। इसमें समाधानों की एक जोड़ी है जो ऊपर दिखाए गए सूत्रों के सेट के साथ मिल सकती है।
जो पहले से ही अवनमित रूप में था। इसमें समाधानों की एक जोड़ी है जो ऊपर दिखाए गए सूत्रों के समुच्चय के साथ मिल सकती है।


=== वास्तविक गुणांकों के विशेष मामले में फेरारी का समाधान ===
=== वास्तविक गुणांकों के विशेष मामले में फेरारी का समाधान ===


यदि चतुर्थक समीकरण के गुणांक वास्तविक हैं तो नेस्टेड अवनत घन समीकरण ({{EquationNote|5}}) के वास्तविक गुणांक भी हैं, इस प्रकार इसकी कम से कम एक वास्तविक जड़ है।
यदि चतुर्थक समीकरण के गुणांक वास्तविक हैं तो स्थिर अवनत घन समीकरण ({{EquationNote|5}}) के वास्तविक गुणांक भी हैं, इस प्रकार इसकी कम से कम एक वास्तविक जड़ है।


इसके अलावा [[घन समारोह]]
इसके अलावा [[घन समारोह|घन फलन]]
:<math> C(v) = v^3 + P v + Q,</math>
:<math> C(v) = v^3 + P v + Q,</math>
जहां पी और क्यू द्वारा दिया जाता है ({{EquationNote|5}}) के गुण होते हैं
जहां p और q ({{EquationNote|5}}) द्वारा दिया जाता है, जिसके गुण होते हैं
:<math> C\left({\alpha \over 3}\right) = {-\beta^2 \over 8} < 0 </math> तथा
:<math> C\left({\alpha \over 3}\right) = {-\beta^2 \over 8} < 0 </math> तथा
<math>\lim_{v\to \infty} C(v) = \infty,</math>
<math>\lim_{v\to \infty} C(v) = \infty,</math>
Line 251: Line 240:
=== कठिन तरीके से वैकल्पिक समाधान प्राप्त करना ===
=== कठिन तरीके से वैकल्पिक समाधान प्राप्त करना ===


ऐसा हो सकता है कि उपरोक्त सूत्रों के माध्यम से केवल एक समाधान प्राप्त किया जा सकता है, क्योंकि चार समाधानों के लिए सभी चार साइन पैटर्न का प्रयास नहीं किया जाता है, और प्राप्त समाधान [[जटिल संख्या]] है। यह भी हो सकता है कि कोई केवल एक वास्तविक समाधान की तलाश कर रहा हो। चलो एक्स<sub>1</sub> जटिल समाधान को निरूपित करें। यदि सभी मूल गुणांक , बी, सी, डी और वास्तविक हैं - जो तब होना चाहिए जब कोई केवल वास्तविक समाधान चाहता है - तो एक और जटिल समाधान x है<sub>2</sub> जो x का जटिल संयुग्म है<sub>1</sub>. यदि अन्य दो जड़ों को x के रूप में निरूपित किया जाता है<sub>3</sub> और एक्स<sub>4</sub> तब चतुर्थक समीकरण के रूप में व्यक्त किया जा सकता है
ऐसा हो सकता है कि उपरोक्त सूत्रों के माध्यम से केवल एक समाधान प्राप्त किया जा सकता है, क्योंकि चार समाधानों के लिए सभी चार साइन पैटर्न का प्रयास नहीं किया जाता है, और प्राप्त समाधान [[जटिल संख्या]] है। यह भी हो सकता है कि कोई केवल एक वास्तविक समाधान की तलाश कर रहा हो। X<sub>1</sub> को जटिल समाधान को निरूपित करने दें। यदि सभी मूल गुणांक A, B, C, D और E वास्तविक हैं - जो तब होना चाहिए जब कोई केवल वास्तविक समाधान चाहता है - तो एक और जटिल समाधान x<sub>2</sub> है जो x<sub>1</sub> का जटिल संयुग्म है. यदि अन्य दो जड़ों को x<sub>3</sub> के रूप में निरूपित किया जाता है और x<sub>4</sub> तब चतुर्थक समीकरण के रूप में व्यक्त किया जा सकता है
:<math> (x - x_1) (x - x_2) (x - x_3) (x - x_4) = 0, \,</math>
:<math> (x - x_1) (x - x_2) (x - x_3) (x - x_4) = 0, \,</math>
लेकिन यह द्विघात समीकरण दो द्विघात समीकरणों के गुणनफल के बराबर है:
लेकिन यह द्विघात समीकरण दो द्विघात समीकरणों के गुणनफल के बराबर है:
{{NumBlk|:|<math> (x - x_1) (x - x_2) = 0 </math>|{{EquationRef|9}}}}
{{NumBlk|:|<math> (x - x_1) (x - x_2) = 0 </math>|{{EquationRef|9}}}}
तथा
तथा
{{NumBlk|:|<math> (x - x_3) (x - x_4) = 0.</math>|{{EquationRef|10}}}}
{{NumBlk|:|<math> (x - x_3) (x - x_4) = 0</math>|{{EquationRef|10}}}}
तब से
तब से
:<math> x_2 = x_1^\star </math>
:<math> x_2 = x_1^\star </math>
Line 269: Line 258:
:<math> a = - 2\operatorname{Re}(x_1), </math>
:<math> a = - 2\operatorname{Re}(x_1), </math>
:<math> b = \left[ \operatorname{Re}( x_1) \right]^{2} + \left[ \operatorname{Im}(x_1) \right]^{2} </math>
:<math> b = \left[ \operatorname{Re}( x_1) \right]^{2} + \left[ \operatorname{Im}(x_1) \right]^{2} </math>
ताकि समीकरण ({{EquationNote|9}}) बन जाता है
ताकि समीकरण ({{EquationNote|9}}) बन जाए
{{NumBlk|:|<math> x^2 + a x + b = 0. </math>|{{EquationRef|11}}}}
{{NumBlk|:|<math> x^2 + a x + b = 0. </math>|{{EquationRef|11}}}}
मान लीजिए (अज्ञात) चर w और v ऐसे हैं कि समीकरण ({{EquationNote|10}}) बन जाता है
मान लीजिए (अज्ञात) चर w और v ऐसे हैं कि समीकरण ({{EquationNote|10}}) बन जाता है
Line 295: Line 284:
चतुर्थक समीकरण के अधिकांश पाठ्यपुस्तक समाधानों के लिए एक जादुई प्रतिस्थापन की आवश्यकता होती है जिसे याद रखना लगभग असंभव है। इसे समझने का एक तरीका यहां दिया गया है जिससे इसे समझना आसान हो जाता है।
चतुर्थक समीकरण के अधिकांश पाठ्यपुस्तक समाधानों के लिए एक जादुई प्रतिस्थापन की आवश्यकता होती है जिसे याद रखना लगभग असंभव है। इसे समझने का एक तरीका यहां दिया गया है जिससे इसे समझना आसान हो जाता है।


