उप-समुच्चय
गणित में, समुच्चय A, समुच्चय B का एक उपसमुच्चय है यदि A के सभी अवयव भी B के अवयव हैं; तब B, A का सुपरसेट है। गणित में, सेट ए सेट बी का 'उपसमुच्चय' है यदि ए के सभी तत्व बी के तत्व भी हैं;B तब A का एक 'सुपरसेट' है। यह A और B के लिए समान होना संभव है;यदि वे असमान हैं, तो A B का एक 'उचित उपसमूह' है। एक सेट के दूसरे का संबंध दूसरे का उपसमुच्चय है, जिसे 'समावेश' (या कभी -कभी 'नियंत्रण') कहा जाता है।A B का एक उपसमुच्चय है, जिसे B में शामिल किया जा सकता है (या शामिल किया गया है) A या A शामिल है।
उपसमुच्चय संबंध सेट पर एक आंशिक आदेश को परिभाषित करता है।वास्तव में, किसी दिए गए सेट के उपसमुच्चय उपसमुच्चय संबंध के तहत एक बूलियन बीजगणित बनाते हैं, जिसमें ज्वाइन एंड मीट को चौराहे और संघ द्वारा दिया जाता है, और उपसमुच्चय संबंध ही बूलियन समावेश संबंध है।
परिभाषाएँ
यदि A और B सेट हैं और A का प्रत्येक तत्व B का एक तत्व भी है, तो: तो:
- A B का एक 'उपसमुच्चय' है, जिसे निरूपित किया गया है , या समकक्ष,
- बी एक 'सुपरसेट' है, जिसे निरूपित किया गया है
यदि A B का एक उपसमुच्चय है, लेकिन A B के बराबर नहीं है (यानी B का कम से कम एक तत्व मौजूद है जो A का एक तत्व नहीं है), तो: फिर:
- A B का एक 'उचित' (या 'सख्त') 'उपसमुच्चय' है, जिसे द्वारा निरूपित किया गया है , या समकक्ष,
- बी एक 'उचित' (या 'सख्त') 'सुपरसेट' है, जो द्वारा निरूपित किया गया है ।
खाली सेट, लिखा या किसी भी सेट X का एक उपसमुच्चय है और किसी भी सेट का एक उचित उपसमुच्चय है, सिवाय इसके, समावेश संबंध सेट पर एक आंशिक आदेश है (S का पावर सेट- S के सभी उपसमुच्चय का सेट[1]) द्वारा परिभाषित ।हम आंशिक रूप से ऑर्डर भी कर सकते हैं परिभाषित करके रिवर्स सेट समावेश द्वारा जब मात्रा निर्धारित की गई, के रूप में प्रतिनिधित्व किया जाता है [2]
हम बयान साबित कर सकते हैं तत्व तर्क के रूप में जानी जाने वाली एक प्रूफ तकनीक को लागू करके[3]:
सेट ए और बी दिए जाने दें।साबित करने के लिए
- मान लीजिए कि ए एक विशेष लेकिन मनमाने ढंग से चुना गया तत्व है
- दिखाएँ कि ए बी का एक तत्व है।
इस तकनीक की वैधता को सार्वभौमिक सामान्यीकरण के परिणाम के रूप में देखा जा सकता है: तकनीक शो एक मनमाने ढंग से चुने गए तत्व के लिए c।सार्वभौमिक सामान्यीकरण का अर्थ है जो इसके बराबर है जैसा की ऊपर कहा गया है।
गुण
- एक सेट A B का एक 'उपसमुच्चय' है यदि और केवल अगर उनका चौराहा A के बराबर है
- औपचारिक रूप से:
- एक सेट A B का एक 'उपसमुच्चय' है यदि और केवल अगर उनका संघ B के बराबर है
- औपचारिक रूप से:
- एक परिमित सेट ए बी का एक उपसमुच्चय है, अगर और केवल अगर उनके चौराहे की कार्डिनलिटी ए के कार्डिनलिटी के बराबर है।
- औपचारिक रूप से:
⊂ और ⊃ प्रतीक
कुछ लेखक प्रतीकों का उपयोग करते हैं तथा संकेत करना उप-समूचय तथा सुपरसेट क्रमश;अर्थात्, प्रतीकों के बजाय एक ही अर्थ के साथ तथा [4] उदाहरण के लिए, इन लेखकों के लिए, यह हर सेट ए का सच है
अन्य लेखक प्रतीकों का उपयोग करना पसंद करते हैं तथा संकेत करना उचित (जिसे सख्त कहा जाता है) उपसमुच्चय और proper क्रमशः सुपरसेट;अर्थात्, प्रतीकों के बजाय एक ही अर्थ के साथ तथा [5] यह उपयोग करता है तथा असमानता प्रतीकों के अनुरूप तथा उदाहरण के लिए, यदि तब x y के बराबर हो सकता है या नहीं, लेकिन अगर तब x निश्चित रूप से y के बराबर नहीं है, और y से कम है।इसी तरह, सम्मेलन का उपयोग करना उचित उपसमुच्चय है, अगर तब एक हो सकता है या नहीं हो सकता है, लेकिन अगर फिर ए निश्चित रूप से बी के बराबर नहीं है।
