शुद्ध गणित

From Vigyanwiki
Revision as of 14:34, 13 November 2022 by alpha>Indicwiki (Created page with "{{Short description|Mathematics independent of applications}} {{Math topics TOC}} File:E8Petrie.svg|thumb|251x251px|शुद्ध गणित अमूर्त वस्...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
File:E8Petrie.svg
शुद्ध गणित अमूर्त वस्तुओं के गुणों और संरचना का अध्ययन करता है,[1] जैसे E8 (गणित) , समूह सिद्धांत में। यह भौतिक दुनिया में अवधारणाओं के ठोस अनुप्रयोगों पर ध्यान केंद्रित किए बिना किया जा सकता है।

शुद्ध गणित गणित के बाहर किसी भी अनुप्रयोग से स्वतंत्र रूप से गणितीय अवधारणाओं का अध्ययन है। ये अवधारणाएं वास्तविक दुनिया की चिंताओं में उत्पन्न हो सकती हैं, और प्राप्त परिणाम बाद में व्यावहारिक अनुप्रयोगों के लिए उपयोगी हो सकते हैं, लेकिन शुद्ध गणितज्ञ मुख्य रूप से ऐसे अनुप्रयोगों से प्रेरित नहीं होते हैं। इसके बजाय, अपील को बौद्धिक चुनौती और सौंदर्यवादी गणितीय सुंदरता के लिए जिम्मेदार ठहराया गया है।

जबकि शुद्ध गणित कम से कम प्राचीन ग्रीस के बाद से एक गतिविधि के रूप में अस्तित्व में है, इस अवधारणा को वर्ष 1900 के आसपास विस्तृत किया गया था,[2] प्रति-सहज गुणों वाले सिद्धांतों की शुरूआत के बाद (जैसे गैर-यूक्लिडियन ज्यामिति और जॉर्ज कैंटर | अनंत सेटों का कैंटर का सिद्धांत), और स्पष्ट विरोधाभासों की खोज (जैसे कि निरंतर कार्य जो कहीं भी भिन्न कार्य नहीं हैं, और रसेल का विरोधाभास)। इसने गणितीय कठोरता की अवधारणा को नवीनीकृत करने और स्वयंसिद्ध विधि यों के व्यवस्थित उपयोग के साथ, तदनुसार सभी गणित को फिर से लिखने की आवश्यकता का परिचय दिया। इसने कई गणितज्ञों को गणित पर ध्यान केंद्रित करने के लिए प्रेरित किया, अर्थात शुद्ध गणित।

फिर भी, लगभग सभी गणितीय सिद्धांत वास्तविक दुनिया से या कम अमूर्त गणितीय सिद्धांतों से आने वाली समस्याओं से प्रेरित रहे। इसके अलावा, कई गणितीय सिद्धांत, जो पूरी तरह से शुद्ध गणित लग रहे थे, अंततः व्यावहारिक क्षेत्रों, मुख्य रूप से भौतिकी और कंप्यूटर विज्ञान में उपयोग किए गए थे। एक प्रसिद्ध प्रारंभिक उदाहरण आइजैक न्यूटन का प्रदर्शन है कि उनके सार्वभौमिक गुरुत्वाकर्षण के नियम में निहित है कि ग्रह उन कक्षाओं में चलते हैं जो शंकु वर्ग हैं, ज्यामितीय वक्र जिनका अध्ययन प्राचीन काल में पेर्गा के अपोलोनियस द्वारा किया गया था। एक अन्य उदाहरण बड़े पूर्णांक ों के गुणन खंडन की समस्या है, जो कि आरएसए क्रिप्टोसिस्टम का आधार है, जिसका व्यापक रूप से इंटरनेट संचार को सुरक्षित करने के लिए उपयोग किया जाता है।[3] यह इस प्रकार है कि, वर्तमान में, शुद्ध और अनुप्रयुक्त गणित के बीच का अंतर गणित के एक कठोर उपखंड के बजाय एक दार्शनिक दृष्टिकोण या गणितज्ञ की प्राथमिकता अधिक है। विशेष रूप से, यह असामान्य नहीं है कि अनुप्रयुक्त गणित विभाग के कुछ सदस्य स्वयं को शुद्ध गणितज्ञ बताते हैं।[citation needed]


