मूविंग फ्रेम

From Vigyanwiki
Revision as of 09:49, 10 December 2022 by Admin (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

गणित में, मूविंग फ्रेम समरूप समष्टि एम्बेडेड बहुखण्डित बहुकोण की बाह्य अंतर ज्यामिति का अध्ययन करने के लिए प्रयुक्त सदिश समष्टि के आक्रम आधार के विचार का एक नम्य सामान्यीकरण है।

परिचय

फ़्रेनेट-सेरेट फ्रेम घटता के अंतर ज्यामिति में एक महत्वपूर्ण भूमिका निभाता है, अंततः यूक्लिडियन समष्टि में समरूपता(ज्यामिति) तक चिकनी घटता के अधिक या कम पूर्ण वर्गीकरण के लिए अग्रणी होता है।[1] फ़्रेनेट-सेरेट फ़ार्मुलों से पता चलता है कि वक्र पर परिभाषित कार्यों की एक जोड़ी है, एक वक्र और वक्रता का घुमाव, जो यौगिक फ्रेम द्वारा प्राप्त किया जाता है, और जो पूरी तरह से वर्णन करता है कि फ्रेम वक्र के साथ समय में कैसे विकसित होता है। सामान्य विधि की एक प्रमुख विशेषता यह है कि एक पसंदीदा मूविंग फ्रेम, बशर्ते इसे पाया जा सके, वक्र का पूर्ण गतिज विवरण देता है।

सामान्य शब्दों में, संदर्भ का एक फ्रेम निर्देशांक प्रदान करके आसपास की समष्टि को मापने के लिए एक अवलोकन द्वारा उपयोग की जाने वाली छड़ को मापने की प्रणाली है। मूविंग फ्रेम तब संदर्भ का एक फ्रेम होता है जब पर्यवेक्षक के साथ प्रक्षेपवक्र(एक वक्र) के साथ चलता है। मूविंग फ्रेम की विधि, इस सरल उदाहरण में, पर्यवेक्षक के गतिकी गुणों से बाहर एक "वरीय" मूविंग फ्रेम का निर्माण करना चाहता है। एक ज्यामितीय व्यवस्थापन में, इस समस्या को 19वीं शताब्दी के मध्य में जीन फ्रेडेरिक फ्रेनेट और जोसेफ अल्फ्रेड सेरेट द्वारा हल किया गया था।[2] फ्रेनेट-सेरेट फ्रेम वक्र पर परिभाषित एक मूविंग फ्रेम है जिसे पूरी तरह से वक्र के वेग और त्वरण से निर्मित किया जा सकता है।[3]

डार्बौक्स ट्राइहेड्रॉन, एक बिंदु P से मिलकर, और ओर्थोगोनालिटी इकाई सदिश का एक तिहाई e1, e2, और e3 जो इस अर्थ में सतह के अनुकूल है कि P सतह पर स्थित है, और e3 पृष्ठ के लंबवत है।

19वीं शताब्दी के अंत में, गैस्टन डार्बौक्स ने एक वक्र के बजाय यूक्लिडियन समष्टि में एक सतह(गणित) पर एक पसंदीदा मूविंग फ्रेम के निर्माण की समस्या का अध्ययन किया, डार्बौक्स फ्रेम(या ट्राइएड्रे मोबाइल जिसे तब कहा जाता था)। इस तरह के एक फ्रेम का निर्माण करना सामान्य रूप से असंभव हो गया, और यह कि विभेदक प्रणालियों के लिए एकीकरण की शर्तें थीं जिन्हें पहले संतुष्ट करने की आवश्यकता थी।[2]

बाद में, अधिक सामान्य सजातीय समष्टिों(जैसे प्रक्षेपी समष्टि) के सबमनीफोल्ड के अध्ययन में एली कार्टन और अन्य द्वारा बड़े पैमाने पर मूविंग फ्रेम विकसित किए गए थे। इस समायोजन में, फ्रेम एक सदिश समष्टि के आधार के ज्यामितीय विचार को अन्य प्रकार के ज्यामितीय रिक्त समष्टि(क्लेन ज्यामिति) पर ले जाता है। फ्रेम के कुछ उदाहरण हैं:[1]

