क्लेन बोतल

From Vigyanwiki
Revision as of 09:17, 5 July 2023 by alpha>Indicwiki (Created page with "{{Short description|Non-orientable mathematical surface}} Image:Klein bottle.svg|thumb|upright|right|त्रि-आयामी अंतरिक्ष में क्...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
File:Klein bottle.svg
त्रि-आयामी अंतरिक्ष में क्लेन बोतल विसर्जन (गणित) का द्वि-आयामी प्रतिनिधित्व

गणित में, क्लेन बोतल (/ˈkln/) उन्मुखता |नॉन-ओरिएंटेबल सतह (टोपोलॉजी) का एक उदाहरण है; यह, अनौपचारिक रूप से, एक तरफा सतह है, जिस पर यदि यात्रा की जाती है, तो यात्री को उल्टा घुमाते हुए मूल बिंदु तक वापस ले जाया जा सकता है। अधिक औपचारिक रूप से, क्लेन बोतल एक द्वि-आयामी कई गुना है जिस पर प्रत्येक बिंदु पर एक सामान्य वेक्टर को परिभाषित नहीं किया जा सकता है जो पूरे मैनिफोल्ड पर निरंतर कार्य को बदलता रहता है। अन्य संबंधित गैर-उन्मुख सतहों में मोबियस पट्टी और वास्तविक प्रक्षेप्य विमान शामिल हैं। जबकि मोबियस स्ट्रिप सीमा (टोपोलॉजी) वाली एक सतह है, क्लेन बोतल की कोई सीमा नहीं है। तुलना के लिए, एक गोला एक उन्मुख सतह है जिसकी कोई सीमा नहीं है।

क्लेन बोतल का वर्णन पहली बार 1882 में गणितज्ञ फ़ेलिक्स क्लेन द्वारा किया गया था।[1]

निर्माण

निम्नलिखित वर्ग क्लेन बोतल का मूल बहुभुज है। विचार मिलान वाले तीरों के साथ संबंधित लाल और नीले किनारों को एक साथ 'गोंद' करने का है, जैसा कि नीचे दिए गए चित्र में है। ध्यान दें कि यह इस अर्थ में एक अमूर्त ग्लूइंग है कि इसे तीन आयामों में साकार करने का प्रयास एक स्व-प्रतिच्छेदी क्लेन बोतल में परिणामित होता है।[2]

File:Klein Bottle Folding 1.svgक्लेन बोतल का निर्माण करने के लिए, वर्ग के लाल तीरों को एक साथ (बाएँ और दाएँ) चिपकाएँ, जिसके परिणामस्वरूप एक सिलेंडर बनेगा। सिलेंडर के सिरों को एक साथ चिपकाने के लिए ताकि वृत्तों पर तीर मेल खाएँ, एक छोर को सिलेंडर के किनारे से गुजारा जाएगा। यह आत्म-प्रतिच्छेदन का एक वक्र बनाता है; इस प्रकार यह त्रि-आयामी अंतरिक्ष में क्लेन बोतल का विसर्जन (गणित) है।

<गैलरी |= संरेखित=केंद्र > Image:Klein Bottle Folding 1.svg Image:Klein Bottle Folding 2.svg Image:Klein Bottle Folding 3.svg Image:Klein Bottle Folding 4.svg Image:Klein Bottle Folding 5.svg Image:Klein Bottle Folding 6.svg</गैलरी>

यह विसर्जन क्लेन बोतल के कई गुणों को देखने के लिए उपयोगी है। उदाहरण के लिए, क्लेन बोतल की कोई सीमा नहीं है, जहां सतह अचानक रुक जाती है, और यह उन्मुखता|गैर-अभिविन्यास है, जैसा कि विसर्जन की एकतरफाता में परिलक्षित होता है।