इतिहास

प्राचीन ग्रीस

प्राचीन यूनानी गणितज्ञ शुद्ध और अनुप्रयुक्त गणित के बीच अंतर करने वाले शुरुआती लोगों में से थे। प्लेटो ने अंकगणित , जिसे अब संख्या सिद्धांत कहा जाता है, और रसद, जिसे अब अंकगणित कहा जाता है, के बीच अंतर पैदा करने में मदद की। प्लेटो ने लॉजिस्टिक (अंकगणित) को व्यापारियों और युद्ध के पुरुषों के लिए उपयुक्त माना, जिन्हें संख्या की कला सीखनी चाहिए या [वे] यह नहीं जान पाएंगे कि कैसे [अपने] सैनिकों और अंकगणित (संख्या सिद्धांत) को दार्शनिकों के लिए उपयुक्त बनाया जाए क्योंकि [उनके पास] परिवर्तन के समुद्र से बाहर निकलना और सच्चे अस्तित्व को धारण करना।[4] अलेक्जेंड्रिया के यूक्लिड , जब उनके एक छात्र ने ज्यामिति के अध्ययन के बारे में पूछा, तो उन्होंने अपने दास से छात्र को तीन पेंस देने के लिए कहा, क्योंकि वह जो सीखता है उसका लाभ उठाना चाहिए।[5] पेरगा के ग्रीक गणितज्ञ एपोलोनियस से कॉनिक्स की पुस्तक IV में उनके कुछ प्रमेयों की उपयोगिता के बारे में पूछा गया था, जिस पर उन्होंने गर्व से कहा,[6]

वे स्वयं प्रदर्शनों के लिए स्वीकृति के योग्य हैं, ठीक उसी तरह जैसे हम गणित में कई अन्य चीजों को इसके लिए और बिना किसी कारण के स्वीकार करते हैं।

और चूंकि उनके कई परिणाम उनके समय के विज्ञान या इंजीनियरिंग पर लागू नहीं थे, अपोलोनियस ने कॉनिक्स की पांचवीं पुस्तक की प्रस्तावना में आगे तर्क दिया कि विषय उनमें से एक है जो ... स्वयं के लिए अध्ययन के योग्य लगता है।[6]


उन्नीसवीं सदी

उन्नीसवीं शताब्दी के मध्य में स्थापित (प्रोफेसरशिप के रूप में) शुद्ध गणित के सदलेरियन प्रोफेसर, शुद्ध गणित के सदलेरियन प्रोफेसर के पूर्ण शीर्षक में यह शब्द ही निहित है। हो सकता है कि शुद्ध गणित के एक अलग विषय का विचार उस समय उभरा हो। कार्ल फ्रेडरिक गॉस की पीढ़ी ने शुद्ध और अनुप्रयुक्त के बीच कोई व्यापक अंतर नहीं किया। बाद के वर्षों में, विशेषज्ञता और व्यावसायीकरण (विशेष रूप से गणितीय विश्लेषण के विअरस्ट्रास दृष्टिकोण में) ने दरार को और अधिक स्पष्ट करना शुरू कर दिया।

20वीं सदी

बीसवीं शताब्दी की शुरुआत में गणितज्ञों ने डेविड हिल्बर्ट के उदाहरण से काफी प्रभावित होकर स्वयंसिद्ध पद्धति को अपनाया। प्रस्ताव (गणित) की क्वांटिफायर (तर्क) संरचना के संदर्भ में बर्ट्रेंड रसेल द्वारा सुझाए गए शुद्ध गणित का तार्किक सूत्रीकरण अधिक से अधिक प्रशंसनीय लग रहा था, क्योंकि गणित के बड़े हिस्से स्वयंसिद्ध हो गए थे और इस प्रकार कठोर प्रमाण के सरल मानदंडों के अधीन थे।

शुद्ध गणित, एक दृष्टिकोण के अनुसार जिसे बोर्बाकी समूह के लिए जिम्मेदार ठहराया जा सकता है, वही सिद्ध होता है। शुद्ध गणितज्ञ एक मान्यता प्राप्त व्यवसाय बन गया, जिसे प्रशिक्षण के माध्यम से प्राप्त किया जा सकता है।

