कोशिका झिल्ली

From Vigyanwiki
Revision as of 00:29, 17 January 2023 by alpha>Indicwiki (Created page with "{{pp-vandalism|small=yes}} {{short description|Biological membrane that separates the interior of a cell from its outside environment}} Image:Cell membrane detailed diagram...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
File:Cell membrane detailed diagram 4.svg
यूकेरियोट कोशिका झिल्ली का चित्रण
File:Celltypes.svg
यूकेरियोटिक बनाम प्रोकार्योटिक कोशिका झिल्ली की तुलना

कोशिका झिल्ली (जिसे प्लाज़्मा झिल्ली (पीएम) या कोशिका द्रव्य िक झिल्ली के रूप में भी जाना जाता है, और ऐतिहासिक रूप से प्लाज़्मेलेम्मा के रूप में जाना जाता है) एक जैविक झिल्ली है जो बाह्य कोशिका (बाह्य अंतरिक्ष ) से ​​सभी कोशिका (जीव विज्ञान) के साइटोप्लाज्म को अलग करती है और उसकी रक्षा करती है। .[1][2] कोशिका झिल्ली में एक लिपिड बिलेयर होता है, जो कोलेस्ट्रॉल (एक लिपिड घटक) के साथ फास्फोलिपिड्स की दो परतों से बना होता है, जो विभिन्न तापमानों पर उपयुक्त झिल्ली मेम्ब्रेन तरलता बनाए रखता है। झिल्ली में झिल्ली प्रोटीन भी होते हैं, जिसमें अभिन्न प्रोटीन शामिल होते हैं जो झिल्ली को फैलाते हैं और झिल्ली ट्रांसपोर्टर के रूप में काम करते हैं, और परिधीय प्रोटीन जो कोशिका झिल्ली के बाहरी (परिधीय) पक्ष से शिथिल रूप से जुड़ते हैं, कोशिका के वातावरण के साथ बातचीत को सुविधाजनक बनाने के लिए एंजाइम के रूप में कार्य करते हैं।[3] बाहरी लिपिड परत में एम्बेडेड ग्लाइकोलिपिड्स एक समान उद्देश्य प्रदान करता है। कोशिका झिल्ली झिल्ली कोशिकाओं और ऑर्गेनेल के अंदर और बाहर परिवहन करती है, आयन ों और कार्बनिक अणु | कार्बनिक अणुओं के लिए अर्ध-पारगम्य झिल्ली होती है।[4] इसके अलावा, कोशिका झिल्लियां विभिन्न प्रकार की कोशिकीय प्रक्रियाओं में शामिल होती हैं जैसे कि कोशिका आसंजन, आयन चालकता, और कोशिका संकेतन और कई बाह्य संरचनाओं के लिए संलग्नक सतह के रूप में कार्य करती हैं, जिसमें कोशिका भित्ति और glycocalyx नामक कार्बोहाइड्रेट परत शामिल हैं, साथ ही साथ प्रोटीन फाइबर के इंट्रासेल्युलर नेटवर्क को cytoskeleton कहा जाता है। सिंथेटिक जीव विज्ञान के क्षेत्र में, कोशिका झिल्लियां कृत्रिम कोशिका#एनकैप्सुलेटेड कोशिका हो सकती हैं।[5][6][7][8]


इतिहास

जबकि रॉबर्ट हुक की 1665 में कोशिकाओं की खोज ने कोशिका सिद्धांत के प्रस्ताव का नेतृत्व किया, हुक ने कोशिका झिल्ली सिद्धांत के इतिहास को गुमराह किया कि सभी कोशिकाओं में एक कठोर कोशिका भित्ति होती है क्योंकि उस समय केवल पादप कोशिकाएँ देखी जा सकती थीं।[9]माइक्रोस्कोपी में प्रगति होने तक माइक्रोस्कोपी ने 150 से अधिक वर्षों तक सेल दीवार पर ध्यान केंद्रित किया। 19वीं शताब्दी की शुरुआत में, यह पाया गया कि पौधों की कोशिकाओं को अलग किया जा सकता है, कोशिकाओं को अलग-अलग संस्थाओं के रूप में पहचाना गया, असंबद्ध, और अलग-अलग सेल दीवारों से बंधे हुए थे। यह सिद्धांत पशु कोशिकाओं को शामिल करने के लिए विस्तारित किया गया ताकि कोशिका सुरक्षा और विकास के लिए एक सार्वभौमिक तंत्र का सुझाव दिया जा सके। 19वीं शताब्दी के उत्तरार्ध तक, माइक्रोस्कोपी अभी भी इतनी उन्नत नहीं थी कि कोशिका झिल्लियों और कोशिका भित्ति के बीच अंतर कर सके। हालांकि, कुछ माइक्रोस्कोपिस्टों ने इस समय सही ढंग से पहचाना कि अदृश्य रहते हुए, यह अनुमान लगाया जा सकता है कि आंतरिक रूप से नहीं बल्कि बाह्य रूप से घटकों के इंट्रासेल्युलर आंदोलन के कारण पशु कोशिकाओं में कोशिका झिल्ली मौजूद थी और यह झिल्ली एक पौधे की कोशिका के लिए एक कोशिका भित्ति के बराबर नहीं थी। यह भी निष्कर्ष निकाला गया कि कोशिका झिल्ली सभी कोशिकाओं के लिए महत्वपूर्ण घटक नहीं थे। कई लोगों ने 19वीं शताब्दी के अंत तक एक कोशिका झिल्ली के अस्तित्व का खंडन किया। 1890 में, कोशिका सिद्धांत के एक अद्यतन ने कहा कि कोशिका झिल्लियां मौजूद थीं, लेकिन वे केवल द्वितीयक संरचनाएं थीं। परासरण और पारगम्यता के साथ बाद के अध्ययनों तक ऐसा नहीं था कि कोशिका झिल्लियों को अधिक पहचान मिली।[9] 1895 में, अर्नेस्ट ओवरटन ने प्रस्तावित किया कि कोशिका झिल्ली लिपिड से बनी होती है।[10]

लिपिड बाइलेयर परिकल्पना, 1925 में :nl:Evert Gorter और Grendel द्वारा प्रस्तावित,[11] क्रिस्टलोग्राफिक अध्ययन और साबुन के बुलबुले के अवलोकन के आधार पर कोशिका झिल्ली की द्विपरत संरचना के विवरण में अटकलें लगाईं। परिकल्पना को स्वीकार या अस्वीकार करने के प्रयास में, शोधकर्ताओं ने झिल्ली की मोटाई मापी। इन शोधकर्ताओं ने मानव लाल रक्त कोशिकाओं से लिपिड निकाला और पानी की सतह पर फैलने पर लिपिड को कवर करने वाले सतह क्षेत्र की मात्रा को मापा। चूंकि परिपक्व स्तनधारी लाल रक्त कोशिका में नाभिक और साइटोप्लाज्मिक ऑर्गेनेल दोनों की कमी होती है, प्लाज्मा झिल्ली कोशिका में एकमात्र लिपिड युक्त संरचना होती है। नतीजतन, कोशिकाओं से निकाले गए सभी लिपिड को कोशिकाओं के प्लाज्मा झिल्ली में रहने के लिए माना जा सकता है। निकाले गए लिपिड द्वारा कवर किए गए पानी के सतह क्षेत्र का लाल रक्त कोशिकाओं के लिए गणना की गई सतह क्षेत्र से अनुपात 2: 1 (लगभग) था और उन्होंने निष्कर्ष निकाला कि प्लाज्मा झिल्ली में एक लिपिड बाइलेयर होता है।[9][12] 1925 में फ्रिक द्वारा यह निर्धारित किया गया था कि एरिथ्रोसाइट और यीस्ट कोशिका झिल्लियों की मोटाई 3.3 और 4 एनएम के बीच थी, एक लिपिड मोनोलेयर के साथ संगत मोटाई। इन अध्ययनों में प्रयुक्त परावैद्युत स्थिरांक के चुनाव पर सवाल उठाया गया था लेकिन भविष्य के परीक्षण प्रारंभिक प्रयोग के परिणामों को गलत साबित नहीं कर सके। स्वतंत्र रूप से, लेप्टोस्कोप का आविष्कार नमूने से परावर्तित प्रकाश की तीव्रता की ज्ञात मोटाई के झिल्ली मानक की तीव्रता से तुलना करके बहुत पतली झिल्लियों को मापने के लिए किया गया था। यह उपकरण मोटाई को हल कर सकता है जो पीएच माप पर निर्भर करता है और झिल्ली प्रोटीन की उपस्थिति जो 8.6 से 23.2 एनएम तक होती है, कम माप के साथ लिपिड बाइलेयर परिकल्पना का समर्थन करता है। बाद में 1930 के दशक में, झिल्ली संरचना मॉडल ह्यूग डेवसन और जेम्स डेनियली (1935) के पॉसीमोलेक्युलर मॉडल होने के लिए सामान्य समझौते में विकसित हुआ। यह मॉडल तेल और इचिनोडर्म अंडों के बीच सतही तनाव के अध्ययन पर आधारित था। चूँकि सतही तनाव का मान तेल-पानी के अंतरापृष्ठ की अपेक्षा से बहुत कम प्रतीत होता है, इसलिए यह माना गया कि कुछ पदार्थ कोशिकाओं की सतह में अंतरापृष्ठीय तनाव को कम करने के लिए जिम्मेदार थे। यह सुझाव दिया गया था कि दो पतली प्रोटीन परतों के बीच एक लिपिड बाईलेयर था। पॉसीमोलेक्युलर मॉडल तुरंत लोकप्रिय हो गया और यह अगले 30 वर्षों तक कोशिका झिल्ली के अध्ययन पर हावी रहा, जब तक कि यह सेमुर जोनाथन सिंगर और गर्थ एल। निकोलसन (1972) के द्रव मोज़ेक मॉडल द्वारा प्रतिद्वंद्वी नहीं हो गया।[13][9]

