भाजक: Difference between revisions
No edit summary |
No edit summary |
||
| Line 31: | Line 31: | ||
== आगे की धारणाएं और तथ्य ==<!-- Perfect number links here. --> | == आगे की धारणाएं और तथ्य ==<!-- Perfect number links here. --> | ||
कुछ प्राथमिक नियम हैं: | कुछ प्राथमिक नियम हैं: | ||
* यदि <math>a \mid b</math> तथा <math>b \mid c</math>, फिर <math>a \mid c</math>, अर्थात विभाज्यता एक [[ सकर्मक संबंध ]] है। | * यदि <math>a \mid b</math> तथा <math>b \mid c</math>, फिर <math>a \mid c</math>, अर्थात विभाज्यता एक [[ सकर्मक संबंध | सकारात्मक संबंध]] है। | ||
* यदि <math>a \mid b</math> तथा <math>b \mid a</math>, फिर <math>a = b</math> या <math>a = -b</math>. | * यदि <math>a \mid b</math> तथा <math>b \mid a</math>, फिर <math>a = b</math> या <math>a = -b</math>. | ||
* यदि <math>a \mid b</math> तथा <math>a \mid c</math>, फिर <math> a \mid (b + c)</math> धारण करता है, के रूप में करता है <math> a \mid (b - c)</math>.<ref><math>a \mid b,\, a \mid c \Rightarrow b=ja,\, c=ka \Rightarrow b+c=(j+k)a \Rightarrow a \mid (b+c)</math>. Similarly, <math>a \mid b,\, a \mid c \Rightarrow b=ja,\, c=ka \Rightarrow b-c=(j-k)a \Rightarrow a \mid (b-c)</math></ref> | * यदि <math>a \mid b</math> तथा <math>a \mid c</math>, फिर <math> a \mid (b + c)</math> धारण करता है, के रूप में करता है <math> a \mid (b - c)</math>.<ref><math>a \mid b,\, a \mid c \Rightarrow b=ja,\, c=ka \Rightarrow b+c=(j+k)a \Rightarrow a \mid (b+c)</math>. Similarly, <math>a \mid b,\, a \mid c \Rightarrow b=ja,\, c=ka \Rightarrow b-c=(j-k)a \Rightarrow a \mid (b-c)</math></ref> यद्यपि, यदि <math>a \mid b</math> तथा <math>c \mid b</math>, फिर <math>(a + c) \mid b</math> हमेशा धारण नहीं करता (उदा। <math>2\mid6</math> तथा <math>3 \mid 6</math> लेकिन 5, 6 को विभाजित नहीं करता है)। | ||
यदि <math>a \mid bc</math>, तथा <math>\gcd(a, b) = 1</math>, फिर <math>a \mid c</math>.<ref group="note"><math>\gcd</math> refers to the [[greatest common divisor]].</ref> इसे यूक्लिड की लेम्मा कहा जाता है। | यदि <math>a \mid bc</math>, तथा <math>\gcd(a, b) = 1</math>, फिर <math>a \mid c</math>.<ref group="note"><math>\gcd</math> refers to the [[greatest common divisor]].</ref> इसे यूक्लिड की लेम्मा कहा जाता है। | ||
| Line 39: | Line 39: | ||
यदि <math>p</math> एक अभाज्य संख्या है और <math>p \mid ab</math> फिर <math>p \mid a</math> या <math>p \mid b</math>. | यदि <math>p</math> एक अभाज्य संख्या है और <math>p \mid ab</math> फिर <math>p \mid a</math> या <math>p \mid b</math>. | ||
का धनात्मक भाजक <math>n</math> जो इससे अलग है <math>n</math> ए कहा जाता है | का धनात्मक भाजक <math>n</math> जो इससे अलग है <math>n</math> ए कहा जाता है उचित विभाजन या एक {{vanchor|aliquot part}} का <math>n</math>. एक संख्या जो समान रूप से विभाजित नहीं होती <math>n</math> लेकिन एक शेष छोड़ देता है जिसे कभी-कभी एक कहा जाता है {{vanchor|aliquant part}} का <math>n</math>. | ||
