विभंग यांत्रिकी

From Vigyanwiki
क्रैक टिप पर लोड को तीन स्वतंत्र तनाव तीव्रता कारकों के संयोजन में कम किया जा सकता है।

भंग यांत्रिकी सामग्री में दरारों के प्रसार के अध्ययन से संबंधित यांत्रिकी का क्षेत्र है। यह एक दरार पर प्रेरक बल की गणना करने के लिए विश्लेषणात्मक ठोस यांत्रिकी के तरीकों का उपयोग करता है और फ्रैक्चर के लिए सामग्री के प्रतिरोध को चिह्नित करने के लिए प्रायोगिक ठोस यांत्रिकी के तरीकों का उपयोग करता है।

सैद्धांतिक रूप से, एक तेज दरार टिप के आगे का तनाव अनंत हो जाता है और इसका उपयोग दरार के आसपास की स्थिति का वर्णन करने के लिए नहीं किया जा सकता है। फ्रैक्चर यांत्रिकी का उपयोग दरार पर भार को चिह्नित करने के लिए किया जाता है, आमतौर पर दरार की नोक पर पूर्ण लोडिंग स्थिति का वर्णन करने के लिए एकल पैरामीटर का उपयोग किया जाता है। कई अलग-अलग पैरामीटर विकसित किए गए हैं। जब दरार की नोक पर प्लास्टिक क्षेत्र दरार की लंबाई के सापेक्ष छोटा होता है तो दरार की नोक पर तनाव की स्थिति सामग्री के भीतर लोच (भौतिकी) बलों का परिणाम होती है और इसे रैखिक लोचदार फ्रैक्चर यांत्रिकी (एलईएफएम) कहा जाता है और इसकी विशेषता हो सकती है तनाव तीव्रता कारक का उपयोग करना . हालांकि एक दरार पर भार मनमाना हो सकता है, 1957 में जॉर्ज रैनकिन इरविन|जी. इरविन ने पाया कि किसी भी स्थिति को तीन स्वतंत्र तनाव तीव्रता कारकों के संयोजन में कम किया जा सकता है:

  • मोड I - ओपनिंग मोड (दरार के तल के लिए सामान्य तन्यता तनाव),
  • मोड II - स्लाइडिंग मोड (दरार के तल के समानांतर अभिनय करने वाला कतरनी तनाव और दरार के सामने लंबवत), और
  • मोड III - टियरिंग मोड (एक कतरनी तनाव दरार के तल के समानांतर और दरार के सामने के समानांतर काम करता है)।

जब क्रैक टिप पर प्लास्टिक ज़ोन का आकार बहुत बड़ा होता है, तो इलास्टिक-प्लास्टिक फ्रैक्चर यांत्रिकी का उपयोग जे-इंटीग्रल या दरार टिप उद्घाटन विस्थापन जैसे मापदंडों के साथ किया जा सकता है।

लक्षण वर्णन पैरामीटर दरार टिप की स्थिति का वर्णन करता है जो तब समानता (मॉडल) सुनिश्चित करने के लिए प्रायोगिक स्थितियों से संबंधित हो सकता है। क्रैक ग्रोथ तब होती है जब पैरामीटर आमतौर पर कुछ महत्वपूर्ण मूल्यों से अधिक हो जाते हैं। जंग के कारण दरार धीरे-धीरे बढ़ सकती है जब तनाव की जंग दरार तनाव की तीव्रता सीमा से अधिक हो जाती है। इसी तरह, चक्रीय लोडिंग के अधीन होने पर छोटी खामियों के कारण दरार बढ़ सकती है। थकान (सामग्री) के रूप में जाना जाता है, यह पाया गया कि लंबी दरारों के लिए, वृद्धि की दर काफी हद तक तनाव की तीव्रता की सीमा से नियंत्रित होती है लगाए गए भार के कारण दरार का अनुभव हुआ। फास्ट फ्रैक्चर तब होगा जब तनाव की तीव्रता सामग्री के फ्रैक्चर की कठोरता से अधिक हो। दरार वृद्धि की भविष्यवाणी क्षति सहिष्णुता यांत्रिक डिजाइन अनुशासन के केंद्र में है।

प्रेरणा

सामग्री निर्माण, प्रसंस्करण, मशीनिंग और बनाने की प्रक्रिया एक तैयार यांत्रिक घटक में खामियां पेश कर सकती है। निर्माण प्रक्रिया से उत्पन्न होने पर, सभी धातु संरचनाओं में आंतरिक और सतह दोष पाए जाते हैं। सेवा शर्तों के तहत ऐसे सभी दोष अस्थिर नहीं होते हैं। फ्रैक्चर यांत्रिकी उन दोषों का विश्लेषण है जो उन लोगों की खोज करते हैं जो सुरक्षित हैं (अर्थात, बढ़ते नहीं हैं) और जो दरारें के रूप में फैलने के लिए उत्तरदायी हैं और इसलिए त्रुटिपूर्ण संरचना की संरचनात्मक विफलता का कारण बनते हैं। इन अंतर्निहित दोषों के बावजूद, क्षति सहिष्णुता विश्लेषण के माध्यम से संरचना के सुरक्षित संचालन को प्राप्त करना संभव है। महत्वपूर्ण अध्ययन के लिए एक विषय के रूप में फ्रैक्चर यांत्रिकी मुश्किल से एक सदी के आसपास रही है और इस तरह यह अपेक्षाकृत नया है।[1][2] अस्थिभंग यांत्रिकी को निम्नलिखित प्रश्नों के मात्रात्मक उत्तर देने का प्रयास करना चाहिए:[2]

  1. दरार के आकार के कार्य के रूप में घटक की ताकत क्या है?
  2. सर्विस लोडिंग के तहत किस दरार के आकार को सहन किया जा सकता है, यानी अधिकतम स्वीकार्य दरार का आकार क्या है?
  3. दरार को एक निश्चित प्रारंभिक आकार से बढ़ने में कितना समय लगता है, उदाहरण के लिए न्यूनतम पता लगाने योग्य दरार आकार, अधिकतम स्वीकार्य दरार आकार तक?
  4. संरचना का सेवा जीवन क्या है जब एक निश्चित पूर्व-मौजूदा दोष आकार (उदाहरण के लिए एक निर्माण दोष) मौजूद माना जाता है?
  5. दरार का पता लगाने के लिए उपलब्ध अवधि के दौरान दरारों के लिए संरचना का कितनी बार निरीक्षण किया जाना चाहिए?