द्रव मोज़ेक मॉडल से पहले प्रस्तावित कोशिका झिल्ली के कई मॉडलों के बावजूद, यह 1970 के दशक में अपनी स्थापना के लंबे समय बाद तक कोशिका झिल्ली के लिए प्राथमिक आदर्श बना हुआ है।[9]यद्यपि द्रव मोज़ेक मॉडल को समकालीन खोजों का विस्तार करने के लिए आधुनिक बनाया गया है, मूल बातें स्थिर बनी हुई हैं: झिल्ली हाइड्रोफिलिक बाहरी सिरों और एक हाइड्रोफोबिक इंटीरियर से बना एक लिपिड बाइलेयर है जहां प्रोटीन हाइड्रोफिलिक सिर के साथ ध्रुवीय बातचीत के माध्यम से बातचीत कर सकते हैं, लेकिन प्रोटीन जो फैले हुए हैं बाइलेयर में पूरी तरह या आंशिक रूप से हाइड्रोफोबिक अमीनो एसिड होते हैं जो गैर-ध्रुवीय लिपिड इंटीरियर के साथ बातचीत करते हैं। द्रव मोज़ेक मॉडल ने न केवल झिल्ली यांत्रिकी का सटीक प्रतिनिधित्व प्रदान किया, इसने हाइड्रोफोबिक बलों के अध्ययन को बढ़ाया, जो बाद में जैविक मैक्रो मोलेक्यूल ्स का वर्णन करने के लिए एक आवश्यक वर्णनात्मक सीमा के रूप में विकसित होगा।[9]

कई शताब्दियों के लिए, वैज्ञानिक उस संरचना के महत्व से असहमत थे जिसे वे कोशिका झिल्ली के रूप में देख रहे थे। लगभग दो शताब्दियों के लिए, झिल्लियों को देखा गया था लेकिन ज्यादातर कोशिकीय कार्य के साथ एक महत्वपूर्ण संरचना के रूप में अवहेलना की गई थी। यह 20वीं सदी तक नहीं था जब कोशिका झिल्ली के महत्व को स्वीकार किया गया था। अंत में, दो वैज्ञानिकों गोर्टर और ग्रेंडेल (1925) ने यह खोज की कि झिल्ली "लिपिड-आधारित" है। इससे, उन्होंने इस विचार को आगे बढ़ाया कि यह संरचना परतों की नकल करने वाले गठन में होनी चाहिए। एक बार और अध्ययन करने के बाद, यह कोशिका सतहों और लिपिड की सतहों के योग की तुलना करके पाया गया, एक 2:1 अनुपात का अनुमान लगाया गया था; इस प्रकार, आज ज्ञात द्विपरत संरचना का पहला आधार प्रदान करता है। इस खोज ने कई नए अध्ययनों की शुरुआत की जो वैज्ञानिक अध्ययन के विभिन्न क्षेत्रों में विश्व स्तर पर उत्पन्न हुए, यह पुष्टि करते हुए कि कोशिका झिल्ली की संरचना और कार्य व्यापक रूप से स्वीकार किए जाते हैं।[9]

संरचना को अलग-अलग लेखकों द्वारा एक्टोप्लास्ट (ह्यूगो डे वीस, 1885) के रूप में विभिन्न रूप से संदर्भित किया गया है,[14] प्लाज़्माहॉट (प्लाज्मा स्किन, विल्हेम फ़ेफ़र , 1877, 1891),[15] त्वचा की परत (Pfeffer, 1886; Wilhelm Hofmeister , 1867 द्वारा एक अलग अर्थ के साथ प्रयोग किया जाता है), प्लास्मेटिक मेम्ब्रेन (Pfeffer, 1900),[16] प्लाज्मा झिल्ली, साइटोप्लाज्मिक झिल्ली, कोशिका आवरण और कोशिका झिल्ली।[17][18] कुछ लेखक जो यह नहीं मानते थे कि कोशिका की सतह पर एक कार्यात्मक पारगम्य सीमा होती है, वे कोशिका के बाहरी क्षेत्र के लिए प्लाज्मेलेम्मा (मास्ट द्वारा गढ़ा गया, 1924) शब्द का उपयोग करना पसंद करते हैं।[19][20][21]


रचना

कोशिका झिल्लियों में विभिन्न प्रकार के जैव अणु होते हैं, विशेष रूप से लिपिड और प्रोटीन। संरचना निर्धारित नहीं है, लेकिन तरलता और वातावरण में परिवर्तन के लिए लगातार बदल रहा है, यहां तक ​​कि सेल विकास के विभिन्न चरणों के दौरान उतार-चढ़ाव भी। विशेष रूप से, मानव प्राथमिक न्यूरॉन कोशिका झिल्ली में कोलेस्ट्रॉल की मात्रा में परिवर्तन होता है, और रचना में यह परिवर्तन पूरे विकास चरणों में तरलता को प्रभावित करता है।[22] विभिन्न तंत्रों द्वारा सामग्री को झिल्ली में शामिल किया जाता है, या इससे हटा दिया जाता है:

  • झिल्ली (एक्सोसाइटोसिस ) के साथ इंट्रासेल्युलर पुटिका (जीव विज्ञान) का संलयन न केवल पुटिका की सामग्री को बाहर निकालता है, बल्कि पुटिका झिल्ली के घटकों को कोशिका झिल्ली में शामिल करता है। झिल्ली बाह्यकोशिकीय सामग्री के चारों ओर ब्लीब (कोशिका जीव विज्ञान) बना सकती है जो पुटिका (एंडोसाइटोसिस ) बनने के लिए बंद हो जाती है।
  • यदि झिल्ली सामग्री से बने ट्यूबलर संरचना के साथ एक झिल्ली निरंतर है, तो ट्यूब से सामग्री लगातार झिल्ली में खींची जा सकती है।
  • यद्यपि जलीय चरण में झिल्ली घटकों की सांद्रता कम होती है (स्थिर झिल्ली घटकों में पानी में कम घुलनशीलता होती है), लिपिड और जलीय चरणों के बीच अणुओं का आदान-प्रदान होता है।

लिपिड

Error creating thumbnail:
प्रमुख झिल्ली फॉस्फोलिपिड्स और ग्लाइकोलिपिड्स के उदाहरण: phosphatidylcholine (PtdCho), फॉस्फेटिडाइलेथेनॉलमाइन (PtdEtn), phosphatidylinositol (PtdIns), फॉस्फेटीडाइलसिरिन (PtdSer)।

कोशिका झिल्ली में amphipathic लिपिड के तीन वर्ग होते हैं: फॉस्फोलिपिड्स, ग्लाइकोलिपिड्स और स्टेरोल ्स। प्रत्येक की मात्रा कोशिका के प्रकार पर निर्भर करती है, लेकिन अधिकांश मामलों में फास्फोलिपिड सबसे प्रचुर मात्रा में होते हैं, जो अक्सर प्लाज्मा झिल्ली में सभी लिपिड के 50% से अधिक के लिए योगदान करते हैं।[23][24] ग्लाइकोलिपिड्स केवल 2% की एक मिनट की मात्रा के लिए खाते हैं और स्टेरोल्स बाकी बनाते हैं। लाल रक्त कोशिका अध्ययन में, प्लाज्मा झिल्ली का 30% लिपिड होता है। हालांकि, अधिकांश यूकेरियोटिक कोशिकाओं के लिए, प्लाज्मा झिल्ली की संरचना वजन के हिसाब से लगभग आधा लिपिड और आधा प्रोटीन है।

फॉस्फोलिपिड्स और ग्लाइकोलिपिड्स में फैटी चेन में आमतौर पर कार्बन परमाणुओं की एक समान संख्या होती है, आमतौर पर 16 और 20 के बीच। 16- और 18-कार्बन फैटी एसिड सबसे आम हैं। फैटी एसिड संतृप्त या असंतृप्त हो सकते हैं, डबल बॉन्ड के कॉन्फ़िगरेशन के साथ लगभग हमेशा सीआईएस। फैटी एसिड श्रृंखलाओं की लंबाई और असंतृप्तता का झिल्ली तरलता पर गहरा प्रभाव पड़ता है क्योंकि असंतृप्त लिपिड एक किंक बनाते हैं, फैटी एसिड को एक साथ कसकर पैक करने से रोकते हैं, इस प्रकार झिल्ली के पिघलने बिंदु (तरलता में वृद्धि) को कम करते हैं।[23][24]कुछ जीवों की लिपिड रचना में परिवर्तन करके झिल्ली की तरलता को विनियमित करने की क्षमता को होमोविसकस अनुकूलन कहा जाता है।

