सहवाद

From Vigyanwiki
Revision as of 15:03, 28 April 2023 by alpha>Radhamishra
File:Cobordism.svg
सहवाद (डब्ल्यू; एम, एन)।

गणित में, सहवाद एक समान आयाम के सुसंहत प्रसमष्‍टि के वर्ग पर एक मौलिक तुल्यता संबंध है, जो कि प्रसमष्‍टि की सीमा (फ्रेंच बोर्ड, सहवाद) की अवधारणा का उपयोग करके स्थापित किया गया है। समान आयाम के दो प्रसमष्‍टि समरूप होते हैं यदि उनका असंयुक्‍त सम्मिलन एक सुसंहत प्रसमष्‍टि एक आयाम की सीमा है।

एक (n + 1)-आयामी प्रसमष्‍टि W की सीमा एक n-आयामी प्रसमष्‍टि ∂W है जो कि रिक्त सीमा के साथ संवृत है। सामान्य रूप से, एक संवृत प्रसमष्‍टि को सीमा सहवाद सिद्धांत नहीं होना चाहिए, सभी संवृत प्रसमष्‍टि और जो सीमाएं हैं, के बीच अंतर का अध्ययन है। सिद्धांत मूल रूप से रेने थॉम द्वारा सामान्य प्रसमष्‍टि (अर्थात, अलग-अलग) के लिए विकसित किया गया था, लेकिन अब भागों के रैखिक और सांंस्थितिक प्रसमष्‍टि के संस्करण भी हैं।

प्रसमष्‍टि M और N के बीच एक सहवाद एक सुसंहत प्रसमष्‍टि W है, जिसकी सीमा M और N का असंयुक्‍त सम्मिलन है।

सहवाद का अध्ययन उनके द्वारा उत्पन्न समतुल्यता संबंध के लिए और अपने आप में वस्तुओं के रूप में किया जाता है। सहवाद अवकलनीय तद्वता या सम-आकारिकी की तुलना में बहुत स्थूल तुल्यता संबंध है, और इसका अध्ययन और गणना करना काफी आसान है। आयाम ≥ 4 में अवकलनीय तद्वता या सम-आकारिकी तक प्रसमष्टि वर्गीकृत करना संभव नहीं है - क्योंकि समूहों के लिए पद समस्या को संशोधित नहीं किया जा सकता है - लेकिन सहवाद तक प्रसमष्टि वर्गीकृत करना संभव है। सहवाद ज्यामितीय सांस्थिति और बीजगणितीय सांस्थिति में अध्ययन की केंद्रीय वस्तुएं हैं। ज्यामितीय सांस्थिति में, सहवाद मोर्स सिद्धांत के साथ घनिष्ठ रूप से जुड़े हुए हैं, और h-सहवाद उच्च-आयामी प्रसमष्टि, अर्थात् प्रसमष्टि सिद्धांत के अध्ययन में मौलिक हैं। बीजगणितीय सांस्थिति में, सहवाद सिद्धांत मौलिक असाधारण सह समरूपता सिद्धांत हैं, और सहवाद की श्रेणियां सांंस्थितिक क्वांटम क्षेत्र सिद्धांतों के प्रक्षेत्र हैं।

परिभाषा

प्रसमष्‍टि

सामान्य रूप से, एक n-आयाम प्रसमष्‍टि (गणित) M एक स्थलीय सांस्थितिक समष्टि प्रतिवेश (गणित) है (अर्थात, प्रत्येक बिंदु के पास) सम-आकारिकी यूक्लिडियन समष्टि के एक विवृत उपसमुच्चय के लिए होमियोमॉर्फिक है। सीमा के साथ प्रसमष्टि समान है, इसके अतिरिक्त कि M के एक बिंदु को एक प्रतिवेश रखने की अनुमति है जो अर्धसमष्‍टि(ज्यामिति) के विवृत उपसमुच्चय के लिए होमोमोर्फिक है

यूक्लिडियन समष्टि के एक विवृत उपसमुच्चय के बिना पड़ोस होमियोमॉर्फिक के बिना वे बिंदु M के सीमा बिंदु हैं; M की सीमा द्वारा दर्शाया गया है। अंत में, परिभाषा के अनुसार, एक संवृत प्रसमष्टि सीमा के बिना एक सुसंहत समष्टि () होता है।