रैखिक लोचदार फ्रैक्चर यांत्रिकी

ग्रिफ़िथ की कसौटी

लंबाई का एक ग्रिफ़िथ दरार (दोष)। बीच में है[3][4] एक अनंत बड़ी सामग्री

फ्रैक्चर यांत्रिकी प्रथम विश्व युद्ध के दौरान अंग्रेजी वैमानिकी इंजीनियर एलन अर्नोल्ड ग्रिफिथ|ए द्वारा विकसित किया गया था। ए ग्रिफ़िथ - इस प्रकार शब्द ग्रिफ़िथ क्रैक - भंगुर सामग्री की विफलता की व्याख्या करने के लिए।[5] ग्रिफ़िथ का काम दो विरोधाभासी तथ्यों से प्रेरित था:

  • बल्क कांच को फ्रैक्चर करने के लिए आवश्यक तनाव चारों ओर है 100 MPa (15,000 psi).
  • कांच के परमाणु बंधों को तोड़ने के लिए आवश्यक सैद्धांतिक तनाव लगभग है 10,000 MPa (1,500,000 psi).

इन परस्पर विरोधी टिप्पणियों को समेटने के लिए एक सिद्धांत की आवश्यकता थी। साथ ही, ग्लास फाइबर पर किए गए प्रयोग जो ग्रिफ़िथ ने स्वयं आयोजित किए थे, ने सुझाव दिया कि फाइबर व्यास घटने के साथ फ्रैक्चर तनाव बढ़ता है। इसलिए एक अक्षीय तन्य शक्ति, जिसका उपयोग ग्रिफ़िथ से पहले सामग्री की विफलता की भविष्यवाणी करने के लिए बड़े पैमाने पर किया गया था, एक नमूना-स्वतंत्र सामग्री संपत्ति नहीं हो सकती थी। ग्रिफिथ ने सुझाव दिया कि प्रयोगों में देखी गई कम फ्रैक्चर ताकत, साथ ही ताकत की आकार-निर्भरता, बल्क सामग्री में सूक्ष्म दोषों की उपस्थिति के कारण थी।

दोष परिकल्पना को सत्यापित करने के लिए, ग्रिफ़िथ ने अपने प्रायोगिक कांच के नमूनों में एक कृत्रिम दोष पेश किया। कृत्रिम दोष एक सतही दरार के रूप में था जो एक नमूने में अन्य दोषों की तुलना में बहुत बड़ा था। प्रयोगों से पता चला है कि दोष की लंबाई के वर्गमूल का गुणनफल () और फ्रैक्चर पर तनाव () लगभग स्थिर था, जो समीकरण द्वारा व्यक्त किया गया है:

रैखिक लोच सिद्धांत के संदर्भ में इस संबंध की व्याख्या समस्याग्रस्त है। रैखिक लोच सिद्धांत भविष्यवाणी करता है कि एक रैखिक लोचदार विरूपण सामग्री में एक तेज दोष की नोक पर तनाव (और इसलिए तनाव) अनंत है। उस समस्या से बचने के लिए, ग्रिफ़िथ ने अपने द्वारा देखे गए संबंध को समझाने के लिए एक thermodynamic दृष्टिकोण विकसित किया।

दरार की वृद्धि, दरार के दोनों ओर सतहों के विस्तार के लिए सतह ऊर्जा में वृद्धि की आवश्यकता होती है। ग्रिफ़िथ ने स्थिरांक के लिए एक व्यंजक खोजा एक लोचदार प्लेट में एक परिमित दरार की लोच समस्या को हल करके दरार की सतह ऊर्जा के संदर्भ में। संक्षेप में, दृष्टिकोण था:

  • एक अक्षीय तन्यता भार के तहत एक आदर्श नमूने में संग्रहीत संभावित ऊर्जा की गणना करें।
  • सीमा तय करें ताकि लागू भार काम न करे और फिर नमूने में दरार डालें। दरार तनाव को कम करती है और इसलिए दरार वाले चेहरों के पास लोचदार ऊर्जा को कम करती है। दूसरी ओर, दरार से नमूने की कुल सतह ऊर्जा बढ़ जाती है।
  • दरार की लंबाई के एक समारोह के रूप में थर्मोडायनामिक मुक्त ऊर्जा (सतह ऊर्जा - लोचदार ऊर्जा) में परिवर्तन की गणना करें। विफलता तब होती है जब मुक्त ऊर्जा एक महत्वपूर्ण दरार लंबाई पर एक चरम मान प्राप्त करती है, जिसके आगे दरार की लंबाई बढ़ने पर मुक्त ऊर्जा कम हो जाती है, अर्थात फ्रैक्चर के कारण। इस प्रक्रिया का उपयोग करते हुए ग्रिफ़िथ ने पाया कि