संपूर्ण झिल्ली को हाइड्रोफोबिक पूंछों के गैर-सहसंयोजक संपर्क के माध्यम से एक साथ रखा जाता है, हालांकि संरचना काफी तरल होती है और जगह में कठोर रूप से तय नहीं होती है। शारीरिक स्थिति यों के तहत कोशिका झिल्ली में फॉस्फोलिपिड अणु तरल स्फ़टिक में होते हैं। इसका मतलब है कि लिपिड अणु फैलाने के लिए स्वतंत्र हैं और जिस परत में वे मौजूद हैं, उसके साथ तेजी से पार्श्व प्रसार प्रदर्शित करते हैं।[23]हालांकि, बाइलेयर के इंट्रासेल्युलर और एक्स्ट्रासेलुलर लीफलेट्स के बीच फॉस्फोलिपिड अणुओं का आदान-प्रदान बहुत धीमी प्रक्रिया है। लिपिड राफ्ट और केवियोली कोशिका झिल्ली में कोलेस्ट्रॉल-समृद्ध माइक्रोडोमेन के उदाहरण हैं।[24]इसके अलावा, इंटीग्रल मेम्ब्रेन प्रोटीन के सीधे संपर्क में लिपिड का एक अंश, जो प्रोटीन की सतह से कसकर बंधा होता है, कुंडलाकार लिपिड शेल कहलाता है; यह प्रोटीन कॉम्प्लेक्स के एक भाग के रूप में व्यवहार करता है।

पशु कोशिकाओं में कोलेस्ट्रॉल सामान्य रूप से कोशिका झिल्लियों में अलग-अलग डिग्री में पाया जाता है, झिल्लीदार लिपिड की हाइड्रोफोबिक पूंछ के बीच अनियमित रिक्त स्थान में, जहां यह झिल्ली पर एक कठोर और मजबूत प्रभाव प्रदान करता है।[4]इसके अतिरिक्त, जैविक झिल्लियों में कोलेस्ट्रॉल की मात्रा जीवों, कोशिका प्रकारों और यहां तक ​​कि व्यक्तिगत कोशिकाओं में भी भिन्न होती है। कोलेस्ट्रॉल, पशु प्लाज्मा झिल्ली का एक प्रमुख घटक, समग्र झिल्ली की तरलता को नियंत्रित करता है, जिसका अर्थ है कि कोलेस्ट्रॉल इसकी सांद्रता के आधार पर विभिन्न कोशिका झिल्ली घटकों के संचलन की मात्रा को नियंत्रित करता है।[4]उच्च तापमान में, कोलेस्ट्रॉल फॉस्फोलिपिड फैटी एसिड श्रृंखलाओं के संचलन को रोकता है, जिससे छोटे अणुओं की पारगम्यता कम हो जाती है और झिल्ली की तरलता कम हो जाती है। ठंडे तापमान में कोलेस्ट्रॉल की भूमिका के लिए विपरीत सच है। ठंडे तापमान की प्रतिक्रिया में कोलेस्ट्रॉल उत्पादन, और इस प्रकार एकाग्रता, अप-विनियमित (बढ़ी हुई) है। ठंडे तापमान पर, कोलेस्ट्रॉल फैटी एसिड चेन इंटरैक्शन में हस्तक्षेप करता है। एंटीफ्ऱीज़र के रूप में कार्य करते हुए, कोलेस्ट्रॉल झिल्ली की तरलता को बनाए रखता है। गर्म मौसम वाले जानवरों की तुलना में ठंडे मौसम वाले जानवरों में कोलेस्ट्रॉल अधिक प्रचुर मात्रा में होता है। पौधों में, जिनमें कोलेस्ट्रॉल की कमी होती है, स्टेरोल्स नामक संबंधित यौगिक कोलेस्ट्रॉल के समान कार्य करते हैं।[4]


लिपिड वेसिकल्स बनाने वाले फॉस्फोलिपिड्स

लिपिड वेसिकल्स या लाइपोसोम लगभग गोलाकार पॉकेट होते हैं जो एक लिपिड बाइलेयर से घिरे होते हैं।[25] इन संरचनाओं का उपयोग प्रयोगशालाओं में इन रसायनों को सीधे कोशिका तक पहुँचाने के साथ-साथ कोशिका झिल्ली पारगम्यता में अधिक जानकारी प्राप्त करके कोशिकाओं में रसायनों के प्रभावों का अध्ययन करने के लिए किया जाता है। लिपिड पुटिकाओं और लिपोसोम्स का निर्माण पहले एक जलीय घोल में एक लिपिड को निलंबित करके किया जाता है, फिर मिश्रण को sonication के माध्यम से उत्तेजित किया जाता है, जिसके परिणामस्वरूप एक पुटिका होती है। वेसिकल के अंदर से एंबिएंट सॉल्यूशन तक एफ्लक्स (माइक्रोबायोलॉजी) की दर को मापकर, शोधकर्ता झिल्ली पारगम्यता को बेहतर ढंग से समझने की अनुमति देता है। घोल में मौजूद वांछित अणु या आयन से पुटिका बनाकर पुटिका के अंदर अणुओं और आयनों के साथ पुटिकाओं का निर्माण किया जा सकता है। प्रोटीन को डिटर्जेंट की उपस्थिति में वांछित प्रोटीन को घोलकर और उन्हें फॉस्फोलिपिड्स से जोड़कर झिल्ली में एम्बेड किया जा सकता है जिसमें लिपोसोम बनता है। ये शोधकर्ताओं को विभिन्न झिल्ली प्रोटीन कार्यों की जांच करने के लिए एक उपकरण प्रदान करते हैं।

कार्बोहाइड्रेट

प्लाज्मा झिल्लियों में कार्बोहाइड्रेट भी होते हैं, मुख्य रूप से ग्लाइकोप्रोटीन , लेकिन कुछ ग्लाइकोलिपिड्स (सेरेब्रोसाइड ्स और गैंग्लियोसाइड ्स) के साथ। यूकेरियोट्स में सेल-सेल पहचान की भूमिका में कार्बोहाइड्रेट महत्वपूर्ण हैं; वे कोशिका की सतह पर स्थित होते हैं जहां वे मेजबान कोशिकाओं को पहचानते हैं और जानकारी साझा करते हैं, वायरस जो इन रिसेप्टर्स का उपयोग करके कोशिकाओं से जुड़ते हैं, संक्रमण का कारण बनते हैं [26] अधिकांश भाग के लिए, कोशिका के भीतर झिल्लियों पर कोई ग्लाइकोसिलेशन नहीं होता है; बल्कि आमतौर पर ग्लाइकोसिलेशन प्लाज्मा झिल्ली की बाह्य सतह पर होता है। ग्लाइकोकैलिक्स सभी कोशिकाओं में एक महत्वपूर्ण विशेषता है, विशेष रूप से माइक्रोविली के साथ उपकला । हाल के आंकड़ों से पता चलता है कि ग्लाइकोकालीक्स सेल आसंजन, लिम्फोसाइट होमिंग रिसेप्टर में भाग लेता है,[26]और बहुत सारे। विक्षनरी: अंत से पहले चीनी गैलेक्टोज है और टर्मिनल चीनी सियालिक एसिड है, क्योंकि चीनी बैकबोन को गोल्गी उपकरण में संशोधित किया गया है। सियालिक एसिड में नकारात्मक चार्ज होता है, चार्ज कणों को बाहरी बाधा प्रदान करता है।

प्रोटीन

Type Description Examples
Integral proteins
or transmembrane proteins
Span the membrane and have a hydrophilic cytosolic domain, which interacts with internal molecules, a hydrophobic membrane-spanning domain that anchors it within the cell membrane, and a hydrophilic extracellular domain that interacts with external molecules. The hydrophobic domain consists of one, multiple, or a combination of α-helices and β sheet protein motifs. Ion channels, proton pumps, G protein-coupled receptor
Lipid anchored proteins Covalently bound to single or multiple lipid molecules; hydrophobically insert into the cell membrane and anchor the protein. The protein itself is not in contact with the membrane. G proteins
Peripheral proteins Attached to integral membrane proteins, or associated with peripheral regions of the lipid bilayer. These proteins tend to have only temporary interactions with biological membranes, and once reacted, the molecule dissociates to carry on its work in the cytoplasm. Some enzymes, some hormones

कोशिका झिल्ली में प्रोटीन की बड़ी मात्रा होती है, आमतौर पर झिल्ली की मात्रा का लगभग 50%[27] ये प्रोटीन कोशिका के लिए महत्वपूर्ण होते हैं क्योंकि ये विभिन्न जैविक गतिविधियों के लिए जिम्मेदार होते हैं। विशेष रूप से उनके लिए खमीर कोड में लगभग एक तिहाई जीन , और बहुकोशिकीय जीवों में यह संख्या और भी अधिक है।[25]मेम्ब्रेन प्रोटीन में तीन मुख्य प्रकार होते हैं: अभिन्न प्रोटीन, परिधीय प्रोटीन और लिपिड-एंकर प्रोटीन।[4]