काम पूरा हो गया है अगर हम चतुर्थक समीकरण को दो द्विघात समीकरण के उत्पाद में कारक बना सकते हैं। होने देना
अगर हम चतुर्थक समीकरण को दो द्विघात समीकरण के उत्पाद में कारक बना सकते हैं तब काम पूरा हो गया है। मान लीजिए


:<math>
:<math>
Line 302: Line 291:
  &= \left(x^2 + px + q\right)\left(x^2 + rx + s\right) \\
  &= \left(x^2 + px + q\right)\left(x^2 + rx + s\right) \\
  &= x^4 + (p + r)x^3 + (q + s + pr)x^2 + (ps + qr)x + qs
  &= x^4 + (p + r)x^3 + (q + s + pr)x^2 + (ps + qr)x + qs
\end{align} </math>
\end{align} </math>    
गुणांकों की बराबरी करके, इसके परिणामस्वरूप एक साथ समीकरणों के निम्नलिखित सेट होते हैं:
गुणांकों की बराबरी करके, इसके परिणामस्वरूप एक साथ समीकरणों के निम्नलिखित समुच्चय होते हैं:
:<math>
:<math>
   \begin{align}
   \begin{align}
Line 312: Line 301:
   \end{align}
   \end{align}
  </math>
  </math>
इसे हल करना जितना दिखता है उससे कहीं अधिक कठिन है, लेकिन यदि हम फिर से एक चतुर्थक समीकरण के साथ शुरू करते हैं#डिप्रेस्ड चतुर्थक में परिवर्तित करना जहां <math>b = 0</math>, जिसे प्रतिस्थापित करके प्राप्त किया जा सकता है <math>(x - b/4)</math> के लिये <math>x</math>, फिर <math>r = -p</math>, तथा:
इसे हल करना जितना दिखता है उससे कहीं अधिक कठिन है, लेकिन यदि हम फिर से एक चतुर्थक समीकरण के साथ शुरू करते हैं जहां <math>b = 0</math>, जिसे प्रतिस्थापित करके प्राप्त किया जा सकता है <math>(x - b/4)</math> के लिये <math>x</math>, फिर <math>r = -p</math>, तथा:
:<math>
:<math>
   \begin{align}
   \begin{align}
Line 327: Line 316:
  & = 4e
  & = 4e
\end{align} </math>
\end{align} </math>
अगर हम सेट करते हैं <math>P = p^2</math>, तब यह समीकरण घन समीकरण में बदल जाता है:
अगर हम समुच्चय करते हैं <math>P = p^2</math>, तब यह समीकरण घन समीकरण में बदल जाता है:
:<math>P^3 + 2cP^2 + \left(c^2 - 4e\right)P - d^2 = 0</math>
:<math>P^3 + 2cP^2 + \left(c^2 - 4e\right)P - d^2 = 0</math>
जो कहीं और हल हो गया है। एक बार आपके पास है <math>p</math>, फिर:
जो कहीं और हल हो गया है। एक बार आपके पास है <math>p</math>, फिर:
Line 337: Line 326:
   \end{align}
   \end{align}
  </math>
  </math>
इस समाधान में समरूपता देखने में आसान है।  घनाकार की तीन जड़ें हैं, तीन तरीकों से संबंधित है कि चतुर्थक को दो क्वाड्रैटिक्स में विभाजित किया जा सकता है, और सकारात्मक या नकारात्मक मानों का चयन किया जा सकता है <math>p</math> के वर्गमूल के लिए <math>P</math> केवल दो चतुष्कोणों का एक दूसरे के साथ आदान-प्रदान करता है।
इस समाधान में समरूपता देखने में आसान है।  घनाकार की तीन जड़ें हैं, तीन तरीकों से संबंधित है कि चतुर्थक को दो द्विघात में विभाजित किया जा सकता है, और घनात्मक या ऋणात्मक मानों का चयन किया जा सकता है <math>p</math> के वर्गमूल के लिए <math>P</math> केवल दो चतुष्कोणों का एक दूसरे के साथ आदान-प्रदान करता है।