File:Acme klein bottle.jpg
हाथ से उड़ायी गयी क्लेन बोतल

क्लेन बोतल का सामान्य भौतिक मॉडल एक समान निर्माण है। विज्ञान संग्रहालय (लंदन) में हाथ से उड़ाई गई कांच की क्लेन बोतलों का एक संग्रह है, जो इस टोपोलॉजिकल थीम पर कई विविधताएं प्रदर्शित करता है। बोतलें 1995 की हैं और इन्हें एलन बेनेट द्वारा संग्रहालय के लिए बनाया गया था।[3]

क्लेन बोतल, उचित, स्वयं-प्रतिच्छेद नहीं करती है। बहरहाल, क्लेन बोतल को चार आयामों में समाहित करने की कल्पना करने का एक तरीका है। त्रि-आयामी स्थान में चौथा आयाम जोड़कर, आत्म-प्रतिच्छेदन को समाप्त किया जा सकता है। चौथे आयाम के साथ चौराहे वाले ट्यूब के एक टुकड़े को धीरे से मूल त्रि-आयामी स्थान से बाहर धकेलें। एक उपयोगी सादृश्य समतल पर एक स्व-प्रतिच्छेदी वक्र पर विचार करना है; विमान से एक स्ट्रैंड को उठाकर स्व-प्रतिच्छेदन को समाप्त किया जा सकता है।[4]

File:Klein bottle time evolution in xyzt-space.gif
Xyzt-स्पेस में क्लेन आकृति का समय विकास

स्पष्टीकरण के लिए मान लीजिए कि हम समय को उस चौथे आयाम के रूप में अपनाते हैं। विचार करें कि xyzt-space में आकृति का निर्माण कैसे किया जा सकता है। संलग्न चित्रण (समय विकास...) आकृति का एक उपयोगी विकास दर्शाता है। पर t = 0 दीवार चौराहे बिंदु के पास कहीं एक कली से उगती है। आकृति के कुछ समय तक बढ़ने के बाद, दीवार का सबसे प्रारंभिक भाग पीछे हटना शुरू हो जाता है, चेशायर बिल्ली की तरह गायब हो जाता है लेकिन अपनी लगातार बढ़ती मुस्कान को पीछे छोड़ देता है। जब तक विकास का मोर्चा उस स्थान पर पहुँच जाता है जहाँ कली थी, वहाँ काटने के लिए कुछ भी नहीं होता है और विकास मौजूदा संरचना में छेद किए बिना पूरा हो जाता है। परिभाषित 4-आकृति 3-स्पेस में मौजूद नहीं हो सकती है लेकिन 4-स्पेस में आसानी से समझी जा सकती है।[4]

अधिक औपचारिक रूप से, क्लेन बोतल भागफल स्थान (टोपोलॉजी) है जिसे वर्ग (ज्यामिति) [0,1] × [0,1] के रूप में वर्णित किया गया है, जिसकी भुजाओं को संबंधों द्वारा पहचाना जाता है। (0, y) ~ (1, y) के लिए 0 ≤ y ≤ 1 और (x, 0) ~ (1 − x, 1) के लिए 0 ≤ x ≤ 1.

गुण

मोबियस स्ट्रिप की तरह, क्लेन बोतल एक द्वि-आयामी मैनिफोल्ड है जो उन्मुखीकरण नहीं है। मोबियस स्ट्रिप के विपरीत, यह एक बंद मैनिफोल्ड है, जिसका अर्थ है कि यह बिना सीमा के एक सघन स्थान मैनिफोल्ड है। जबकि मोबियस पट्टी को त्रि-आयामी यूक्लिडियन स्थान 'आर' में एम्बेड किया जा सकता है3, क्लेन बोतल नहीं कर सकती। इसे आर में एम्बेड किया जा सकता हैहालाँकि, 4[4]