जैसा कि बगल की तालिका में दिखाया गया है, इंटीग्रल प्रोटीन एम्फ़िपैथिक ट्रांसमेम्ब्रेन प्रोटीन हैं। अभिन्न प्रोटीन के उदाहरणों में आयन चैनल, प्रोटॉन पंप और जी-प्रोटीन युग्मित रिसेप्टर्स शामिल हैं। आयन चैनल अकार्बनिक आयनों जैसे सोडियम, पोटेशियम, कैल्शियम, या क्लोरीन को झिल्ली के पार हाइड्रोफिलिक छिद्रों के माध्यम से लिपिड बाईलेयर में उनके विद्युत रासायनिक ढाल को फैलाने की अनुमति देते हैं। कोशिकाओं (यानी तंत्रिका कोशिकाओं) के विद्युत व्यवहार को आयन चैनलों द्वारा नियंत्रित किया जाता है।[4]प्रोटॉन पंप प्रोटीन पंप होते हैं जो लिपिड बाईलेयर में एम्बेडेड होते हैं जो प्रोटॉन को एक एमिनो एसिड साइड चेन से दूसरे में स्थानांतरित करके झिल्ली के माध्यम से यात्रा करने की अनुमति देते हैं। इलेक्ट्रॉन परिवहन और एटीपी उत्पन्न करने जैसी प्रक्रियाएं प्रोटॉन पंप का उपयोग करती हैं।[4]जी-प्रोटीन युग्मित रिसेप्टर एक एकल पॉलीपेप्टाइड श्रृंखला है जो सिग्नल अणुओं (यानी हार्मोन और न्यूरोट्रांसमीटर) के जवाब में लिपिड बिलेयर को सात बार पार करती है। जी-प्रोटीन युग्मित रिसेप्टर्स का उपयोग सेल से सेल सिग्नलिंग, सीएमपी के उत्पादन के विनियमन और आयन चैनलों के विनियमन जैसी प्रक्रियाओं में किया जाता है।[4]

कोशिका झिल्ली, बाहरी वातावरण के संपर्क में आने के कारण, कोशिका-कोशिका संचार का एक महत्वपूर्ण स्थल है। जैसे, प्रोटीन रिसेप्टर्स और पहचान प्रोटीन की एक बड़ी विविधता, जैसे प्रतिजन , झिल्ली की सतह पर मौजूद हैं। झिल्ली प्रोटीन के कार्यों में कोशिका-कोशिका संपर्क, सतह की पहचान, साइटोस्केलेटन संपर्क, सिग्नलिंग, एंजाइमी गतिविधि या झिल्ली के पार पदार्थों का परिवहन भी शामिल हो सकता है।

अधिकांश मेम्ब्रेन प्रोटीन को किसी न किसी तरह मेम्ब्रेन में डाला जाना चाहिए।[28] ऐसा होने के लिए, अमीनो एसिड का एक एन-टर्मिनस सिग्नल अनुक्रम प्रोटीन को अन्तः प्रदव्ययी जलिका में निर्देशित करता है, जो प्रोटीन को एक लिपिड बाइलेयर में सम्मिलित करता है। एक बार डाले जाने के बाद, प्रोटीन को पुटिकाओं में अपने अंतिम गंतव्य तक पहुँचाया जाता है, जहाँ पुटिका लक्ष्य झिल्ली के साथ फ़्यूज़ हो जाती है।


समारोह

File:Cell membrane detailed diagram en.svg
कोशिका झिल्ली का एक विस्तृत आरेख
File:Blausen 0213 CellularDiffusion.png
कोशिकीय प्रसार को दर्शाने वाला चित्रण

कोशिका झिल्ली जीवित कोशिकाओं के साइटोप्लाज्म को घेर लेती है, शारीरिक रूप से intracellular घटकों को बाह्य वातावरण से अलग करती है। कोशिका झिल्ली कोशिका को आकार प्रदान करने के लिए साइटोस्केलेटन को एंकरिंग करने में और ऊतक (जीव विज्ञान) बनाने के लिए उन्हें एक साथ रखने के लिए बाह्य मैट्रिक्स और अन्य कोशिकाओं को संलग्न करने में भी भूमिका निभाती है। कवक , जीवाणु , अधिकांश आर्किया और पौधों में भी एक कोशिका भित्ति होती है, जो कोशिका को एक यांत्रिक सहायता प्रदान करती है और मैक्रोमोलेक्यूल के मार्ग को रोकती है।

कोशिका झिल्ली अर्धपारगम्य झिल्ली है और कोशिका में प्रवेश करने और बाहर निकलने को विनियमित करने में सक्षम है, इस प्रकार जीवित रहने के लिए आवश्यक सामग्री के झिल्ली परिवहन को सुविधाजनक बनाता है। झिल्ली के पार पदार्थों का संचलन या तो निष्क्रिय परिवहन द्वारा प्राप्त किया जा सकता है, जो सेलुलर ऊर्जा के इनपुट के बिना होता है, या सक्रिय परिवहन द्वारा, इसके परिवहन में सेल को ऊर्जा खर्च करने की आवश्यकता होती है। झिल्ली मेम्ब्रेन क्षमता को भी बनाए रखती है। कोशिका झिल्ली इस प्रकार एक चयनात्मक फिल्टर के रूप में काम करती है जो केवल कुछ चीजों को ही अंदर आने या कोशिका के बाहर जाने की अनुमति देती है। सेल कई परिवहन तंत्रों को नियोजित करता है जिसमें जैविक झिल्ली शामिल होती है:

1. निष्क्रिय परासरण और प्रसार : कुछ पदार्थ (छोटे अणु, आयन) जैसे कार्बन डाइऑक्साइड (CO2)2) और ऑक्सीजन (ओ2), प्रसार द्वारा प्लाज्मा झिल्ली के पार जा सकता है, जो एक निष्क्रिय परिवहन प्रक्रिया है। क्योंकि झिल्ली कुछ अणुओं और आयनों के लिए बाधा के रूप में कार्य करती है, वे झिल्ली के दोनों किनारों पर अलग-अलग सांद्रता में हो सकते हैं। प्रसार तब होता है जब झिल्ली को संतुलित करने के लिए छोटे अणु और आयन उच्च सांद्रता से कम सांद्रता तक स्वतंत्र रूप से चलते हैं। इसे एक निष्क्रिय परिवहन प्रक्रिया माना जाता है क्योंकि इसमें ऊर्जा की आवश्यकता नहीं होती है और झिल्ली के प्रत्येक पक्ष द्वारा बनाई गई एकाग्रता प्रवणता द्वारा संचालित होती है।[29] अर्ध-पारगम्य झिल्ली के आर-पार इस तरह का सांद्रण प्रवणता पानी के लिए एक आसमाटिक दबाव स्थापित करता है। ऑस्मोसिस, जैविक प्रणालियों में एक विलायक शामिल होता है, जो एक अर्धपारगम्य झिल्ली के माध्यम से निष्क्रिय प्रसार के समान होता है क्योंकि विलायक अभी भी एकाग्रता प्रवणता के साथ चलता है और इसके लिए किसी ऊर्जा की आवश्यकता नहीं होती है। जबकि पानी कोशिका में सबसे आम विलायक है, यह अन्य तरल पदार्थ के साथ-साथ सुपरक्रिटिकल तरल पदार्थ और गैस भी हो सकता है।[30] 2. आयन चैनल और झिल्ली परिवहन प्रोटीन : ट्रांसमेम्ब्रेन प्रोटीन झिल्ली के लिपिड बाइलेयर के माध्यम से फैलते हैं; वे झिल्ली के दोनों किनारों पर इसके पार अणुओं के परिवहन के लिए कार्य करते हैं।[31] पोषक तत्वों, जैसे शर्करा या अमीनो एसिड, को कोशिका में प्रवेश करना चाहिए, और चयापचय के कुछ उत्पादों को कोशिका को छोड़ना चाहिए। इस तरह के अणु प्रोटीन चैनलों के माध्यम से निष्क्रिय रूप से फैल सकते हैं जैसे एक्वापोरिन सुविधा प्रसार में या मेम्ब्रेन ट्रांसपोर्ट प्रोटीन द्वारा झिल्ली में पंप किए जाते हैं। प्रोटीन चैनल प्रोटीन, जिसे परमीसेस भी कहा जाता है, आमतौर पर काफी विशिष्ट होते हैं, और वे केवल सीमित प्रकार के रासायनिक पदार्थों को पहचानते हैं और परिवहन करते हैं, जो अक्सर एक ही पदार्थ तक सीमित होते हैं। एक ट्रांसमेम्ब्रेन प्रोटीन का एक अन्य उदाहरण एक सेल-सतह रिसेप्टर है, जो सेल सिग्नलिंग अणुओं को कोशिकाओं के बीच संवाद करने की अनुमति देता है।[31]

3. एंडोसाइटोसिस: एंडोसाइटोसिस वह प्रक्रिया है जिसमें कोशिकाएं अणुओं को अपने में समाहित करके अवशोषित कर लेती हैं। प्लाज़्मा झिल्ली अंदर की ओर एक छोटी विकृति पैदा करती है, जिसे अंतर्वलन कहा जाता है, जिसमें परिवहन किए जाने वाले पदार्थ को पकड़ लिया जाता है। यह आक्रमण कोशिका झिल्ली के बाहर प्रोटीन के कारण होता है, रिसेप्टर्स के रूप में कार्य करता है और अवसादों में क्लस्टरिंग करता है जो अंततः झिल्ली के साइटोसोलिक पक्ष पर अधिक प्रोटीन और लिपिड के संचय को बढ़ावा देता है।[32] विरूपण तब कोशिका के अंदर की झिल्ली से बंद हो जाता है, जिससे एक पुटिका बनती है जिसमें कैप्चर किए गए पदार्थ होते हैं। एंडोसाइटोसिस ठोस कणों (कोशिका खाने या phagocytosis ), छोटे अणुओं और आयनों (सेल पीने या पिनोसाइटोसिस ), और मैक्रोमोलेक्यूल्स को आंतरिक बनाने का एक मार्ग है। एंडोसाइटोसिस के लिए ऊर्जा की आवश्यकता होती है और इस प्रकार यह सक्रिय परिवहन का एक रूप है।