=== गाल्वा सिद्धांत और गुणनखंड ===
=== गाल्वा सिद्धांत और गुणनखंड ===


[[सममित समूह]] एस<sub>4</sub> चार तत्वों पर [[सामान्य उपसमूह]] के रूप में [[क्लेन चार-समूह]] है। यह एक विलायक का उपयोग करने का सुझाव देता है जिसकी जड़ों को अलग-अलग फूरियर ट्रांसफॉर्म या जड़ों के [[हैडमार्ड मैट्रिक्स]] ट्रांसफॉर्म के रूप में वर्णित किया जा सकता है।
[[सममित समूह]] S<sub>4</sub> चार तत्वों पर [[सामान्य उपसमूह]] के रूप में [[क्लेन चार-समूह]] है। यह एक विलायक का उपयोग करने का सुझाव देता है जिसकी जड़ों को भिन्न फूरियर परिवर्तन या जड़ों के [[हैडमार्ड मैट्रिक्स]] परिवर्तन के रूप में वर्णित किया जा सकता है।
मान लीजिए आर<sub>''i''</sub> i के लिए 0 से 3 तक के मूल हैं
मान लीजिए R<sub>''i''</sub> i के लिए 0 से 3 तक के मूल हैं
:<math>x^4 + bx^3 + cx^2 + dx + e = 0\qquad (1)</math> अगर हम अब सेट करते हैं
:<math>x^4 + bx^3 + cx^2 + dx + e = 0\qquad (1)</math> अगर हम अब समुच्चय करते हैं
:<math> \begin{align}  
:<math> \begin{align}  
s_0 &= \tfrac12(r_0 + r_1 + r_2 + r_3), \\
s_0 &= \tfrac12(r_0 + r_1 + r_2 + r_3), \\
Line 350: Line 339:
s_3 &= \tfrac12(r_0 - r_1 - r_2 + r_3),
s_3 &= \tfrac12(r_0 - r_1 - r_2 + r_3),
\end{align}</math>
\end{align}</math>
तब क्योंकि रूपान्तरण एक अंतर्वलन (गणित) है, हम मूलों को चार s के रूप में व्यक्त कर सकते हैं<sub>i</sub> ठीक उसी तरह। चूँकि हम मान s जानते हैं<sub>0</sub> = −b/2, हमें वास्तव में केवल s के मानों की आवश्यकता है<sub>1</sub>, एस<sub>2</sub> और एस<sub>3</sub>. इन्हें हम बहुपद का विस्तार करके प्राप्त कर सकते हैं
तब क्योंकि रूपान्तरण एक अंतर्वलन (गणित) है, हम मूलों को चार s<sub>i</sub> के रूप में ठीक उसी तरह व्यक्त कर सकते हैं। चूँकि हम जानते हैं s <sub>0</sub> = −b/2 मान है, हमें वास्तव में केवल s के मानों की आवश्यकता है<sub>1</sub>, s<sub>2</sub> और s<sub>3</sub>. इन्हें हम बहुपद का विस्तार करके प्राप्त कर सकते हैं
:<math>\left(z^2 - s_1^2\right)\left(z^2-s_2^2\right)\left(z^2-s_3^2\right)\qquad (2)</math>
:<math>\left(z^2 - s_1^2\right)\left(z^2-s_2^2\right)\left(z^2-s_3^2\right)\qquad (2)</math>
जो अगर हम सरल धारणा बनाते हैं कि b = 0, के बराबर है
जो अगर हम सरल धारणा बनाते हैं कि b = 0, के बराबर है
:<math>z^6 + 2cz^4 + \left(c^2-4e\right) z^2 - d^2 \qquad(3)</math>
:<math>z^6 + 2cz^4 + \left(c^2-4e\right) z^2 - d^2 \qquad(3)</math>
यह बहुपद डिग्री छह का है, लेकिन z में केवल डिग्री तीन का है<sup>2</sup>, और इसलिए संगत समीकरण हल करने योग्य है। परीक्षण द्वारा हम यह निर्धारित कर सकते हैं कि कौन सी तीन जड़ें सही हैं, और इसलिए चतुर्थक के समाधान खोजें।
यह बहुपद छह कोटि का है, लेकिन z<sup>2</sup> में केवल तीन कोटि का है, और इसलिए संगत समीकरण हल करने योग्य है। परीक्षण द्वारा हम यह निर्धारित कर सकते हैं कि कौन सी तीन जड़ें सही हैं, और इसलिए चतुर्थक के समाधान खोजें।