इनमें से प्रत्येक उदाहरण में, सभी फ़्रेमों का संग्रह एक निश्चित अर्थ में सजातीय समष्टि है। रैखिक फ्रेम की स्थिति में, उदाहरण के लिए, किसी भी दो फ्रेम सामान्य रैखिक समूह के एक तत्व से संबंधित होते हैं। प्रक्षेपी फ्रेम प्रक्षेपी रैखिक समूह से संबंधित हैं। फ्रेम के वर्ग की यह एकरूपता, या समरूपता रैखिक, एफ़िन, यूक्लिडियन, या प्रक्षेपी भूदृश्य की ज्यामितीय विशेषताओं को पकड़ती है। इन परिस्थितियों में एक मूविंग हुई फ्रेम बस यही है: एक फ्रेम जो बिंदु से बिंदु तक भिन्न होती है।

औपचारिक रूप से, एक सजातीय समष्टि G/H पर फ्रेम में टॉटोलॉजिकल बंडल G → G/H में एक बिंदु होता है। 'मूविंग फ्रेम' इस बंडल का एक भाग है। यह इस अर्थ में चल रहा है कि जैसे-जैसे आधार का बिंदु बदलता है, फाइबर में फ्रेम समरूपता समूह G के एक तत्व द्वारा बदल जाता है। M आंतरिक रूप से टॉटोलॉजिकल बंडल[5] एक मूविंग फ्रेम को प्रमुख बंडल P पर कई गुना परिभाषित किया जा सकता है। इस स्थिति में, G-इक्विवेरिएंट मैपिंग φ : P → G द्वारा मूविंग फ्रेम दिया जाता है, इस प्रकार लाइ ग्रुप G के तत्वों द्वारा कई गुना तैयार किया जाता है।

फ़्रेम की धारणा को एक और सामान्य स्थिति में विस्तारित किया जा सकता है: सोल्डर एक फाइबर बंडल को कई गुना चिकना बना सकता है, इस तरह से फाइबर व्यवहार करते हैं जैसे कि वे स्पर्शरेखा थे। जब फाइबर बंडल एक समरूप समष्टि होता है, तो यह ऊपर वर्णित फ्रेम-फ़ील्ड में कम हो जाता है। जब समरूप समष्टि विशेष ऑर्थोगोनल समूहों का भागफल होता है, तो यह एक वीरबीन की मानक अवधारणा को कम कर देता है।

यद्यपि बाहरी और आंतरिक मूविंग फ़्रेमों के बीच एक पर्याप्त औपचारिक अंतर है, वे दोनों इस मायने में समान हैं कि एक गतिशील फ़्रेम हमेशा G में मैपिंग द्वारा दिया जाता है। समतुल्यता विधि, कई गुना पर एक प्राकृतिक मूविंग फ्रेम को खोजने के लिए है और फिर इसके डार्बौक्स व्युत्पन्न को लेना है, दूसरे शब्दों में पुलबैक(विभेदक ज्यामिति) G से M(या P) का मौरर-कार्टन फॉर्म है, और इस तरह का एक पूरा समुच्चय प्राप्त करता है कई गुना संरचनात्मक आक्रमणकारियों के लिए।[1]

मूविंग फ्रेम की विधि

Cartan (1937) ने मूविंग फ्रेम की सामान्य परिभाषा और मूविंग फ्रेम की विधि तैयार की, जैसा कि Weyl (1938) द्वारा विस्तृत किया गया है। सिद्धांत के तत्व हैं

  • एक लाइ समूह G.
  • एक क्लेन समष्टि X जिसका ज्यामितीय ऑटोमोर्फिज्म का समूह G है।
  • एक चिकनी कई गुना Σ जो X के लिए(सामान्यीकृत) निर्देशांक के समष्टि के रूप में कार्य करता है।
  • फ्रेमों बिंदु का संग्रह,ƒ जिनमें से प्रत्येक, X से Σ तक एक निर्देशांक फलन को परिपथ में निर्धारित करता है(फ्रेम की सटीक प्रकृति को सामान्य अभिगृहीत में अस्पष्ट छोड़ दिया जाता है)।