4. एक्सोसाइटोसिस: जिस तरह एक पुटिका के अंतर्वलन और गठन से सामग्री को कोशिका में लाया जा सकता है, उसी तरह एक पुटिका की झिल्ली को प्लाज्मा झिल्ली के साथ जोड़ा जा सकता है, इसकी सामग्री को आसपास के माध्यम से बाहर निकाला जा सकता है। यह एक्सोसाइटोसिस की प्रक्रिया है। एक्सोसाइटोसिस विभिन्न कोशिकाओं में एंडोसाइटोसिस द्वारा लाए गए पदार्थों के अवांछित अवशेषों को हटाने, हार्मोन और एंजाइम जैसे पदार्थों को छिपाने के लिए, और एक सेलुलर बाधा में पूरी तरह से पदार्थ को परिवहन करने के लिए होता है। एक्सोसाइटोसिस की प्रक्रिया में, अपचित अपशिष्ट युक्त खाद्य रसधानी या स्रावी पुटिका जो गॉल्जी उपकरण से उभरी होती है, पहले कोशिका के आंतरिक भाग से सतह तक साइटोस्केलेटन द्वारा ले जाया जाता है। पुटिका झिल्ली प्लाज्मा झिल्ली के संपर्क में आती है। दो द्विपरतों के लिपिड अणु स्वयं को पुनर्व्यवस्थित करते हैं और इस प्रकार दो झिल्लियां आपस में जुड़ जाती हैं। फ्यूज्ड मेम्ब्रेन में एक मार्ग बनता है और पुटिका कोशिका के बाहर अपनी सामग्री का निर्वहन करती है।

[[ प्रोकैर्योसाइटों ]]

प्रोकैरियोट्स को दो अलग-अलग समूहों, आर्किया और बैक्टीरिया में विभाजित किया गया है, जिसमें बैक्टीरिया आगे ग्राम पॉजिटिव बैक्टीरिया | ग्राम-पॉजिटिव और ग्राम-नकारात्मक जीवाणु | ग्राम-नेगेटिव में विभाजित होते हैं। ग्राम-नेगेटिव बैक्टीरिया में प्लाज़्मा झिल्ली और Periplasm द्वारा अलग की गई बाहरी बैक्टीरिया झिल्ली दोनों होती हैं, हालाँकि, अन्य प्रोकैरियोट्स में केवल प्लाज्मा झिल्ली होती है। ये दोनों झिल्ली कई पहलुओं में भिन्न हैं। ग्राम-नेगेटिव बैक्टीरिया की बाहरी झिल्ली अन्य प्रोकैरियोट्स से भिन्न होती है, क्योंकि फास्फोलिपिड्स बिलीयर के बाहरी हिस्से को बनाते हैं, और लिपोप्रोटीन और फॉस्फोलिपिड्स इंटीरियर बनाते हैं।[33] झिल्ली प्रोटीन की उपस्थिति के कारण बाहरी झिल्ली में आमतौर पर झरझरा गुण होता है, जैसे कि ग्राम-नेगेटिव पोरिन, जो छिद्र बनाने वाले प्रोटीन होते हैं। आंतरिक, प्लाज्मा झिल्ली भी आम तौर पर सममित होती है जबकि बाहरी झिल्ली असममित होती है क्योंकि उपरोक्त जैसे प्रोटीन होते हैं। इसके अलावा, प्रोकैरियोटिक झिल्लियों के लिए, कई चीजें हैं जो तरलता को प्रभावित कर सकती हैं। तरलता को प्रभावित करने वाले प्रमुख कारकों में से एक फैटी एसिड संरचना है। उदाहरण के लिए, जब बैक्टीरिया स्टैफिलोकोकस ऑरियस 37 में उगाया गया थासी 24 घंटों के लिए, झिल्ली ने जेल जैसी स्थिति के बजाय अधिक द्रव अवस्था प्रदर्शित की। यह इस अवधारणा का समर्थन करता है कि उच्च तापमान में झिल्ली ठंडे तापमान की तुलना में अधिक तरल होती है। जब झिल्ली अधिक तरल हो रही होती है और अधिक स्थिर होने की आवश्यकता होती है, तो यह झिल्ली को स्थिर करने में मदद करने के लिए फैटी एसिड श्रृंखला या संतृप्त फैटी एसिड श्रृंखला बनाती है।[34] बैक्टीरिया पेप्टिडोग्लाइकन (अमीनो एसिड और शर्करा) से बनी एक कोशिका भित्ति से भी घिरे होते हैं। कुछ यूकेरियोटिक कोशिकाओं में कोशिका भित्ति भी होती है, लेकिन कोई भी पेप्टिडोग्लाइकेन से नहीं बनी होती है। ग्राम नकारात्मक जीवाणुओं की बाहरी झिल्ली lipopolysaccharide से भरपूर होती है, जो संयुक्त पॉली- या ओलिगोसेकेराइड और कार्बोहाइड्रेट लिपिड क्षेत्र होते हैं जो कोशिका की प्राकृतिक प्रतिरक्षा को उत्तेजित करते हैं।[35] बाहरी झिल्ली ब्लीब (कोशिका जीव विज्ञान) तनाव की स्थिति में या एक मेजबान लक्ष्य सेल का सामना करते समय पौरूष आवश्यकताओं पर पेरिप्लास्मिक प्रोट्रूशियंस में बाहर निकल सकती है, और इस प्रकार इस तरह के ब्लब्स विषाणु ऑर्गेनेल के रूप में काम कर सकते हैं।[36] बैक्टीरियल कोशिकाएं विविध तरीकों के कई उदाहरण प्रदान करती हैं जिसमें प्रोकैरियोटिक कोशिका झिल्ली को संरचनाओं के साथ अनुकूलित किया जाता है जो जीव के आला के अनुरूप होते हैं। उदाहरण के लिए, कुछ जीवाणु कोशिकाओं की सतह पर मौजूद प्रोटीन उनके सरकने की गति में सहायता करते हैं।[37] कई ग्राम-नकारात्मक जीवाणुओं में कोशिका झिल्ली होती है जिसमें एटीपी-संचालित प्रोटीन निर्यात प्रणाली होती है।[37]


संरचनाएं

द्रव मोज़ेक मॉडल

सीमोर जोनाथन सिंगर के द्रव मोज़ेक मॉडल के अनुसार | एस। जे. सिंगर और गर्थ एल. निकोलसन|जी. एल. निकोलसन (1972), जिसने पहले के डेवसन-डेनिएली मॉडल को प्रतिस्थापित किया, जैविक झिल्लियों को एक द्वि-आयामी तरल के रूप में माना जा सकता है जिसमें लिपिड और प्रोटीन अणु कम या ज्यादा आसानी से फैलते हैं।[38] यद्यपि झिल्ली का आधार बनाने वाले लिपिड बाइलेयर्स वास्तव में स्वयं द्वि-आयामी तरल पदार्थ बनाते हैं, प्लाज्मा झिल्ली में बड़ी मात्रा में प्रोटीन भी होते हैं, जो अधिक संरचना प्रदान करते हैं। ऐसी संरचनाओं के उदाहरण हैं प्रोटीन-प्रोटीन कॉम्प्लेक्स, पिकेट और एक्टिन-आधारित साइटोस्केलेटन द्वारा गठित बाड़, और संभावित लिपिड रैफ़्ट

लिपिड बाइलेयर

File:Fluid Mosaic.svg
लिपिड बाइलेयर बनाने के लिए एम्फ़िपैथिक लिपिड अणुओं की व्यवस्था का आरेख। पीले रासायनिक ध्रुवता वाले सिर समूह ग्रे हाइड्रोफोबिक पूंछ को जलीय साइटोसोलिक और बाह्य वातावरण से अलग करते हैं।

स्व-असेंबली की प्रक्रिया के माध्यम से लिपिड बाइलेयर बनते हैं। कोशिका झिल्ली में मुख्य रूप से एम्फीपैथिक फॉस्फोलिपिड ्स की एक पतली परत होती है जो अनायास व्यवस्थित होती है ताकि हाइड्रोफोबिक पूंछ क्षेत्र आसपास के पानी से अलग हो जाएं जबकि हाइड्रोफिलिक सिर क्षेत्र इंट्रासेल्युलर (साइटोसोलिक) और परिणामी बाइलर के बाह्य चेहरे के साथ बातचीत करते हैं। यह एक सतत, गोलाकार लिपिड बाइलेयर बनाता है। हाइड्रोफोबिक इंटरैक्शन (जिसे हाइड्रोफोबिक प्रभाव के रूप में भी जाना जाता है) लिपिड बाइलेयर्स के निर्माण में प्रमुख प्रेरक शक्ति हैं। हाइड्रोफोबिक अणुओं (हाइड्रोफोबिक क्षेत्रों के क्लस्टरिंग के कारण) के बीच बातचीत में वृद्धि पानी के अणुओं को एक दूसरे के साथ अधिक स्वतंत्र रूप से बंधने की अनुमति देती है, जिससे सिस्टम की एन्ट्रॉपी बढ़ जाती है। इस जटिल अंतःक्रिया में वैन डेर वाल का बल , इलेक्ट्रोस्टैटिक और हाइड्रोजन बॉन्ड जैसे गैर-सहसंयोजक इंटरैक्शन शामिल हो सकते हैं।