सहवाद

एक -आयाम सहवाद एक पंचगुण है। जिसमे एक आयामी सुसंहत अवकल प्रसमष्‍टि संवृत किया हुआ और -प्रसमष्‍टि , और अन्तः स्थापित , द्वारा असंबद्ध छवियों के साथ जैसे कि

शब्दावली को सामान्य रूप से के लिए संक्षिप्त की जाती है।[1] M और N को समरूप कहा जाता है यदि इस तरह का एक सहवाद सम्मिलित है। सभी प्रसमष्‍टि एक निश्चित दिए गए प्रसमष्‍टि M के लिए समरूप M के सहवाद वर्ग का निर्माण करते हैं।

प्रत्येक संवृत प्रसमष्‍टि M गैर-सुसंहत प्रसमष्‍टि M × [0, 1) की सीमा है; इस कारण से हमें आवश्यकता है कि W को सहवाद की परिभाषा में सुसंहत होना चाहिए। हालाँकि ध्यान दें कि W को संयोजित करने की आवश्यकता नहीं है; परिणामस्वरूप, यदि M = ∂W1 और N = ∂W2, तो M और N सहसमन्वय हैं।

उदाहरण

सहवाद का सबसे सरल उदाहरण इकाई अंतराल I = [0, 1] होता है। यह 0-आयामी प्रसमष्‍टि {0}, {1} के बीच एक 1-आयामी सहवाद है। अधिक सामान्य रूप से, किसी भी संवृत प्रसमष्‍टि M के लिए, (M × I; M × {0} , M × {1} ) M × {0} से M × {1} तक सहवाद है।

File:Pair of pants cobordism (pantslike).svg
एकल वृत्त (शीर्ष पर) और असंबद्ध वृत्तों की एक जोड़ी (नीचे) के बीच एक सह-सीमा।

यदि M में एक वृत्त है, और N में दो वृत्त हैं, तो M और N मिलकर पैंट (गणित) W की एक जोड़ी की सीमा बनाते हैं (दाईं ओर का चित्र देखें)। इस प्रकार पैंट के युग्म M और N के बीच एक सहवाद है। M और N के बीच एक सरल सहवाद तीन बिम्ब के असंयुक्त सम्मिलन द्वारा दिया जाता है।

पैंट के युग्म एक अधिक सामान्य सहवाद का एक उदाहरण है: किसी भी दो n-आयामी प्रसमष्‍टि M, M' के लिए, अलग सम्मिलन संसक्त राशि के अनुरूप है। पूर्व उदाहरण एक विशेष स्थिति है। क्योंकि संसक्त योग के लिए समरूपीय है। संयोजित राशि असंबद्ध सम्मिलन से प्राप्त किया जाता है। अंत:स्थापन पर प्रसमष्टि द्वारा में और सहवाद प्रसमष्टि का चिन्ह है।

शब्दावली

एक n-प्रसमष्‍टि M को अशक्त-समरूप कहा जाता है यदि M और रिक्त प्रसमष्‍टि के बीच एक सह-संबंध है; दूसरे शब्दों में, यदि M कुछ (n + 1)-प्रसमष्‍टि की संपूर्ण सीमा है। उदाहरण के लिए, वृत्त अशक्त है क्योंकि यह एक डिस्क को सीमित करता है। अधिक सामान्य रूप से, एक n-गोला अशक्त-सहवर्ती होता है क्योंकि यह एक (n + 1) -डिस्क को बांधता है। इसके अतिरिक्त, प्रत्येक उन्मुख सतह अशक्त-समन्वय है, क्योंकि यह एक हैंडलबॉडी की सीमा है। दूसरी ओर, 2n-आयामी वास्तविक प्रक्षेप्य समष्टि एक (सुसंहत) संवृत प्रसमष्‍टि है जो प्रसमष्‍टि की सीमा नहीं है, जैसा कि नीचे बताया गया है।

सामान्य सीमावाद की समस्या विभिन्न स्थितियों के अधीन प्रसमष्‍टि के सह-सीमावाद वर्गों की गणना करना है।

अतिरिक्त संरचना वाले अशक्त-सह-संबंधों को पूरक कहा जाता है। सीमावाद और सह-सीमावाद का उपयोग कुछ लेखकों द्वारा परस्पर विनिमय के रूप में किया जाता है; दूसरे उन्हें अलग करते हैं। जब कोई अपने स्वयं के अधिकार में वस्तुओं के रूप में सहवाद वर्गों के अध्ययन से अंतर करना चाहता है, तो वह तुल्यता प्रश्न को प्रसमष्‍टि की सीमावाद कहते हैं, और प्रसमष्‍टि वस्तुओं के रूप में सह-सीमावाद का अध्ययन करता है।[citation needed]

