कंपन

From Vigyanwiki
Revision as of 12:59, 14 August 2023 by alpha>Nitya (text)

कंपन (लैटिन वाइब्रो से 'टू शेक') एक यांत्रिक घटना है जिसके तहत संतुलन बिंदु के आसपास दोलन होते हैं। दोलन आवधिक हो सकते हैं, जैसे पेंडुलम की गति, या यादृच्छिक, जैसे बजरी वाली सड़क पर टायर की गति होती है।

कंपन वांछनीय हो सकता है: उदाहरण के लिए, स्वरित्र द्विभुज की गति, सुषिर काष्ठ वाद्य या हारमोनिका में रीड (संगीत), मोबाइल फोन, या ध्वनि-विस्तारक यंत्र का शंकु।

हालांकि, कई मामलों में, कंपन अवांछनीय है, जिससे ऊर्जा बर्बाद होती है और अवांछित ध्वनि उत्पन्न होती है। उदाहरण के लिए, इंजन, विद्युत मोटर, या किसी भी मशीन के संचालन में कंपन संबंधी गति आमतौर पर अवांछित होती है। इस तरह के कंपन घूर्णन भागों में असंतुलन, असमान घर्षण, या गियर दांतों की जाली के कारण हो सकते हैं। सावधानीपूर्वक डिजाइन आमतौर पर अवांछित कंपन को निम्न करते हैं।

ध्वनि और कंपन का अध्ययन आपस में निकट से संबंधित है (दोनों ध्वनिकी के अंतर्गत आते हैं)।। ध्वनि, या दबाव तरंगें, कंपन संरचनाओं (जैसे स्वर रज्जु) द्वारा उत्पन्न होती हैं; ये दबाव तरंगें संरचनाओं के कंपन (जैसे कान का पर्दा) को भी प्रेरित कर सकती हैं। इसलिए, रव को निम्न करने के प्रयास अक्सर कंपन के मुद्दों से संबंधित होते हैं।[1]

Error creating thumbnail:
एक वृत्ताकार ड्रम के कंपन के संभावित तरीकों में से एक (देखें: कॉमन्स: श्रेणी: ड्रम कंपन एनिमेशन)।

[[File:suspension.jpg|thumb|upright|कार निलंबन: डिजाइन कंपन नियंत्रण [[ध्वनिक अभियांत्रिकी ]], ऑटोमोटिव इंजीनियरिंग या मैकेनिकल इंजीनियरिंग इंजीनियरिंग के भाIndex.php?title=मशीनिंग कंपनग के रूप में किया जाता है।]] व्यवकलक निर्माण की प्रक्रिया में मशीनिंग कंपन आम है।

प्रकार

मुक्त कंपन तब होता है जब यांत्रिक प्रणाली को प्रारंभिक इनपुट के साथ गति में सेट किया जाता है और स्वतंत्र रूप से कंपन करने की अनुमति दी जाती है। इस प्रकार के कंपन के उदाहरण है बच्चे को झूले पर पीछे खींचना और उसे छोड़ देना, या स्वरित्र द्विभुज प्रहार कर उसे बजने दे रहे हैं। यांत्रिक प्रणाली एक या एक से अधिक प्रतिध्वनि पर कंपन करती है और अवमंदन अनुपात गतिहीनता तक निम्न हो जाता है।

प्रणोदित कंपन तब होता है जब यांत्रिक प्रणाली पर समय-भिन्न विक्षोभ (भार, विस्थापन, वेग, या त्वरण) लागू होती है। विक्षोभ एक आवधिक और स्थिर-स्थिति इनपुट, क्षणिक इनपुट या यादृच्छिक इनपुट हो सकती है। आवधिक इनपुट एक अनुकंपी या गैर-अनुकंपी विक्षोभ हो सकती है। इस प्रकार के कंपन के उदाहरणों में असंतुलन के कारण वाशिंग मशीन का हिलना, इंजन या असमान सड़क के कारण परिवहन कंपन, या भूकंप के दौरान इमारत का कंपन शामिल हैं। रैखिक प्रणालियों के लिए, आवधिक, अनुकंपी इनपुट के अनुप्रयोग से उत्पन्न स्थिर-अवस्था कंपन प्रतिक्रिया की आवृत्ति लागू बल या गति की आवृत्ति के बराबर होती है, प्रतिक्रिया परिमाण वास्तविक यांत्रिक प्रणाली पर निर्भर होता है।

अवमंदित कंपन: जब कंपन प्रणाली की ऊर्जा घर्षण और अन्य प्रतिरोधों द्वारा धीरे-धीरे नष्ट हो जाती है, तो कंपन को अवमंदित कहा जाता है। कंपन धीरे-धीरे निम्न हो जाते हैं या आवृत्ति या तीव्रता में बदल जाते हैं या बंद हो जाते हैं और प्रणाली अपनी संतुलन स्थिति में रहता है। इस प्रकार के कंपन का उदाहरण प्रघात अवशोषक द्वारा नम किया गया वाहन निलंबन है।

अलगाव

Page 'Vibration isolation' not found

परीक्षण

कंपन परीक्षण आमतौर पर किसी प्रकार के शेकर के साथ संरचना में प्रणोदित कार्य प्रारंभ करके पूरा किया जाता है। वैकल्पिक रूप से, शेकर की "मेज" से डीयूटी (परीक्षण के तहत उपकरण) जुड़ा हुआ है। कंपन परीक्षण परिभाषित कंपन वातावरण में परीक्षण (डीयूटी) के तहत उपकरण की प्रतिक्रिया की जांच करने के लिए किया जाता है। मापी गई प्रतिक्रिया कंपन वातावरण, श्रांति जीवन, गुंजयमान आवृत्तियों या चरमराना और तड़कन ध्वनि आउटपुट (रव, कंपन और कठोरता) में कार्य करने की क्षमता हो सकती है। चरमराना और तड़कन परीक्षण विशेष प्रकार के मन्द शेकर के साथ किया जाता है जो ऑपरेशन के दौरान बहुत निम्न ध्वनि स्तर उत्पन्न करता है।

अपेक्षाकृत निम्न आवृति प्रणोदन (आमतौर पर 100 हर्ट्ज से निम्न) के लिए, सर्वोहाइड्रॉलिक (वैद्युत द्रवचालित) शेकर्स का उपयोग किया जाता है। उच्च आवृत्तियों (आमतौर पर 5 हर्ट्ज से 2000 हर्ट्ज) के लिए, विद्युत् गतिकी शेकर्स का उपयोग किया जाता है। आम तौर पर, कंपन अनुबंध के डीयूटी-साइड पर स्थित एक या एक से अधिक "इनपुट" या "नियंत्रण" बिंदुओं को निर्दिष्ट त्वरण पर रखा जाता है।[1] अन्य "प्रतिक्रिया" बिंदुओं में नियंत्रण बिंदुओं की तुलना में उच्च कंपन स्तर (अनुनाद) या निम्न कंपन स्तर (प्रति अनुनाद या डंपिंग) का अनुभव हो सकता है। किसी प्रणाली को अत्यधिक रव होने से बचाने के लिए, या विशिष्ट कंपन आवृत्तियों के कारण होने वाले कंपन मोड के कारण कुछ हिस्सों पर विकृति को निम्न करने के लिए अक्सर प्रति अनुनाद प्राप्त करना वांछनीय होता है।[2]