इस क्रम को जारी रखते हुए, उदाहरण के लिए एक ऐसी सतह बनाना जिसे आर में एम्बेड नहीं किया जा सके4लेकिन R में हो सकता है5, संभव है; इस मामले में, एक गोलाकार के दो सिरों को एक दूसरे से उसी तरह जोड़ने से, जैसे कि क्लेन बोतल के सिलेंडर के दो सिरों से, एक आकृति बनती है, जिसे स्फेरिंडर क्लेन बोतल कहा जाता है, जिसे आर में पूरी तरह से एम्बेड नहीं किया जा सकता है।4.[5] क्लेन बोतल को घेरा एस के ऊपर फाइबर बंडल के रूप में देखा जा सकता है1, फाइबर एस के साथ1, इस प्रकार है: कोई ऊपर से वर्ग (किनारे को समतुल्य संबंध की पहचान करने वाले मॉड्यूलो) को कुल स्थान ई के रूप में लेता है, जबकि आधार स्थान बी को वाई में इकाई अंतराल द्वारा दिया जाता है, मॉड्यूल 1 ~ 0। प्रक्षेपण π:E→B तब दिया जाता है π([x, y]) = [y].

क्लेन बोतल का निर्माण दो मोबियस स्ट्रिप्स के किनारों को जोड़कर (चार आयामी अंतरिक्ष में, क्योंकि तीन आयामी अंतरिक्ष में सतह को खुद को काटने की अनुमति के बिना नहीं किया जा सकता है) किया जा सकता है, जैसा कि लियो द्वारा निम्नलिखित लिमरिक (कविता) में वर्णित है। मोजर:[6]

A mathematician named Klein
Thought the Möbius band was divine.
     Said he: "If you glue
     The edges of two,
You'll get a weird bottle like mine."

एक वर्ग के विपरीत किनारों की पहचान करके क्लेन बोतल का प्रारंभिक निर्माण दर्शाता है कि क्लेन बोतल को एक 0-सेल पी, दो 1-सेल सी के साथ सीडब्ल्यू जटिल संरचना दी जा सकती है।1, सी2 और एक 2-सेल डी. इसलिए इसकी यूलर विशेषता है 1 − 2 + 1 = 0. सीमा समरूपता द्वारा दी गई है D = 2C1 और C1 = ∂C2 = 0, क्लेन बोतल K की सेलुलर समरूपता उत्पन्न करती है H0(K, Z) = Z, H1(K, Z) = Z×(Z/2Z) और Hn(K, Z) = 0 के लिए n > 1.

टोरस्र्स से क्लेन बोतल तक 2-1 कवरिंग मानचित्र है, क्योंकि क्लेन बोतल के मूल क्षेत्र की दो प्रतियां, एक को दूसरे की दर्पण छवि के बगल में रखा जाता है, टोरस का एक मूल क्षेत्र प्राप्त होता है। टोरस और क्लेन बोतल दोनों का सार्वभौमिक आवरण समतल आर है2.

क्लेन बोतल के मूल समूह को डेक परिवर्तन#डेक परिवर्तन समूह के रूप में निर्धारित किया जा सकता है, सार्वभौमिक कवर के नियमित कवर और एक समूह की प्रस्तुति है a, b | ab = b−1a.

File:Klein bottle colouring.svg
6-रंग की क्लेन बोतल, हेवुड अनुमान का एकमात्र अपवाद

क्लेन बोतल की सतह पर किसी भी मानचित्र को रंगने के लिए छह रंग पर्याप्त हैं; यह हेवुड अनुमान का एकमात्र अपवाद है, जो चार रंग प्रमेय का सामान्यीकरण है, जिसके लिए सात की आवश्यकता होगी।

एक क्लेन बोतल दो प्रक्षेप्य तलों के जुड़े योग के समरूप है।[7] यह एक गोले और दो क्रॉस-कैप के समरूप भी है।

