घन फलन: Difference between revisions

From Vigyanwiki
m (Abhishek moved page क्यूबिक फ़ंक्शन to घन फलन without leaving a redirect)
No edit summary
Line 2: Line 2:
{{short description|Polynomial function  of degree 3}}
{{short description|Polynomial function  of degree 3}}
{{one source|date=September 2019}}
{{one source|date=September 2019}}
[[Image:Polynomialdeg3.svg|thumb|right|210px|एक फ़ंक्शन के 3 [[ वास्तविक संख्या ]] रूट के साथ एक क्यूबिक फ़ंक्शन का ग्राफ (जहां वक्र क्षैतिज अक्ष को पार करता है - जहां {{math|''y'' {{=}} 0}})।दिखाए गए मामले में दो महत्वपूर्ण बिंदु (गणित) हैं।यहाँ कार्य है {{math|''f''(''x'') {{=}} (''x''<sup>3</sup> + 3''x''<sup>2</sup> − 6''x'' − 8)/4}}।]]गणित में, एक क्यूबिक फ़ंक्शन फॉर्म का एक फ़ंक्शन (गणित) है <math>f(x)=ax^3+bx^2+cx+d</math>
[[Image:Polynomialdeg3.svg|thumb|right|210px|एक फ़ंक्शन के 3 [[ वास्तविक संख्या ]] रूट के साथ एक क्यूबिक फ़ंक्शन का ग्राफ (जहां वक्र क्षैतिज अक्ष को पार करता है - जहां {{math|''y'' {{=}} 0}})।दिखाए गए मामले में दो महत्वपूर्ण बिंदु (गणित) हैं।यहाँ कार्य है {{math|''f''(''x'') {{=}} (''x''<sup>3</sup> + 3''x''<sup>2</sup> − 6''x'' − 8)/4}}।]]गणित में, एक घन फलन रूप का एक फलन है <math>f(x)=ax^3+bx^2+cx+d</math>
जहां गुणांक {{mvar|a}}, {{mvar|b}}, {{mvar|c}}, तथा {{mvar|d}} [[ जटिल संख्या ]] हैं, और चर हैं {{mvar|x}} वास्तविक मूल्य लेता है, और <math>a\neq 0</math>।दूसरे शब्दों में, यह दोनों डिग्री तीन का एक बहुपद कार्य है, और एक [[ वास्तविक कार्य ]] है।विशेष रूप से, एक फ़ंक्शन और [[ संहितात्मक ]] का डोमेन वास्तविक संख्याओं का सेट है।
जहाँ गुणांक a, b, c और d सम्मिश्र संख्याएँ हैं, और चर x वास्तविक मान लेता है, और <math>a\neq 0</math>। दूसरे शब्दों में, यह डिग्री तीन का बहुपद फलन और वास्तविक फलन दोनों है।विशेष रूप से, डोमेन और कोडोमेन वास्तविक संख्याओं का समुच्चय हैं।


स्थापना {{math|''f''(''x'') {{=}} 0}} रूप का एक [[ घन समीकरण ]] पैदा करता है
f(x) = 0 स्थापन करना प्रपत्र का घन समीकरण उत्पन्न करता है
:<math>ax^3+bx^2+cx+d=0,</math>
:<math>ax^3+bx^2+cx+d=0,</math>
जिनके समाधानों को फ़ंक्शन के एक फ़ंक्शन की जड़ कहा जाता है।
जिनके हल फलन के रूट्स कहलाते हैं।