कहाँ पे सामग्री का यंग मापांक है और सामग्री की सतह ऊर्जा घनत्व है। यह मानते हुए तथा ग्लास के लिए प्रायोगिक परिणामों के साथ ग्रिफ़िथ के अनुमानित फ्रैक्चर तनाव का उत्कृष्ट समझौता करता है।

एक पतली आयताकार प्लेट के साधारण मामले के लिए भार के लंबवत दरार के साथ, ऊर्जा रिलीज दर, , बन जाता है:

कहाँ पे लागू तनाव है, दरार की लंबाई आधी है, और यंग का मापांक है, जिसे समतल तनाव के मामले में प्लेट की कठोरता कारक से विभाजित किया जाना चाहिए . तनाव ऊर्जा रिलीज दर को शारीरिक रूप से समझा जा सकता है: वह दर जिस पर दरार के विकास से ऊर्जा अवशोषित होती है।

हालाँकि, हमारे पास यह भी है:

यदि , यही वह कसौटी है जिसके लिए दरार फैलनी शुरू हो जाएगी।

दरार प्रसार से पहले अत्यधिक विकृत सामग्री के लिए, रैखिक लोचदार फ्रैक्चर यांत्रिकी सूत्रीकरण अब लागू नहीं होता है और दरार टिप के करीब तनाव और विस्थापन क्षेत्र का वर्णन करने के लिए एक अनुकूलित मॉडल आवश्यक है, जैसे कि नरम सामग्री के फ्रैक्चर पर।

इरविन का संशोधन

एक नमनीय सामग्री में दरार की नोक के आसपास का प्लास्टिक क्षेत्र

<ब्लॉककोट>

1950 के दशक की शुरुआत तक ग्रिफ़िथ के काम को इंजीनियरिंग समुदाय द्वारा बड़े पैमाने पर नज़रअंदाज़ किया गया था। इसके कारण प्रतीत होते हैं (ए) वास्तविक संरचनात्मक सामग्रियों में फ्रैक्चर का कारण बनने के लिए आवश्यक ऊर्जा का स्तर संबंधित सतह ऊर्जा की तुलना में अधिक परिमाण का क्रम है, और (बी) संरचनात्मक सामग्रियों में दरार के आसपास हमेशा कुछ अयोग्य विकृति होती है। सामने जो दरार की नोक पर अनंत तनाव के साथ रैखिक लोचदार माध्यम की धारणा को अत्यधिक अवास्तविक बना देगा। [6] </ब्लॉककोट>

ग्रिफिथ का सिद्धांत भंगुर सामग्री जैसे कांच के लिए प्रयोगात्मक डेटा के साथ उत्कृष्ट समझौता प्रदान करता है। तन्य सामग्री जैसे इस्पात के लिए, हालांकि संबंध अभी भी कायम है, ग्रिफ़िथ के सिद्धांत द्वारा अनुमानित सतह ऊर्जा (γ) आमतौर पर अवास्तविक रूप से उच्च है। जी आर इरविन के तहत काम कर रहे एक समूह[7] द्वितीय विश्व युद्ध के दौरान अमेरिकी नौसेना अनुसंधान प्रयोगशाला (एनआरएल) में महसूस किया गया कि नमनीय सामग्री के फ्रैक्चर में प्लास्टिसिटी को महत्वपूर्ण भूमिका निभानी चाहिए।

तन्य सामग्रियों में (और यहां तक ​​कि उन सामग्रियों में भी जो भंगुर दिखाई देती हैं[8]), दरार की नोक पर एक प्लास्टिक क्षेत्र विकसित होता है। जैसे-जैसे लागू किया गया संरचनात्मक भार बढ़ता है, प्लास्टिक क्षेत्र का आकार तब तक बढ़ता जाता है जब तक कि दरार नहीं बढ़ जाती है और दरार की नोक के पीछे लोचदार रूप से तनावग्रस्त सामग्री अनलोड हो जाती है। क्रैक टिप के पास प्लास्टिक लोडिंग और अनलोडिंग चक्र गर्मी के रूप में ऊर्जा के अपव्यय की ओर जाता है। इसलिए, भंगुर सामग्री के लिए ग्रिफ़िथ द्वारा तैयार किए गए ऊर्जा संतुलन संबंध में एक अपव्यय शब्द जोड़ा जाना चाहिए। भौतिक शब्दों में, भंगुर सामग्री की तुलना में नमनीय सामग्री में दरार वृद्धि के लिए अतिरिक्त ऊर्जा की आवश्यकता होती है।

इरविन की रणनीति ऊर्जा को दो भागों में बांटने की थी:

  • संग्रहीत लोचदार तनाव ऊर्जा जो एक दरार बढ़ने के रूप में जारी होती है। यह फ्रैक्चर के लिए थर्मोडायनामिक ड्राइविंग बल है।
  • विलुप्त ऊर्जा जिसमें प्लास्टिक अपव्यय और सतह ऊर्जा शामिल है (और कोई अन्य अपव्यय बल जो काम पर हो सकता है)। छितरी हुई ऊर्जा फ्रैक्चर को थर्मोडायनामिक प्रतिरोध प्रदान करती है। तब कुल ऊर्जा है

कहाँ पे सतह ऊर्जा है और दरार विकास के प्रति इकाई क्षेत्र में प्लास्टिक अपव्यय (और अन्य स्रोतों से अपव्यय) है।

ग्रिफ़िथ की ऊर्जा कसौटी के संशोधित संस्करण को तब इस रूप में लिखा जा सकता है

कांच जैसी भंगुर सामग्री के लिए, सतही ऊर्जा शब्द हावी है और . स्टील जैसी नमनीय सामग्री के लिए, प्लास्टिक अपव्यय शब्द हावी है और . कांच के संक्रमण तापमान के करीब पॉलिमर के लिए, हमारे पास मध्यवर्ती मान हैं 2 और 1000 के बीच .