मामला बनाया गया था कि शुद्ध गणित इंजीनियरिंग शिक्षा में उपयोगी है:[7]

विचार की आदतों, दृष्टिकोणों और सामान्य इंजीनियरिंग समस्याओं की बौद्धिक समझ में एक प्रशिक्षण है, जो केवल उच्च गणित का अध्ययन दे सकता है।

सामान्यता और अमूर्तता

बनच-टार्स्की विरोधाभास का एक उदाहरण, शुद्ध गणित में एक प्रसिद्ध परिणाम। यद्यपि यह सिद्ध हो गया है कि कटौती और घुमाव के अलावा कुछ भी नहीं का उपयोग करके एक क्षेत्र को दो में परिवर्तित करना संभव है, परिवर्तन में ऐसी वस्तुएं शामिल हैं जो भौतिक दुनिया में मौजूद नहीं हो सकती हैं।शुद्ध गणित में एक केंद्रीय अवधारणा व्यापकता का विचार है; शुद्ध गणित अक्सर बढ़ी हुई व्यापकता की ओर रुझान प्रदर्शित करता है। व्यापकता के उपयोग और लाभों में निम्नलिखित शामिल हैं:

  • प्रमेयों या गणितीय संरचनाओं को सामान्य बनाने से मूल प्रमेयों या संरचनाओं की गहरी समझ हो सकती है
  • सामान्यता सामग्री की प्रस्तुति को सरल बना सकती है, जिसके परिणामस्वरूप छोटे सबूत या तर्क का पालन करना आसान होता है।
  • अलग-अलग मामलों को स्वतंत्र रूप से साबित करने या गणित के अन्य क्षेत्रों के परिणामों का उपयोग करने के बजाय प्रयास के दोहराव से बचने के लिए सामान्यता का उपयोग कर सकते हैं।
  • सामान्यता गणित की विभिन्न शाखाओं के बीच संबंधों की सुविधा प्रदान कर सकती है। श्रेणी सिद्धांत गणित का एक क्षेत्र है जो संरचना की इस समानता की खोज के लिए समर्पित है क्योंकि यह गणित के कुछ क्षेत्रों में खेलता है।

अंतर्ज्ञान (ज्ञान) पर सामान्यता का प्रभाव विषय और व्यक्तिगत वरीयता या सीखने की शैली दोनों पर निर्भर है। अक्सर व्यापकता को अंतर्ज्ञान के लिए एक बाधा के रूप में देखा जाता है, हालांकि यह निश्चित रूप से इसके लिए एक सहायता के रूप में कार्य कर सकता है, खासकर जब यह सामग्री के लिए समानता प्रदान करता है जिसके लिए पहले से ही अच्छा अंतर्ज्ञान है।

सामान्यता के एक प्रमुख उदाहरण के रूप में, एर्लांगेन कार्यक्रम में गैर-यूक्लिडियन ज्यामिति के साथ-साथ टोपोलॉजी के क्षेत्र, और ज्यामिति के अन्य रूपों को समायोजित करने के लिए ज्यामिति का विस्तार शामिल था, ज्यामिति को एक समूह (गणित) के साथ एक स्थान के अध्ययन के रूप में देखकर ) परिवर्तनों का। प्रारंभिक स्नातक स्तर पर बीजगणित नामक संख्या ओं का अध्ययन, अधिक उन्नत स्तर पर अमूर्त बीजगणित तक फैला हुआ है; और फ़ंक्शन (गणित) का अध्ययन, जिसे कॉलेज फ्रेशमैन स्तर पर कलन कहा जाता है, अधिक उन्नत स्तर पर गणितीय विश्लेषण और कार्यात्मक विश्लेषण बन जाता है। अधिक अमूर्त गणित की इन शाखाओं में से प्रत्येक में कई उप-विशेषताएं हैं, और वास्तव में शुद्ध गणित और अनुप्रयुक्त गणित विषयों के बीच कई संबंध हैं। 20 वीं शताब्दी के मध्य में अमूर्तता में भारी वृद्धि देखी गई।