कंपन परीक्षण प्रयोगशालाओं द्वारा संचालित सबसे सामान्य प्रकार की कंपन परीक्षण सेवाएँ ज्यावक्रीय और यादृच्छिक हैं। परीक्षण (डीयूटी) के तहत उपकरण की संरचनात्मक प्रतिक्रिया का सर्वेक्षण करने के लिए साइन (वन-आवृति-एट-ए-टाइम) परीक्षण किए जाते हैं। कंपन परीक्षण के प्रारंभिक इतिहास के दौरान, कंपन मशीन नियंत्रक केवल साइन गति को नियंत्रित करने तक ही सीमित थे, इसलिए केवल साइन परीक्षण किया गया था। बाद में, अधिक परिष्कृत एनालॉग और फिर डिजिटल नियंत्रक यादृच्छिक नियंत्रण (एक बार में सभी आवृत्तियों) प्रदान करने में सक्षम थे। यादृच्छिक (एक बार में सभी आवृत्तियों) परीक्षण को आम तौर पर वास्तविक दुनिया के वातावरण को अधिक बारीकी से दोहराने के लिए माना जाता है, जैसे चलती ऑटोमोबाइल के लिए सड़क इनपुट है।

अधिकांश कंपन परीक्षण एक समय में 'एकल डीयूटी अक्ष' में आयोजित किए जाते हैं, भले ही अधिकांश वास्तविक-विश्व कंपन एक साथ विभिन्न अक्षों में होते हैं। MIL-STD-810G, 2008 के अंत में जारी, टेस्ट मेथड 527, विविध उत्पादक परीक्षण की मांग करता है। कंपन परीक्षण अनुबंध[3]डीयूटी को शेकर टेबल से जोड़ने के लिए इस्तेमाल किया जाना चाहिए, इसे कंपन परीक्षण स्पेक्ट्रम की आवृत्ति सीमा के लिए डिज़ाइन किया जाना चाहिए। कंपन परीक्षण अनुबंध को डिजाइन करना मुश्किल है जो वास्तविक उपयोग में बढ़ते हुए गतिशील प्रतिक्रिया (यांत्रिक प्रतिबाधा) को दोहराता है[4]। इस कारण से, कंपन परीक्षणों के बीच दोहराव सुनिश्चित करने के लिए, कंपन अनुबंध को परीक्षण आवृत्ति सीमा के भीतर अनुनाद मुक्त होने के लिए डिज़ाइन किए गए हैं[4]। आम तौर पर छोटे जुड़नार और निम्न आवृत्ति सीमा के लिए, डिजाइनर अनुबंध डिजाइन को लक्षित कर सकता है जो परीक्षण आवृत्ति सीमा में प्रतिध्वनि से मुक्त होता है। जैसे-जैसे डीयूटी बड़ा होता जाता है और परीक्षण की आवृत्ति बढ़ती जाती है, यह और अधिक कठिन होता जाता है। इन मामलों में बहु-बिंदु नियंत्रण रणनीतियाँ[5] पूर्वकथन में मौजूद कुछ अनुनादों को निम्न कर सकते हैं।

कुछ कंपन परीक्षण विधियाँ क्रॉसस्टॉक की मात्रा को सीमित करती हैं (परीक्षण के तहत अक्ष के परस्पर लंबवत दिशा में एक प्रतिक्रिया बिंदु की गति) कंपन परीक्षण अनुबंध द्वारा प्रदर्शित होने की अनुमति है। विशेष रूप से कंपन का पता लगाने या रिकॉर्ड करने के लिए डिज़ाइन किए गए उपकरणों को कंपन मापक यंत्र कहा जाता है।

विश्लेषण

कंपन विश्लेषण (वी.ए), औद्योगिक या रखरखाव वातावरण में लागू किया जाता है, जिसका उद्देश्य उपकरण की खराबी का पता लगाकर रखरखाव लागत और उपकरण दुविधा को निम्न करना है।[6][7] वी.ए स्थिति निगरानी (सीएम) प्रोग्राम का प्रमुख घटक है, और इसे अक्सर पूर्वकथन कहनेवाला रखरखाव (पीडीएम) कहा जाता है।[8] आमतौर पर वीए का उपयोग घूर्णन उपकरण (पंखे, मोटर्स, पंप, और गियरबॉक्स इत्यादि) जैसे असंतुलन, गलत संरेखण, रोलिंग तत्व असर दोष और अनुनाद स्थितियों में दोषों का पता लगाने के लिए किया जाता है।[9]

वीए तरंग (टीडब्ल्यूएफ) के रूप में प्रदर्शित विस्थापन, वेग और त्वरण की इकाइयों का उपयोग कर सकता है, लेकिन आमतौर पर स्पेक्ट्रम का उपयोग किया जाता है, जो टीडब्ल्यूएफ के तेज़ फूरियर रूपांतरण से प्राप्त होता है। कंपन स्पेक्ट्रम महत्वपूर्ण आवृत्ति जानकारी प्रदान करता है जो दोषपूर्ण घटक को इंगित कर सकता है।

सरल मास-स्प्रिंग-डैम्पर मॉडल का अध्ययन करके कंपन विश्लेषण के मूल सिद्धांतों को समझा जा सकता है। वास्तव में, यहां तक ​​कि जटिल संरचना जैसे कि ऑटोमोबाइल बॉडी को साधारण मास-स्प्रिंग-डैम्पर मॉडल के "योग" के रूप में तैयार किया जा सकता है। मास-स्प्रिंग-डैम्पर मॉडल सरल आवर्त दोलक का एक उदाहरण है। इसके व्यवहार का वर्णन करने के लिए प्रयुक्त गणित आरएलसी परिपथ जैसे अन्य सरल आवर्त दोलक के समान है।

नोट: इस लेख में चरण-दर-चरण गणितीय व्युत्पत्ति शामिल नहीं है, लेकिन प्रमुख कंपन विश्लेषण समीकरणों और अवधारणाओं पर केंद्रित है। कृपया विस्तृत व्युत्पत्तियों के लिए लेख के अंत में संदर्भ देखें।