सीमवाद शब्द फ्रांसीसी बोर्ड से आया है, जिसका अर्थ सीमा है। इसलिए सीमावाद सीमाओं का अध्ययन है। सहवाद का अर्थ संयुक्त रूप से बाध्य है, इसलिए M और N समरूप हैं यदि वे संयुक्त रूप से प्रसमष्‍टि बाध्य हैं; अर्थात, यदि उनका असम्बद्ध सम्मिलन एक सीमा है। इसके अतिरिक्त, सहवाद समूह एक असाधारण सह समरूपता सिद्धांत बनाते हैं।

प्रकार

उपरोक्त परिभाषा का सबसे मौलिक रूप है। इसे उन्मुख सीमवाद भी कहा जाता है। कई स्थितियों में, प्रश्न में प्रसमष्टि उन्मुख होते हैं, या GG-संरचना के रूप में संदर्भित कुछ अन्य अतिरिक्त संरचना ले जाते हैं। यह क्रमशः "उन्मुख सह सीमवाद" और "G-संरचना के साथ सह सीमवाद" को उत्पन्न करता है। अनुकूल तकनीकी परिस्थितियों में ये एक श्रेणीबद्ध वलय बनाते हैं जिसे सह सीमवाद वलय कहा जाता है, आयाम द्वारा क्रमिक के साथ, अलग संघ द्वारा जोड़ और कार्तीय गुणनफल द्वारा गुणा किया जाता है। सह सीमवाद समूह एक सामान्यीकृत होमोलॉजी (सजातीयता) सिद्धांत के गुणांक समूह हैं।

जब अतिरिक्त संरचना होती है, तो सह-सीमावाद की धारणा को अधिक परिशुद्ध रूप से तैयार किया जाना चाहिए: डब्ल्यू पर एक जी-संरचना एम और एन पर जी-संरचना तक सीमित है।

मूल उदाहरण G = O गैर-उन्मुख सह-सीमवाद के लिए G = SO उन्मुख सह-सीमावाद के लिए और G = U जटिल प्रसमष्टि का उपयोग करके जटिल सह-वाद के लिए हैं। रॉबर्ट ई. स्टोंग द्वारा और भी बहुत अधिक विस्तृत किया गया है।[2]

इसी तरह, शल्य चिकित्सा सिद्धांत में एक मानक उपकरण सामान्य मानचित्रों पर शल्य चिकित्सा है: ऐसी प्रक्रिया एक सामान्य मानचित्र को उसी सीमवाद वर्ग के अंदर दूसरे सामान्य मानचित्र में परिवर्तित कर देती है।

अतिरिक्त संरचना पर विचार करने के अतिरिक्त, प्रसमष्‍टि की विभिन्न धारणाओं को ध्यान में रखना भी संभव है, विशेष रूप से खंडश: रैखिक (पीएल) और सांंस्थितिक प्रसमष्‍टिके विभिन्न विचारों को ध्यान में रखना भी संभव है। यह सीमावाद समूहों को उत्पन्न करता है, जिनकी गणना करना अलग-अलग प्रतिवर्त की तुलना में कठिन है।[citation needed]

शल्य चिकित्सा का निर्माण

याद करें कि सामान्य रूप से, यदि X, Y प्रसमष्‍टि सीमा के साथ हैं, तो गुणनफल प्रसमष्‍टि की सीमा ∂(X × Y) = (∂X × Y) ∪ (X × ∂Y) है।

अब, आयाम n = p + q का प्रसमष्टि M दिया गया अन्तः स्थापन को n-प्रसमष्‍टि परिभाषित करें

प्रसमष्टि सिद्धांत द्वारा प्राप्त किया गया के आंतरिक भाग को प्रतिच्छेद करके संश्लेषित करके शल्य चिकित्सा द्वारा प्राप्त किया गया, उनकी सीमा के साथ

प्रसमष्टि का चिन्ह

प्राथमिक सह-वाद (W; M, N) को परिभाषित करता है। ध्यान दें कि 'M' 'N' से प्रसमष्टि द्वारा प्राप्त किया जाता है। इसे प्रतिवर्त प्रसमष्टि कहते हैं।

मारस्टन मोर्स , रेने थॉम और जॉन मिल्नोर के काम से, प्रत्येक सह-सीमवाद प्राथमिक सह-सीमावाद का एक संघ है।