हम गुणनखंडन के लिए समान विलायक बहुपद के मूल का उपयोग करके परीक्षण के लिए किसी भी आवश्यकता को हटा सकते हैं; अगर डब्ल्यू (3) की कोई जड़ है, और अगर
हम गुणनखंडन के लिए समान विलायक बहुपद के मूल का उपयोग करके परीक्षण के लिए किसी भी आवश्यकता को हटा सकते हैं; अगर w(3) की कोई जड़ है, और अगर


: <math>F_1 = x^2+wx+\frac 1 2 w^2+\frac 1 2 c - \frac 1 2\cdot \frac {c^2 w}{d}-\frac 1 2 \cdot\frac {w^5}{d} - \frac{cw^3}{d} + 2\frac {ew}{d}</math>
: <math>F_1 = x^2+wx+\frac 1 2 w^2+\frac 1 2 c - \frac 1 2\cdot \frac {c^2 w}{d}-\frac 1 2 \cdot\frac {w^5}{d} - \frac{cw^3}{d} + 2\frac {ew}{d}</math>
Line 372: Line 361:
*द्विघात समीकरण
*द्विघात समीकरण
*घन समीकरण
*घन समीकरण
* पंचांग समीकरण
* क्विनिक समीकरण
* [[बहुपद]]
* [[बहुपद]]
* न्यूटन की विधि
* न्यूटन की विधि
Line 384: Line 373:
<references/>
<references/>


==इस पेज में लापता आंतरिक लिंक की सूची==
*अंक शास्त्र
*नवीं जड़
*आर्स मैग्ना (गेरोलमो कार्डानो)
*गाल्वा सिद्धांत
*घन बहुपद
*बहुपद का सबसे बड़ा सामान्य विभाजक
*भूलभुलैया
*जटिल सन्युग्म
*इन्वोल्यूशन (गणित)
*क्विंटिक समीकरण
==बाहरी संबंध==
==बाहरी संबंध==
*[https://keisan.casio.com/exec/system/1181809416 Calculator for solving Quartics]
*[https://keisan.casio.com/exec/system/1181809416 Calculator for solving Quartics]


{{Polynomials}}
{{Polynomials}}
[[Category: प्रारंभिक बीजगणित]]
[[Category:समीकरण]]
[[Category: बहुपद]]


[[Category: Machine Translated Page]]
[[Category:All articles with unsourced statements]]
[[Category:Articles with invalid date parameter in template]]
[[Category:Articles with short description]]
[[Category:Articles with unsourced statements from January 2008]]
[[Category:CS1 français-language sources (fr)]]
[[Category:CS1 maint]]
[[Category:CS1 Ελληνικά-language sources (el)]]
[[Category:Citation Style 1 templates|W]]
[[Category:Collapse templates]]
[[Category:Created On 24/11/2022]]
[[Category:Created On 24/11/2022]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with script errors]]
[[Category:Short description with empty Wikidata description]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates based on the Citation/CS1 Lua module]]
[[Category:Templates generating COinS|Cite web]]
[[Category:Templates generating microformats]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates used by AutoWikiBrowser|Cite web]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia fully protected templates|Cite web]]
[[Category:Wikipedia metatemplates]]
[[Category:प्रारंभिक बीजगणित]]
[[Category:बहुपद]]
[[Category:समीकरण]]

Latest revision as of 16:20, 31 October 2023

गणित में, चतुर्थक समीकरण वह होता है जिसे शून्य के बराबर 'चतुर्थक फलन' के रूप में व्यक्त किया जा सकता है। चतुर्थक समीकरण का सामान्य रूप है

डिग्री 4 के एक बहुपद फलन का ग्राफ, इसकी 4 बहुपद जड़ और 3 महत्वपूर्ण बिंदु (गणित) के साथ।

:

जहां एक ≠ 0।

'चतुर्थक' उच्चतम क्रम बहुपद समीकरण है जिसे सामान्य मामले में विलक्षण द्वारा हल किया जा सकता है (यानी, जिसमें गुणांक कोई मान ले सकता है)।