तनाव तीव्रता कारक

इरविन और उनके सहयोगियों की एक और महत्वपूर्ण उपलब्धि एक रेखीय लोचदार ठोस में दरार के सामने के चारों ओर स्पर्शोन्मुख तनाव और विस्थापन क्षेत्रों के संदर्भ में फ्रैक्चर के लिए उपलब्ध ऊर्जा की मात्रा की गणना करने की एक विधि का पता लगाना था।[7] मोड I लोडिंग में तनाव क्षेत्र के लिए यह स्पर्शोन्मुख अभिव्यक्ति तनाव तीव्रता कारक से संबंधित है निम्नलिखित:[9]

कहाँ पे कॉची तनाव टेन्सर हैं, दरार नोक से दूरी है, दरार के तल के संबंध में कोण है, और वे कार्य हैं जो दरार ज्यामिति और लोडिंग स्थितियों पर निर्भर करते हैं। इरविन ने मात्रा कहा तनाव तीव्रता कारक मात्रा के बाद से आयाम रहित है, तनाव तीव्रता कारक की इकाइयों में व्यक्त किया जा सकता है .

तनाव की तीव्रता ने तनाव ऊर्जा रिलीज दर को बदल दिया और फ्रैक्चर क्रूरता नामक एक शब्द ने सतह की कमजोरी ऊर्जा को बदल दिया। ये दोनों शब्द केवल ग्रिफ़िथ द्वारा उपयोग की जाने वाली ऊर्जा शर्तों से संबंधित हैं:

तथा

कहाँ पे विधा है तनाव की तीव्रता, फ्रैक्चर बेरहमी, और प्वासों का अनुपात है।

फ्रैक्चर तब होता है जब . विमान तनाव विरूपण के विशेष मामले के लिए, हो जाता है और एक भौतिक संपत्ति माना जाता है। सबस्क्रिप्ट तनाव तीव्रता कारक के कारण उत्पन्न होता है # विभिन्न तरीकों के लिए तनाव तीव्रता कारक। यह तथाकथित मोड को संदर्भित करता है मोड के विपरीत लोड हो रहा है या :

के लिए अभिव्यक्ति तनाव तीव्रता कारक पर लेख में चर्चा के अनुसार, केंद्र-दरार वाली अनंत प्लेट के अलावा ज्यामिति के लिए अलग होगा। नतीजतन, एक आयाम रहित संख्या का परिचय देना आवश्यक है, , ज्यामिति को चिह्नित करने के लिए। यह सुधार कारक, जिसे अक्सर ज्यामितीय आकार कारक के रूप में संदर्भित किया जाता है, अनुभवजन्य रूप से निर्धारित श्रृंखला द्वारा दिया जाता है और दरार या पायदान के प्रकार और ज्यामिति के लिए होता है। इस प्रकार हमारे पास है:

कहाँ पे परिमित चौड़ाई की शीट के लिए दी गई शीट की दरार की लंबाई और चौड़ाई का एक कार्य है लंबाई की एक मोटी-मोटी दरार युक्त , द्वारा:


तनाव ऊर्जा रिलीज

इरविन पहले व्यक्ति थे जिन्होंने देखा कि यदि दरार के चारों ओर प्लास्टिक क्षेत्र का आकार दरार के आकार की तुलना में छोटा है, तो दरार को विकसित करने के लिए आवश्यक ऊर्जा तनाव की स्थिति (प्लास्टिक क्षेत्र) पर गंभीर रूप से निर्भर नहीं होगी। दरार टिप।[6] दूसरे शब्दों में, फ्रैक्चर के लिए उपलब्ध ऊर्जा की मात्रा की गणना करने के लिए विशुद्ध रूप से लोचदार समाधान का उपयोग किया जा सकता है।

दरार वृद्धि या तनाव ऊर्जा रिलीज दर के लिए ऊर्जा रिलीज दर की गणना दरार वृद्धि के प्रति यूनिट क्षेत्र में लोचदार तनाव ऊर्जा में परिवर्तन के रूप में की जा सकती है, अर्थात।

जहाँ U सिस्टम की लोचदार ऊर्जा है और दरार की लंबाई है। उपरोक्त व्यंजकों का मूल्यांकन करते समय या तो भार P या विस्थापन u स्थिर हैं।

इरविन ने दिखाया कि फ्रैक्चर के लिए # क्रैक सेपरेशन मोड्स (ओपनिंग मोड) स्ट्रेन एनर्जी रिलीज रेट और स्ट्रेस इंटेंसिटी फैक्टर इससे संबंधित हैं:

जहाँ E यंग का मापांक है, ν प्वासों का अनुपात है, और KI मोड I में तनाव तीव्रता कारक है। इरविन ने यह भी दिखाया कि रैखिक लोचदार शरीर में एक प्लानर दरार की तनाव ऊर्जा रिलीज दर को मोड I, फ्रैक्चर # क्रैक पृथक्करण मोड (स्लाइडिंग मोड), और फ्रैक्चर # के संदर्भ में व्यक्त किया जा सकता है। सबसे सामान्य लोडिंग स्थितियों के लिए क्रैक सेपरेशन मोड (टियरिंग मोड) स्ट्रेस इंटेंसिटी फैक्टर।