पूर्णांक <math>n > 1</math> जिसका एकमात्र उचित भाजक 1 है, अभाज्य संख्या कहलाती है। समतुल्य रूप से, एक अभाज्य संख्या एक सकारात्मक पूर्णांक है जिसके दो सकारात्मक कारक हैं: 1 और स्वयं। | पूर्णांक <math>n > 1</math> जिसका एकमात्र उचित भाजक 1 है, अभाज्य संख्या कहलाती है। समतुल्य रूप से, एक अभाज्य संख्या एक सकारात्मक पूर्णांक है जिसके दो सकारात्मक कारक हैं: 1 और स्वयं। | ||
| Line 45: | Line 45: | ||
का कोई सकारात्मक विभाजक <math>n</math> के प्रमुख कारक का उत्पाद है <math>n</math> कुछ शक्ति के लिए उठाया। यह अंकगणित के मौलिक प्रमेय का परिणाम है। | का कोई सकारात्मक विभाजक <math>n</math> के प्रमुख कारक का उत्पाद है <math>n</math> कुछ शक्ति के लिए उठाया। यह अंकगणित के मौलिक प्रमेय का परिणाम है। | ||
एक संख्या <math>n</math> पूर्ण संख्या कहलाती है यदि यह अपने उचित भाजक के योग के बराबर है, | एक संख्या <math>n</math> पूर्ण संख्या कहलाती है यदि यह अपने उचित भाजक के योग के बराबर है, दोषपूर्ण संख्या यदि इसके उचित भाजक का योग इससे कम है <math>n</math>, और प्रचुर मात्रा में संख्या यदि यह योग अधिक हो <math>n</math>. | ||
के सकारात्मक विभाजकों की कुल संख्या <math>n</math> एक गुणक कार्य है <math>d(n)</math>, जिसका अर्थ है कि जब दो नंबर <math>m</math> तथा <math>n</math> अपेक्षाकृत प्रमुख हैं, तो <math>d(mn)=d(m)\times d(n)</math>. उदाहरण के लिए, <math>d(42) = 8 = 2 \times 2 \times 2 = d(2) \times d(3) \times d(7)</math>; 42 के आठ विभाजक 1, 2, 3, 6, 7, 14, 21 और 42 हैं। <math>m</math> तथा <math>n</math> एक सामान्य विभाजक | के सकारात्मक विभाजकों की कुल संख्या <math>n</math> एक गुणक कार्य है <math>d(n)</math>, जिसका अर्थ है कि जब दो नंबर <math>m</math> तथा <math>n</math> अपेक्षाकृत प्रमुख हैं, तो <math>d(mn)=d(m)\times d(n)</math>. उदाहरण के लिए, <math>d(42) = 8 = 2 \times 2 \times 2 = d(2) \times d(3) \times d(7)</math>; 42 के आठ विभाजक 1, 2, 3, 6, 7, 14, 21 और 42 हैं। <math>m</math> तथा <math>n</math> एक सामान्य विभाजक भागीदारी करें, तो यह सच नहीं हो सकता है <math>d(mn)=d(m)\times d(n)</math>. के सकारात्मक भाजक का योग <math>n</math> एक अन्य गुणक कार्य है <math>\sigma (n)</math> (उदा <math>\sigma (42) = 96 = 3 \times 4 \times 8 = \sigma (2) \times \sigma (3) \times \sigma (7) = 1+2+3+6+7+14+21+42</math>). ये दोनों फलन [[ भाजक फलन ]] के उदाहरण हैं। | ||
{{anchor|number_of_divisors_formula}} | {{anchor|number_of_divisors_formula}} | ||
| Line 59: | Line 59: | ||
:<math> p_1^{\mu_1} \, p_2^{\mu_2} \cdots p_k^{\mu_k} </math> | :<math> p_1^{\mu_1} \, p_2^{\mu_2} \cdots p_k^{\mu_k} </math> | ||
यहाँ पर <math> 0 \le \mu_i \le \nu_i </math> प्रत्येक के लिए <math>1 \le i \le k.</math> | |||