अवमंदन के बिना मुक्त कंपन

सरल जन स्प्रिंग मॉडल

मास-स्प्रिंग-डैम्पर की जांच प्रारंभ करने के लिए मान लें कि अवमंदन नगण्य है और द्रव्यमान (यानी मुक्त कंपन) पर कोई बाहरी बल लागू नहीं होता है। स्प्रिंग द्वारा द्रव्यमान पर लगाया गया बल उस मात्रा के समानुपाती होता है, जिस पर स्प्रिंग "x" फैला होता है (यह मानते हुए कि द्रव्यमान के वजन के कारण स्प्रिंग पहले से ही संकुचित है)। आनुपातिकता स्थिरांक, k, स्प्रिंग की कठोरता है और इसमें बल/दूरी की इकाइयाँ होती हैं (जैसे lbf/in या N/m)। ऋणात्मक चिह्न यह दर्शाता है कि बल हमेशा इससे जुड़े द्रव्यमान की गति का विरोध करता है:

द्रव्यमान द्वारा उत्पन्न बल द्रव्यमान के त्वरण के समानुपाती होता है जैसा कि न्यूटन के गति के नियमों द्वारा दिया गया है। न्यूटन की गति का दूसरा नियम:

द्रव्यमान पर बलों का योग इस साधारण अंतर समीकरण को उत्पन्न करता है:

द्रव्यमान-स्प्रिंग प्रणाली की सरल अनुकंपी गति

यह मानते हुए कि कंपन का प्रारंभ स्प्रिंग को A की दूरी से खींचकर और जारी करके प्रारंभ होती है, उपरोक्त समीकरण का समाधान जो द्रव्यमान की गति का वर्णन करता है:

यह समाधान कहता है कि यह सरल अनुकंपी गति के साथ दोलन करेगा जिसमें A का आयाम और fn की आवृत्ति है, संख्या fn अविभाजित प्राकृतिक आवृत्ति कहा जाता है। साधारण द्रव्यमान-स्प्रिंग प्रणाली के लिए, fn परिभाषित किया जाता है:

नोट: प्रति सेकंड रेडियन की इकाइयों के साथ कोणीय आवृत्ति ω (ω=2 π f) का उपयोग अक्सर समीकरणों में किया जाता है क्योंकि यह समीकरणों को सरल करता है, लेकिन सामान्य आवृत्ति (हेटर्स की इकाइयां या समकक्ष चक्र प्रति सेकंड) में परिवर्तित किया जाता है। यदि प्रणाली का द्रव्यमान और कठोरता ज्ञात है, तो ऊपर दिया गया सूत्र उस आवृत्ति को निर्धारित कर सकता है जिस पर प्रणाली प्रारंभिक विक्षोभ से गति में सेट होने पर कंपन करता है। प्रत्येक कंपन प्रणाली में एक या एक से अधिक प्राकृतिक आवृत्तियाँ होती हैं जो एक बार में कंपन करती हैं। इस सरल संबंध का उपयोग सामान्य रूप से यह समझने के लिए किया जा सकता है कि एक बार जब हम द्रव्यमान या कठोरता जोड़ते हैं तो अधिक जटिल प्रणाली का क्या होता है। उदाहरण के लिए, उपरोक्त सूत्र बताता है कि क्यों, जब एक कार या ट्रक पूरी तरह से लोड हो जाता है, तो निलंबन अनलोड की तुलना में "नरम" महसूस करता है - द्रव्यमान बढ़ गया है, जिससे प्रणाली की प्राकृतिक आवृत्ति निम्न हो जाती है।

तंत्र के कंपन का कारण क्या है: ऊर्जा संरक्षण की दृष्टि से

कंपन गति को ऊर्जा संरक्षण के रूप में समझा जा सकता है। उपरोक्त उदाहरण में स्प्रिंग को x के मान से बढ़ाया गया है और इसलिए कुछ संभावित ऊर्जा () स्प्रिंग में संग्रहीत किया जाता है। एक बार छोड़े जाने के बाद, स्प्रिंग अपनी अविस्तारित स्थिति (जो न्यूनतम संभावित ऊर्जा अवस्था है) में वापस आ जाती है और इस प्रक्रिया में द्रव्यमान को गति देती है। उस बिंदु पर जहां स्प्रिंग अपनी अविरल अवस्था में पहुंच गया है, सभी संभावित ऊर्जा जो हमने इसे खींचकर आपूर्ति की है, गतिज ऊर्जा में परिवर्तित हो गई है (). द्रव्यमान तब घटने लगता है क्योंकि यह अब स्प्रिंग को संकुचित कर रहा है और इस प्रक्रिया में गतिज ऊर्जा को वापस अपनी क्षमता में स्थानांतरित कर रहा है। इस प्रकार स्प्रिंग का दोलन गतिज ऊर्जा के आगे और पीछे संभावित ऊर्जा में स्थानांतरित करने के बराबर है। इस सरल मॉडल में द्रव्यमान एक ही परिमाण में हमेशा के लिए दोलन करना जारी रखता है - लेकिन एक वास्तविक प्रणाली में, अवमंदन हमेशा ऊर्जा को नष्ट कर देता है, अंततः स्प्रिंग को आराम देता है।

=== अवमंदन === के साथ मुक्त कंपन

मास-स्प्रिंग-डैम्पर मॉडल

जब एक विस्कस डम्पर को मॉडल में जोड़ा जाता है तो यह एक बल उत्पन्न करता है जो द्रव्यमान के वेग के समानुपाती होता है। अवमंदन चिपचिपा कहा जाता है क्योंकि यह किसी वस्तु के भीतर तरल पदार्थ के प्रभाव को मॉडल करता है। आनुपातिकता स्थिरांक c को अवमंदन गुणांक कहा जाता है और इसमें वेग से अधिक बल की इकाइयाँ होती हैं (lbf⋅s/in या N⋅s/m)।

द्रव्यमान पर बलों का योग करने से निम्नलिखित साधारण अंतर समीकरण प्राप्त होते हैं:

इस समीकरण का हल अवमंदन की मात्रा पर निर्भर करता है। यदि अवमंदन काफी छोटा है, तो प्रणाली अभी भी कंपन करता है - लेकिन अंततः, समय के साथ, कंपन बंद हो जाता है। इस मामले को अंडरडैम्पिंग कहा जाता है, जो कंपन विश्लेषण में महत्वपूर्ण है। यदि अवमंदन को केवल उस बिंदु तक बढ़ाया जाता है जहां प्रणाली अब दोलन नहीं करती है, तो प्रणाली महत्वपूर्ण अवमंदन के बिंदु पर पहुंच गई है। यदि महत्वपूर्ण अवमंदन से पहले अवमंदन बढ़ जाता है, तो प्रणाली अति नम हो जाता है। मास-स्प्रिंग-डैम्पर मॉडल में महत्वपूर्ण अवमंदन के लिए डैम्पिंग गुणांक का मान कितना होना चाहिए:

एक प्रणाली में अवमंदन की मात्रा को चिह्नित करने के लिए एक अनुपात जिसे अवमंदन अनुपात कहा जाता है (जिसे अवमंदन कारक और% महत्वपूर्ण अवमंदन भी कहा जाता है) का उपयोग किया जाता है। यह अवमंदन अनुपात केवल वास्तविक अवमंदन का एक अनुपात है जो महत्वपूर्ण अवमंदन तक पहुँचने के लिए आवश्यक अवमंदन की मात्रा से अधिक है। अवमंदन अनुपात के लिए सूत्र () मास-स्प्रिंग-डैम्पर मॉडल का है:

उदाहरण के लिए, धातु संरचनाओं (जैसे, हवाई जहाज के फ्यूजलेज, इंजन क्रैंकशाफ्ट) में 0.05 से निम्न अवमंदन कारक होते हैं, जबकि ऑटोमोटिव निलंबन 0.2–0.3 की सीमा में होते हैं। मास-स्प्रिंग-डैम्पर मॉडल के लिए अंडरडैम्प प्रणाली का समाधान निम्नलिखित है:

Error creating thumbnail:
0.1 और 0.3 नमी अनुपात के साथ मुक्त कंपन

X का मान, प्रारंभिक परिमाण और चरण (लहरें) # चरण बदलाव, स्प्रिंग को फैलाए जाने वाली राशि से निर्धारित होता है। इन मूल्यों के सूत्र संदर्भों में पाए जा सकते हैं।

नम और बिना नमी वाली प्राकृतिक आवृत्तियाँ

समाधान से ध्यान देने योग्य प्रमुख बिंदु घातीय शब्द और कोज्या फलन हैं। एक्सपोनेंशियल शब्द परिभाषित करता है कि प्रणाली कितनी जल्दी "डैम्प" डाउन करता है - डैम्पिंग अनुपात जितना बड़ा होता है, उतनी ही तेज़ी से यह शून्य हो जाता है। कोज्या फलन विलयन का दोलनशील भाग है, लेकिन दोलनों की आवृत्ति अवमंदित स्थिति से भिन्न होती है।

इस मामले में आवृत्ति को अवमंदित प्राकृतिक आवृत्ति कहा जाता है, और निम्न सूत्र द्वारा अपरिवर्तित प्राकृतिक आवृत्ति से संबंधित है:

अवमंदित प्राकृतिक आवृत्ति, अवमंदित प्राकृतिक आवृत्ति से निम्न होती है, लेकिन कई व्यावहारिक मामलों के लिए अवमंदन अनुपात अपेक्षाकृत छोटा होता है और इसलिए अंतर नगण्य होता है। इसलिए, प्राकृतिक आवृत्ति (उदाहरण के लिए 0.1 अवमंदन अनुपात के साथ, अवमंदित प्राकृतिक आवृत्ति केवल 1% निम्न होती है) को बताते हुए अवमंदित और अविभाजित विवरण अक्सर गिरा दिया जाता है।

पक्ष के भूखंड बताते हैं कि कैसे 0.1 और 0.3 अवमंदन अनुपात प्रभावित करते हैं कि प्रणाली समय के साथ "रिंग" कैसे करता है। अभ्यास में अक्सर जो किया जाता है वह एक प्रभाव (उदाहरण के लिए एक हथौड़ा द्वारा) के बाद मुक्त कंपन को प्रयोगात्मक रूप से मापना है और फिर दोलन की दर को मापकर प्रणाली की प्राकृतिक आवृत्ति का निर्धारण करना है, साथ ही गति की दर को मापकर अवमंदन अनुपात भी है। क्षय। प्राकृतिक आवृत्ति और अवमंदन अनुपात न केवल मुक्त कंपन में महत्वपूर्ण हैं, बल्कि यह भी विशेषता है कि प्रणाली प्रणोदित कंपन के तहत कैसे व्यवहार करता है।

Spring mass undamped
Spring mass underdamped
Spring mass critically damped
Spring mass overdamped

[10]


=== अवमंदन === के साथ प्रणोदित कंपन स्प्रिंग मास डैम्पर मॉडल का व्यवहार अनुकंपी बल के योग के साथ बदलता रहता है। उदाहरण के लिए, इस प्रकार का एक बल घूर्णन असंतुलन द्वारा उत्पन्न किया जा सकता है।

द्रव्यमान पर बलों का योग करने से निम्नलिखित साधारण अंतर समीकरण प्राप्त होते हैं:

इस समस्या का स्थिर अवस्था समाधान इस प्रकार लिखा जा सकता है:

परिणाम बताता है कि द्रव्यमान लागू बल की समान आवृत्ति, f पर दोलन करेगा, लेकिन एक चरण बदलाव के साथ कंपन "X" के आयाम को निम्न सूत्र द्वारा परिभाषित किया गया है।

जहां "आर" को द्रव्यमान-स्प्रिंग-डैम्पर मॉडल की अपरिवर्तित प्राकृतिक आवृत्ति पर अनुकंपी बल आवृत्ति के अनुपात के रूप में परिभाषित किया गया है।

चरण बदलाव, निम्न सूत्र द्वारा परिभाषित किया गया है।

मजबूर कंपन प्रतिक्रियाइन कार्यों की साजिश, जिसे प्रणाली की आवृत्ति प्रतिक्रिया कहा जाता है, प्रणोदित कंपन में सबसे महत्वपूर्ण विशेषताओं में से एक प्रस्तुत करता है। हल्के से नम प्रणाली में जब बल आवृत्ति प्राकृतिक आवृत्ति के निकट होती है () कंपन का आयाम बहुत अधिक हो सकता है। इस घटना को यांत्रिक अनुनाद कहा जाता है (बाद में एक प्रणाली की प्राकृतिक आवृत्ति को अक्सर गुंजयमान आवृत्ति के रूप में संदर्भित किया जाता है)। रोटर बेयरिंग प्रणाली में किसी भी घूर्णी गति जो गुंजयमान आवृत्ति को उत्तेजित करती है, को महत्वपूर्ण गति कहा जाता है।

यदि एक यांत्रिक प्रणाली में अनुनाद होता है तो यह बहुत हानिकारक हो सकता है - जिससे अंततः प्रणाली की विफलता हो सकती है। नतीजतन, कंपन विश्लेषण के प्रमुख कारणों में से एक यह भविष्यवाणी करना है कि इस प्रकार की अनुनाद कब हो सकती है और फिर यह निर्धारित करने के लिए कि इसे होने से रोकने के लिए क्या कदम उठाए जाएं। जैसा कि आयाम प्लॉट दिखाता है, अवमंदनजोड़ने से कंपन की परिमाण काफी निम्न हो सकती है। साथ ही, परिमाण को निम्न किया जा सकता है यदि प्रणाली की कठोरता या द्रव्यमान को बदलकर प्राकृतिक आवृत्ति को बल आवृत्ति से दूर स्थानांतरित किया जा सकता है। यदि प्रणाली को बदला नहीं जा सकता है, तो शायद फोर्सिंग फ्रीक्वेंसी को शिफ्ट किया जा सकता है (उदाहरण के लिए, बल उत्पन्न करने वाली मशीन की गति को बदलना)।