एक क्यूबिक फ़ंक्शन में एक या तीन वास्तविक जड़ें होती हैं (जो अलग नहीं हो सकती हैं);<ref>{{Cite book|last1=Bostock|first1=Linda|url=https://books.google.com/books?id=e2C3tFnAR-wC&q=A+cubic+function+has+either+one+or+three+real+roots&pg=PA462|title=शुद्ध गणित 2|last2=Chandler|first2=Suzanne|last3=Chandler|first3=F. S.|date=1979|publisher=Nelson Thornes|isbn=978-0-85950-097-5|pages=462|language=en|quote=इस प्रकार एक क्यूबिक समीकरण में या तो तीन वास्तविक जड़ें हैं ... या एक वास्तविक जड़ ...}} </ref> सभी विषम-डिग्री बहुपद में कम से कम एक वास्तविक जड़ होती है।
एक घन फलन के या तो एक या तीन वास्तविक रूट्स होते हैं (जो भिन्न नहीं हो सकते हैं);<ref>{{Cite book|last1=Bostock|first1=Linda|url=https://books.google.com/books?id=e2C3tFnAR-wC&q=A+cubic+function+has+either+one+or+three+real+roots&pg=PA462|title=शुद्ध गणित 2|last2=Chandler|first2=Suzanne|last3=Chandler|first3=F. S.|date=1979|publisher=Nelson Thornes|isbn=978-0-85950-097-5|pages=462|language=en|quote=इस प्रकार एक क्यूबिक समीकरण में या तो तीन वास्तविक जड़ें हैं ... या एक वास्तविक जड़ ...}} </ref> सभी विषम-डिग्री बहुपद का कम से कम एक वास्तविक रूट होता है।


क्यूबिक फ़ंक्शन के एक फ़ंक्शन के ग्राफ में हमेशा एक ही विभक्ति बिंदु होता है।इसमें दो महत्वपूर्ण बिंदु (गणित), एक स्थानीय न्यूनतम और एक स्थानीय अधिकतम हो सकता है।अन्यथा, एक क्यूबिक फ़ंक्शन [[ एकरस ]] है।एक क्यूबिक फ़ंक्शन का ग्राफ इसके विभक्ति बिंदु के संबंध में सममित है;यही है, यह इस बिंदु के चारों ओर एक आधा मोड़ के रोटेशन के तहत अपरिवर्तनीय है।एक affine परिवर्तन [[ तक ]], क्यूबिक कार्यों के लिए केवल तीन संभावित रेखांकन हैं।
क्यूबिक फ़ंक्शन के एक फ़ंक्शन के ग्राफ में हमेशा एक ही विभक्ति बिंदु होता है।इसमें दो महत्वपूर्ण बिंदु (गणित), एक स्थानीय न्यूनतम और एक स्थानीय अधिकतम हो सकता है।अन्यथा, एक क्यूबिक फ़ंक्शन [[ एकरस ]] है।एक क्यूबिक फ़ंक्शन का ग्राफ इसके विभक्ति बिंदु के संबंध में सममित है;यही है, यह इस बिंदु के चारों ओर एक आधा मोड़ के रोटेशन के तहत अपरिवर्तनीय है।एक affine परिवर्तन [[ तक ]], क्यूबिक कार्यों के लिए केवल तीन संभावित रेखांकन हैं।

Revision as of 21:37, 8 February 2023

एक फ़ंक्शन के 3 वास्तविक संख्या रूट के साथ एक क्यूबिक फ़ंक्शन का ग्राफ (जहां वक्र क्षैतिज अक्ष को पार करता है - जहां y = 0)।दिखाए गए मामले में दो महत्वपूर्ण बिंदु (गणित) हैं।यहाँ कार्य है f(x) = (x3 + 3x2 − 6x − 8)/4

गणित में, एक घन फलन रूप का एक फलन है

जहाँ गुणांक a, b, c और d सम्मिश्र संख्याएँ हैं, और चर x वास्तविक मान लेता है, और । दूसरे शब्दों में, यह डिग्री तीन का बहुपद फलन और वास्तविक फलन दोनों है।विशेष रूप से, डोमेन और कोडोमेन वास्तविक संख्याओं का समुच्चय हैं।

f(x) = 0 स्थापन करना प्रपत्र का घन समीकरण उत्पन्न करता है

जिनके हल फलन के रूट्स कहलाते हैं।

एक घन फलन के या तो एक या तीन वास्तविक रूट्स होते हैं (जो भिन्न नहीं हो सकते हैं);[1] सभी विषम-डिग्री बहुपद का कम से कम एक वास्तविक रूट होता है।