यूक्लिडियन अंतरिक्ष में एम्बेडेड होने पर, क्लेन बोतल एक तरफा होती है। हालाँकि, अन्य टोपोलॉजिकल 3-स्पेस हैं, और कुछ गैर-ओरिएंटेबल उदाहरणों में एक क्लेन बोतल को ऐसे एम्बेड किया जा सकता है कि यह दो-तरफा हो, हालांकि स्पेस की प्रकृति के कारण यह गैर-ओरिएंटेबल रहता है।[2]


विच्छेदन

File:KleinBottle-cut.svg
क्लेन बोतल को विच्छेदित करने से मोबियस स्ट्रिप्स प्राप्त होती हैं।

क्लेन बोतल को समरूपता के तल के साथ आधे भागों में विच्छेदित करने पर दो दर्पण छवि मोबियस स्ट्रिप्स प्राप्त होती हैं, यानी एक बाएं हाथ के आधे-मोड़ के साथ और दूसरा दाएं हाथ के आधे-मोड़ के साथ (इनमें से एक दाईं ओर चित्रित है) . याद रखें कि चित्रित चौराहा वास्तव में वहां नहीं है।[8]


सरल-बंद वक्र

क्लेन बोतल की सतह पर दिखाई देने वाले सरल-बंद वक्रों के प्रकारों का एक विवरण पूर्णांक गुणांक के साथ गणना की गई क्लेन बोतल के पहले होमोलॉजी समूह के उपयोग द्वारा दिया गया है। यह समूह Z×Z का समरूपी है2. अभिविन्यास के उलट होने तक, एकमात्र होमोलॉजी कक्षाएं जिनमें सरल-बंद वक्र होते हैं वे इस प्रकार हैं: (0,0), (1,0), (1,1), (2,0), (0,1)। एक साधारण बंद वक्र के अभिविन्यास के उलट होने तक, यदि यह क्लेन बोतल बनाने वाले दो क्रॉस-कैप्स में से एक के भीतर स्थित है, तो यह होमोलॉजी वर्ग (1,0) या (1,1) में है; यदि यह क्लेन बोतल को दो मोबियस स्ट्रिप्स में काटता है, तो यह होमोलॉजी वर्ग (2,0) में है; यदि यह क्लेन बोतल को वलय में काटता है, तो यह समरूपता वर्ग (0,1) में है; और यदि किसी डिस्क को बाध्य करता है, तो यह होमोलॉजी वर्ग (0,0) में है।[4]

पैरामीट्रिज़ेशन

File:KleinBottle-Figure8-01.svg
क्लेन बोतल का चित्र 8 विसर्जन।
क्लेन बैगेल क्रॉस सेक्शन, एक आकृति आठ वक्र (गेरोनो का लेम्निस्केट) दिखा रहा है।

अंक 8 विसर्जन

क्लेन बोतल का चित्र 8 या बैगेल विसर्जन (गणित) बनाने के लिए, कोई मोबियस पट्टी से शुरू कर सकता है और किनारे को मध्य रेखा पर लाने के लिए इसे कर्ल कर सकता है; चूँकि केवल एक ही किनारा है, यह मध्य रेखा से गुजरते हुए वहीं मिलेगा। इसमें अर्ध-मोड़ के साथ आकृति-8 टॉरस के रूप में एक विशेष रूप से सरल पैरामीट्रिज़ेशन है:[4]

0 ≤ θ < 2π, 0 ≤ v < 2π और r > 2 के लिए।

इस विसर्जन में, स्व-प्रतिच्छेदन वृत्त (जहां पाप (v) शून्य है) xy तल में एक ज्यामितीय वृत्त है। धनात्मक स्थिरांक r इस वृत्त की त्रिज्या है। पैरामीटर θ xy विमान में कोण के साथ-साथ आकृति 8 का घूर्णन भी देता है, और v 8-आकार वाले क्रॉस सेक्शन के आसपास की स्थिति निर्दिष्ट करता है। उपरोक्त पैरामीट्रिजेशन के साथ क्रॉस सेक्शन 2:1 लिसाजस वक्र है।