व्यवहार में, हालांकि, इन विकासों ने भौतिकी से एक तेज विचलन का नेतृत्व किया, विशेष रूप से 1950 से 1983 तक। बाद में इसकी आलोचना की गई, उदाहरण के लिए व्लादिमीर अर्नोल्ड द्वारा, डेविड हिल्बर्ट के रूप में, हेनरी पोंकारे के लिए पर्याप्त नहीं। बिंदु अभी तक सुलझा हुआ प्रतीत नहीं होता है, उस स्ट्रिंग सिद्धांत में एक तरफ खींचता है, जबकि असतत गणित केंद्रीय के रूप में प्रमाण की ओर वापस खींचता है।

शुद्ध बनाम अनुप्रयुक्त गणित

शुद्ध और अनुप्रयुक्त गणित के बीच अंतर के बारे में गणितज्ञों की हमेशा अलग-अलग राय रही है। इस बहस के सबसे प्रसिद्ध (लेकिन शायद गलत समझा) आधुनिक उदाहरणों में से एक जी.एच. हार्डी का 1940 का निबंध ए मैथमेटिशियन्स एपोलॉजी। इस उदाहरण में माफी शब्द रक्षा या स्पष्टीकरण की पुरातन परिभाषा को संदर्भित करता है, जैसा कि माफी (प्लेटो) | प्लेटो की माफी में है।

यह व्यापक रूप से माना जाता है कि हार्डी व्यावहारिक गणित को बदसूरत और नीरस मानते थे। हालांकि यह सच है कि हार्डी ने शुद्ध गणित को प्राथमिकता दी, जिसकी वे अक्सर चित्र और कविता से तुलना करते थे, हार्डी ने शुद्ध और अनुप्रयुक्त गणित के बीच के अंतर को देखा कि व्यावहारिक गणित ने गणितीय ढांचे में भौतिक सत्य को व्यक्त करने की मांग की, जबकि शुद्ध गणित ने सत्य व्यक्त किया कि भौतिक जगत से स्वतंत्र थे। हार्डी ने गणित में एक अलग अंतर किया, जिसे उन्होंने वास्तविक गणित कहा, जिसका स्थायी सौंदर्य मूल्य है, और गणित के नीरस और प्राथमिक भाग जिनका व्यावहारिक उपयोग है।

हार्डी ने अल्बर्ट आइंस्टीन और पॉल डिराका जैसे कुछ भौतिकविदों को वास्तविक गणितज्ञों में से एक माना, लेकिन जिस समय वे अपनी माफी लिख रहे थे, उन्होंने सामान्य सापेक्षता और क्वांटम यांत्रिकी को बेकार माना, जिससे उन्हें यह राय रखने की अनुमति मिली कि केवल नीरस गणित ही उपयोगी था। इसके अलावा, हार्डी ने संक्षेप में स्वीकार किया कि - जिस तरह भौतिकी के लिए मैट्रिक्स (गणित) और समूह सिद्धांत का अनुप्रयोग अप्रत्याशित रूप से आया था - वह समय आ सकता है जब कुछ प्रकार के सुंदर, वास्तविक गणित भी उपयोगी हो सकते हैं।

अमेरिकी गणितज्ञ एंडी मैगिडो द्वारा एक और व्यावहारिक दृष्टिकोण प्रस्तुत किया गया है:

I've always thought that a good model here could be drawn from ring theory. In that subject, one has the subareas of commutative ring theory and non-commutative ring theory. An uninformed observer might think that these represent a dichotomy, but in fact the latter subsumes the former: a non-commutative ring is a not-necessarily-commutative ring. If we use similar conventions, then we could refer to applied mathematics and nonapplied mathematics, where by the latter we mean not-necessarily-applied mathematics... [emphasis added][8]