आवृत्ति प्रतिक्रिया भूखंडों में दिखाए गए प्रणोदित कंपन के संबंध में कुछ अन्य बिंदु निम्नलिखित हैं।

  • किसी दिए गए आवृत्ति अनुपात पर, कंपन का आयाम, X, बल के आयाम के सीधे आनुपातिक होता है (उदाहरण के लिए यदि आप बल को दुगुना करते हैं, तो कंपन दुगना हो जाता है)
  • बहुत निम्न या कोई अवमंदन नहीं होने पर, जब आवृत्ति अनुपात r < 1 और आवृत्ति अनुपात r > 1 होने पर आवृत्ति अनुपात r < 1 और 180 डिग्री चरण से बाहर हो जाता है, तो कंपन बल आवृत्ति के साथ चरण में होता है
  • जब r ≪ 1 आयाम स्थिर बल के तहत बसंत का विक्षेपण है इस विक्षेपण को स्थिर विक्षेपण कहा जाता है इसलिए, जब r≪ 1 स्पंज और द्रव्यमान के प्रभाव न्यूनतम होते हैं।
  • जब r≫ 1 कंपन का आयाम वास्तव में स्थैतिक विक्षेपण से निम्न होता है इस क्षेत्र में द्रव्यमान (F = ma) द्वारा उत्पन्न बल हावी होता है क्योंकि द्रव्यमान द्वारा देखा गया त्वरण आवृत्ति के साथ बढ़ता है। चूंकि इस क्षेत्र में स्प्रिंग, एक्स में देखा गया विक्षेपण निम्न हो गया है, इसलिए स्प्रिंग (एफ = kx) द्वारा आधार पर प्रेषित बल निम्न हो गया है। इसलिए, द्रव्यमान-स्प्रिंग-डैम्पर प्रणाली अनुकंपी बल को बढ़ते आधार से अलग कर रही है - जिसे कंपन अलगाव कहा जाता है। अधिक अवमंदन वास्तव में r≫ 1 होने पर कंपन अलगाव के प्रभाव को निम्न करता है क्योंकि अवमंदन बल (F = cv) भी आधार पर प्रेषित होता है।
  • जो भी अवमंदन है, कंपन 90 डिग्री चरण से बाहर है, जब आवृत्ति अनुपात r = 1 होता है, जो प्रणाली की प्राकृतिक आवृत्ति को निर्धारित करने के लिए बहुत सहायक होता है।
  • अवमंदन जो भी हो, जब r≫ 1, कंपन प्रणोदन आवृति के साथ 180 डिग्री फ़ेज़ से बाहर होता है
  • अवमंदन चाहे जो भी हो, जब r ≪ 1, कंपन बल आवृत्ति के साथ चरण में होता है

अनुनाद कारण

अनुनाद को समझना आसान है अगर स्प्रिंग और द्रव्यमान को ऊर्जा भंडारण तत्वों के रूप में देखा जाता है - बड़े पैमाने पर गतिशील ऊर्जा और स्प्रिंग भंडारण संभावित ऊर्जा के साथ। जैसा कि पहले चर्चा की गई है, जब द्रव्यमान और स्प्रिंग पर कोई बाहरी बल कार्य नहीं करता है तो वे ऊर्जा को प्राकृतिक आवृत्ति के बराबर दर पर स्थानांतरित करते हैं। दूसरे शब्दों में, ऊर्जा को द्रव्यमान और स्प्रिंग दोनों में कुशलतापूर्वक पंप करने के लिए आवश्यक है कि ऊर्जा स्रोत ऊर्जा को प्राकृतिक आवृत्ति के बराबर दर पर खिलाए। द्रव्यमान और स्प्रिंग पर बल लगाना एक बच्चे को झूले पर धकेलने के समान है, झूले को ऊंचा और ऊंचा करने के लिए सही समय पर धक्का देने की जरूरत होती है। जैसा कि झूले के मामले में होता है, लागू बल को बड़ी गति प्राप्त करने के लिए अधिक नहीं होना चाहिए, लेकिन केवल प्रणाली में ऊर्जा को जोड़ना चाहिए।

डम्पर ऊर्जा संचय करने के बजाय ऊर्जा का क्षय करता है। चूँकि अवमंदन बल वेग के समानुपाती होता है, गति जितनी अधिक होती है, उतना ही अधिक स्पंज ऊर्जा का प्रसार करता है। इसलिए, एक बिंदु है जब डम्पर द्वारा छोड़ी गई ऊर्जा बल द्वारा जोड़ी गई ऊर्जा के बराबर होती है। इस बिंदु पर, प्रणाली अपने अधिकतम आयाम तक पहुंच गई है और इस स्तर पर तब तक कंपन करना जारी रखेगी जब तक लागू बल समान रहता है। यदि कोई अवमंदन मौजूद नहीं है, तो ऊर्जा को नष्ट करने के लिए कुछ भी नहीं है और, सैद्धांतिक रूप से, गति अनंत तक बढ़ती रहेगी।

द्रव्यमान-स्प्रिंग-डैम्पर मॉडल के लिए जटिल बलों को लागू करना

पिछले खंड में केवल एक साधारण अनुकंपी बल को मॉडल पर लागू किया गया था, लेकिन इसे दो शक्तिशाली गणितीय उपकरणों का उपयोग करके काफी बढ़ाया जा सकता है। पहला फूरियर रूपांतरण है जो समय (समय डोमेन) के एक समारोह के रूप में एक संकेत लेता है और आवृत्ति (आवृत्ति डोमेन) के एक समारोह के रूप में इसे अपने अनुकंपी घटकों में तोड़ देता है। उदाहरण के लिए, द्रव्यमान-स्प्रिंग-डैम्पर मॉडल पर एक बल लगाने से जो निम्न चक्र को दोहराता है - 0.5 सेकंड के लिए 1 न्यूटन (इकाई) के बराबर बल और फिर 0.5 सेकंड के लिए कोई बल नहीं। इस प्रकार के बल का आकार 1 हर्ट्ज वर्ग तरंग होता है।

कैसे एक 1 हर्ट्ज वर्ग तरंग को साइन तरंगों (हार्मोनिक्स) और संबंधित आवृत्ति स्पेक्ट्रम के योग के रूप में दर्शाया जा सकता है। एनीमेशन के लिए क्लिक करें और पूर्ण रिज़ॉल्यूशन पर जाएं