इसके बाद, इरविन ने अतिरिक्त धारणा को अपनाया कि भंगुर फ्रैक्चर के दौरान ऊर्जा अपव्यय क्षेत्र का आकार और आकार लगभग स्थिर रहता है। यह धारणा बताती है कि एक यूनिट फ्रैक्चर सतह बनाने के लिए आवश्यक ऊर्जा एक स्थिर है जो केवल सामग्री पर निर्भर करती है। इस नई भौतिक संपत्ति को फ्रैक्चर टफनेस नाम दिया गया और जी नामित किया गयाIc. आज, यह महत्वपूर्ण तनाव तीव्रता कारक K हैIc, समतल तनाव की स्थिति में पाया जाता है, जिसे रैखिक लोचदार फ्रैक्चर यांत्रिकी में परिभाषित संपत्ति के रूप में स्वीकार किया जाता है।

क्रैक टिप प्लास्टिक जोन

सिद्धांत रूप में दरार की नोक पर तनाव जहां त्रिज्या लगभग शून्य है, अनंत की ओर प्रवृत्त होगा। इसे एक तनावपूर्ण विलक्षणता माना जाएगा, जो वास्तविक दुनिया के अनुप्रयोगों में संभव नहीं है। इस कारण से, फ्रैक्चर यांत्रिकी के क्षेत्र में संख्यात्मक अध्ययन में, दरार-टिप विलक्षणता की जगह तनाव एकाग्रता के एक ज्यामिति निर्भर क्षेत्र के साथ, गोल नोकदार पायदान (इंजीनियरिंग) के रूप में दरारों का प्रतिनिधित्व करना अक्सर उचित होता है।[9]वास्तविकता में, वास्तविक सामग्री के भीतर एक दरार की नोक पर तनाव एकाग्रता एक परिमित मूल्य के लिए पाया गया है, लेकिन नमूने पर लागू नाममात्र तनाव से बड़ा है।

फिर भी, किसी प्रकार की तंत्र या सामग्री की संपत्ति होनी चाहिए जो इस तरह की दरार को अनायास फैलने से रोकती है। धारणा है, दरार की नोक पर प्लास्टिक की विकृति दरार की नोक को प्रभावी ढंग से कुंद कर देती है। यह विरूपण मुख्य रूप से लागू दिशा में लागू तनाव पर निर्भर करता है (ज्यादातर मामलों में, यह नियमित कार्टेशियन समन्वय प्रणाली की वाई-दिशा है), दरार की लंबाई और नमूने की ज्यामिति।[10] यह अनुमान लगाने के लिए कि यह प्लास्टिक विरूपण क्षेत्र दरार की नोक से कैसे बढ़ा, इरविन ने सामग्री की उपज शक्ति को दरार (x दिशा) के साथ y-दिशा के दूर-क्षेत्र के तनावों के बराबर किया और प्रभावी त्रिज्या के लिए हल किया। इस संबंध से, और यह मानते हुए कि दरार महत्वपूर्ण तनाव तीव्रता कारक से भरी हुई है, इरविन ने दरार की नोक पर प्लास्टिक विरूपण के क्षेत्र के आदर्श त्रिज्या के लिए निम्नलिखित अभिव्यक्ति विकसित की:

आदर्श सामग्रियों के मॉडल ने दिखाया है कि प्लास्टिसिटी का यह क्षेत्र दरार की नोक पर केंद्रित है।[11] यह समीकरण क्रैक टिप से परे प्लास्टिक ज़ोन विरूपण का अनुमानित आदर्श त्रिज्या देता है, जो कई संरचनात्मक वैज्ञानिकों के लिए उपयोगी है क्योंकि यह एक अच्छा अनुमान देता है कि तनाव के अधीन होने पर सामग्री कैसे व्यवहार करती है। उपरोक्त समीकरण में, तनाव तीव्रता कारक के पैरामीटर और भौतिक क्रूरता के संकेतक, , और उपज तनाव, , महत्वपूर्ण हैं क्योंकि वे सामग्री और उसके गुणों के साथ-साथ प्लास्टिक क्षेत्र के आकार के बारे में बहुत सी बातें बताते हैं। उदाहरण के लिए, यदि उच्च है, तो यह अनुमान लगाया जा सकता है कि सामग्री कठिन है, और यदि कम है, कोई जानता है कि सामग्री अधिक नमनीय है। प्लास्टिक ज़ोन की त्रिज्या के लिए इन दो मापदंडों का अनुपात महत्वपूर्ण है। उदाहरण के लिए, अगर छोटा है, तो का वर्ग अनुपात प्रति बड़ा है, जिसके परिणामस्वरूप एक बड़ा प्लास्टिक त्रिज्या है। इसका तात्पर्य यह है कि सामग्री प्लास्टिक रूप से विकृत हो सकती है, और इसलिए, कठिन है।[10]दरार की नोक से परे प्लास्टिक क्षेत्र के आकार का यह अनुमान तब अधिक सटीक विश्लेषण के लिए इस्तेमाल किया जा सकता है कि दरार की उपस्थिति में कोई सामग्री कैसे व्यवहार करेगी।

