बर्नसाइड समस्या

From Vigyanwiki
Revision as of 20:09, 14 February 2023 by alpha>Radhamishra

बर्नसाइड समस्या अपेक्षा करती है कि क्या परिमित रूप से उत्पन्न समूह जिसमें प्रत्येक तत्व का परिमित क्रम है, आवश्यक रूप से परिमित समूह होना चाहिए। यह 1902 में विलियम बर्नसाइड द्वारा प्रस्तुत किया गया था, जो इसे समूह सिद्धांत के सबसे पुराने प्रश्नों में से एक बनाता है और संयुक्त समूह के सिद्धांत के विकास में प्रभावशाली था। यह सामान्य रूप से एक ऋणात्मक उत्तर के रूप में जाना जाता है, क्योंकि 1964 में एवगेनी गोलोड और इगोर शफारेविच ने एक प्रति-उदाहरण प्रदान किया था। समस्या में कई परिशोधन और भिन्नताएं हैं (नीचे बाध्य और प्रतिबंधित देखें) जो समूह तत्वों के अनुक्रम पर लगाए गए अतिरिक्त शर्तों में भिन्न हैं, जिनमें से कुछ अभी भी खुले प्रश्न हैं।

संक्षिप्त इतिहास

प्रारंभिक कार्य धनात्मक उत्तर की ओर संकेत करता है। उदाहरण के लिए, यदि एक समूह G परिमित रूप से उत्पन्न होता है और G के प्रत्येक तत्व का क्रम 4 का एक विभाजक है, तो G परिमित है। इसके अतिरिक्त, ए. आई. कोस्ट्रिकिन 1958 में यह प्रमाणित करने में सक्षम थे कि उत्पादक की दी गई संख्या और दिए गए प्रथम घातांक वाले सीमित समूहों में से एक सबसे बड़ा सम्मिलित है। यह प्रथम घातांक के स्थिति में प्रतिबंधित बर्नसाइड समस्या का समाधान प्रदान करता है। (बाद में, 1989 में, एफिम ज़ेल्मनोव एकपक्षीय रूप से घातांक के लिए प्रतिबंधित बर्नसाइड समस्या को संशोधित करने में सक्षम था।) इस्साई शूर ने 1911 में दिखाया था कि कोई भी अंतिम रूप से उत्पन्न आवधिक समूह जो प्रतीप्य n × n सम्मिश्र आधात्री के समूह का एक उपसमूह था, वह परिमित था, उसने इस प्रमेय का उपयोग जॉर्डन-शूर प्रमेय को प्रमाणित करने के लिए किया था।[1]

हालांकि, बर्नसाइड समस्या का सामान्य उत्तर ऋणात्मक निकला। 1964 में, गोलोड और शफारेविच ने बर्नसाइड प्रकार के अनंत समूह का निर्माण किया, बिना यह मानते हुए कि सभी तत्वों में समान रूप से परिबद्ध क्रम हैं। 1968 में, प्योत्र नोविकोव और सर्गेई एडियन ने 4381 से बड़े सभी विषम घातांकों के लिए परिबद्ध घातांक समस्या का ऋणात्मक समाधान प्रदान किया। 1982 में, ए. यू. ओल'शांस्की ने पर्याप्त रूप से बड़े विषम घातांकों (1010 से अधिक) के लिए कुछ आकर्षक प्रतिउदाहरण प्राप्त किए, और ज्यामितीय विचारों के आधार पर अधिकतम सरल प्रमाण प्रदान किया।

यहां तक ​​​​कि घातांको के स्थिति को संशोधित करना बहुत कठिन हो गया। 1992 में, एस. वी. इवानोव ने 2 की व्यापक रूप से शक्ति से विभाज्य पर्याप्त रूप से बड़े सम घातांकों के लिए ऋणात्मक समाधान की घोषणा की (विस्तृत प्रमाण 1994 में प्रकाशित किए गए थे और लगभग 300 पृष्ठों पर अधिकृत कर लिया था)। बाद में ओल्शांस्की और इवानोव के संयुक्त कार्य ने अतिपरवलयिक समूह के लिए बर्नसाइड समस्या के अनुरूप के लिए ऋणात्मक समाधान स्थापित किया, परंतु घातांक पर्याप्त रूप से बड़ा हो। इसके विपरीत, जब घातांक छोटा होता है और 2, 3, 4 और 6 से भिन्न होता है, तो बहुत कम ज्ञात होता है।