क्यूबिक फ़ंक्शन के एक फ़ंक्शन के ग्राफ में हमेशा एक ही विभक्ति बिंदु होता है।इसमें दो महत्वपूर्ण बिंदु (गणित), एक स्थानीय न्यूनतम और एक स्थानीय अधिकतम हो सकता है।अन्यथा, एक क्यूबिक फ़ंक्शन एकरस है।एक क्यूबिक फ़ंक्शन का ग्राफ इसके विभक्ति बिंदु के संबंध में सममित है;यही है, यह इस बिंदु के चारों ओर एक आधा मोड़ के रोटेशन के तहत अपरिवर्तनीय है।एक affine परिवर्तन तक , क्यूबिक कार्यों के लिए केवल तीन संभावित रेखांकन हैं।

क्यूबिक कार्य क्यूबिक प्रक्षेप के लिए मौलिक हैं।

इतिहास


महत्वपूर्ण और विभक्ति अंक

Error creating thumbnail:
The roots, stationary points, inflection point and concavity of a cubic polynomial x3 − 3x2 − 144x + 432 (black line) and its first and second derivatives (red and blue).

एक क्यूबिक फ़ंक्शन का महत्वपूर्ण बिंदु (गणित) इसके स्थिर बिंदु हैं, यही वे बिंदु हैं जहां फ़ंक्शन का ढलान शून्य है।[2] इस प्रकार एक क्यूबिक फ़ंक्शन के महत्वपूर्ण बिंदु f द्वारा परिभाषित

f(x) = ax3 + bx2 + cx + d,

के मूल्यों पर होना x ऐसा कि व्युत्पन्न

क्यूबिक फ़ंक्शन शून्य है।

इस समीकरण के समाधान हैं xक्रिटिकल पॉइंट्स के -values और दिए गए हैं, द्विघात सूत्र का उपयोग करते हुए,

वर्गमूल के अंदर अभिव्यक्ति का संकेत महत्वपूर्ण बिंदुओं की संख्या निर्धारित करता है।यदि यह सकारात्मक है, तो दो महत्वपूर्ण बिंदु हैं, एक स्थानीय अधिकतम है, और दूसरा एक स्थानीय न्यूनतम है।यदि b2 – 3ac = 0, फिर केवल एक महत्वपूर्ण बिंदु है, जो एक विभक्ति बिंदु है।यदि b2 – 3ac < 0, फिर कोई (वास्तविक) महत्वपूर्ण बिंदु नहीं हैं।दो बाद के मामलों में, अर्थात्, अगर b2 – 3ac नॉनपोजिटिव है, क्यूबिक फ़ंक्शन कड़ाई से मोनोटोनिक है।मामले के एक उदाहरण के लिए आंकड़ा देखें Δ0 > 0

एक फ़ंक्शन का विभक्ति बिंदु वह जगह है जहां वह फ़ंक्शन दूसरे व्युत्पन्न#concavity को बदलता है।[3] का विभक्ति बिंदु कहा जाता है एक विभक्ति बिंदु तब होता है जब दूसरा व्युत्पन्न शून्य है, और तीसरा व्युत्पन्न नॉनज़ेरो है।इस प्रकार एक क्यूबिक फ़ंक्शन में हमेशा एक ही विभक्ति बिंदु होता है, जो होता है


वर्गीकरण

File:Cubic function (different c).svg
रूप के घन कार्य
किसी भी क्यूबिक फ़ंक्शन का ग्राफ इस तरह के वक्र के लिए समानता (ज्यामिति) है।

क्यूबिक फ़ंक्शन के एक फ़ंक्शन का ग्राफ एक क्यूबिक वक्र है, हालांकि कई क्यूबिक वक्र कार्यों के ग्राफ़ नहीं हैं।

यद्यपि क्यूबिक फ़ंक्शन चार मापदंडों पर निर्भर करते हैं, उनके ग्राफ में केवल बहुत कम आकार हो सकते हैं।वास्तव में, एक क्यूबिक फ़ंक्शन का ग्राफ हमेशा फॉर्म के फ़ंक्शन के ग्राफ के लिए समानता (ज्यामिति) होता है