प्रत्येक प्राकृतिक के लिए <math>n</math>, <math>d(n) < 2 \sqrt{n}</math>. | प्रत्येक प्राकृतिक के लिए <math>n</math>, <math>d(n) < 2 \sqrt{n}</math>. | ||
भी,<ref>{{harvnb|Hardy|Wright|1960|p=264|loc=Theorem 320}}</ref> | भी,<ref>{{harvnb|Hardy|Wright|1960|p=264|loc=Theorem 320}}</ref> | ||
:<math>d(1)+d(2)+ \cdots +d(n) = n \ln n + (2 \gamma -1) n + O(\sqrt{n}).</math> | :<math>d(1)+d(2)+ \cdots +d(n) = n \ln n + (2 \gamma -1) n + O(\sqrt{n}).</math> | ||
यहाँ पर <math> \gamma </math> यूलर-मास्चेरोनी स्थिरांक है। | |||
इस परिणाम की एक व्याख्या यह है कि यादृच्छिक रूप से चुने गए धनात्मक पूर्णांक n का औसत होता है | इस परिणाम की एक व्याख्या यह है कि यादृच्छिक रूप से चुने गए धनात्मक पूर्णांक n का औसत होता है | ||
के विभाजकों की संख्या <math>\ln n</math>. | के विभाजकों की संख्या <math>\ln n</math>. यद्यपि, यह असामान्य रूप से कई भाजक के साथ अत्यधिक समस्त संख्या | संख्याओं के योगदान का परिणाम है। | ||
== | == आधुनिक बीजगणित में == | ||
=== वलय सिद्धांत === | === वलय सिद्धांत === | ||
| Line 74: | Line 74: | ||
=== | === विभाजन जाली === | ||
{{Main|Division lattice}} | {{Main|Division lattice}} | ||
जिन परिभाषाओं में 0 शामिल है, विभाज्यता का संबंध सेट को बदल देता है <math>\mathbb{N}</math> आंशिक रूप से आदेशित सेट में गैर-ऋणात्मक पूर्णांकों का: एक [[ जाली (आदेश) ]]। इस जाली का सबसे बड़ा अवयव 0 है और सबसे छोटा 1 है। मिलन संक्रिया ∧ सबसे बड़े उभयनिष्ठ भाजक द्वारा दी जाती है और जोड़ संक्रिया अल्पतम उभयनिष्ठ गुणज द्वारा दी जाती है। यह जाली अनंत [[ चक्रीय समूह ]] पूर्णांक के [[ उपसमूहों की जाली ]] के [[ द्वैत (क्रम सिद्धांत) ]] के समरूप है|<math>\mathbb{Z}</math>. | जिन परिभाषाओं में 0 शामिल है, विभाज्यता का संबंध सेट को बदल देता है <math>\mathbb{N}</math> आंशिक रूप से आदेशित सेट में गैर-ऋणात्मक पूर्णांकों का: एक [[ जाली (आदेश) ]]। इस जाली का सबसे बड़ा अवयव 0 है और सबसे छोटा 1 है। मिलन संक्रिया ∧ सबसे बड़े उभयनिष्ठ भाजक द्वारा दी जाती है और जोड़ संक्रिया अल्पतम उभयनिष्ठ गुणज द्वारा दी जाती है। यह जाली अनंत [[ चक्रीय समूह ]] पूर्णांक के [[ उपसमूहों की जाली ]] के [[ द्वैत (क्रम सिद्धांत) ]] के समरूप है|<math>\mathbb{Z}</math>. | ||
Revision as of 13:33, 19 November 2022
This article includes a list of general references, but it lacks sufficient corresponding inline citations. (June 2015) (Learn how and when to remove this template message) |
गणित में, एक पूर्णांक का भाजक , जिसे कारक भी कहा जाता है , एक पूर्णांक है जिसे उत्पन्न करने के लिए किसी पूर्णांक से गुणा किया जा सकता है . ऐसे में एक का यह भी कहना है का गुणज है पूर्णांक किसी अन्य पूर्णांक से विभाज्य या समान रूप से विभाज्य है यदि का भाजक है ; इसका अर्थ है विभाजित करना द्वारा शेष नहीं रहता।
परिभाषा
पूर्णांक n एक शून्येतर पूर्णांक से विभाज्य है m यदि कोई पूर्णांक उपस्थित है k ऐसा है कि . यह इस प्रकार लिखा गया है