उदाहरण

File:Circle-surgery.svg
चित्र .1

ऊपर दी गई परिभाषा के अनुसार, वृत्त पर एक शल्य चिकित्सा में एक प्रतिलिपि कर्तन और संश्लिष्ट होती है। चित्र 1 में चित्र दिखाते हैं कि ऐसा करने का परिणाम या तो (i) दोबारा, या (ii) की दो प्रतियां है।

File:Sphere-surgery1.png
चित्र 2a
चित्र 2b

2-गोले पर प्रसमष्टि के लिए, अधिक संभावनाएँ हैं, क्योंकि हम या या तो प्रतिच्छेद कर प्रारंभ कर सकते हैं।

  1. : If we remove a cylinder from the 2-sphere, we are left with two disks. We have to glue back in – that is, two disks - and it's clear that the result of doing so is to give us two disjoint spheres. (Fig. 2a)
  2. Error creating thumbnail:
    चित्र 2c इस आकृति को 3-समष्टि में अन्तः स्थापित नहीं किया जा सकता है।
    : Having cut out two disks we glue back in the cylinder There are two possible outcomes, depending on whether our gluing maps have the same or opposite orientation on the two boundary circles. If the orientations are the same (Fig. 2b), the resulting manifold is the torus but if they are different, we obtain the Klein bottle (Fig. 2c).

मोर्स फलन

मान लीजिए कि f एक (n + 1)-विमीय प्रसमष्‍टि पर एक मोर्स फलन है, और मान लीजिए कि c एक महत्वपूर्ण मान है, जिसकी पूर्व छवि में ठीक एक महत्वपूर्ण बिंदु है। यदि इस महत्वपूर्ण बिंदु का सूचकांक p+1 है, तो स्तर-समुच्चय N := f−1(c + ε) M := f−1(c − ε) एक p-प्रसमष्टि द्वारा से प्राप्त होता है। प्रतिलोम प्रतिबिम्ब W := f−1([c − ε, c + ε]) एक सहवाद (W; M, N) को परिभाषित करता है जिसे इस प्रसमष्टि के चिन्ह से पहचाना जा सकता है।

ज्यामिति, और मोर्स सिद्धांत और हैंडलबॉडीके साथ संबंध

एक सह सीमवाद (W; M, N) को देखते हुए एक सामान्य फलन :W → [0, -1] जैसे कि f−1(0) = M, F−1(1) = N सम्मिलित है। सामान्य स्थिति से, कोई मान सकता है कि f मोर्स है और ऐसा है कि सभी महत्वपूर्ण बिंदु W के आंतरिक भाग में होते हैं। इस समुच्चयन में f को सह-सीमवाद पर मोर्स फलन कहा जाता है। सहवाद (W; M, N) M पर प्रसमष्टि के अनुक्रम के संकेत का एक संघ है, F के प्रत्येक महत्वपूर्ण बिंदु के लिए एक नियंत्रण अपघटन संलग्न करके प्रसमष्‍टि W, M × [0, -1] से प्राप्त किया जाता है।

File:Cobordism.svg
3-आयामी सह-वाद 2-गोले के बीच और 2- टोरस्र्स प्रसमष्टि द्वारा m से प्राप्त n के साथ और W ने M × I से 1-नियंत्रण संलग्न करके प्राप्त किया

मोर्स/स्मेल प्रमेय कहता है कि सह-बोर्डवाद पर मोर्स फलन के लिए, f' की प्रवाह रेखाएं ट्रिपल (W; M, N) के एक निर्धारित अपघटन को उत्पन्न करती हैं। इसके विपरीत, एक सह-सीमवाद के नियंत्रण अपघटन को देखते हुए, यह एक उपयुक्त मोर्स फलन से आता है। उपयुक्त रूप से सामान्यीकृत संस्थापन में यह प्रक्रिया प्रबंध अपघटन और मोर्स फलनों के बीच एक सहवाद के बीच समानता होती है।

इतिहास

सह-सीमवाद मूल 1895 में हेनरी पोनकारे द्वारा (असफल) प्रयास में थीं, जो होमोलॉजी को विशुद्ध रूप से प्रसमष्टि के संदर्भ में परिभाषित (ड्यूडोने 1989, पृष्ठ 289) करने के लिए था। पोंकारे ने एक साथ होमोलॉजी और सह-सीमावाद दोनों को परिभाषित किया, जो सामान्य रूप से समान नहीं हैं। सीमवाद और होमोलॉजी के बीच संबंधों के लिए सह-सीमावाद को एक असाधारण सह समरूपता सिद्धांत के रूप में देखें।