इतिहास

लोदोविको फेरारी को 1540 में चतुर्थक के समाधान की खोज के लिए उत्तर्दायी ठहराया गया है, चूंकि इस समाधान को, चतुर्थक के सभी बीजगणितीय समाधानों की तरह, एक घन समीकरण के समाधान की आवश्यकता है,इसलिए इसे तुरंत प्रकाशित नहीं किया जा सका।[1] अर्स मैग्ना (जेरोम कार्डानो) (1545) पुस्तक में फेरारी के सलाहकार गेरोलमो कार्डानो द्वारा चतुर्थक का समाधान घनाकार के साथ प्रकाशित किया गया था।

यह प्रमाण कि यह उच्चतम क्रम का सामान्य बहुपद था जिसके लिए इस तरह के समाधान खोजे जा सकते थे, सबसे पहले 1824 में एबेल-रफिनी प्रमेय में यह साबित करते हुए दिया गया था कि उच्च क्रम बहुपद को हल करने के सभी प्रयास व्यर्थ होंगे। 1832 में एक द्वंद्वयुद्ध में अपनी मृत्यु से पहले एवरिस्ट गैल्वा द्वारा छोड़े गए टिप्पणियों ने बाद में बहुपदों की जड़ों के एक सुंदर गैल्वा सिद्धांत को जन्म दिया, जिसमें से यह प्रमेय एक परिणाम था।[2]

चतुर्थक सूत्र।

एक चतुर्थांश समीकरण को हल करना, विशेष मामले

: रूप में व्यक्त एक चतुर्थांश समीकरण पर विचार करें

चतुर्थक समीकरणों की जड़ों को खोजने के लिए एक सामान्य सूत्र उस्थिपत है, परंतु अग्रणी पद का गुणांक गैर-शून्य होना चाहिए। यद्यपि, चूंकि सामान्य विधि काफी जटिल है और निष्पादन में त्रुटियों के लिए अतिसंवेदनशील है, इसलिए यदि संभव हो तो नीचे सूचीबद्ध विशेष मामलों में से एक को लागू करना बेहतर होगा।

पतित मामला

यदि स्थिर पद a4= 0 है, तो जड़ों में से एक x = 0 है, और अन्य जड़ों को x से विभाजित करके और परिणामी घन समीकरण को हल करके पाया जा सकता है,

प्रत्यक्ष मूल: 1 और -1 और -k

हमारे चतुर्थांश बहुपद को Q(x) बुलाऐं। चूँकि 1 किसी भी घात से बढ़ा हुआ 1 होता है, . इस प्रकार यदि , Q(1) = 0 और इसलिए x = 1, Q(x) का मूल है। इसी प्रकार यह दिखाया जा सकता है कि यदि , x = −1 एक मूल है।

किसी भी मामले में पूर्ण चतुर्थक को क्रमशः कारक (x − 1) या (x + 1) से विभाजित किया जा सकता है, जिससे एक नया घनाकार बहुपद प्राप्त होता है, जिसे चतुर्थक की अन्य जड़ों को खोजने के लिए हल किया जा सकता है।

यदि , तथा , तो x = −k समीकरण का एक मूल है। पूर्ण चतुर्थक को इस तरह से कारक बनाया जा सकता है:

यदि , तथा , x = 0 और x = -k दो ज्ञात मूल हैं। Q(x) को x(x + k) से विभाजित करना एक द्विघात बहुपद है।

द्विवर्गीय समीकरण

एक चतुर्थांश समीकरण जहाँ a3 और a1 0 के बराबर हैं

रूप लेता है

और इस प्रकार एक द्विघात समीकरण है, जिसे हल करना आसान है: चलो , तो हमारा समीकरण बदल जाता है

जो एक सरल द्विघात समीकरण है, जिसका हल द्विघात सूत्र का उपयोग करके आसानी से पाया जा सकता है:

जब हम इसे हल कर लेते हैं (अर्थात ये दो z मान प्राप्त कर लेते हैं), तो हम उनसे x निकाल सकते हैं

यदि कोई भी z समाधान ऋणात्मक या सम्मिश्र संख्याएँ हैं, तो कुछ x हल सम्मिश्र संख्याएँ हैं।

अर्ध-सममित समीकरण

कदम:

  1. X2 द्वारा विभाजित करें।
  2. परिवर्तनशील परिवर्तन z = x + m/x का उपयोग करें।

एकाधिक जड़ें

यदि चतुर्थक का एक बहुमूल है, तो इसे इसके व्युत्पन्न के साथ बहुपद का सबसे बड़ा सामान्य भाजक लेकर पाया जा सकता है। तब उन्हें विभाजित किया जा सकता है और परिणामी द्विघात समीकरण को हल किया जा सकता है।

सामान्य मामला

शुरू करने के लिए, चतुर्थक को पहले एक गर्त चतुर्थक में परिवर्तित किया जाना चाहिए।

अवनमित चतुर्थक में बदलना

 

 

 

 

(1')

सामान्य चतुर्थक समीकरण है जिसे हल करना वांछित है। दोनों पक्षों को A से विभाजित करें,

X3 अवधि को विलुप्‍त करना पहला कदम होना चाहिए। ऐसा करने के लिए, चर को x से u में बदलें, जैसे कि