तब इन तत्वों के बीच में स्वयंसिद्ध सिद्धान्त बनाये जाते हैंः

  • फ्रेम के संग्रह पर G की एक स्वतंत्र और संक्रमणीय समूह क्रिया(गणित) है: यह G के लिए एक प्रमुख सजातीय समष्टि है। विशेष रूप से, किसी भी जोड़ी के फ्रेम ƒ और ƒ' के लिए, फ्रेम का एक अनूठा संक्रमण होता है( ƒ→ƒ') G में आवश्यकता(ƒ→ƒ')ƒ = ƒ' द्वारा निर्धारित किया गया है।
  • एक फ्रेम ƒ और एक बिंदु A ∈ X दिया गया है, वहां Σ से संबंधित एक बिंदु x=(A,ƒ) से जुड़ा हुआ है। फ़्रेम ƒ द्वारा निर्धारित यह मानचित्रण X के बिंदुओं से Σ के बिंदुओं का एक आक्षेप है। यह आक्षेप फ्रेम की संरचना के कानून के साथ इस अर्थ में संगत है कि एक अलग फ्रेम में बिंदु ए के समन्वय x' ƒ' परिवर्तन(ƒ→ƒ') के आवेदन(ए, ƒ) से उत्पन्न होता है। वह है,

विधि के हित में X के पैरामिट्रीकृत सबमनिफोल्ड हैं। विचार काफी हद तक समष्टिीय हैं, इसलिए पैरामीटर डोमेन को Rλ का खुला उपसमुच्चय माना जाता है। थोड़ी अलग तकनीकें इस पर निर्भर करती हैं कि क्या कोई सबमेनिफोल्ड में इसके पैरामीटराइजेशन के साथ रुचि रखता है, या सबमैनिफोल्ड रीपैरामीटराइजेशन तक।

मूविंग स्पर्शरेखा फ्रेम

मूविंग फ्रेम की सबसे आम स्थिति मैनिफोल्ड के स्पर्शरेखा फ्रेम(जिसे फ्रेम बंडल भी कहा जाता है) के बंडल के लिए है। इस स्थिति में, कई गुना M पर चलने वाले स्पर्शरेखा फ्रेम में सदिश क्षेत्र का संग्रह होता है(e1, e2, …, en) ओपन सम्मुच्य UM के प्रत्येक बिंदु पर स्पर्शरेखा समष्टि का आधार बनता है।

यदि U पर एक समन्वय प्रणाली है, तब प्रत्येक सदिश क्षेत्र ej को निर्देशांक सदिश क्षेत्रों के रैखिक संयोजन के रूप में व्यक्त किया जा सकता है :

जहाँ प्रत्येक , U पर एक फलन है। इन्हें आव्यूह के घटकों के रूप में देखा जा सकता है। जैसा कि अगले भाग में बताया गया है, यह आव्यूह द्वैत कोफ़्रेम की समन्वय अभिव्यक्ति को खोजने के लिए उपयोगी है।

कोफ़्रेम

एक मूविंग फ्रेम U के ऊपर स्पर्शरेखा बंडल के द्वैती फ्रेम या कोफ्रेम को निर्धारित करता है, जिसे कभी-कभी एक मूविंग फ्रेम भी कहा जाता है। यह एक n-टपल है चिकनी 1-रूपों का

θ1, θ2, …, θn

जो U में प्रत्येक बिंदु q पर रैखिक रूप से स्वतंत्र हैं। इसके विपरीत, इस तरह के कोफ़्रेम दिए जाने पर, एक अद्वितीय मूविंग फ़्रेम होता है {e1, e2, …, en } जो इसके लिए द्वैत है, अर्थात, द्वैत संबंध को संतुष्ट करता है θi(ej) = δij, है जहां δij U पर क्रोनेकर डेल्टा का फलन है।

यदि U पर एक समन्वय प्रणाली है, जैसा कि पिछले खंड में है, तो प्रत्येक कोसदिश क्षेत्र θi को निर्देशांक कोसदिश फ़ील्ड के रैखिक संयोजन के रूप में व्यक्त किया जा सकता है:

जहाँ प्रत्येक U पर एक फलन है। चूंकि , ऊपर दिए गए दो समन्वयित भाव उपज के लिए संयोजित होते हैं ; आव्यूहों के संदर्भ में, यह सिर्फ इतना कहता है कि और एक दूसरे के व्युत्क्रम हैं।


शास्त्रीय यांत्रिकी की स्थापना में, जब कैनोनिकल निर्देशांक के साथ काम करते हैं, कैनोनिकल कोफ़्रेम टॉटोलॉजिकल वन-फॉर्म द्वारा दिया गया है। सहज रूप से, यह एक यांत्रिक प्रणाली के वेगों से संबंधित है(निर्देशांकों के स्पर्शरेखा बंडल पर सदिश क्षेत्रों द्वारा दिए गए) प्रणाली के इसी क्षण के लिए(कॉटेन्जेंट बंडल में सदिश क्षेत्रों द्वारा दिए गए;अर्थात् रूपों द्वारा दिए गए)। टॉटोलॉजिकल वन-फॉर्म अधिक सामान्य सोल्डर फॉर्म का एक विशेष स्थिति है, जो सामान्य फाइबर बंडल पर एक(सह) फ्रेम क्षेत्र प्रदान करता है।

उपयोग

मूविंग फ्रेम सामान्य सापेक्षता में महत्वपूर्ण हैं, जहां किसी घटना p(समष्टि-समय में एक बिंदु, जो आयाम चार का कई गुना है) में पास के बिंदुओं पर फ्रेम की पसंद का विस्तार करने का कोई विशेषाधिकार प्राप्त तरीका नहीं है, इसलिए कोई विकल्प चुनना ही होगा। विशेष आपेक्षिकता के विपरीत, M को सदिश समष्टि V(चौथे आयाम का) माना जाता है। उस स्थिति में एक बिंदु p पर एक फ्रेम को p से किसी अन्य बिंदु q में एक अच्छी तरह से परिभाषित तरीके से अनुवादित किया जा सकता है। सामान्यता, मूविंग फ्रेम एक प्रेक्षक के अनुरूप होता है और विशेष सापेक्षता में विशिष्ट फ्रेम संदर्भ के जड़त्वीय फ्रेम का प्रतिनिधित्व करते हैं।

सापेक्षता में और रीमानियन ज्यामिति में, सबसे उपयोगी प्रकार के मूविंग फ्रेम ऑर्थोगोनल और ऑर्थोनॉर्मल फ्रेम हैं, अर्थात्, फ्रेम जिसमें प्रत्येक बिंदु पर ऑर्थोगोनल(यूनिट) सदिश होते हैं। किसी दिए गए p बिंदु पर ऑर्थोनॉर्मलाइजेशन द्वारा एक सामान्य फ्रेम को ऑर्थोनॉर्मल बनाया जा सकता है; वास्तव में यह सुचारू रूप से किया जा सकता है, जिससे कि एक मूविंग फ्रेम के अस्तित्व का तात्पर्य एक मूविंग ऑर्थोनॉर्मल फ्रेम के अस्तित्व से है।

अधिक जानकारी

एक मूविंग फ्रेम हमेशा समष्टिीय रूप से मौजूद होता है, यानी, M में किसी भी बिंदु p के कुछ निकटतम U में; चुकि, विश्व स्तर पर एक मूविंग फ्रेम का अस्तित्व M को सामयिक स्थितियों की आवश्यकता होती है। उदाहरण के लिए जब M एक वृत्त है, या अधिक सामान्यता एक टोरस्र्स है, ऐसे फ्रेम मौजूद हैं; लेकिन तब नहीं जब M एक 2-गोलाकार हो। एक मैनिफोल्ड जिसमें ग्लोबल मूविंग फ्रेम होता है, समानांतर कहा जाता है। उदाहरण के लिए ध्यान दें कि पृथ्वी की सतह पर अक्षांश और देशांतर के इकाई निर्देश कैसे उत्तर और दक्षिण ध्रुवों पर एक मूविंग फ्रेम के रूप में टूट जाते हैं।