प्रसमष्‍टि पर ज्यामितीय फलन में लेव पोंट्रीगिन द्वारा सीमवाद को स्पष्ट रूप से प्रस्तुत किया गया था। यह तब प्रमुखता में आया जब रेने थॉम ने दिखाया कि थॉम जटिल निर्माण के माध्यम से, होमोटॉपी सिद्धांत के माध्यम से सहवाद समूहों की गणना की जा सकती है। सह-सीमवाद सिद्धांत के-सिद्धांत के साथ-साथ असाधारण सह समरूपता सिद्धांत के तंत्र का भाग बन गया। 1950 के दशक और 1960 के दशक के प्रारंभ में, विशेष रूप से हिर्ज़ब्रुक-रीमैन-रोच प्रमेय में, और अतियाह-सिंगर सुचकांक प्रमेय के पहले प्रमाणों में, इसने एक महत्वपूर्ण भूमिका निभाई।

1980 के दशक में वस्तु (श्रेणी सिद्धांत) के रूप में सुसंहत प्रसमष्‍टि के साथ श्रेणी (गणित) और इन दोनों के बीच आकारिकी के रूप में सहवाद ने सांंस्थितिक क्वांटम क्षेत्र k सिद्धांत के लिए अतियाह-सेगल स्वयंसिद्धों में एक मौलिक भूमिका निभाई, जो क्वांटम सांस्थिति का एक महत्वपूर्ण भाग है।

श्रेणीबद्ध स्वरूप

सह-बोर्डवाद वर्गों के अतिरिक्त, सह-बोर्डवाद अपने आप में अध्ययन की वस्तुएं हैं। सहवाद एक श्रेणी (गणित) बनाते हैं, जिनकी वस्तुएं प्रसमष्‍टि संवृत होती हैं और जिनकी आकृतियां सहवाद होती हैं। सामान्य रूप से, रचना को सिरे-से-सिरे तक एक साथ जोड़कर दिया जाता है: (W; M, N) और (W ′; N, P) की रचना को पहले के दाहिने सिरे को बायें सिरे से जोड़कर परिभाषित किया जाता है। दूसरा, उत्पादन (W ′ ∪N W; M, P) होता है। एक कोबर्डिज्म एक प्रकार का cospan है:[3] M → W ← N श्रेणी एक डैगर सुसंहत श्रेणी है।

एक सांंस्थितिक क्वांटम क्षेत्र सिद्धांत सहवाद की एक श्रेणी से सदिश समष्टि की एक श्रेणी के लिए एकपदीय फलननिर्धारक है। यही है, यह फलननिर्धारक है जिसका मान प्रसमष्‍टि के असंबद्ध सम्मिलन पर प्रत्येक घटक प्रसमष्‍टि पर इसके मानो के प्रदिश गुणनफल के बराबर है।

निम्न आयामों में, सीमावाद का प्रश्न अपेक्षाकृत सामान्य है, लेकिन सह-सीमावाद की श्रेणी नहीं है। उदाहरण के लिए, वृत्त को घेरने वाली बिम्ब एक अशक्त (0-एरी) संक्रियक से अनुरूप है, जबकि सिलेंडर 1-एरी संक्रियक और पैंट के युग्म एक बाइनरी संक्रियक से अनुरूप है।

असंबद्ध सहवाद

संवृत अनियंत्रित एन-आयाम प्रसमष्‍टि के सहवाद वर्गों के सेट को आमतौर पर इसके द्वारा निरूपित किया जाता है (अतिरिक्त अधिक व्यवस्थित ); यह ऑपरेशन के रूप में असंयुक्त संघ के साथ एक एबेलियन समूह है। अधिक विशेष रूप से, यदि [एम] और [एन] क्रमशः प्रसमष्‍टि एम और एन के सहवाद वर्गों को दर्शाता है, तो हम परिभाषित करते हैं ; यह एक सुपरिभाषित संक्रिया है जो मुड़ती है एक एबेलियन समूह में। इस समूह का पहचान तत्व वर्ग है सभी संवृत एन-प्रसमष्‍टि से मिलकर जो सीमाएं हैं। आगे हमारे पास है प्रत्येक एम के बाद से . इसलिए, एक सदिश स्थान है , जीएफ (2)। प्रसमष्‍टि का कार्टेशियन गुणनफल गुणन को परिभाषित करता है इसलिए