फिर

द्विपदों की शक्तियों का विस्तार करने से उत्पादन होता है

u पैदावार की समान शक्तियों को एकत्रित करना

अब u के गुणांकों का नाम बदलें। अनुमान

परिणामी समीकरण है

 

 

 

 

(1)

जो एक अवनत चतुर्थक समीकरण है।

यदि तब हमारे पास एक द्विघात समीकरण है, जो (जैसा कि ऊपर बताया गया है) आसानी से हल हो गया है। सामान्य समाधान काम नहीं करेगा अगर β = 0।

किसी भी मामले में, u के लिए पाए गए मानों को प्रतिस्थापित करना

x के लिए मान देता है।

गर्त चतुर्थक को हल करना जब b≠0

गर्त चतुर्थक समीकरण में बदलने के बाद

और विशेष मामले को समाप्त करते हुए जब b=0, हम कल्पना करते हैं कि b≠0 इसके पश्चात। हम शर्तों को अलग कर देंगे

और दोनों पक्षों में ऐसे शब्द जोड़ें जो उन दोनों को वर्ग बनाते हैं। मान लीजिए y इस घन समीकरण प्रतिस्थापन का हल है :

.

तब (b≠0 का प्रयोग करके)

इसलिए हम इसके द्वारा विभाजित कर सकते हैं,

. दे रहे हैं

फिर

.

घटाने पर हमें दो वर्गों का अंतर प्राप्त होता है जो उनके मूलों के योग और अंतर का गुणनफल होता है

जिसे दो कारकों में से प्रत्येक के लिए द्विघात सूत्र लागू करके हल किया जा सकता है। अतः x के संभावित मान हैं:

,
,
, या
.

घन की तीन जड़ों में से एक और y का उपयोग करने से x के ये चार मान एक अलग क्रम में प्रकट होते हैं। घन के समाधान हैं:

तीन घनमूलों में से कोई भी (w के निरपेक्ष मान को अधिकतम करने के लिए वर्गमूल का चिह्न चुनें)
.

फेरारी का समाधान

अन्यथा, लोदोविको फेरारी द्वारा खोजी गई विधि के माध्यम से गर्त चतुर्थक को हल किया जा सकता है। एक बार गर्त चतुर्थक प्राप्त हो जाने के बाद, अगला कदम वैध पहचान को जोड़ना है

समीकरण के लिए (1), उपज

 

 

 

 

(2)

प्रभाव u4 को वलय करने का रहा है शब्द वर्ग संख्या में: (u2 + α)2 दूसरा पद, αu2 विलुप्त नहीं हुआ, लेकिन इसका चिन्ह बदल गया है और इसे दाहिनी ओर ले जाया गया है।

अगला चरण समीकरण के बाईं ओर पूर्ण वर्ग में एक चर y सम्मिलित करना है (2), और u2 के गुणांक में एक संगत 2y को दाहिनी ओर। इन सम्मिलनों को पूरा करने के लिए, निम्नलिखित मान्य सूत्र समीकरण में जोड़े जाएंगे (2),

तथा

ये दो सूत्र, एक साथ जुड़कर, उत्पादन करते हैं

जो समीकरण में जोड़ा गया (2) पैदा करता है

यह इसके बराबर है

 

 

 

 

(3)

अब उद्देश्य y के लिए एक ऐसा मान चुनना है जिससे समीकरण के दाईं ओर (3) एक पूर्ण वर्ग बन जाता है। यह तब किया जा सकता है जब द्विघात फलन के विविक्तकर शून्य हों। इसे समझाने के लिए, पहले एक पूर्ण वर्ग का विस्तार करें ताकि यह द्विघात फलन के बराबर हो:

दाईं ओर द्विघात फलन के तीन गुणांक हैं। यह सत्यापित किया जा सकता है कि दूसरे गुणांक को चुकता करना और फिर पहले और तीसरे गुणांक के गुणनफल का चार गुना घटाना शून्य देता है:

इसलिए समीकरण का दाहिना पक्ष बनाने के लिए (3) एक पूर्ण वर्ग में, निम्नलिखित समीकरण को हल किया जाना चाहिए:

द्विपद को बहुपद से गुणा कीजिए,

दोनों पक्षों को −4 से विभाजित करें, और −β2/4 को दाईं ओर स्थानांतरित करें ,

दोनों पक्षों को 2 से भाग दें,

 

 

 

 

(4)

यह y में एक घन समीकरण है। ऐसे समीकरणों को हल करने के लिए किसी भी विधि का उपयोग करके y के लिए हल करें (उदाहरण के लिए कम घन में रूपांतरण और कार्डानो के सूत्र का अनुप्रयोग)। तीन संभावित जड़ों में से कोई भी करेगा।

दूसरे पूर्ण वर्ग को मोड़ना

y के मान को इस प्रकार चुने जाने पर, अब यह ज्ञात हो गया है कि समीकरण का दाहिना पक्ष (3) रूप का एक पूर्ण वर्ग है