स्क्वायर वेव का फूरियर रूपांतरण एक आवृत्ति स्पेक्ट्रम उत्पन्न करता है जो हार्मोनिक्स के परिमाण को प्रस्तुत करता है जो स्क्वायर वेव बनाते हैं (चरण भी उत्पन्न होता है, लेकिन आमतौर पर निम्न चिंता का विषय होता है और इसलिए अक्सर प्लॉट नहीं किया जाता है)। फूरियर ट्रांसफॉर्म का उपयोग गैर-आवधिक फ़ंक्शन फ़ंक्शंस जैसे क्षणिक (जैसे आवेग) और यादृच्छिक फ़ंक्शंस का विश्लेषण करने के लिए भी किया जा सकता है। फूरियर ट्रांसफॉर्म की गणना लगभग हमेशा फास्ट फूरियर ट्रांसफॉर्म (FFT) कंप्यूटर एल्गोरिदम का उपयोग खिड़की समारोह के संयोजन में की जाती है।

हमारे वर्ग तरंग बल के मामले में, पहला घटक वास्तव में 0.5 न्यूटन का एक स्थिर बल है और आवृत्ति स्पेक्ट्रम में 0 हर्ट्ज पर मान द्वारा दर्शाया गया है। अगला घटक 0.64 के आयाम के साथ 1 हर्ट्ज साइन लहर है। इसे 1 हर्ट्ज पर रेखा द्वारा दिखाया गया है। शेष घटक विषम आवृत्तियों पर हैं और यह पूर्ण वर्ग तरंग उत्पन्न करने के लिए साइन तरंगों की अनंत मात्रा लेता है। इसलिए, फूरियर रूपांतरण आपको अधिक जटिल बल (जैसे एक वर्ग तरंग) के बजाय लगाए जा रहे ज्यावक्रीय बलों के योग के रूप में बल की व्याख्या करने की अनुमति देता है।

पिछले खंड में, कंपन समाधान एकल अनुकंपी बल के लिए दिया गया था, लेकिन फूरियर रूपांतरण सामान्य रूप से कई अनुकंपी बल देता है। दूसरा गणितीय उपकरण, सुपरपोज़िशन सिद्धांत, कई बलों से समाधान के योग की अनुमति देता है यदि प्रणाली रैखिक प्रणाली है। स्प्रिंग-मास-डैम्पर मॉडल के मामले में, प्रणाली रैखिक है यदि स्प्रिंग बल विस्थापन के समानुपाती होता है और अवमंदन ब्याज की गति की सीमा पर वेग के समानुपाती होता है। इसलिए, स्क्वायर वेव के साथ समस्या का समाधान स्क्वायर वेव के आवृत्ति स्पेक्ट्रम में पाए जाने वाले अनुकंपी बलों में से प्रत्येक से अनुमानित कंपन को जोड़ना है।

आवृत्ति प्रतिक्रिया मॉडल

कंपन समस्या के समाधान को इनपुट/आउटपुट संबंध के रूप में देखा जा सकता है - जहां बल इनपुट है और आउटपुट कंपन है। आवृत्ति डोमेन (परिमाण और चरण) में बल और कंपन का प्रतिनिधित्व निम्नलिखित संबंध की अनुमति देता है:

आवृत्ति प्रतिक्रिया फ़ंक्शन कहा जाता है (जिसे स्थानांतरण प्रकार्य के रूप में भी जाना जाता है, लेकिन तकनीकी रूप से सटीक नहीं है) और इसमें एक परिमाण और चरण घटक दोनों होते हैं (यदि जटिल संख्या, वास्तविक और काल्पनिक घटक के रूप में प्रतिनिधित्व किया जाता है)। फ्रीक्वेंसी रिस्पांस फंक्शन (FRF) का परिमाण पहले मास-स्प्रिंग-डैम्पर प्रणाली के लिए प्रस्तुत किया गया था।

एफआरएफ के चरण को पहले भी प्रस्तुत किया गया था:

File:Frequency response example.png
आवृत्ति प्रतिक्रिया मॉडल

उदाहरण के लिए, 1 किग्रा के द्रव्यमान, 1.93 N/mm की स्प्रिंग कठोरता और 0.1 के अवमंदन अनुपात के साथ द्रव्यमान-स्प्रिंग-डैम्पर प्रणाली के लिए FRF की गणना करना। इस विशिष्ट प्रणाली के लिए स्प्रिंग और द्रव्यमान के मान 7 हर्ट्ज की प्राकृतिक आवृत्ति देते हैं। पहले से 1 हर्ट्ज वर्ग तरंग को लागू करने से द्रव्यमान के अनुमानित कंपन की गणना की जा सकती है। चित्र परिणामी कंपन को दर्शाता है। इस उदाहरण में ऐसा होता है कि वर्ग तरंग का चौथा अनुकंपी 7 हर्ट्ज पर गिरता है। मास-स्प्रिंग-डैम्पर की आवृत्ति प्रतिक्रिया इसलिए उच्च 7 हर्ट्ज कंपन का उत्पादन करती है, भले ही इनपुट बल में अपेक्षाकृत निम्न 7 हर्ट्ज अनुकंपी था। यह उदाहरण इस बात पर प्रकाश डालता है कि परिणामी कंपन फोर्सिंग फ़ंक्शन और उस प्रणाली पर निर्भर करता है जिस पर बल लगाया जाता है।

आंकड़ा परिणामी कंपन के समय डोमेन प्रतिनिधित्व को भी दर्शाता है। यह एक व्युत्क्रम फूरियर रूपांतरण करके किया जाता है जो आवृत्ति डोमेन डेटा को समय डोमेन में परिवर्तित करता है। व्यवहार में, यह शायद ही कभी किया जाता है क्योंकि आवृत्ति स्पेक्ट्रम सभी आवश्यक जानकारी प्रदान करता है।

आवृति रिस्पॉन्स फ़ंक्शन (FRF) को आवश्यक रूप से प्रणाली के द्रव्यमान, अवमंदन और कठोरता के ज्ञान से गणना करने की आवश्यकता नहीं है - लेकिन इसे प्रयोगात्मक रूप से मापा जा सकता है। उदाहरण के लिए, यदि आवृत्तियों की एक सीमा पर एक ज्ञात बल लागू किया जाता है, और यदि संबंधित कंपन को मापा जाता है, तो आवृत्ति प्रतिक्रिया फ़ंक्शन की गणना की जा सकती है, जिससे प्रणाली को चिह्नित किया जा सके। संरचना की कंपन विशेषताओं को निर्धारित करने के लिए इस तकनीक का प्रयोग प्रयोगात्मक मोडल विश्लेषण के क्षेत्र में किया जाता है।