सामान्य बर्नसाइड समस्या

समूह G को आवधिक कहा जाता है यदि प्रत्येक तत्व का दूसरे शब्दों में परिमित क्रम होता है, G में प्रत्येक g के लिए कुछ धनात्मक पूर्णांक n सम्मिलित है जैसे कि gn = 1 स्पष्ट रूप से, प्रत्येक परिमित समूह आवर्ती होता है। आसानी से परिभाषित समूह सम्मिलित हैं जैसे p- समूह जो अनंत आवधिक समूह हैं लेकिन बाद वाले समूह को अंतिम रूप से उत्पन्न नहीं किया जा सकता है।

सामान्य बर्नसाइड समस्या यदि G निश्चित रूप से उत्पन्न आवधिक समूह है, तो क्या G आवश्यक रूप से परिमित है?

इस प्रश्न का उत्तर 1964 में एवगेनी गोलोड और इगोर शफारेविच द्वारा नकारात्मक में दिया गया था, जिन्होंने अनंत p-समूह का उदाहरण दिया था। जो सूक्ष्म रूप से उत्पन्न होता है (देखें गोलोड-शाफारेविच प्रमेय)। हालाँकि, इस समूह के तत्वों के क्रम एकल स्थिरांक से परिबद्ध अनुभवनिरपेक्ष नहीं हैं।

बाउंडेड बर्नसाइड समस्या

श्रेणी 2 और घातांक 3 के 27-तत्व मुक्त बर्नसाइड समूह का केली ग्राफ

सामान्य बर्नसाइड समस्या के साथ कठिनाई का एक हिस्सा यह है कि एक समूह की संभावित संरचना के बारे में निश्चित रूप से उत्पन्न और आवधिक होने की आवश्यकताएं बहुत कम जानकारी देती हैं। इसलिए, हम G पर अधिक अपेक्षाएँ रखते हैं। आवधिक समूह G पर अतिरिक्त गुण के साथ विचार करें कि कम से कम पूर्णांक n सम्मिलित है जैसे G में सभी g के लिए, Gn = 1 है। इस गुण साथ एक समूह को परिबद्ध घातांक n के साथ आवधिक कहा जाता है, या केवल घातांक n वाला समूह कहा जाता है। परिबद्ध घातांक वाले समूहों के लिए बर्नसाइड समस्या अपेक्षा है:

'बर्नसाइड प्रॉब्लम I' यदि G घातांक n वाला अंतिम रूप से उत्पन्न किया गया समूह है, तो क्या G आवश्यक रूप से परिमित है?

यह पता चला है कि इस समस्या को विशेष वर्गों में समूहों की सूक्ष्मता के बारे में प्रश्न के रूप में दोहराया जा सकता है। श्रेणी m और घातांक n का 'मुक्त बर्नसाइड समूह', B (m, n) चिह्नित है, m विशिष्ट उत्पादक x1, ..., xm समूह है जिसमें पहचान वाला xn = 1 सभी तत्वों x के लिए मान्य है, और इन आवश्यकताओं को पूरा करने वाला सबसे बड़ा समूह है। अधिक परिशुद्ध रूप से, B (m, n) की विशेषता गुण यह है कि, किसी भी समूह G को m उत्पादक g1, ..., gm और घातांक n के साथ दिया गया है B(m, n) से G तक एक अद्वितीय समरूपता है G के ith उत्पादक gi में B(m, n) के iवें उत्पादक xi को मानचित्रित करता है। समूह प्रस्तुतियों की भाषा में, मुफ्त बर्नसाइड समूह B (m, n) में m उत्पादक x1, ..., xmऔर संबंध xn = 1 है प्रत्येक शब्द x के लिए x1, ..., xm, और किसी भी समूह जी के साथ घातांक n के m उत्पादक को अतिरिक्त संबंधों को लागू करके प्राप्त किया जाता है। मुक्त बर्नसाइड समूह का अस्तित्व और समरूपता तक इसकी विशिष्टता समूह सिद्धांत की मानक तकनीकों द्वारा स्थापित की जाती है। इस प्रकार यदि G घातांक n का कोई भी अंतिम रूप से उत्पन्न किया गया समूह है, तो G, B (m, n) का समूह समरूपता है, जहां m, G के उत्पादक की संख्या है। बर्नसाइड समस्या को निम्नानुसार पुन: प्रस्तुत किया जा सकता है:

'बर्नसाइड प्रॉब्लम II' किन धनात्मक पूर्णांकों के लिए m, n मुक्त बर्नसाइड समूह B(m, n) परिमित है?

इस रूप में बर्नसाइड समस्या का पूर्ण समाधान ज्ञात नहीं है। बर्नसाइड ने अपने मूल पेपर में कुछ आसान स्थितियो पर विचार किया:

निम्नलिखित अतिरिक्त परिणाम ज्ञात हैं (बर्नसाइड, सनोव, मार्शल हॉल (गणितज्ञ) | m। हॉल):

  • B(m, 3), B(m, 4), और B(m, 6) सभी m के लिए परिमित हैं।

B(2, 5) का विशेष स्थिति खुला रहता है: as of 2020 यह ज्ञात नहीं था कि यह समूह परिमित है या नहीं।

बर्नसाइड समस्या को हल करने में सफलता 1968 में प्योत्र नोविकोव और सर्गेई एडियन द्वारा प्राप्त की गई थी। जटिल दहनशील तर्क का उपयोग करते हुए, उन्होंने प्रदर्शित किया कि n> 4381 के साथ प्रत्येक सम और विषम संख्या संख्या n के लिए, घातांक n के अनंत, परिमित रूप से उत्पन्न समूह सम्मिलित हैं। . एडियन ने बाद में ऑड घातांक पर बाउंड को 665 तक सुधारा।[2] बाउंड ऑन ऑड घातांक में नवीनतम सुधार 101 है जिसे एडियन ने 2015 में स्वयं प्राप्त किया था। यहां तक ​​कि घातांक का स्थिति काफी अधिक कठिन निकला। केवल 1994 में सर्गेई वासिलीविच इवानोव नोविकोव-एडियन प्रमेय का एनालॉग प्रमाणित करने में सक्षम थे: किसी भी m> 1 और यहां तक ​​​​कि n ≥ 2 के लिए48, n 2 से विभाज्य9, समूह B(m, n) अनंत है; नोविकोव-एडियन प्रमेय के साथ, यह सभी m> 1 और n ≥ 2 के लिए अनंतता का अर्थ है48. यह 1996 में I. G. Lysënok द्वारा m> 1 और n ≥ 8000 में सुधार किया गया था। Novikov-Adian, Ivanov और Lysénok ने मुक्त Burnside समूहों की संरचना पर काफी अधिक परिशुद्ध परिणाम स्थापित किए। विषम घातांक के स्थिति में, मुक्त बर्नसाइड समूहों के सभी परिमित उपसमूहों को चक्रीय समूह के रूप में दिखाया गया था। समान घातांक स्थिति में, प्रत्येक परिमित उपसमूह दो डायहेड्रल समूहों के उत्पाद में समाहित है, और गैर-चक्रीय परिमित उपसमूह सम्मिलित हैं। इसके अतिरिक्त, समूहों के लिए शब्द समस्या और संयुग्मन समस्या की समस्या को विषम और सम घातांक n दोनों के लिए B(m, n) में प्रभावी रूप से हल करने योग्य दिखाया गया था।