एकल घटना लोडिंग के लिए और चक्रीय लोडिंग के लिए ऊपर वर्णित एक ही प्रक्रिया भी लागू होती है। यदि एक नमूने में एक दरार मौजूद है जो चक्रीय लोडिंग से गुजरती है, तो दरार की नोक पर नमूना प्लास्टिक रूप से ख़राब हो जाएगा और दरार के विकास में देरी होगी। एक अधिभार या भ्रमण की स्थिति में, यह मॉडल पहले से अनुभव की गई सामग्री से तनाव में अचानक वृद्धि को समायोजित करने के लिए थोड़ा बदल जाता है। पर्याप्त रूप से उच्च भार (अधिभार) पर, दरार उस प्लास्टिक क्षेत्र से बाहर निकलती है जिसमें यह निहित था और मूल प्लास्टिक विरूपण की जेब को पीछे छोड़ देता है। अब, यह मानते हुए कि नमूना को पूरी तरह से फ्रैक्चर करने के लिए अधिभार तनाव पर्याप्त रूप से अधिक नहीं है, दरार नई दरार टिप के चारों ओर आगे प्लास्टिक विरूपण से गुजरेगी, जिससे अवशिष्ट प्लास्टिक तनाव का क्षेत्र बढ़ जाएगा। यह प्रक्रिया सामग्री के जीवन को और अधिक कठिन और लम्बा कर देती है क्योंकि नया प्लास्टिक क्षेत्र सामान्य तनाव की स्थिति के मुकाबले बड़ा होता है। यह सामग्री को लोडिंग के अधिक चक्रों से गुजरने की अनुमति देता है। इस विचार को एल्युमीनियम के ग्राफ़ द्वारा और अधिक स्पष्ट किया जा सकता है, जिसमें ओवरलोडिंग घटनाओं से गुजरने वाले केंद्र में दरार है।[12]


सीमाएं

एस.एस. शेंकेटैडी बंदरगाह में भंगुर अस्थिभंग के कारण अलग हो गया, 1943।

लेकिन एनआरएल शोधकर्ताओं के लिए एक समस्या उत्पन्न हुई क्योंकि नौसैनिक सामग्री, जैसे, जहाज-प्लेट स्टील, पूरी तरह से लोचदार नहीं हैं, लेकिन एक दरार की नोक पर महत्वपूर्ण प्लास्टिक विरूपण से गुजरती हैं। इरविन के रैखिक लोचदार फ्रैक्चर यांत्रिकी में एक बुनियादी धारणा छोटे पैमाने पर उपज है, यह स्थिति है कि दरार की लंबाई की तुलना में प्लास्टिक क्षेत्र का आकार छोटा है। हालांकि, संरचनात्मक स्टील्स में कुछ प्रकार की विफलताओं के लिए यह धारणा काफी प्रतिबंधात्मक है, हालांकि इस तरह के स्टील्स भंगुर फ्रैक्चर के लिए प्रवण हो सकते हैं, जिसके कारण कई भयावह विफलताएं हुई हैं।

रैखिक-लोचदार फ्रैक्चर यांत्रिकी संरचनात्मक स्टील्स के लिए सीमित व्यावहारिक उपयोग है और फ्रैक्चर क्रूरता परीक्षण महंगा हो सकता है।

लोचदार-प्लास्टिक फ्रैक्चर यांत्रिकी

कार्यक्षेत्र स्टेबलाइजर, जो अमेरिकन एयरलाइंस की उड़ान 587 से अलग हो गया, जिससे एक घातक दुर्घटना हुई

अधिकांश इंजीनियरिंग सामग्री ऑपरेटिंग परिस्थितियों में कुछ गैर-रेखीय लोचदार और अयोग्य व्यवहार दिखाती है जिसमें बड़े भार शामिल होते हैं।[citation needed] ऐसी सामग्रियों में रैखिक लोचदार फ्रैक्चर यांत्रिकी की धारणा नहीं हो सकती है, अर्थात

  • क्रैक टिप पर प्लास्टिक ज़ोन में दरार के आकार के परिमाण के समान क्रम का आकार हो सकता है
  • प्लास्टिक ज़ोन का आकार और आकार बदल सकता है क्योंकि लागू भार बढ़ जाता है और दरार की लंबाई भी बढ़ जाती है।

इसलिए, लोचदार-प्लास्टिक सामग्री के लिए दरार वृद्धि का एक अधिक सामान्य सिद्धांत आवश्यक है जो इसके लिए जिम्मेदार हो सकता है:

  • प्रारंभिक दरार वृद्धि के लिए स्थानीय परिस्थितियां जिसमें दरार की नोक पर न्यूक्लिएशन, विकास और विओड्स (डीकोहेशन) का सहसंयोजन शामिल है।
  • आगे की दरार वृद्धि और अस्थिर फ्रैक्चर के लिए एक वैश्विक ऊर्जा संतुलन मानदंड।

सीटीओडी

ऐतिहासिक रूप से, इलास्टो-प्लास्टिक क्षेत्र में फ्रैक्चर की कठोरता के निर्धारण के लिए पहला पैरामीटर क्रैक टिप ओपनिंग डिसप्लेसमेंट (CTOD) या क्रैक के शीर्ष पर खुलने का संकेत था। यह पैरामीटर वेल्स द्वारा संरचनात्मक स्टील्स के अध्ययन के दौरान निर्धारित किया गया था, जो उच्च क्रूरता के कारण रैखिक लोचदार फ्रैक्चर यांत्रिकी मॉडल के साथ विशेषता नहीं हो सका। उन्होंने नोट किया कि फ्रैक्चर होने से पहले, दरार की दीवारें निकल रही थीं[clarification needed] और यह कि दरार की नोक, फ्रैक्चर के बाद, प्लास्टिक विरूपण के कारण तीव्र से गोलाकार हो गई। इसके अलावा, बेहतर बेरहमी के साथ स्टील्स में दरार टिप की गोलाई अधिक स्पष्ट थी।

CTOD की कई वैकल्पिक परिभाषाएँ हैं। दो सबसे आम परिभाषाओं में, CTOD मूल क्रैक टिप और 90 डिग्री इंटरसेप्ट पर विस्थापन है। बाद की परिभाषा चावल द्वारा सुझाई गई थी और आमतौर पर इस तरह के परिमित तत्व मॉडल में CTOD का अनुमान लगाने के लिए उपयोग किया जाता है। ध्यान दें कि ये दो परिभाषाएँ समतुल्य हैं यदि दरार टिप अर्धवृत्त में कुंद हो।