एली कार्टन के मूविंग फ्रेमों की विधि मूविंग फ्रेम लेने पर आधारित होती है जो विशेष समस्या के लिए अनुकूलित होती है। उदाहरण के लिए, समष्टि में एक वक्र दिया, वक्र के पहले तीन व्युत्पन्न सदिश सामान्य रूप से एक बिंदु पर फ्रेम परिभाषित कर सकते हैं(cf. मात्रात्मक विवरण के लिए घुमाव टेन्सर - यहाँ यह माना जाता है कि घुमाव शून्य नहीं है)। वास्तव में, मूविंग फ्रेमों की विधि में, एक बार अधिक फ्रेमों के बजाय कोफ्रेम्स के साथ काम करता है। सामान्यता, मूविंग फ्रेम को खुले समुच्चय U पर प्रमुख बंडलों के अनुभागों के रूप में देखा जा सकता है। सामान्य कार्टन विधि कार्टन कनेक्शन के विचार का उपयोग करके इस अमूर्त विधि का लाभ उठाती है।

एटलस

कई स्थितियों में, संदर्भ के एक ही फ्रेम को परिभाषित करना असंभव है जो कि विश्व स्तर पर मान्य है। इसे दूर करने के लिए, सामान्यता फ़्रेमों को एक साथ जोड़ कर एटलस(टोपोलॉजी) बनाया जाता है, इस प्रकार एक समष्टिीय फ्रेम की धारणा पर पहुंचते हैं। इसके अलावा, इन एटलसों को चिकनी संरचना के साथ बनाए रखने के लिए अधिकांशतः वांछनीय होता है, ताकि परिणामी फ्रेम क्षेत्र भिन्न हो।

सामान्यीकरण

यद्यपि यह लेख कई गुना के स्पर्शरेखा बंडल पर एक निर्देशांक प्रणाली के रूप में फ्रेम फ़ील्ड का निर्माण करते है, सामान्य विचार एक सदिश बंडल की अवधारणा के लिए आसानी से आगे बढ़ते हैं, जो प्रत्येक बिंदु पर सदिश समष्टि के साथ कई गुना विविध होता है, वह सदिश समष्टि मनमाना है, और सामान्य रूप से स्पर्शरेखा बंडल से संबंधित नहीं है।

अनुप्रयोग

समष्टि में घूर्णन के प्रमुख अक्ष

विमान चालक(वायुयान चालित अक्ष) को पायलट द्वारा वर्णित करते समय मूविंग फ्रेम(वायुयान प्रमुख अक्षों) के रूप में अभिव्यक्त किया जा सकता है।

यह भी देखें

  • डारबॉक्स फ्रेम
  • फ्रेनेट-सीरेट सूत्र
  • यव, पिच, और रोल

टिप्पणियाँ

  1. 1.0 1.1 1.2 Griffiths 1974
  2. 2.0 2.1 Chern 1985
  3. D. J. Struik, Lectures on classical differential geometry, p. 18
  4. "Affine frame" Proofwiki.org
  5. See Cartan (1983) 9.I; Appendix 2 (by Hermann) for the bundle of tangent frames. Fels and Olver (1998) for the case of more general fibrations. Griffiths (1974) for the case of frames on the tautological principal bundle of a homogeneous space.


इस पेज में लापता आंतरिक लिंक की सूची

  • अंक शास्त्र
  • चिकना कई गुना
  • सजातीय समष्टि
  • सदिश स्थल
  • आदेशित आधार
  • कार्तीय समन्वय प्रणाली
  • आदर्श सिद्धान्त
  • छड़ नापना
  • प्रक्षेपवक्र
  • सर्वांगसमता(ज्यामिति)
  • वक्रों की विभेदक ज्यामिति
  • एक वक्र का घुमाव
  • अंतर प्रणालियों के लिए अभिन्नता की स्थिति
  • सजातीय रिक्त समष्टि
  • प्रक्षेपण समष्टि
  • ऑर्थोनॉर्मल बेसिस
  • रैखिक फ्रेम
  • पुलबैक बंडल
  • पुलबैक(अंतर ज्यामिति)
  • सोल्डर फॉर्म
  • विहित निर्देशांक
  • मैट्रिक्स उलटा
  • रिमानियन ज्यामिति
  • में चलाने योग्य
  • देशान्तर
  • घेरा
  • संसमष्टििक
  • विविध
  • एरोबेटिक पैंतरेबाज़ी

संदर्भ