लिपिड बाइलेयर्स आमतौर पर आयनों और ध्रुवीय अणुओं के लिए अभेद्य होते हैं। लिपिड बाइलेयर के हाइड्रोफिलिक हेड्स और हाइड्रोफोबिक टेल्स की व्यवस्था ध्रुवीय विलेय (पूर्व अमीनो एसिड, न्यूक्लिक एसिड, कार्बोहाइड्रेट, प्रोटीन और आयन) को झिल्ली के पार फैलने से रोकती है, लेकिन आम तौर पर हाइड्रोफोबिक अणुओं के निष्क्रिय प्रसार की अनुमति देती है। यह कोशिका को पोर्स, चैनल्स और गेट्स जैसे ट्रांसमेम्ब्रेन प्रोटीन कॉम्प्लेक्स के माध्यम से इन पदार्थों की गति को नियंत्रित करने की क्षमता प्रदान करता है। Flippase s और scramblase s फॉस्फेटिडिल सेरीन को केंद्रित करते हैं, जो आंतरिक झिल्ली पर नकारात्मक चार्ज करता है। सियालिक एसिड के साथ, यह झिल्ली के माध्यम से आवेशित मोइटी (रसायन) के लिए एक अतिरिक्त अवरोध पैदा करता है।

मेम्ब्रेन यूकेरियोट और प्रोकैरियोट कोशिकाओं में विविध कार्य करते हैं। एक महत्वपूर्ण भूमिका कोशिकाओं के अंदर और बाहर सामग्री के संचलन को विनियमित करना है। विशिष्ट झिल्ली प्रोटीन के साथ फॉस्फोलिपिड बाइलेयर संरचना (द्रव मोज़ेक मॉडल) झिल्ली और निष्क्रिय और सक्रिय परिवहन तंत्र की चयनात्मक पारगम्यता के लिए खाता है। इसके अलावा, प्रोकैरियोट्स में झिल्ली और यूकेरियोट्स के माइटोकॉन्ड्रिया और क्लोरोप्लास्ट में रसायन विज्ञान के माध्यम से एटीपी के संश्लेषण की सुविधा होती है।[39]


झिल्ली ध्रुवता

Error creating thumbnail:
अल्फा इंटरकलेटेड सेल

एक ध्रुवीकृत कोशिका की एपिकल झिल्ली प्लाज्मा झिल्ली की सतह होती है जो लुमेन (शरीर रचना) के अंदर की ओर होती है। यह उपकला कोशिका अन्तःस्तरीय कोशिका कोशिकाओं में विशेष रूप से स्पष्ट है, लेकिन अन्य ध्रुवीकृत कोशिकाओं, जैसे न्यूरॉन ्स का भी वर्णन करता है। एपिथेलियल पोलरिटी#पोलराइज़्ड सेल की बेसोलेटरल मेम्ब्रेन प्लाज़्मा मेम्ब्रेन की सतह होती है जो इसकी बेसल और लेटरल सतह बनाती है। यह बाहर की ओर, interstitium की ओर और लुमेन से दूर है। बेसोलेटरल मेम्ब्रेन एक यौगिक वाक्यांश है जो बेसल (बेस) मेम्ब्रेन और लेटरल (साइड) मेम्ब्रेन का उल्लेख करता है, जो विशेष रूप से एपिथेलियल कोशिकाओं में, संरचना और गतिविधि में समान हैं। प्रोटीन (जैसे आयन चैनल और आयन पंप (जीव विज्ञान) ) द्रव मोज़ेक मॉडल के अनुसार बेसल से सेल की पार्श्व सतह या इसके विपरीत स्थानांतरित करने के लिए स्वतंत्र हैं। बेसोलेटरल मेम्ब्रेन से एपिकल मेम्ब्रेन में प्रोटीन के प्रवास को रोकने के लिए टाइट जंक्शन उनकी एपिकल सतह के पास एपिथेलियल कोशिकाओं से जुड़ते हैं। इस प्रकार बेसल और पार्श्व सतहें लगभग बराबर रहती हैं[clarification needed] एक दूसरे से, फिर भी शिखर सतह से अलग।

झिल्ली संरचनाएं

सेल मेम्ब्रेन संरचना का आरेख।

कोशिका झिल्ली विभिन्न प्रकार की सुपरमेम्ब्रेन संरचनाएं बना सकती हैं जैसे कि गुफाओला , पोस्टसिनेप्टिक घनत्व , podosome , invadopodium , फोकल आसंजन और विभिन्न प्रकार के सेल जंक्शन । ये संरचनाएं आमतौर पर कोशिका आसंजन, संचार, एंडोसाइटोसिस और एक्सोसाइटोसिस के लिए जिम्मेदार होती हैं। उन्हें इलेक्ट्रॉन माइक्रोस्कोपी या प्रतिदीप्ति माइक्रोस्कोपी द्वारा देखा जा सकता है। वे विशिष्ट प्रोटीन से बने होते हैं, जैसे कि इंटेग्रिन और कैडरिन।

साइटोस्केलेटन

साइटोस्केलेटन साइटोप्लाज्म में कोशिका झिल्ली के नीचे पाया जाता है और झिल्ली प्रोटीन को लंगर डालने के लिए एक मचान प्रदान करता है, साथ ही कोशिका से फैलने वाले organelle भी बनाता है। दरअसल, साइटोस्केलेटल तत्व कोशिका झिल्ली के साथ बड़े पैमाने पर और घनिष्ठ रूप से बातचीत करते हैं।[40] एंकरिंग प्रोटीन उन्हें एक विशेष कोशिका की सतह तक सीमित कर देता है - उदाहरण के लिए, उपकला कोशिकाओं की एपिकल सतह जो कशेरुक जठरांत्र संबंधी मार्ग को पंक्तिबद्ध करती है - और यह सीमित करती है कि वे बिलीयर के भीतर कितनी दूर तक फैल सकते हैं। साइटोस्केलेटन एपेंडेज-जैसे ऑर्गेनेल बनाने में सक्षम है, जैसे कि सिलिया , जो कोशिका झिल्ली द्वारा कवर किए गए सूक्ष्मनलिका -आधारित एक्सटेंशन हैं, और filopodia , जो एक्टिन -आधारित एक्सटेंशन हैं। बाहरी वातावरण को समझने और/या सब्सट्रेट या अन्य कोशिकाओं के साथ संपर्क बनाने के लिए इन एक्सटेंशन को झिल्ली और कोशिका की सतह से प्रोजेक्ट किया जाता है। एपिथेलियल कोशिकाओं की एपिकल सतहें एक्टिन-आधारित उंगली जैसे अनुमानों के साथ घनी होती हैं, जिन्हें माइक्रोविली के रूप में जाना जाता है, जो सेल सतह क्षेत्र को बढ़ाते हैं और जिससे पोषक तत्वों की अवशोषण दर में वृद्धि होती है। साइटोस्केलेटन और कोशिका झिल्ली के स्थानीयकृत डिकूप्लिंग के परिणामस्वरूप ब्लीब (कोशिका जीव विज्ञान) का निर्माण होता है।

इंट्रासेल्युलर झिल्ली

कोशिका झिल्ली के अंदर कोशिका की सामग्री, कई झिल्ली-बद्ध अंगों से बनी होती है, जो कोशिका के समग्र कार्य में योगदान करती हैं। प्रत्येक ऑर्गेनेल की उत्पत्ति, संरचना और कार्य प्रत्येक ऑर्गेनेल से जुड़ी व्यक्तिगत विशिष्टता के कारण सेल संरचना में बड़े बदलाव की ओर ले जाते हैं।