(यह वर्गमूल के दोनों चिह्नों के लिए सही है, जब तक कि दोनों वर्गमूलों के लिए एक ही चिह्न लिया जाता है। A ± निरर्थक है, क्योंकि यह इस पृष्ठ के नीचे कुछ अन्य ± कुछ समीकरणों द्वारा अवशोषित किया जाएगा।)

ताकि इसे फोल्ड किया जा सके:

नोट: अगर β ≠ 0 तो α + 2y ≠ 0. अगर β = 0 तो यह द्विवर्गीय समीकरण होगा, जिसे हमने पहले हल किया था।

इसलिए समीकरण (3) बन जाता है

समीकरण (5) में मुड़े हुए पूर्ण वर्गों की एक जोड़ी है, समीकरण के प्रत्येक तरफ एक है। दो पूर्ण वर्ग एक दूसरे को संतुलित करते हैं। यदि दो वर्ग बराबर हैं, तो दोनों वर्गों की भुजाएँ भी बराबर होती हैं, जैसा कि निम्न द्वारा दिखाया गया है:
नोट: का सबस्क्रिप्ट एस तथा यह ध्यान रखना है कि वे निर्भर हैं।

समीकरण (6) u के लिए एक द्विघात समीकरण है। इसका समाधान है

सरलीकरण, एक हो जाता है

याद रखें: दो समीकरण (5') में एक ही जगह से आते हैं, और दोनों का एक ही चिन्ह होना चाहिए। यद्यपि स्वतंत्र है।

फेरारी की विधि का सारांश

चतुर्थक समीकरण दिया गया है

इसका समाधान निम्नलिखित गणनाओं के माध्यम से पाया जा सकता है:

यदि फिर

अन्यथा, साथ जारी रखें

(वर्गमूल का कोई भी चिन्ह काम करेगा)

(यहां 3 जटिल जड़ें हैं, उनमें से कोई एक काम करेगा)

दो ±s एक ही चिह्न होना चाहिए, ±t स्वतंत्र है। सभी मूल प्राप्त करने के लिए ± के लिए x की गणना करेंst = +,+ और +,− के लिए; और −,+ और −,− के लिए। यह सूत्र बिना किसी समस्या के बार-बार होने वाली जड़ों को संभालता है।

इन जटिल समाधानों में से एक की खोज करने वाला फेरारी पहला था[citation needed]. उन्होंने जो समीकरण हल किया वह था

जो पहले से ही अवनमित रूप में था। इसमें समाधानों की एक जोड़ी है जो ऊपर दिखाए गए सूत्रों के समुच्चय के साथ मिल सकती है।

वास्तविक गुणांकों के विशेष मामले में फेरारी का समाधान

यदि चतुर्थक समीकरण के गुणांक वास्तविक हैं तो स्थिर अवनत घन समीकरण (5) के वास्तविक गुणांक भी हैं, इस प्रकार इसकी कम से कम एक वास्तविक जड़ है।

इसके अलावा घन फलन

जहां p और q (5) द्वारा दिया जाता है, जिसके गुण होते हैं

तथा

जहां α और β द्वारा दिया जाता है (1).

इस का मतलब है कि (5) से बड़ा वास्तविक मूल है , और इसलिए कि (4) से बड़ा वास्तविक मूल है .

इस मूल शब्द का प्रयोग करना में (8) हमेशा वास्तविक होता है, जो सुनिश्चित करता है कि दो द्विघात समीकरण (8) वास्तविक गुणांक हैं।[3]


कठिन तरीके से वैकल्पिक समाधान प्राप्त करना

ऐसा हो सकता है कि उपरोक्त सूत्रों के माध्यम से केवल एक समाधान प्राप्त किया जा सकता है, क्योंकि चार समाधानों के लिए सभी चार साइन पैटर्न का प्रयास नहीं किया जाता है, और प्राप्त समाधान जटिल संख्या है। यह भी हो सकता है कि कोई केवल एक वास्तविक समाधान की तलाश कर रहा हो। X1 को जटिल समाधान को निरूपित करने दें। यदि सभी मूल गुणांक A, B, C, D और E वास्तविक हैं - जो तब होना चाहिए जब कोई केवल वास्तविक समाधान चाहता है - तो एक और जटिल समाधान x2 है जो x1 का जटिल संयुग्म है. यदि अन्य दो जड़ों को x3 के रूप में निरूपित किया जाता है और x4 तब चतुर्थक समीकरण के रूप में व्यक्त किया जा सकता है

लेकिन यह द्विघात समीकरण दो द्विघात समीकरणों के गुणनफल के बराबर है:

 

 

 

 

(9)

तथा

 

 

 

 

(10)

तब से

फिर

होने देना

ताकि समीकरण (9) बन जाए

 

 

 

 

(11)

मान लीजिए (अज्ञात) चर w और v ऐसे हैं कि समीकरण (10) बन जाता है

 

 

 

 

(12)

गुणन समीकरण (11) तथा (12) पैदा करता है

 

 

 

 