4-डी गैर-प्रतिच्छेदी

एक गैर-प्रतिच्छेदी 4-डी पैरामीट्रिज़ेशन को फ़्लैट टोरस#फ़्लैट टोरस के आधार पर तैयार किया जा सकता है:

जहां आर और पी स्थिरांक हैं जो पहलू अनुपात निर्धारित करते हैं, θ और वी ऊपर परिभाषित के समान हैं। v आकृति-8 के आसपास की स्थिति के साथ-साथ x-y तल में स्थिति भी निर्धारित करता है। θ चित्र-8 के घूर्णन कोण और z-w तल के चारों ओर की स्थिति को भी निर्धारित करता है। ε कोई छोटा स्थिरांक है और ε synv स्वयं प्रतिच्छेदन से बचने के लिए z-w स्थान में एक छोटा v निर्भर उभार है। वी बम्प स्वयं प्रतिच्छेद करने वाली 2-डी/प्लानर आकृति-8 को किनारे पर देखे गए x-y-w और x-y-z स्थान में 3-डी स्टाइल वाले आलू चिप या सैडल आकार में फैलाने का कारण बनता है। जब ε=0 स्व-प्रतिच्छेदन z-w समतल <0, 0, cosθ, synθ> में एक वृत्त होता है।[4]

3डी पिंच्ड टोरस / 4डी मोबियस ट्यूब

File:Pinched Torus Klein bottle.jpg
क्लेन बोतल का पिंच टोरस विसर्जन।

पिंच्ड टोरस शायद तीन और चार दोनों आयामों में क्लेन बोतल का सबसे सरल पैरामीट्रिजेशन है। यह एक टोरस है, जो तीन आयामों में चपटा होता है और एक तरफ से होकर गुजरता है। दुर्भाग्य से, तीन आयामों में इस पैरामीट्रिज़ेशन में दो चुटकी बिंदु (गणित) हैं, जो इसे कुछ अनुप्रयोगों के लिए अवांछनीय बनाता है। चार आयामों में z आयाम w आयाम में घूमता है और कोई स्व-प्रतिच्छेदन या चुटकी बिंदु नहीं हैं।[4]

कोई इसे एक ट्यूब या सिलेंडर के रूप में देख सकता है जो टोरस की तरह चारों ओर लपेटता है, लेकिन इसका गोलाकार क्रॉस सेक्शन चार आयामों में फ़्लिप करता है, जैसे ही यह फिर से जुड़ता है, इसके पीछे का भाग प्रस्तुत होता है, जैसे मोबियस स्ट्रिप क्रॉस सेक्शन फिर से जुड़ने से पहले घूमता है। इसका 3डी ऑर्थोगोनल प्रक्षेपण ऊपर दिखाया गया पिंच किया हुआ टोरस है। जिस प्रकार मोबियस पट्टी एक ठोस टोरस का एक उपसमूह है, उसी प्रकार मोबियस ट्यूब एक टोरॉयडली बंद स्फेरिंडर (ठोस स्फेरिटोरस) का एक उपसमूह है।

बोतल का आकार

बोतल के 3-आयामी विसर्जन का पैरामीट्रिजेशन स्वयं बहुत अधिक जटिल है।

File:Klein bottle translucent.png
थोड़ी पारदर्शिता के साथ क्लेन बोतल

:

0 ≤ u < π और 0 ≤ v < 2π के लिए।[4]

होमोटोपी कक्षाएं

क्लेन बोतल का नियमित 3डी विसर्जन तीन नियमित होमोटॉपी वर्गों में आता है।[9] तीनों का प्रतिनिधित्व निम्न द्वारा किया जाता है:

  • पारंपरिक क्लेन बोतल;
  • बाएं हाथ की आकृति-8 क्लेन बोतल;
  • दाएँ हाथ की आकृति-8 क्लेन बोतल।