=== स्वतंत्रता प्रणाली और मोड आकार === की एकाधिक डिग्री

स्वतंत्रता मॉडल की दो डिग्री

सरल जन-स्प्रिंग-डैम्पर मॉडल कंपन विश्लेषण की नींव है, लेकिन अधिक जटिल प्रणालियों के बारे में क्या? ऊपर वर्णित मास-स्प्रिंग-डैम्पर मॉडल को सिंगल डिग्री ऑफ फ्रीडम (इंजीनियरिंग) (एसडीओएफ) मॉडल कहा जाता है क्योंकि द्रव्यमान को केवल ऊपर और नीचे जाने के लिए माना जाता है। अधिक जटिल प्रणालियों में, प्रणाली को अधिक लोगों में विभाजित किया जाना चाहिए जो एक से अधिक दिशाओं में चलते हैं, स्वतंत्रता की डिग्री (इंजीनियरिंग) हैं। आजादी की कई डिग्री (एमडीओएफ) की प्रमुख अवधारणाओं को केवल 2 डिग्री स्वतंत्रता मॉडल को देखकर समझा जा सकता है जैसा कि आंकड़े में दिखाया गया है।

2DOF प्रणाली की गति के समीकरण इस प्रकार पाए जाते हैं:

इसे मैट्रिक्स (गणित) प्रारूप में फिर से लिखा जा सकता है:

इस मैट्रिक्स समीकरण का एक अधिक कॉम्पैक्ट रूप इस प्रकार लिखा जा सकता है:

कहाँ और सममित मेट्रिसेस हैं जिन्हें क्रमशः द्रव्यमान, अवमंदन और कठोरता मैट्रिसेस के रूप में संदर्भित किया जाता है। मैट्रिक्स एनएक्सएन वर्ग मैट्रिक्स हैं जहां एन प्रणाली की स्वतंत्रता की डिग्री की संख्या है।

निम्नलिखित विश्लेषण में वह मामला शामिल है जहां कोई अवमंदन नहीं है और कोई लागू बल नहीं है (अर्थात मुक्त कंपन)। चिपचिपी नम प्रणाली का समाधान कुछ अधिक जटिल है।[11]

निम्न प्रकार के हल मानकर इस अवकल समीकरण को हल किया जा सकता है:

नोट: के घातीय समाधान का उपयोग करना रैखिक अवकल समीकरणों को हल करने के लिए प्रयुक्त एक गणितीय युक्ति है। यूलर के सूत्र का उपयोग करना और समाधान का केवल वास्तविक भाग लेना यह 1 डीओएफ प्रणाली के लिए समान कोसाइन समाधान है। घातीय समाधान का उपयोग केवल इसलिए किया जाता है क्योंकि गणितीय रूप से हेरफेर करना आसान होता है।

समीकरण तब बन जाता है:

तब से शून्य के बराबर नहीं हो सकता समीकरण निम्नलिखित को निम्न करता है।


eigenvalue प्रॉब्लम

इसे गणित में एक आइगेनवैल्यू समस्या के रूप में संदर्भित किया जाता है और समीकरण को पूर्व-गुणा करके मानक प्रारूप में रखा जा सकता है

और अगर: और

समस्या का समाधान N eigenvalues ​​​​में होता है (अर्थात ), जहां एन स्वतंत्रता की डिग्री की संख्या से मेल खाती है। eigenvalues ​​प्रणाली की प्राकृतिक आवृत्तियों प्रदान करते हैं। जब इन eigenvalues ​​​​को वापस समीकरणों के मूल सेट में प्रतिस्थापित किया जाता है, के मान जो प्रत्येक eigenvalue के अनुरूप होते हैं उन्हें eigenvectors कहा जाता है। ये ईजेनवेक्टर प्रणाली के मोड आकार का प्रतिनिधित्व करते हैं। आइगेनवैल्यू समस्या का समाधान काफी बोझिल हो सकता है (विशेष रूप से स्वतंत्रता की कई डिग्री वाली समस्याओं के लिए), लेकिन सौभाग्य से अधिकांश गणित विश्लेषण कार्यक्रमों में आइगेनवैल्यू रूटीन होते हैं।

eigenvalues ​​​​और eigenvectors अक्सर निम्नलिखित मैट्रिक्स प्रारूप में लिखे जाते हैं और प्रणाली के मोडल मॉडल का वर्णन करते हैं:

2 डीओएफ मॉडल का उपयोग करने वाला एक सरल उदाहरण अवधारणाओं को स्पष्ट करने में मदद कर सकता है। मान लें कि दोनों द्रव्यमान का द्रव्यमान 1 किग्रा है और तीनों स्प्रिंग्स की कठोरता 1000 N/m के बराबर है। इस समस्या के लिए द्रव्यमान और कठोरता मैट्रिक्स तब हैं:

और

तब एक eigenvalue दिनचर्या द्वारा दी गई इस समस्या के लिए eigenvalues ​​है:

हर्ट्ज़ की इकाइयों में प्राकृतिक आवृत्तियाँ तब होती हैं (याद रखना ) और संबंधित प्राकृतिक आवृत्तियों के लिए दो मोड आकार इस प्रकार दिए गए हैं:

चूंकि प्रणाली एक 2 डीओएफ प्रणाली है, उनके संबंधित प्राकृतिक आवृत्तियों और आकार के साथ दो मोड हैं। मोड आकार वैक्टर पूर्ण गति नहीं हैं, लेकिन केवल स्वतंत्रता की डिग्री के सापेक्ष गति का वर्णन करते हैं। हमारे मामले में पहला मोड शेप वेक्टर कह रहा है कि जनता चरण में एक साथ चल रही है क्योंकि उनके पास समान मूल्य और चिह्न हैं। दूसरे मोड शेप वेक्टर के मामले में, प्रत्येक द्रव्यमान समान दर से विपरीत दिशा में आगे बढ़ रहा है।

एक बहु डीओएफ समस्या का चित्रण

जब स्वतंत्रता की कई डिग्री होती हैं, तो मोड आकृतियों की कल्पना करने का एक तरीका ईएसआई समूह द्वारा फेमैप, एएनएसवाईएस या वीए वन जैसे संरचनात्मक विश्लेषण सॉफ़्टवेयर का उपयोग करके उन्हें एनिमेट करना है। एनिमेटिंग मोड आकृतियों का एक उदाहरण नीचे दिए गए चित्र में ब्रैकट आई-बीम के लिए दिखाया गया हैI-बीम जैसा कि एएनएसवाईएस पर मोडल विश्लेषण का उपयोग करके दिखाया गया है। इस मामले में, परिमित तत्व विधि का उपयोग ईजेनवेल्यूज और ईजेनवेक्टर#वाइब्रेशन विश्लेषण को हल करने के लिए ब्याज की वस्तु को जोड़कर द्रव्यमान और कठोरता मैट्रिसेस का एक अनुमान उत्पन्न करने के लिए किया गया था। ध्यान दें कि, इस मामले में, परिमित तत्व विधि जालीदार सतह का एक अनुमान प्रदान करती है (जिसके लिए कंपन मोड और आवृत्तियों की अनंत संख्या मौजूद है)। इसलिए, यह अपेक्षाकृत सरल मॉडल जिसमें 100 डिग्री से अधिक स्वतंत्रता है और इसलिए कई प्राकृतिक आवृत्तियों और मोड आकार हैं, पहली प्राकृतिक आवृत्तियों और मोड के लिए एक अच्छा सन्निकटन प्रदान करता है।. आम तौर पर, व्यावहारिक अनुप्रयोगों के लिए केवल पहले कुछ तरीके महत्वपूर्ण होते हैं।