सीटीओडी के अधिकांश प्रयोगशाला माप तीन-बिंदु झुकने में लोड किए गए किनारे-दरार वाले नमूनों पर किए गए हैं। प्रारंभिक प्रयोगों में चप्पू के आकार के चपटे गेज का उपयोग किया गया था जिसे दरार में डाला गया था; जैसे ही दरार खुली, पैडल गेज घुमाया गया, और एक इलेक्ट्रॉनिक सिग्नल एक एक्स-वाई प्लॉटर को भेजा गया। हालाँकि, यह तरीका गलत था, क्योंकि पैडल गेज के साथ दरार की नोक तक पहुँचना मुश्किल था। आज, दरार मुंह पर विस्थापन V को मापा जाता है, और CTOD का अनुमान यह मानकर लगाया जाता है कि नमूना आधा कठोर है और हिंज बिंदु (दरार टिप) के बारे में घूमता है।

आर-वक्र

लोचदार-प्लास्टिक फ्रैक्चर यांत्रिकी की दिशा में एक प्रारंभिक प्रयास जी.आर. इरविन | इरविन का दरार विस्तार प्रतिरोध वक्र, दरार विकास प्रतिरोध वक्र या आर-वक्र था। यह वक्र इस तथ्य को स्वीकार करता है कि लोचदार-प्लास्टिक सामग्री में दरार के बढ़ते आकार के साथ फ्रैक्चर का प्रतिरोध बढ़ता है। आर-वक्र दरार के आकार के एक कार्य के रूप में कुल ऊर्जा अपव्यय दर का एक प्लॉट है और इसका उपयोग धीमी स्थिर दरार वृद्धि और अस्थिर फ्रैक्चर की प्रक्रियाओं की जांच करने के लिए किया जा सकता है। हालांकि, 1970 के दशक की शुरुआत तक अनुप्रयोगों में आर-वक्र का व्यापक रूप से उपयोग नहीं किया गया था। मुख्य कारण यह प्रतीत होता है कि आर-वक्र नमूने की ज्यामिति पर निर्भर करता है और क्रैक ड्राइविंग बल की गणना करना मुश्किल हो सकता है।[6]


जे-इंटीग्रल

1960 के दशक के मध्य में जेम्स आर. राइस (तब ब्राउन विश्वविद्यालय में) और जी.पी. चेरेपोनोव ने स्वतंत्र रूप से उस मामले का वर्णन करने के लिए एक नया बेरहमी उपाय विकसित किया था जहां पर्याप्त दरार-टिप विरूपण है कि हिस्सा अब रैखिक-लोचदार सन्निकटन का पालन नहीं करता है। चावल का विश्लेषण, जो दरार टिप के आगे गैर-रैखिक लोचदार (या मोनोटोनिक विरूपण सिद्धांत प्लास्टिक) विरूपण को मानता है, को जे-इंटीग्रल नामित किया गया है।[13] यह विश्लेषण उन स्थितियों तक सीमित है जहां दरार की नोक पर प्लास्टिक विरूपण लोड किए गए हिस्से के सबसे दूर के किनारे तक नहीं फैलता है। यह यह भी मांग करता है कि सामग्री का अनुमानित गैर-रैखिक लोचदार व्यवहार वास्तविक सामग्री के लोड प्रतिक्रिया के आकार और परिमाण में एक उचित अनुमान है। लोचदार-प्लास्टिक विफलता पैरामीटर को जे नामित किया गया हैIc और पारंपरिक रूप से K में परिवर्तित हो जाता हैIc नीचे दिए गए समीकरण का उपयोग करके। यह भी ध्यान दें कि रैखिक-लोचदार व्यवहार के लिए जे इंटीग्रल दृष्टिकोण ग्रिफिथ सिद्धांत को कम करता है।

जे-इंटीग्रल की गणितीय परिभाषा इस प्रकार है:

कहाँ पे

दरार के शीर्ष के चारों ओर एक मनमाना पथ दक्षिणावर्त है,
तनाव ऊर्जा का घनत्व है,
कर्षण के वैक्टर के घटक हैं,
विस्थापन वैक्टर के घटक हैं,
पथ के साथ एक वृद्धिशील लंबाई है , तथा
तथा तनाव और तनाव टेंसर हैं।

चूँकि इंजीनियर K का उपयोग करने के आदी हो गए थेIc फ्रैक्चर बेरहमी को चिह्नित करने के लिए, जे को कम करने के लिए एक संबंध का उपयोग किया गया हैIc इसे:

कहाँ पे विमान तनाव के लिए और विमान तनाव के लिए।

जोड़नेवाला क्षेत्र मॉडल

जब एक दरार टिप के आसपास एक महत्वपूर्ण क्षेत्र प्लास्टिक विरूपण से गुजरा है, तो दरार के आगे विस्तार की संभावना और दरार के विकास और शाखाकरण की दिशा निर्धारित करने के लिए अन्य तरीकों का उपयोग किया जा सकता है। एक सरल तकनीक जिसे आसानी से संख्यात्मक गणनाओं में शामिल किया जाता है, वह कोसिव ज़ोन मॉडल विधि है जो G. I. Barenblatt द्वारा स्वतंत्र रूप से प्रस्तावित अवधारणाओं पर आधारित है।[14] और डगडेल[15] 1960 के दशक की शुरुआत में। डगडेल-बैरेनब्लैट मॉडल और ग्रिफ़िथ के सिद्धांत के बीच संबंध पर पहली बार 1967 में जॉन आर. विलिस द्वारा चर्चा की गई थी।[16] 1968 में जेम्स आर राइस द्वारा भंगुर अस्थिभंग के संदर्भ में दो दृष्टिकोणों की समानता को दिखाया गया था।[13]