फ्रेडरिक एंगेल्स ने अपनी 1878 की पुस्तक एंटी-डुहरिंग में तर्क दिया कि यह बिल्कुल भी सच नहीं है कि शुद्ध गणित में मन केवल अपनी रचनाओं और कल्पनाओं से ही निपटता है। संख्या और आकृति की अवधारणाओं का आविष्कार वास्तविकता की दुनिया के अलावा किसी अन्य स्रोत से नहीं किया गया है।[9]: 36  उन्होंने आगे तर्क दिया कि इससे पहले कि किसी को उसके एक पक्ष के बारे में एक आयत के रोटेशन से एक सिलेंडर के रूप को निकालने का विचार आया, कई वास्तविक आयतों और सिलेंडरों की जांच की गई होगी, चाहे वह रूप में अपूर्ण हो। अन्य सभी विज्ञानों की तरह, गणित पुरुषों की जरूरतों से उत्पन्न हुआ ... लेकिन, जैसा कि विचार के हर विभाग में, विकास के एक निश्चित चरण में, वास्तविक दुनिया से अलग किए गए कानून वास्तविक दुनिया से अलग हो जाते हैं, और इसके खिलाफ कुछ स्वतंत्र के रूप में, बाहर से आने वाले कानूनों के रूप में स्थापित किए जाते हैं, जिसके अनुसार दुनिया को अनुरूप होना है।[9]: 37 


यह भी देखें

संदर्भ

  1. "शुद्ध गणित". University of Liverpool. Retrieved 2022-03-24.
  2. Piaggio, H. T. H., "Sadleirian Professors", in O'Connor, John J.; Robertson, Edmund F. (eds.), MacTutor History of Mathematics archive, University of St Andrews
  3. Robinson, Sara (June 2003). "वर्षों के हमलों के बाद भी रहस्य की रक्षा, आरएसए ने अपने संस्थापकों के लिए प्रशंसा अर्जित की" (PDF). SIAM News. 36 (5).
  4. Boyer, Carl B. (1991). "The age of Plato and Aristotle". गणित का इतिहास (Second ed.). John Wiley & Sons, Inc. pp. 86. ISBN 0-471-54397-7.
  5. Boyer, Carl B. (1991). "Euclid of Alexandria". गणित का इतिहास (Second ed.). John Wiley & Sons, Inc. pp. 101. ISBN 0-471-54397-7.
  6. 6.0 6.1 Boyer, Carl B. (1991). "Apollonius of Perga". गणित का इतिहास (Second ed.). John Wiley & Sons, Inc. pp. 152. ISBN 0-471-54397-7.
  7. A. S. Hathaway (1901) "Pure mathematics for engineering students", Bulletin of the American Mathematical Society 7(6):266–71.
  8. Andy Magid (November 2005) Letter from the Editor, Notices of the American Mathematical Society, page 1173
  9. 9.0 9.1 Engels, Frederick (1987). मार्क्स एंगेल्स कलेक्टेड वर्क्स (वॉल्यूम 25) (English ed.). Moscow: Progress Publishers. p. 33-133. ISBN 0-7178-0525-5.


इस पेज में लापता आंतरिक लिंक की सूची

  • अंक शास्त्र
  • गणितीय सौंदर्य
  • शंकु खंड
  • पेरगा का एपोलोनियस
  • भौतिक विज्ञान
  • अवकलनीय कार्य
  • सार्वभौमिक गुरुत्वाकर्षण का नियम
  • व्यावहारिक गणित
  • शुद्ध गणित के सैडलेरियन प्रोफेसर
  • गणित पृथक करें
  • मतिहीनता
  • गणना
  • समारोह (गणित)
  • सार बीजगणित
  • शायरी

बाहरी संबंध

{{Navbox

| name =गणित के क्षेत्र

|state = collapsed

| title =अंक शास्त्र | bodyclass = hlist

|above =


| group1 = नींव | list1 =* श्रेणी सिद्धांत

| group2 =बीजगणित | list2 =* सार

| group3 = विश्लेषण | list3 =* पथरी

| group4 = असतत | list4 =* कॉम्बीनेटरिक्स

| group5 =ज्यामिति | list5 =* बीजगणितीय

| group6 =संख्या सिद्धांत | list6 =* अंकगणित

| group7 =टोपोलॉजी | list7 =* सामान्य

| group8 = लागू | list8 =* इंजीनियरिंग गणित

| group9 = कम्प्यूटेशनल | list9 =* कंप्यूटर विज्ञान

| group10 = संबंधित विषय | list10 =* अनौपचारिक गणित

| below =* '

}}