उसी बात को कहने के अन्य तरीके हैं m विभाजित n, m का भाजक है n, m का कारक है n, तथा n का गुणज है m. यदि m विभाजित नहीं करता n, तो अंकन है .[1][2] सामान्यतः, m अशून्य होना आवश्यक है, लेकिन n शून्य होने की स्वीकृति है। इस समूह के साथ, प्रत्येक शून्येतर पूर्णांक के लिए m.[1][2]कुछ परिभाषाएँ उस आवश्यकता को छोड़ देती हैं शून्य न हो।[3]
सामान्य
विभाजक ऋणात्मक संख्या के साथ-साथ धनात्मक भी हो सकते हैं,यद्यपि कभी-कभी यह शब्द धनात्मक भाजक तक ही सीमित होता है। उदाहरण के लिए, 4 के छह विभाजक हैं; वे 1, 2, 4, -1, -2, और -4 हैं, लेकिन आमतौर पर केवल सकारात्मक (1, 2, और 4) का उल्लेख किया जाएगा।
1 और −1 प्रत्येक पूर्णांक को विभाजित (विभाजक) करते हैं। प्रत्येक पूर्णांक (और उसका निषेध) स्वयं का एक विभाजक है। 2 से विभाज्य पूर्णांक सम और विषम संख्याएँ कहलाती हैं, और 2 से विभाज्य पूर्णांक सम और विषम संख्याएँ कहलाती हैं।
1, −1, n और −n को n का 'छोटा विभाजक' कहा जाता है। n का एक भाजक जो छोटा भाजक नहीं है, उसे 'गैर-छोटा भाजक' (या सख्त भाजक) के रूप में जाना जाता है।[4]). कम से कम एक गैर-छोटा भाजक के साथ एक गैर-शून्य पूर्णांक को समस्त संख्या के रूप में जाना जाता है, जबकि इकाई (रिंग सिद्धांत) -1 और 1 और अभाज्य संख्याओं कोई गैर-छोटा भाजक नहीं होता है।
विभाज्यता नियम हैं जो किसी संख्या के अंकों से किसी संख्या के कुछ विभाजकों को पहचानने की स्वीकृति देते हैं।
उदाहरण
*7 42 का भाजक है क्योंकि , तो हम कह सकते हैं . यह भी कहा जा सकता है कि 42, 7 से विभाज्य है, 42, 7 का गुणज (गणित) है, 7, 42 को विभाजित करता है, या 7, 42 का एक गुणनखंड है।
- 6 के गैर-छोटा भाजक 2, -2, 3, -3 हैं।
- 42 के धनात्मक भाजक 1, 2, 3, 6, 7, 14, 21, 42 हैं।
- 60 के सभी धनात्मक भाजक का समुच्चय (गणित), , आंशिक रूप से विभाज्यता द्वारा निर्धारित आदेश दिया गया है, यह आरेख है:
आगे की धारणाएं और तथ्य
कुछ प्राथमिक नियम हैं:
- यदि तथा , फिर , अर्थात विभाज्यता एक सकारात्मक संबंध है।
- यदि तथा , फिर या .
- यदि तथा , फिर धारण करता है, के रूप में करता है .[5] यद्यपि, यदि तथा , फिर हमेशा धारण नहीं करता (उदा। तथा लेकिन 5, 6 को विभाजित नहीं करता है)।
यदि , तथा , फिर .[note 1] इसे यूक्लिड की लेम्मा कहा जाता है।
यदि एक अभाज्य संख्या है और फिर या .
का धनात्मक भाजक जो इससे अलग है ए कहा जाता है उचित विभाजन या एक aliquot part का . एक संख्या जो समान रूप से विभाजित नहीं होती लेकिन एक शेष छोड़ देता है जिसे कभी-कभी एक कहा जाता है aliquant part का .
पूर्णांक जिसका एकमात्र उचित भाजक 1 है, अभाज्य संख्या कहलाती है। समतुल्य रूप से, एक अभाज्य संख्या एक सकारात्मक पूर्णांक है जिसके दो सकारात्मक कारक हैं: 1 और स्वयं।
का कोई सकारात्मक विभाजक के प्रमुख कारक का उत्पाद है कुछ शक्ति के लिए उठाया। यह अंकगणित के मौलिक प्रमेय का परिणाम है।
एक संख्या पूर्ण संख्या कहलाती है यदि यह अपने उचित भाजक के योग के बराबर है, दोषपूर्ण संख्या यदि इसके उचित भाजक का योग इससे कम है , और प्रचुर मात्रा में संख्या यदि यह योग अधिक हो .