इस समानता को निर्देशांक अक्षों के समानांतर अनुवाद ों की संरचना के रूप में बनाया जा सकता है, एक एक प्रकार का (एक समान स्केलिंग ), और, संभवतः, एक प्रतिबिंब (गणित) (मिरर छवि) के संबंध में y-एक्सिस।एक और समान स्केलिंग | गैर-समान स्केलिंग ग्राफ को तीन क्यूबिक कार्यों में से एक के ग्राफ में बदल सकता है

इसका मतलब यह है कि क्यूबिक कार्यों के केवल तीन रेखांकन एक एफाइन परिवर्तन तक हैं।

उपरोक्त ज्यामितीय परिवर्तन ों को निम्नलिखित तरीके से बनाया जा सकता है, जब एक सामान्य क्यूबिक फ़ंक्शन से शुरू होता है


सबसे पहले, अगर a < 0, चर का परिवर्तन x → –x दमन करने की अनुमति देता है a > 0।चर के इस परिवर्तन के बाद, नया ग्राफ पिछले एक की दर्पण छवि है, के संबंध में y-एक्सिस।

फिर, चर का परिवर्तन x = x1b/3a फॉर्म का एक कार्य प्रदान करता है

यह एक अनुवाद के समानांतर से मेल खाता है x-एक्सिस।

चर का परिवर्तन y = y1 + q के संबंध में एक अनुवाद से मेल खाती है y-एक्सिस, और फॉर्म का एक कार्य देता है

चर का परिवर्तन एक समान स्केलिंग से मेल खाती है, और द्वारा गुणन के बाद देता है प्रपत्र का एक कार्य

जो सबसे सरल रूप है जिसे एक समानता द्वारा प्राप्त किया जा सकता है।

तो अगर p ≠ 0, गैर-समान स्केलिंग द्वारा विभाजन के बाद देता है

कहाँ पे के संकेत के आधार पर मूल्य 1 या -1 है p।यदि कोई परिभाषित करता है फ़ंक्शन का उत्तरार्द्ध का रूप सभी मामलों पर लागू होता है) तथा )।

समरूपता

प्रपत्र के एक घन समारोह के लिए विभक्ति बिंदु इस प्रकार मूल है।जैसा कि एक फ़ंक्शन एक विषम कार्य है, इसका ग्राफ विभक्ति बिंदु के संबंध में सममित है, और विभक्ति बिंदु के चारों ओर एक आधा मोड़ के रोटेशन के तहत अपरिवर्तनीय है।चूंकि ये गुण समानता (ज्यामिति) द्वारा अपरिवर्तनीय हैं, इसलिए सभी क्यूबिक कार्यों के लिए निम्नलिखित सही है।

एक क्यूबिक फ़ंक्शन का ग्राफ इसके विभक्ति बिंदु के संबंध में सममित है, और विभक्ति बिंदु के चारों ओर एक आधा मोड़ के रोटेशन के तहत अपरिवर्तनीय है।

collinearities

File:Cubica colinear.png
बिंदु P1, P2, तथा P3 (नीले रंग में) कोलेनियर हैं और के ग्राफ से संबंधित हैं x3 + 3/2x25/2x + 5/4।बिंदु T1, T2, तथा T3 (लाल रंग में) ग्राफ के साथ इन बिंदुओं पर ग्राफ के लिए (बिंदीदार) स्पर्शरेखा लाइनों के चौराहे हैं।वे कोलेनियर भी हैं।

तीन कोलिनियर बिंदुओं पर एक क्यूबिक फ़ंक्शन के ग्राफ के लिए स्पर्शरेखा रेखाएं क्यूबिक को फिर से कोलीनियर बिंदुओं पर रोकती हैं।[4] इस प्रकार इसे देखा जा सकता है।

चूंकि यह संपत्ति एक कठोर गति के तहत अपरिवर्तनीय है, इसलिए कोई यह मान सकता है कि फ़ंक्शन का रूप है

यदि α एक वास्तविक संख्या है, तो के ग्राफ के लिए स्पर्शरेखा f बिंदु पर (α, f(α)) लाइन है

{(x, f(α) + (xα)f ′(α)) : xR}।

तो, इस लाइन और ग्राफ के बीच का चौराहा बिंदु f समीकरण को हल करने के लिए प्राप्त किया जा सकता है f(x) = f(α) + (xα)f ′(α), वह है