एक वर्गीकृत बीजगणित है, जिसमें आयाम द्वारा क्रमिक दी गई है।

सह सीमवाद वर्ग एक संवृत अनियमित एन-आयाम प्रसमष्‍टि एम का निर्धारण एम की स्टिफ़ेल-व्हिटनी विशेषता संख्याओं द्वारा किया जाता है, जो स्पर्शरेखा बंडल के स्थिर समरूपता वर्ग पर निर्भर करता है। इस प्रकार यदि M के पास एक स्थिर रूप से तुच्छ स्पर्शरेखा बंडल है . 1954 में रेने थॉम ने साबित किया

एक जनरेटर के साथ बहुपद बीजगणित प्रत्येक आयाम में . इस प्रकार दो अनियंत्रित संवृत एन-आयामी प्रसमष्‍टि एम, एन कोबोर्डेंट हैं, यदि और केवल यदि प्रत्येक संग्रह के लिए पूर्णांकों के k-tuples का ऐसा है कि स्टिफ़ेल-व्हिटनी संख्याएँ बराबर हैं

साथ Ith स्टिफ़ेल-व्हिटनी वर्ग और - गुणांक मौलिक वर्ग

यहां तक ​​कि मैं भी चुन सकता हूं , आई-आयाम वास्तविक प्रक्षेपण समष्टि का सहवाद क्लास।

निम्न-आयामी गैर-उन्मुख सह-समूहवाद समूह हैं

यह दिखाता है, उदाहरण के लिए, प्रत्येक 3-आयामी संवृत प्रसमष्‍टि 4-प्रसमष्‍टि (सीमा के साथ) की सीमा है।

यूलर विशेषता एक अनियंत्रित प्रसमष्‍टि एम का मोडुलो 2 एक गैर-उन्मुख सह-सीमवाद इनवेरिएंट है। यह समीकरण द्वारा निहित है

सीमा के साथ किसी भी सुसंहत प्रसमष्‍टि के लिए .

इसलिए, एक अच्छी तरह से परिभाषित समूह समरूपता है। उदाहरण के लिए, किसी के लिए

विशेष रूप से वास्तविक प्रक्षेपण रिक्त स्थान का ऐसा गुणनफल शून्य-कोबॉर्डेंट नहीं है। मॉड 2 यूलर विशेषता मानचित्र सभी के लिए चालू है और के लिए एक समूह समरूपता इसके अतिरिक्त, के कारण , ये समूह समरूपता वर्गीकृत बीजगणित के समरूपता में एकत्रित होते हैं:


अतिरिक्त संरचना के साथ प्रसमष्‍टि सहकारिता

सह-सीमवाद को प्रसमष्‍टि के लिए भी परिभाषित किया जा सकता है जिसमें अतिरिक्त संरचना होती है, विशेष रूप से एक अभिविन्यास। यह एक्स-संरचना (या जी-संरचना) की धारणा का उपयोग करके सामान्य तरीके से औपचारिक बना दिया गया है।[4] बहुत संक्षेप में, पर्याप्त उच्च-आयामी यूक्लिडियन समष्टि में M के विसर्जन का सामान्य बंडल ν एम से ग्रासमानियन तक एक मानचित्र को जन्म देता है, जो बदले में ऑर्थोगोनल समूह के वर्गीकरण स्थान का उप-स्थान है: ν: एम → 'जीआर' (एन, एन + के) → बीओ (के)। रिक्त स्थान और मानचित्र X के संग्रह को देखते हुएk→ एक्सk+1 नक्शे के साथ एक्सk→ बीओ (के) (बीओ (के) → बीओ (के + 1) के समावेशन के साथ संगत, एक एक्स-संरचना एक मानचित्र के लिए ν की लिफ्ट है . एक्स-संरचना के साथ केवल प्रसमष्‍टि और सहवाद को ध्यान में रखते हुए कोबोरवाद की अधिक सामान्य धारणा को जन्म देता है। विशेष रूप से, एक्सkबीजी (के) द्वारा दिया जा सकता है, जहां जी (के) → ओ (के) कुछ समूह समरूपता है। इसे जी-संरचना के रूप में जाना जाता है। उदाहरणों में जी = ओ, ऑर्थोगोनल समूह सम्मिलित है, जो गैर-उन्मुख सहवाद को वापस दे रहा है, लेकिन उपसमूह विशेष रैखिक समूह भी है। एसओ (के), उन्मुख कोबोरवाद को जन्म दे रहा है, स्पिन समूह, एकात्मक समूह | एकात्मक समूह यू (के), और तुच्छ समूह, फ़्रेमयुक्त सहवाद को जन्म दे रहा है।

परिणामी सहवाद समूहों को फिर से असम्बद्ध स्थिति के अनुरूप परिभाषित किया जाता है। द्वारा निरूपित किया जाता है .