  • माइटोकॉन्ड्रिया और क्लोरोप्लास्ट को बैक्टीरिया से विकसित माना जाता है, जिसे सहजीवजनन के रूप में जाना जाता है। यह सिद्धांत इस विचार से उत्पन्न हुआ कि Paracoccus और Rhodopseudomonas, बैक्टीरिया के प्रकार, माइटोकॉन्ड्रिया और नीले-हरे शैवाल, या साइनोबैक्टीरिया के समान कार्य साझा करते हैं, क्लोरोप्लास्ट के समान कार्य साझा करते हैं। सिम्बायोजेनेसिस का प्रस्ताव है कि विकास के दौरान, एक यूकेरियोटिक कोशिका ने इन 2 प्रकार के जीवाणुओं को घेर लिया, जिससे यूकेरियोटिक कोशिकाओं के अंदर माइटोकॉन्ड्रिया और क्लोरोप्लास्ट का निर्माण हुआ। यह अंतर्ग्रहण इन ऑर्गेनेल की 2 झिल्ली प्रणालियों की ओर ले जाता है जिसमें बाहरी झिल्ली मेजबान के प्लाज्मा झिल्ली से उत्पन्न होती है और आंतरिक झिल्ली एंडोसिम्बियोनेट की प्लाज्मा झिल्ली होती है। यह मानते हुए कि माइटोकॉन्ड्रिया और क्लोरोप्लास्ट दोनों में अपना स्वयं का डीएनए होता है, आगे का समर्थन है कि ये दोनों ऑर्गेनेल एक यूकेरियोटिक कोशिका के अंदर पनपने वाले जीवाणुओं से विकसित हुए हैं।[41]
  • यूकेरियोटिक कोशिकाओं में, परमाणु झिल्ली नाभिक की सामग्री को कोशिका के साइटोप्लाज्म से अलग करती है।[42] परमाणु झिल्ली एक आंतरिक और बाहरी झिल्ली द्वारा बनाई जाती है, जो नाभिक के अंदर और बाहर सामग्री का सख्त नियमन प्रदान करती है। सामग्री परमाणु झिल्ली में परमाणु छिद्रों के माध्यम से साइटोसोल और नाभिक के बीच चलती है। यदि किसी कोशिका का केंद्रक अनुलेखन (जीव विज्ञान) में अधिक सक्रिय है, तो उसकी झिल्ली में अधिक छिद्र होंगे। नाभिक की प्रोटीन संरचना साइटोसोल से बहुत भिन्न हो सकती है क्योंकि कई प्रोटीन प्रसार के माध्यम से छिद्रों से पार करने में असमर्थ होते हैं। परमाणु झिल्ली के भीतर, आंतरिक और बाहरी झिल्ली प्रोटीन संरचना में भिन्न होती है, और केवल बाहरी झिल्ली एंडोप्लाज्मिक रेटिकुलम (ईआर) झिल्ली के साथ निरंतर होती है। ईआर की तरह, बाहरी झिल्ली में भी राइबोसोम होते हैं जो दो झिल्लियों के बीच अंतरिक्ष में प्रोटीन के उत्पादन और परिवहन के लिए जिम्मेदार होते हैं। माइटोसिस के शुरुआती चरणों के दौरान परमाणु झिल्ली अलग हो जाती है और माइटोसिस के बाद के चरणों में फिर से जुड़ जाती है।[43]
  • ईआर, जो एंडोमेम्ब्रेन सिस्टम का हिस्सा है, जो सेल की कुल मेम्ब्रेन सामग्री का एक बहुत बड़ा हिस्सा बनाता है। ईआर नलिकाओं और थैलियों का एक संलग्न नेटवर्क है, और इसके मुख्य कार्यों में प्रोटीन संश्लेषण और लिपिड चयापचय शामिल हैं। ईआर 2 तरह के होते हैं, स्मूथ और रफ। रफ ईआर में प्रोटीन संश्लेषण के लिए उपयोग किए जाने वाले राइबोसोम जुड़े होते हैं, जबकि चिकनी ईआर का उपयोग कोशिका में विषाक्त पदार्थों और कैल्शियम विनियमन के प्रसंस्करण के लिए अधिक किया जाता है।[44]
  • गॉल्जी उपकरण में दो आपस में जुड़े गोल गॉल्गी सिस्टर्नी होते हैं। उपकरण के कम्पार्टमेंट कई ट्यूबलर-रेटिकुलर नेटवर्क बनाते हैं जो संगठन, स्टैक कनेक्शन और कार्गो परिवहन के लिए जिम्मेदार होते हैं जो 50-60 एनएम से लेकर लगातार अंगूर-जैसे कड़े वेसिकल्स प्रदर्शित करते हैं। उपकरण में तीन मुख्य डिब्बे होते हैं, ट्यूबलर-जालीदार नेटवर्क और पुटिकाओं के साथ एक फ्लैट डिस्क के आकार का सिस्टर्न।[45]


रूपांतर

कोशिका झिल्ली में वयस्क मानव शरीर में अलग-अलग कोशिका प्रकारों की अलग-अलग सूची में अलग-अलग लिपिड और प्रोटीन रचनाएँ होती हैं और इसलिए कुछ कोशिका प्रकारों के लिए विशिष्ट नाम हो सकते हैं।

  • पेशी कोशिका ओं में सरकोलेम्मा : सरकोलेममा मांसपेशी कोशिकाओं की कोशिका झिल्ली को दिया गया नाम है।[46] यद्यपि सरकोलेममा अन्य कोशिका झिल्लियों के समान है, इसके अन्य कार्य हैं जो इसे अलग करते हैं। उदाहरण के लिए, सरकोलेममा अन्तर्ग्रथनी संकेतों को प्रसारित करता है, क्रिया क्षमता उत्पन्न करने में मदद करता है, और मांसपेशियों के संकुचन में बहुत शामिल होता है।[47] अन्य कोशिका झिल्लियों के विपरीत, सरकोलेममा छोटे चैनल बनाती है जिन्हें टी-ट्यूब्यूल कहा जाता है जो मांसपेशियों की कोशिकाओं की संपूर्णता से गुजरते हैं। यह भी पाया गया है कि सामान्य कोशिका झिल्ली की 4 एनएम मोटाई के विपरीत औसत सरकोलेममा 10 एनएम मोटा होता है।[48][46]
  • Oolemma oocytes में कोशिका झिल्ली है: oocytes, (अपरिपक्व अंडे की कोशिकाओं) के oolemma एक लिपिड bilayer के साथ संगत नहीं हैं क्योंकि उनमें एक bilayer की कमी होती है और इसमें लिपिड शामिल नहीं होते हैं।[49] बल्कि, संरचना में एक आंतरिक परत, निषेचन आवरण होता है, और बाहरी विटलाइन परत से बना होता है, जो ग्लाइकोप्रोटीन से बना होता है; हालाँकि, झिल्ली में अपने कार्यों के लिए चैनल और प्रोटीन अभी भी मौजूद हैं।
  • एकोलेम्मा : तंत्रिका कोशिकाओं के अक्षतंतुओं पर विशेष प्लाज्मा झिल्ली जो क्रिया क्षमता के निर्माण के लिए जिम्मेदार है। इसमें एक दानेदार, सघन रूप से पैक लिपिड बाइलेयर होता है जो साइटोस्केलेटन घटकों स्पेक्ट्रिन और एक्टिन के साथ मिलकर काम करता है। ये साइटोस्केलेटन घटक अक्षतंतु में ट्रांसमेम्ब्रेन प्रोटीन के साथ जुड़ने और बातचीत करने में सक्षम हैं।[50][51]


पारगम्यता

पारगम्यता # झिल्ली का सरल सन्निकटन झिल्ली के माध्यम से अणुओं के निष्क्रिय प्रसार की दर है। इन अणुओं को पारगम्य अणु के रूप में जाना जाता है। पारगम्यता मुख्य रूप से अणु के विद्युत आवेश और रासायनिक ध्रुवता पर और कुछ हद तक अणु के दाढ़ द्रव्यमान पर निर्भर करती है। कोशिका झिल्ली की हाइड्रोफोबिक प्रकृति के कारण, छोटे विद्युतीय रूप से तटस्थ अणु आवेशित, बड़े अणुओं की तुलना में झिल्ली से अधिक आसानी से गुजरते हैं। आवेशित अणुओं की कोशिका झिल्ली से गुजरने में असमर्थता के कारण शरीर के तरल पदार्थ के डिब्बों में पदार्थों का पीएच विभाजन हो जाता है।