संक्रमण दोष का आकार

दरार के आकार के एक समारोह के रूप में विफलता तनाव

किसी सामग्री की उपज शक्ति होने दें और मोड I में एक फ्रैक्चर बेरहमी . फ्रैक्चर यांत्रिकी के आधार पर, सामग्री तनाव में विफल हो जाएगी . प्लास्टिसिटी के आधार पर, सामग्री कब निकलेगी . ये वक्र जब प्रतिच्छेद करते हैं . का यह मान संक्रमण दोष आकार कहा जाता है ।, और संरचना के भौतिक गुणों पर निर्भर करता है। जब , विफलता प्लास्टिक उपज द्वारा नियंत्रित होती है, और कब विफलता फ्रैक्चर यांत्रिकी द्वारा नियंत्रित होती है। का मूल्य इंजीनियरिंग मिश्र धातुओं के लिए 100 मिमी और सिरेमिक के लिए 0.001 मिमी है।[citation needed] यदि हम मानते हैं कि निर्माण प्रक्रियाएं माइक्रोमीटर के क्रम में दोषों को जन्म दे सकती हैं, तो यह देखा जा सकता है कि सिरेमिक के फ्रैक्चर द्वारा विफल होने की अधिक संभावना है, जबकि इंजीनियरिंग मिश्र धातु प्लास्टिक विरूपण से विफल हो जाएगी।

यह भी देखें


संदर्भ

  1. T.L. Anderson (1995). अस्थिभंग यांत्रिकी: बुनियादी बातों और अनुप्रयोगों. CRC Press. ISBN 978-0849316562.
  2. 2.0 2.1 H.L. Ewalds; R.J.H. Wanhill (1984). फ्रैक्चर यांत्रिकी. Edward Arnold and Delftse Uitgevers Maatschappij. ISBN 978-0-7131-3515-2.
  3. McMeeking, Robert M. (May 2004). "एक पीजोइलेक्ट्रिक सामग्री में ग्रिफ़िथ दरार के लिए ऊर्जा रिलीज दर". Engineering Fracture Mechanics (in English). 71 (7–8): 1149–1163. doi:10.1016/S0013-7944(03)00135-8.
  4. Lenci, Stefano (2001). "कमजोर इंटरफ़ेस पर दरार का विश्लेषण". International Journal of Fracture. 108 (3): 275–290. doi:10.1023/A:1011041409243. S2CID 115306909.
  5. Griffith, A. A. (1921), "The phenomena of rupture and flow in solids", Philosophical Transactions of the Royal Society of London, A, 221 (582–593): 163–198, Bibcode:1921RSPTA.221..163G, doi:10.1098/rsta.1921.0006.
  6. 6.0 6.1 6.2 E. Erdogan (2000) Fracture Mechanics, International Journal of Solids and Structures, 37, pp. 171–183.
  7. 7.0 7.1 Irwin G (1957), Analysis of stresses and strains near the end of a crack traversing a plate, Journal of Applied Mechanics 24, 361–364.
  8. Orowan, E., 1949. Fracture and strength of solids. Reports on Progress in Physics XII, 185–232.
  9. 9.0 9.1 Liu, M.; et al. (2015). "राउंड-टिप नॉच पर तनाव के लिए एक बेहतर अर्ध-विश्लेषणात्मक समाधान" (PDF). Engineering Fracture Mechanics. 149: 134–143. doi:10.1016/j.engfracmech.2015.10.004. S2CID 51902898.
  10. 10.0 10.1 Weisshaar, Terry (July 28, 2011). एयरोस्पेस संरचनाएं- मौलिक समस्याओं का एक परिचय. West Lafayette, IN: Purdue University.
  11. "क्रैक टिप प्लास्टिक जोन आकार". Handbook for Damage Tolerant Design. LexTech, Inc. Retrieved 20 November 2016.
  12. "बाधा". Handbook for Damage Tolerant Design. LexTech, Inc. Retrieved 20 November 2016.
  13. 13.0 13.1 Rice, J. R. (1968), "A path independent integral and the approximate analysis of strain concentration by notches and cracks" (PDF), Journal of Applied Mechanics, 35 (2): 379–386, Bibcode:1968JAM....35..379R, CiteSeerX 10.1.1.1023.7604, doi:10.1115/1.3601206.
  14. Barenblatt, G. I. (1962), "The mathematical theory of equilibrium cracks in brittle fracture" (PDF), Advances in Applied Mechanics, 7: 55–129, doi:10.1016/s0065-2156(08)70121-2, ISBN 9780120020072
  15. Dugdale, D. S. (1960), "Yielding of steel sheets containing slits", Journal of the Mechanics and Physics of Solids, 8 (2): 100–104, Bibcode:1960JMPSo...8..100D, doi:10.1016/0022-5096(60)90013-2, S2CID 136484892
  16. Willis, J. R. (1967), "A comparison of the fracture criteria of Griffith and Barenblatt", Journal of the Mechanics and Physics of Solids, 15 (3): 151–162, Bibcode:1967JMPSo..15..151W, doi:10.1016/0022-5096(67)90029-4.


अग्रिम पठन


इस पेज में लापता आंतरिक लिंक की सूची

  • तनाव जंग खुर
  • अपरूपण तनाव
  • अस्थिभंग बेरहमी
  • क्षति सहनशीलता
  • सतही ऊर्जा
  • लोचदार विकृति
  • प्लेन स्ट्रेन
  • शीतल सामग्री का फ्रैक्चर
  • नमनीय
  • नाज़ुक
  • कांच का अवस्थांतर
  • नाजुक भंग
  • प्लास्टिक विकृत करना

बाहरी संबंध