(13)

तुलना समीकरण (13) मूल चतुर्थक समीकरण के लिए, यह देखा जा सकता है

तथा

इसलिए

समीकरण (12) x उपज के लिए हल किया जा सकता है

इन दो समाधानों में से एक वांछित वास्तविक समाधान होना चाहिए।

वैकल्पिक तरीके

पहले सिद्धांतों से त्वरित और यादगार समाधान

चतुर्थक समीकरण के अधिकांश पाठ्यपुस्तक समाधानों के लिए एक जादुई प्रतिस्थापन की आवश्यकता होती है जिसे याद रखना लगभग असंभव है। इसे समझने का एक तरीका यहां दिया गया है जिससे इसे समझना आसान हो जाता है।

अगर हम चतुर्थक समीकरण को दो द्विघात समीकरण के उत्पाद में कारक बना सकते हैं तब काम पूरा हो गया है। मान लीजिए

गुणांकों की बराबरी करके, इसके परिणामस्वरूप एक साथ समीकरणों के निम्नलिखित समुच्चय होते हैं:

इसे हल करना जितना दिखता है उससे कहीं अधिक कठिन है, लेकिन यदि हम फिर से एक चतुर्थक समीकरण के साथ शुरू करते हैं जहां , जिसे प्रतिस्थापित करके प्राप्त किया जा सकता है के लिये , फिर , तथा:

अब दोनों को विलुप्‍त करना आसान है तथा निम्नलिखित करके:

अगर हम समुच्चय करते हैं , तब यह समीकरण घन समीकरण में बदल जाता है:

जो कहीं और हल हो गया है। एक बार आपके पास है , फिर:

इस समाधान में समरूपता देखने में आसान है। घनाकार की तीन जड़ें हैं, तीन तरीकों से संबंधित है कि चतुर्थक को दो द्विघात में विभाजित किया जा सकता है, और घनात्मक या ऋणात्मक मानों का चयन किया जा सकता है के वर्गमूल के लिए केवल दो चतुष्कोणों का एक दूसरे के साथ आदान-प्रदान करता है।

गाल्वा सिद्धांत और गुणनखंड

सममित समूह S4 चार तत्वों पर सामान्य उपसमूह के रूप में क्लेन चार-समूह है। यह एक विलायक का उपयोग करने का सुझाव देता है जिसकी जड़ों को भिन्न फूरियर परिवर्तन या जड़ों के हैडमार्ड मैट्रिक्स परिवर्तन के रूप में वर्णित किया जा सकता है। मान लीजिए Ri i के लिए 0 से 3 तक के मूल हैं

अगर हम अब समुच्चय करते हैं

तब क्योंकि रूपान्तरण एक अंतर्वलन (गणित) है, हम मूलों को चार si के रूप में ठीक उसी तरह व्यक्त कर सकते हैं। चूँकि हम जानते हैं s 0 = −b/2 मान है, हमें वास्तव में केवल s के मानों की आवश्यकता है1, s2 और s3. इन्हें हम बहुपद का विस्तार करके प्राप्त कर सकते हैं

जो अगर हम सरल धारणा बनाते हैं कि b = 0, के बराबर है

यह बहुपद छह कोटि का है, लेकिन z2 में केवल तीन कोटि का है, और इसलिए संगत समीकरण हल करने योग्य है। परीक्षण द्वारा हम यह निर्धारित कर सकते हैं कि कौन सी तीन जड़ें सही हैं, और इसलिए चतुर्थक के समाधान खोजें।

हम गुणनखंडन के लिए समान विलायक बहुपद के मूल का उपयोग करके परीक्षण के लिए किसी भी आवश्यकता को हटा सकते हैं; अगर w(3) की कोई जड़ है, और अगर

फिर

इसलिए हम w के लिए हल करके और फिर द्विघात सूत्र का उपयोग करके दो कारकों की जड़ों को हल करके चतुर्थक को हल कर सकते हैं।

अनुमानित तरीके

ऊपर वर्णित विधियाँ, सिद्धांत रूप में, सटीक विधियाँ हैं जो एक बार और सभी के लिए जड़ें खोज लेती हैं। उन तरीकों का उपयोग करना भी संभव है जो क्रमिक सन्निकटन देते हैं जो प्रत्येक पुनरावृत्ति के साथ उम्मीद से बेहतर होते हैं। एक बार ऐसी विधि डूरंड-कर्नर विधि है। क्विंटिक और उच्च समीकरणों को हल करने की कोशिश करते समय, विशेष मामलों के अलावा, ऐसी विधियां ही उपलब्ध हो सकती हैं।

यह भी देखें

संदर्भ


टिप्पणियाँ

  1. "लोदोविको फेरारी".
  2. Stewart, Ian, Galois Theory, Third Edition (Chapman & Hall/CRC Mathematics, 2004)
  3. Carstensen, Jens, Komplekse tal, First Edition, (Systime 1981), ISBN 87-87454-71-8. (in Danish)

बाहरी संबंध