ओरिएंटेड सहवाद

ओरिएंटेड सहवाद एसओ-संरचना के साथ प्रसमष्‍टि है। समान रूप से, सभी प्रसमष्‍टि को ओरिएंटेबिलिटी और सहवाद (W, M, N) (स्पष्टता के लिए ओरिएंटेड सहवाद के रूप में भी जाना जाता है) ऐसे हैं कि सीमा (प्रेरित ओरिएंटेशन के साथ) है , जहां -N उल्टे ओरिएंटेशन के साथ N को दर्शाता है। उदाहरण के लिए, बेलन की सीमा M × I है : दोनों सिरों के विपरीत झुकाव हैं। यह असाधारण सह समरूपता सिद्धांत के अर्थ में भी सही परिभाषा है।

गैर-उन्मुख सह-बोर्डवाद समूह के विपरीत, जहां प्रत्येक तत्व दो-मरोड़ है, 2M सामान्य रूप से एक उन्मुख सीमा नहीं है, अर्थात, 2[M] ≠ 0 जब इसमें विचार किया जाता है ओरिएंटेड सहवाद समूहों को मॉड्यूलो टोरसन द्वारा दिया जाता है

ओरिएंटेड सह सीमवाद वर्गों द्वारा उत्पन्न बहुपद बीजगणित

जटिल प्रक्षेप्य रिक्त स्थान (थॉम, 1952)। ओरिएंटेड सहवाद समूह स्टिफ़ेल-व्हिटनी और पोंट्रजगिन विशेषता संख्याओं (वॉल, 1960) द्वारा निर्धारित किया जाता है। दो ओरिएंटेड प्रसमष्‍टि ओरिएंटेड समरूप हैं यदि और केवल यदि उनके स्टिफ़ेल-व्हिटनी और पोंट्रेजगिन नंबर समान हैं।

निम्न-आयामी उन्मुख सहवाद समूह हैं:

एक उन्मुख 4i-आयामी प्रसमष्‍टि एम के प्रसमष्‍टि के हस्ताक्षर को चौराहे के रूप में हस्ताक्षर के रूप में परिभाषित किया गया है और द्वारा दर्शाया गया है यह एक उन्मुख सहवाद इनवेरिएंट है, जिसे हिरजेब्रुक हस्ताक्षर प्रमेय द्वारा पोंट्रजगिन संख्या के संदर्भ में व्यक्त किया गया है।

उदाहरण के लिए, किसी के लिए मैं1, ..., मैंk≥ 1

हस्ताक्षर नक्शा सभी i ≥ 1 के लिए आच्छादक है, और i = 1 के लिए एक तुल्याकारिता है।

एक असाधारण सह समरूपता सिद्धांत के रूप में सहकारिता

प्रत्येक सदिश बंडल सिद्धांत (वास्तविक, जटिल आदि) में एक असाधारण सह समरूपता सिद्धांत होता है जिसे K-सिद्धांत कहा जाता है। इसी प्रकार, प्रत्येक सह-बोर्डवाद सिद्धांत ΩG के पास होमोलॉजी (बॉर्डिज्म) समूहों के साथ एक असाधारण सह समरूपता सिद्धांत है और सह समरूपता (सहसंवाद) समूह किसी भी स्थान X के लिए। सामान्यीकृत होमोलॉजी समूह X में सहप्रसरण हैं, और सामान्यीकृत सह समरूपता समूह हैं एक्स में सहप्रसरण और सदिशों के प्रतिप्रसरण हैं। ऊपर परिभाषित सहवाद समूह, इस दृष्टिकोण से, एक बिंदु के समरूप समूह हैं: . तब M एक संवृत n-आयामी प्रसमष्‍टि M (G- संरचना के साथ) और f : M → X एक मानचित्र के साथ जोड़े (M, f) के सीमवाद वर्गों का समूह है। इस तरह के जोड़े (एम, एफ), (एन, जी) बोर्डेंट हैं यदि जी-सहवाद सम्मिलित है (डब्ल्यू; एम, एन) मानचित्र एच के साथ: डब्ल्यू → एक्स, जो एम पर एफ तक सीमित है, और एन पर जी .