उपसमुच्चय के उदाहरण
- सेट a = {1, 2} b = {1, 2, 3} का एक उचित उपसमूह है, इस प्रकार दोनों अभिव्यक्तियाँ तथा सच हैं।
- सेट d = {1, 2, 3} एक उपसमुच्चय है (लेकिन not E = {1, 2, 3} का एक उचित उपसमुच्चय), इस प्रकार सच है, और सच नहीं है (गलत)।
- कोई भी सेट स्वयं का एक उपसमुच्चय है, लेकिन एक उचित उपसमुच्चय नहीं है।( सच है, और किसी भी सेट एक्स के लिए गलत है।)
- सेट {x: x एक प्रमुख संख्या 10 से अधिक है} {x: x का एक उचित उपसमूह है एक विषम संख्या 10 से अधिक है}
- प्राकृतिक संख्याओं का सेट तर्कसंगत संख्याओं के सेट का एक उचित उपसमुच्चय है;इसी तरह, एक लाइन खंड में बिंदुओं का सेट A: INE (गणित) | लाइन में बिंदुओं के सेट का एक उचित उपसमुच्चय है।ये दो उदाहरण हैं जिनमें उपसमुच्चय और पूरे सेट दोनों अनंत हैं, और उपसमुच्चय में एक ही कार्डिनैलिटी (अवधारणा जो आकार से मेल खाती है, अर्थात, तत्वों की संख्या, एक परिमित सेट की) पूरी तरह से है;इस तरह के मामले किसी के प्रारंभिक अंतर्ज्ञान के लिए काउंटर चला सकते हैं।
- तर्कसंगत संख्याओं का सेट वास्तविक संख्याओं के सेट का एक उचित उपसमुच्चय है।इस उदाहरण में, दोनों सेट अनंत हैं, लेकिन बाद वाले सेट में एक बड़ा कार्डिनैलिटी है (या शक्ति) पूर्व सेट की तुलना में।
एक यूलर आरेख में एक और उदाहरण:
- Index.php?title=File:Example of A is a proper subset of B.svg
A, B का उचित उपसमुच्चय है
- Index.php?title=File:Example of C is no proper subset of B.svg
C एक उपसमुच्चय है लेकिन B का उचित उपसमुच्चय नहीं है
समावेश के अन्य गुण
समावेशन विहित आंशिक आदेश है, इस अर्थ में कि प्रत्येक आंशिक रूप से आदेश दिया गया सेट समावेश द्वारा आदेशित सेटों के कुछ संग्रह के लिए आइसोमॉर्फिक है।ऑर्डिनल नंबर एक सरल उदाहरण हैं: यदि प्रत्येक क्रमिक n को सेट के साथ पहचाना जाता है सभी अध्यादेशों से कम या उसके बराबर, फिर अगर और केवल अगर पावर सेट के लिए एक सेट एस की, समावेशी आंशिक आदेश है - एक आदेश के लिए एक समरूपता - कार्टेशियन उत्पाद का (एस की कार्डिनैलिटी) आंशिक आदेश की प्रतियां जिसके लिए इसे एनमरेट करके सचित्र किया जा सकता है , और प्रत्येक उपसमुच्चय के साथ जुड़ना (यानी, प्रत्येक तत्व ) के-टपल से जिनमें से ITH समन्वय 1 है यदि और केवल अगर टी का सदस्य है।
यह भी देखें
- उत्तल उपसमुच्चय
- समावेश आदेश
- क्षेत्र
- उपसमुच्चय योग समस्या
- पदानुक्रम#subsumptive_containment_hierarchy | Subsumptive Contactment
- कुल उपसमुच्चय
संदर्भ
- ↑ Weisstein, Eric W. "Subset". mathworld.wolfram.com (in English). Retrieved 2020-08-23.
- ↑ Rosen, Kenneth H. (2012). Discrete Mathematics and Its Applications (7th ed.). New York: McGraw-Hill. p. 119. ISBN 978-0-07-338309-5.
- ↑ Epp, Susanna S. (2011). Discrete Mathematics with Applications (Fourth ed.). p. 337. ISBN 978-0-495-39132-6.
- ↑ Rudin, Walter (1987), Real and complex analysis (3rd ed.), New York: McGraw-Hill, p. 6, ISBN 978-0-07-054234-1, MR 0924157
- ↑ Subsets and Proper Subsets (PDF), archived from the original (PDF) on 2013-01-23, retrieved 2012-09-07
ग्रन्थसूची
- Jech, Thomas (2002). Set Theory. Springer-Verlag. ISBN 3-540-44085-2.
बाहरी संबंध
- File:Commons-logo.svg Media related to Subsets at Wikimedia Commons
- Weisstein, Eric W. "Subset". MathWorld.