के सकारात्मक विभाजकों की कुल संख्या एक गुणक कार्य है , जिसका अर्थ है कि जब दो नंबर तथा अपेक्षाकृत प्रमुख हैं, तो . उदाहरण के लिए, ; 42 के आठ विभाजक 1, 2, 3, 6, 7, 14, 21 और 42 हैं। तथा एक सामान्य विभाजक भागीदारी करें, तो यह सच नहीं हो सकता है . के सकारात्मक भाजक का योग एक अन्य गुणक कार्य है (उदा ). ये दोनों फलन भाजक फलन के उदाहरण हैं।
यदि . का अभाज्य गुणनखंडन द्वारा दिया गया है
फिर के धनात्मक विभाजकों की संख्या है
और प्रत्येक भाजक का रूप है
यहाँ पर प्रत्येक के लिए प्रत्येक प्राकृतिक के लिए , .
भी,[6]
यहाँ पर यूलर-मास्चेरोनी स्थिरांक है। इस परिणाम की एक व्याख्या यह है कि यादृच्छिक रूप से चुने गए धनात्मक पूर्णांक n का औसत होता है के विभाजकों की संख्या . यद्यपि, यह असामान्य रूप से कई भाजक के साथ अत्यधिक समस्त संख्या | संख्याओं के योगदान का परिणाम है।
आधुनिक बीजगणित में
वलय सिद्धांत
विभाजन जाली
जिन परिभाषाओं में 0 शामिल है, विभाज्यता का संबंध सेट को बदल देता है आंशिक रूप से आदेशित सेट में गैर-ऋणात्मक पूर्णांकों का: एक जाली (आदेश) । इस जाली का सबसे बड़ा अवयव 0 है और सबसे छोटा 1 है। मिलन संक्रिया ∧ सबसे बड़े उभयनिष्ठ भाजक द्वारा दी जाती है और जोड़ संक्रिया अल्पतम उभयनिष्ठ गुणज द्वारा दी जाती है। यह जाली अनंत चक्रीय समूह पूर्णांक के उपसमूहों की जाली के द्वैत (क्रम सिद्धांत) के समरूप है|.
यह भी देखें
- अंकगणितीय कार्य
- यूक्लिडियन एल्गोरिथम
- अंश (गणित)
- भाजक की तालिका - 1–1000 के लिए अभाज्य और अभाज्य भाजक की तालिका
- प्रमुख कारकों की तालिका - 1–1000 के लिए प्रमुख कारकों की तालिका
- एकात्मक भाजक
टिप्पणियाँ
- ↑ refers to the greatest common divisor.
- ↑ 1.0 1.1 Hardy & Wright 1960, p. 1
- ↑ 2.0 2.1 Niven, Zuckerman & Montgomery 1991, p. 4
- ↑ Durbin 2009, p. 57, Chapter III Section 10
- ↑ "राफेल कॉडरलियर और कैथरीन डुबोइस द्वारा प्रूफ इंटरऑपरेबिलिटी के लिए बचाव के लिए FoCaLiZe और Dedukti" (PDF).
- ↑ . Similarly,
- ↑ Hardy & Wright 1960, p. 264, Theorem 320
संदर्भ
- Durbin, John R. (2009). Modern Algebra: An Introduction (6th ed.). New York: Wiley. ISBN 978-0470-38443-5.
- Richard K. Guy, Unsolved Problems in Number Theory (3rd ed), Springer Verlag, 2004 ISBN 0-387-20860-7; section B.
- Hardy, G. H.; Wright, E. M. (1960). An Introduction to the Theory of Numbers (4th ed.). Oxford University Press.
- Herstein, I. N. (1986), Abstract Algebra, New York: Macmillan Publishing Company, ISBN 0-02-353820-1
- Niven, Ivan; Zuckerman, Herbert S.; Montgomery, Hugh L. (1991). An Introduction to the Theory of Numbers (5th ed.). John Wiley & Sons. ISBN 0-471-62546-9.
- Øystein Ore, Number Theory and its History, McGraw–Hill, NY, 1944 (and Dover reprints).
- Sims, Charles C. (1984), Abstract Algebra: A Computational Approach, New York: John Wiley & Sons, ISBN 0-471-09846-9