यह भी देखें


नोट्स और संदर्भ

  1. Kimball's Biology pages Archived 2009-01-25 at the Wayback Machine, Cell Membranes
  2. Singleton P (1999). Bacteria in Biology, Biotechnology and Medicine (5th ed.). New York: Wiley. ISBN 978-0-471-98880-9.
  3. Tom Herrmann1; Sandeep Sharma2. (March 2, 2019). "Physiology, Membrane". StatPearls. 1 SIU School of Medicine 2 Baptist Regional Medical Center. PMID 30855799.{{cite journal}}: CS1 maint: location (link) CS1 maint: uses authors parameter (link)
  4. 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 Alberts B, Johnson A, Lewis J, et al. (2002). Molecular Biology of the Cell (4th ed.). New York: Garland Science. ISBN 978-0-8153-3218-3. Archived from the original on 2017-12-20.
  5. Budin I, Devaraj NK (January 2012). "Membrane assembly driven by a biomimetic coupling reaction". Journal of the American Chemical Society. 134 (2): 751–3. doi:10.1021/ja2076873. PMC 3262119. PMID 22239722.
  6. Staff (January 25, 2012). "Chemists Synthesize Artificial Cell Membrane". ScienceDaily. Archived from the original on January 29, 2012. Retrieved February 18, 2012.
  7. Staff (January 26, 2012). "Chemists create artificial cell membrane". kurzweilai.net. Archived from the original on January 28, 2012. Retrieved February 18, 2012.
  8. Zeidi, Mahdi; Kim, Chun IL (2018). "The effects of intra-membrane viscosity on lipid membrane morphology: complete analytical solution". Scientific Reports. 8 (1): 12845. Bibcode:2018NatSR...812845Z. doi:10.1038/s41598-018-31251-6. ISSN 2045-2322. PMC 6110749. PMID 30150612.
  9. 9.0 9.1 9.2 9.3 9.4 9.5 9.6 Lombard J (December 2014). "Once upon a time the cell membranes: 175 years of cell boundary research". Biology Direct. 9: 32. doi:10.1186/s13062-014-0032-7. PMC 4304622. PMID 25522740.
  10. Leray, C. Chronological history of lipid center. Cyberlipid Center. Last updated on 11 November 2017. link Archived 2017-10-13 at the Wayback Machine.
  11. Gorter E, Grendel F (March 1925). "On Bimolecular Layers of Lipoids on the Chromocytes of the Blood". The Journal of Experimental Medicine. 41 (4): 439–43. doi:10.1084/jem.41.4.439. PMC 2130960. PMID 19868999.
  12. Karp, Gerald (2009). Cell and Molecular Biology (6th ed.). USA: John Wiley & Sons, Inc. p. 120. ISBN 9780470483374.
  13. S J Singer and G L Nicolson."The fluid mosaic model of the structure of cell membranes." Science. (1972) 175. 720-731.
  14. de Vries H (1885). "Plasmolytische Studien über die Wand der Vakuolen". Jahrb. Wiss. Bot. 16: 465–598.
  15. Pfeffer, W. 1877. Osmotische Untersuchungen: Studien zur Zell Mechanik. Engelmann, Leipzig.
  16. Pfeffer, W., 1900–1906. The Physiology of Plants, [1] Archived 2018-06-02 at the Wayback Machine. Translated by A. J. Ewart from the 2nd German ed. of Pflanzenphysiologie, 1897-1904, [2] Archived 2018-06-01 at the Wayback Machine. Clarendon Press, Oxford.
  17. Sharp, L. W. (1921). Introduction To Cytology. New York: McGraw Hill, p. 42.
  18. Kleinzeller, A. 1999. Charles Ernest Overton’s concept of a cell membrane. In: Membrane permeability: 100 years since Ernest Overton (ed. Deamer D.W., Kleinzeller A., Fambrough D.M.), pp. 1–18, Academic Press, San Diego, [3].
  19. Mast SO (1924). "Structure and locomotion in Amoeba proteus". Anat. Rec. 29 (2): 88. doi:10.1002/ar.1090290205.
  20. Plowe JQ (1931). "Membranes in the plant cell. I. Morphological membranes at protoplasmic surfaces". Protoplasma. 12: 196–220. doi:10.1007/BF01618716. S2CID 32248784.
  21. Wayne R (2009). Plant Cell Biology: From Astronomy to Zoology. Amsterdam: Elsevier/Academic Press. p. 17. ISBN 9780080921273.
  22. Noutsi P, Gratton E, Chaieb S (2016-06-30). "Assessment of Membrane Fluidity Fluctuations during Cellular Development Reveals Time and Cell Type Specificity". PLOS ONE. 11 (6): e0158313. Bibcode:2016PLoSO..1158313N. doi:10.1371/journal.pone.0158313. PMC 4928918. PMID 27362860.
  23. 23.0 23.1 23.2 Lodish H, Berk A, Zipursky LS, et al. (2000). "Biomembranes: Structural Organization and Basic Functions". Molecular Cell Biology (4th ed.). New York: Scientific American Books. ISBN 978-0-7167-3136-8.
  24. 24.0 24.1 24.2 Cooper GM (2000). "Structure of the Plasma Membrane". The Cell: A Molecular Approach (in English) (2nd ed.). Archived from the original on 2017-09-19.
  25. 25.0 25.1 Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J (2000). "Biomembranes: Structural Organization and Basic Functions". Molecular Cell Biology (in English) (4th ed.). Archived from the original on 2018-06-05.
  26. 26.0 26.1 Brandley BK, Schnaar RL (July 1986). "Cell-surface carbohydrates in cell recognition and response". Journal of Leukocyte Biology. 40 (1): 97–111. doi:10.1002/jlb.40.1.97. PMID 3011937. S2CID 45528175.
  27. Jesse Gray; Shana Groeschler; Tony Le; Zara Gonzalez (2002). "Membrane Structure" (SWF). Davidson College. Archived from the original on 2007-01-08. Retrieved 2007-01-11.
  28. Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J (2000). "Post-Translational Modifications and Quality Control in the Rough ER". Molecular Cell Biology (4th ed.).
  29. Cooper, Geoffrey M. (2000). "Transport of Small Molecules". The Cell: A Molecular Approach (in English) (2nd ed.). Archived from the original on 2018-06-05.
  30. Kramer EM, Myers DR (April 2013). "Osmosis is not driven by water dilution". Trends in Plant Science. 18 (4): 195–7. doi:10.1016/j.tplants.2012.12.001. PMID 23298880.
  31. 31.0 31.1 Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002). "Membrane Proteins". Molecular Biology of the Cell (4th ed.). Archived from the original on 2018-06-05.
  32. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002). "Transport into the Cell from the Plasma Membrane: Endocytosis". Molecular Biology of the Cell (4th ed.). Garland Science. Archived from the original on 2018-06-05.
  33. Salton MR, Kim K (1996). Baron S (ed.). Medical Microbiology (4th ed.). Galveston (TX): University of Texas Medical Branch at Galveston. ISBN 978-0963117212. PMID 21413343.
  34. Mishra NN, Liu GY, Yeaman MR, Nast CC, Proctor RA, McKinnell J, Bayer AS (February 2011). "Carotenoid-related alteration of cell membrane fluidity impacts Staphylococcus aureus susceptibility to host defense peptides". Antimicrobial Agents and Chemotherapy. 55 (2): 526–31. doi:10.1128/AAC.00680-10. PMC 3028772. PMID 21115796.
  35. Alexander C, Rietschel ET (2001). "Bacterial lipopolysaccharides and innate immunity". Journal of Endotoxin Research. 7 (3): 167–202. doi:10.1177/09680519010070030101. PMID 11581570. S2CID 86224757.
  36. YashRoy RC (1999). "A structural model for virulence organellae of gram negative organisms with reference to Salmonella pathogenicity in chicken ileum". Indian Journal of Poultry Science. 34 (2): 213–219. Archived from the original on 2014-11-07.
  37. 37.0 37.1 Saier MH (2013). "Microcompartments and protein machines in prokaryotes". Journal of Molecular Microbiology and Biotechnology. 23 (4–5): 243–69. doi:10.1159/000351625. PMC 3832201. PMID 23920489.
  38. Singer SJ, Nicolson GL (February 1972). "The fluid mosaic model of the structure of cell membranes". Science. 175 (4023): 720–31. Bibcode:1972Sci...175..720S. doi:10.1126/science.175.4023.720. PMID 4333397. S2CID 83851531.
  39. Zeidi, Mahdi; Kim, Chun IL (2018). "The effects of intra-membrane viscosity on lipid membrane morphology: complete analytical solution". Scientific Reports. 8 (1): 12845. Bibcode:2018NatSR...812845Z. doi:10.1038/s41598-018-31251-6. ISSN 2045-2322. PMC 6110749. PMID 30150612.
  40. Doherty GJ, McMahon HT (2008). "Mediation, modulation, and consequences of membrane-cytoskeleton interactions". Annual Review of Biophysics. 37: 65–95. doi:10.1146/annurev.biophys.37.032807.125912. PMID 18573073. S2CID 17352662.
  41. Whatley JM, John P, Whatley FR (April 1979). "From extracellular to intracellular: the establishment of mitochondria and chloroplasts". Proceedings of the Royal Society of London. Series B, Biological Sciences. 204 (1155): 165–87. Bibcode:1979RSPSB.204..165W. doi:10.1098/rspb.1979.0020. PMID 36620. S2CID 42398067.
  42. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002). "The Structure and Function of DNA". Molecular Biology of the Cell (in English) (4th ed.). Garland Science.
  43. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002). "The Transport of Molecules between the Nucleus and the Cytosol". Molecular Biology of the Cell (in English) (4th ed.). Garland Science.
  44. Cooper GM (2000). "The Endoplasmic Reticulum". The Cell: A Molecular Approach (in English) (2nd ed.). Archived from the original on 2017-10-03.
  45. Xu H, Su W, Cai M, Jiang J, Zeng X, Wang H (2013-04-16). "The asymmetrical structure of Golgi apparatus membranes revealed by in situ atomic force microscope". PLOS ONE. 8 (4): e61596. Bibcode:2013PLoSO...861596X. doi:10.1371/journal.pone.0061596. PMC 3628984. PMID 23613878.
  46. 46.0 46.1 Reed R, Wouston TW, Todd PM (July 1966). "Structure and function of the sarcolemma of skeletal muscle". Nature. 211 (5048): 534–6. Bibcode:1966Natur.211..534R. doi:10.1038/211534b0. PMID 5967498. S2CID 4183025.
  47. Campbell KP, Stull JT (April 2003). "Skeletal muscle basement membrane-sarcolemma-cytoskeleton interaction minireview series". The Journal of Biological Chemistry. 278 (15): 12599–600. doi:10.1074/jbc.r300005200. PMID 12556456.
  48. Mitra K, Ubarretxena-Belandia I, Taguchi T, Warren G, Engelman DM (March 2004). "Modulation of the bilayer thickness of exocytic pathway membranes by membrane proteins rather than cholesterol". Proceedings of the National Academy of Sciences of the United States of America. 101 (12): 4083–8. Bibcode:2004PNAS..101.4083M. doi:10.1073/pnas.0307332101. PMC 384699. PMID 15016920.
  49. Wessel GM, Wong JL (October 2009). "Cell surface changes in the egg at fertilization". Molecular Reproduction and Development. 76 (10): 942–53. doi:10.1002/mrd.21090. PMC 2842880. PMID 19658159.
  50. Raine CS (1999). "Characteristics of the Neuron". Basic Neurochemistry: Molecular, Cellular and Medical Aspects (in English) (6th ed.).
  51. Fitzpatrick MO, Maxwell WL, Graham DI (March 1998). "The role of the axolemma in the initiation of traumatically induced axonal injury". Journal of Neurology, Neurosurgery, and Psychiatry. 64 (3): 285–7. doi:10.1136/jnnp.64.3.285. PMC 2169978. PMID 9527135.


बाहरी कड़ियाँ