एक एन-आयाम प्रसमष्‍टि एम में एक होमोलॉजी (गणित) [एम] ∈ एच हैn(एम) (में गुणांक के साथ सामान्य रूप से, और में उन्मुख स्थिति में), एक प्राकृतिक परिवर्तन को परिभाषित करना

जो सामान्य रूप से एक समरूपता होने से बहुत दूर है।

समष्टि के सीमावाद और सह-बोर्डवाद सिद्धांत आयाम स्वयंसिद्ध के अतिरिक्त एलेनबर्ग-स्टीनरोड स्वयंसिद्धों को संतुष्ट करते हैं। इसका तात्पर्य यह नहीं है कि समूह प्रभावी ढंग से गणना की जा सकती है जब कोई एक बिंदु के सहवाद सिद्धांत और समष्टि एक्स के समरूपता को जानता है, हालांकि अतियाह-हिर्जेब्रुक वर्णक्रमीय अनुक्रम गणना के लिए एक प्रारंभिक बिंदु देता है। संगणना केवल तभी आसान होती है जब विशेष सहवाद सिद्धांत

यह अनियंत्रित सह-संघवाद के लिए सही है। अन्य सहवाद सिद्धांत इस तरह से सामान्य समरूपता को कम नहीं करते हैं, विशेष रूप से पोंट्रेजगिन-थॉम निर्माण # फ्रेम्ड सहवाद, ओरिएंटेड सहवाद और जटिल सहवाद। विशेष रूप से अंतिम-नामित सिद्धांत का उपयोग बीजगणितीय टोपोलॉजिस्ट द्वारा कम्प्यूटेशनल टूल के रूप में किया जाता है (उदाहरण के लिए, क्षेत्रों के समरूप समूहों के लिए)।[5] सहवाद सिद्धांतों को थॉम स्पेक्ट्रम एमजी द्वारा दर्शाया गया है: एक समूह जी दिया गया है, थॉम स्पेक्ट्रम थॉम समष्टि एमजी से बना हैnवर्गीकरण रिक्त स्थान बीजी पर टॉटोलॉजिकल बंडल काn. ध्यान दें कि समान समूहों के लिए भी, थॉम स्पेक्ट्रा बहुत अलग हो सकता है: एमएसओ और एमओ बहुत अलग हैं, उन्मुख और गैर-उन्मुख सहकारीवाद के बीच अंतर को दर्शाते हैं।

स्पेक्ट्रा के दृष्टिकोण से, गैर-उन्मुख सहवाद एलेनबर्ग-मैकलेन स्पेक्ट्रम का एक गुणनफल है। ईलेनबर्ग-मैकलेन स्पेक्ट्रा - एमओ = एच (π(एमओ)) - जबकि ओरिएंटेड सहवाद ईलेनबर्ग-मैकलेन स्पेक्ट्रा का तर्कसंगत रूप से एक गुणनफल है, और 2 पर, लेकिन अजीब प्राइम्स पर नहीं: ओरिएंटेड सहवाद स्पेक्ट्रम एमएसओ एमओ की तुलना में अधिक जटिल है।

यह भी देखें

टिप्पणियाँ

  1. The notation "-dimensional" is to clarify the dimension of all manifolds in question, otherwise it is unclear whether a "5-dimensional cobordism" refers to a 5-dimensional cobordism between 4-dimensional manifolds or a 6-dimensional cobordism between 5-dimensional manifolds.
  2. Stong, Robert E. (1968). सह-बोर्डवाद सिद्धांत पर नोट्स. Princeton, NJ: Princeton University Press.
  3. While every cobordism is a cospan, the category of cobordisms is not a "cospan category": it is not the category of all cospans in "the category of manifolds with inclusions on the boundary", but rather a subcategory thereof, as the requirement that M and N form a partition of the boundary of W is a global constraint.
  4. Switzer, Robert M. (2002), Algebraic topology—homotopy and homology, Classics in Mathematics, Berlin, New York: Springer-Verlag, ISBN 978-3-540-42750-6, MR 1886843, chapter 12
  5. Ravenel, D.C. (April 1986). जटिल कोबोर्डिज्म और गोले के स्थिर होमोटॉपी समूह. Academic Press. ISBN 0-12-583430-6.


संदर्भ


बाहरी संबंध