पारंपरिक क्लेन बोतल विसर्जन दाहिनी ओर है। चित्र-8 विसर्जन चिरल है। (उपरोक्त पिंच टोरस विसर्जन नियमित नहीं है, क्योंकि इसमें पिंच पॉइंट हैं, इसलिए यह इस अनुभाग के लिए प्रासंगिक नहीं है।)

यदि पारंपरिक क्लेन बोतल को उसके समरूपता के तल में काटा जाता है तो यह विपरीत चिरलिटी की दो मोबियस पट्टियों में टूट जाती है। एक आकृति-8 क्लेन बोतल को एक ही चिरलिटी के दो मोबियस स्ट्रिप्स में काटा जा सकता है, और इसे नियमित रूप से इसकी दर्पण छवि में विकृत नहीं किया जा सकता है।[4]

पारंपरिक क्लेन बोतल को दो रंगों में रंगने से उस पर चिरायता उत्पन्न हो सकती है, जिससे उसका होमोटॉपी वर्ग दो भागों में विभाजित हो जाएगा।[citation needed]

सामान्यीकरण

उच्च जीनस (गणित) के लिए क्लेन बोतल का सामान्यीकरण मौलिक बहुभुज पर लेख में दिया गया है।[10] विचारों के एक अन्य क्रम में, 3-कई गुना का निर्माण करते हुए, यह ज्ञात है कि एक ठोस क्लेन बोतल मोबियस स्ट्रिप और एक बंद अंतराल के कार्टेशियन उत्पाद के लिए होम्योमॉर्फिक है। सॉलिड क्लेन बोतल 'सॉलिड टोरस' का गैर-ओरिएंटेबल संस्करण है, जो समकक्ष है


क्लीन सतह

क्लेन सतह, रीमैन सतहों के लिए, एटलस वाली एक सतह है जो जटिल संयुग्मन का उपयोग करके संक्रमण मानचित्रों को बनाने की अनुमति देती है। कोई अंतरिक्ष की तथाकथित डायनेलिटिक संरचना प्राप्त कर सकता है और इसका केवल एक ही पक्ष है।[11]


यह भी देखें

संदर्भ

उद्धरण

  1. Stillwell 1993, p. 65, 1.2.3 The Klein Bottle.
  2. 2.0 2.1 Weeks, Jeffrey (2020). The Shape of Space, 3rd Edn. CRC Press. ISBN 978-1138061217.
  3. "Strange Surfaces: New Ideas". Science Museum London. Archived from the original on 2006-11-28.
  4. 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 Alling & Greenleaf 1969.
  5. Marc ten Bosch - https://marctenbosch.com/news/2021/12/4d-toys-version-1-7-klein-bottles/
  6. David Darling (11 August 2004). The Universal Book of Mathematics: From Abracadabra to Zeno's Paradoxes. John Wiley & Sons. p. 176. ISBN 978-0-471-27047-8.
  7. Shick, Paul (2007). Topology: Point-Set and Geometric. Wiley-Interscience. pp. 191–192. ISBN 9780470096055.
  8. Cutting a Klein Bottle in Half – Numberphile on YouTube
  9. Séquin, Carlo H (1 June 2013). "क्लेन बोतल प्रकारों की संख्या पर". Journal of Mathematics and the Arts. 7 (2): 51–63. CiteSeerX 10.1.1.637.4811. doi:10.1080/17513472.2013.795883. S2CID 16444067.
  10. Day, Adam (17 February 2014). "क्लेन बोतल पर क्वांटम गुरुत्वाकर्षण". CQG+. {{cite web}}: |archive-date= requires |archive-url= (help)
  11. Bitetto, Dr Marco (2020-02-14). हाइपरस्पैशियल डायनेमिक्स (in English). Dr. Marco A. V. Bitetto.


स्रोत

बाहरी संबंध