जिसे फिर से लिखा जा सकता है

और के रूप में कारक

तो, स्पर्शरेखा पर क्यूबिक को रोकता है

तो, वह कार्य जो एक बिंदु को मैप करता है (x, y) ग्राफ के दूसरे बिंदु पर जहां स्पर्शरेखा ग्राफ को रोकती है

यह एक affine परिवर्तन है जो कोलिनियर पॉइंट्स को Collinear बिंदुओं में बदल देता है।यह दावा किए गए परिणाम को साबित करता है।

क्यूबिक प्रक्षेप

एक फ़ंक्शन के मूल्यों और दो बिंदुओं पर इसके व्युत्पन्न को देखते हुए, ठीक एक क्यूबिक फ़ंक्शन है जिसमें समान चार मान हैं, जिसे क्यूबिक हरमाइट स्पलाइन कहा जाता है।

इस तथ्य का उपयोग करने के लिए दो मानक तरीके हैं।सबसे पहले, यदि कोई जानता है, उदाहरण के लिए भौतिक माप द्वारा, एक फ़ंक्शन के मूल्यों और कुछ नमूने बिंदुओं पर इसके व्युत्पन्न, कोई भी फ़ंक्शन को निरंतर रूप से भिन्न कार्य के साथ प्रक्षेपित कर सकता है, जो एक टुकड़ाज क्यूबिक फ़ंक्शन है।

यदि किसी फ़ंक्शन का मान कई बिंदुओं पर जाना जाता है, तो क्यूबिक इंटरपोलेशन में फ़ंक्शन को लगातार अलग -अलग फ़ंक्शन द्वारा अनुमानित किया जाता है, जो कि टुकड़ा क्यूबिक है।एक विशिष्ट रूप से परिभाषित प्रक्षेप होने के लिए, दो और बाधाओं को जोड़ा जाना चाहिए, जैसे कि एंडपॉइंट पर डेरिवेटिव के मान, या एंडपॉइंट पर एक शून्य वक्रता

संदर्भ

  1. Bostock, Linda; Chandler, Suzanne; Chandler, F. S. (1979). शुद्ध गणित 2 (in English). Nelson Thornes. p. 462. ISBN 978-0-85950-097-5. इस प्रकार एक क्यूबिक समीकरण में या तो तीन वास्तविक जड़ें हैं ... या एक वास्तविक जड़ ...
  2. Weisstein, Eric W. "स्थिर बिंदु". mathworld.wolfram.com (in English). Retrieved 2020-07-27.
  3. Hughes-Hallett, Deborah; Lock, Patti Frazer; Gleason, Andrew M.; Flath, Daniel E.; Gordon, Sheldon P.; Lomen, David O.; Lovelock, David; McCallum, William G.; Osgood, Brad G. (2017-12-11). लागू कैलकुलस (in English). John Wiley & Sons. p. 181. ISBN 978-1-119-27556-5. एक बिंदु जिस पर फ़ंक्शन F का ग्राफ बदल जाता है, CONCAVITY को F
  4. Whitworth, William Allen (1866), "Equations of the third degree", Trilinear Coordinates and Other Methods of Modern Analytical Geometry of Two Dimensions, Cambridge: Deighton, Bell, and Co., p. 425, retrieved June 17, 2016


इस पृष्ठ में गुम आंतरिक लिंक की सूची

  • एक समारोह की जड़
  • आलोचनात्मक बिंदु (गणित)
  • अंक शास्त्र
  • समारोह (गणित)
  • एक फ़ंक्शन का डोमेन
  • बहुपदीय फलन
  • एक फ़ंक्शन का ग्राफ
  • असंबद्ध परिवर्तन
  • संक्रमण का बिन्दु
  • घन प्रक्षेप
  • यौगिक
  • द्वितीय व्युत्पन्न
  • दर्पण छवि
  • पुराना फंक्शन
  • कोलेनियर पॉइंट्स
  • लगातार अलग -अलग कार्य
  • खंड अनुसार

बाहरी संबंध