In this table the first and second (top and bottom respectively) horizontal bending (left), torsional (middle), and vertical bending (right) vibrational modes of an I-beam are visualized. There also exist other kinds of vibrational modes in which the beam gets compressed/stretched out in the height, width and length directions respectively.
The mode shapes of a cantilevered I-beam
Beam mode 5.gif

^ ध्यान दें कि किसी भी गणितीय मॉडल का संख्यात्मक सन्निकटन करते समय, रुचि के मापदंडों का अभिसरण सुनिश्चित किया जाना चाहिए।

एकाधिक डीओएफ समस्या एक डीओएफ समस्या में परिवर्तित

ईजेनवेक्टरों में बहुत महत्वपूर्ण गुण होते हैं जिन्हें ऑर्थोगोनलिटी गुण कहा जाता है। इन गुणों का उपयोग बहु-डिग्री स्वतंत्रता मॉडल के समाधान को बहुत सरल बनाने के लिए किया जा सकता है। यह दिखाया जा सकता है कि eigenvectors में निम्नलिखित गुण हैं:

और विकर्ण मैट्रिक्स हैं जिनमें प्रत्येक मोड के लिए मोडल द्रव्यमान और कठोरता मान होते हैं। (नोट: चूंकि eigenvectors (मोड आकृतियों) को मनमाने ढंग से स्केल किया जा सकता है, ऑर्थोगोनलिटी गुणों का उपयोग अक्सर eigenvectors को स्केल करने के लिए किया जाता है, इसलिए प्रत्येक मोड के लिए मोडल मास मान 1 के बराबर होता है। मोडल मास मैट्रिक्स इसलिए एक पहचान मैट्रिक्स है)

निम्नलिखित समन्वय परिवर्तन करके इन गुणों का उपयोग बहु-डिग्री स्वतंत्रता मॉडल के समाधान को सरल बनाने के लिए किया जा सकता है।

मूल मुक्त कंपन अंतर समीकरण में इस समन्वय परिवर्तन का उपयोग करने से निम्न समीकरण प्राप्त होता है।

द्वारा इस समीकरण को पूर्वगुणित करके ओर्थोगोनलिटी गुणों का लाभ उठाते हुए

ओर्थोगोनलिटी गुण तब इस समीकरण को सरल करते हैं:

यह समीकरण कई डिग्री स्वतंत्रता प्रणालियों के लिए कंपन विश्लेषण की नींव है। नम प्रणाली के लिए एक समान प्रकार का परिणाम प्राप्त किया जा सकता है।[11]कुंजी यह है कि मोडल द्रव्यमान और कठोरता मैट्रिसेस विकर्ण मैट्रिसेस हैं और इसलिए समीकरणों को अलग कर दिया गया है। दूसरे शब्दों में, समस्या को स्वतंत्रता की समस्या की एक बड़ी बोझिल बहुस्तरीय समस्या से कई एकल स्तर की स्वतंत्रता समस्याओं में बदल दिया गया है, जिन्हें ऊपर बताए गए समान तरीकों का उपयोग करके हल किया जा सकता है।

x के लिए हल करने को q के लिए हल करने से प्रतिस्थापित किया जाता है, जिसे मोडल निर्देशांक या मोडल भागीदारी कारक कहा जाता है।

यदि यह समझना अधिक स्पष्ट हो सकता है के रूप में लिखा है:

इस रूप में लिखा यह देखा जा सकता है कि स्वतंत्रता की प्रत्येक डिग्री पर कंपन केवल मोड आकृतियों का एक रैखिक योग है। इसके अलावा, अंतिम कंपन में प्रत्येक मोड कितना भाग लेता है, क्यू द्वारा परिभाषित किया जाता है, इसका मोडल भागीदारी कारक।

कठोर-शरीर मोड

स्वतंत्रता प्रणाली की एक अनियंत्रित बहु-डिग्री कठोर-शरीर अनुवाद और/या रोटेशन और कंपन दोनों का अनुभव करती है। कठोर-पिंड मोड के अस्तित्व के परिणामस्वरूप शून्य प्राकृतिक आवृत्ति होती है। इसी मोड आकार को कठोर-बॉडी मोड कहा जाता है।

यह भी देखें

संदर्भ

  1. 1.0 1.1 Tustin, Wayne. Where to place the control accelerometer: one of the most critical decisions in developing random vibration tests also is the most neglected, EE-Evaluation Engineering, 2006
  2. "Polytec InFocus 1/2007" (PDF). Archived from the original (PDF) on 2019-07-24. Retrieved 2019-07-24.
  3. Tony Araujo. The evolution of automotive vibration fixturing, EE-Evaluation Engineering, 2019
  4. 4.0 4.1 Blanks, H.S., "Equivalence Techniques for Vibration Testing," SVIC Notes, pp 17.
  5. Araujo, T. and Yao, B., "Vibration Fixture Performance Qualification – A Review of Automotive Industry Best Practices," SAE Technical Paper 2020-01-1065, 2020, https://doi.org/10.4271/2020-01-1065.
  6. Crawford, Art; Simplified Handbook of Vibration Analysis
  7. Eshleman, R 1999, Basic machinery vibrations: An introduction to machine testing, analysis, and monitoring
  8. Mobius Institute; Vibration Analyst Category 2 – Course Notes 2013
  9. "रखरखाव में कंपन विश्लेषण का महत्व" (in English). 2021-01-05. Retrieved 2021-01-08.{{cite web}}: CS1 maint: url-status (link)
  10. Simionescu, P.A. (2014). ऑटोकैड उपयोगकर्ताओं के लिए कंप्यूटर एडेड रेखांकन और सिमुलेशन उपकरण (1st ed.). Boca Raton, FL: CRC Press. ISBN 978-1-4822-5290-3.
  11. 11.0 11.1 Maia, Silva. Theoretical And Experimental Modal Analysis, Research Studies Press Ltd., 1997, ISBN 0-471-97067-0


अग्रिम पठन


बाहरी संबंध