बर्नसाइड समस्या के प्रतिउदाहरणों का प्रसिद्ध वर्ग परिमित रूप से उत्पन्न गैर-चक्रीय अनंत समूहों द्वारा बनाया गया है जिसमें प्रत्येक गैर-तुच्छ उचित उपसमूह परिमित चक्रीय समूह है, तथाकथित टार्स्की राक्षस समूह। ऐसे समूहों का पहला उदाहरण ए यू द्वारा बनाया गया था। Ol'shanskii ने 1979 में ज्यामितीय विधियों का उपयोग करते हुए, इस प्रकार धनात्मक रूप से O. Yu को हल किया। श्मिट की समस्या। 1982 में ओल्शांस्की अस्तित्व स्थापित करने के लिए अपने परिणामों को मजबूत करने में सक्षम था, किसी भी पर्याप्त बड़ी अभाज्य संख्या p के लिए (कोई भी p > 10 ले सकता है)75) अंतिम रूप से उत्पन्न अनंत समूह का जिसमें प्रत्येक गैर-तुच्छ उचित उपसमूह ऑर्डर p का चक्रीय समूह है। 1996 में प्रकाशित पत्र में, इवानोव और ओल्शांस्की ने पर्याप्त रूप से बड़े घातांकों के लिए अनियंत्रित अतिपरवलयिक समूह में बर्नसाइड समस्या का एनालॉग हल किया।

प्रतिबंधित बर्नसाइड समस्या

1930 के दशक में तैयार किया गया, यह एक अन्य, संबंधित, प्रश्न पूछता है:

प्रतिबंधित बर्नसाइड समस्या। यदि यह ज्ञात है कि m उत्पादक और घातांक n वाला एक समूह G परिमित है, तो क्या कोई यह निष्कर्ष निकाल सकता है कि G का क्रम केवल m और n पर निर्भर करते हुए कुछ स्थिरांक से परिबद्ध है? समतुल्य रूप से, क्या समरूपता तक घातांक n के m उत्पादक के साथ ही निश्चित रूप से बहुत से परिमित समूह हैं?

बर्नसाइड समस्या के इस प्रकार को कुछ सार्वभौमिक समूहों के संदर्भ में 'm' उत्पादक और घातांक 'n' के साथ भी कहा जा सकता है। समूह सिद्धांत के मूल परिणामों से, किसी भी समूह में परिमित सूचकांक के दो उपसमूहों का प्रतिच्छेदन स्वयं परिमित सूचकांक का उपसमूह होता है। माना M मुक्त बर्नसाइड समूह B(m, n) के सभी उपसमूहों का प्रतिच्छेदन है, जिसमें सीमित सूचकांक है, फिर M B (m, n) का एक सामान्य उपसमूह है (अन्यथा, वहां एक उपसमूह g−1Mg सम्मिलित है परिमित सूचकांक के साथ ऐसे तत्व हैं जो M में नहीं हैं)। इसलिए कोई समूह B0(m, n) को कारक समूह B(m, n)/M के रूप में परिभाषित कर सकता है। m उत्पादक के साथ घातांक n का प्रत्येक परिमित समूह B0(m, n) की समरूप प्रतिबिंब है। प्रतिबंधित बर्नसाइड समस्या तब अपेक्षा करती है कि क्या B0(m, n) परिमित समूह है।

प्रमुख घातांक p के स्थिति में, इसइस समस्या का व्यापक रूप से 1950 के दशक के समय सामान्य बर्नसाइड समस्या के नकारात्मक समाधान से पहले एआई कोस्ट्रिकिन द्वारा अध्ययन किया गया था। उसका समाधान, B0(m, p) की परिमितता को स्थापित करते हुए, परिमित विशेषता में स्थित बीजगणित में सर्वसमिका के बारे में गहन प्रश्नों के साथ एक संबंध का उपयोग करता है। एकपक्षीय घातांक का स्थिति एफिम ज़ेलमानोव द्वारा पूरी तरह से सकारात्मक रूप से संशोधित किया गया है, जिन्हें 1994 में उनके कार्य के लिए क्षेत्र पदक से सम्मानित किया गया था।

टिप्पणियाँ

  1. The key step is to observe that the identities a2 = b2 = (ab)2 = 1 together imply that ab = ba, so that a free Burnside group of exponent two is necessarily abelian.


संदर्भ

  1. Curtis, Charles; Reiner, Irving (1962). Representation Theory of Finite Groups and Associated Algebras. John Wiley & Sons. pp. 256–262.
  2. John Britton proposed a nearly 300 page alternative proof to the Burnside problem in 1973; however, Adian ultimately pointed out a flaw in that proof.


ग्रन्थसूची


बाहरी संबंध