समरूपता समूह: Difference between revisions

From Vigyanwiki
(text)
Line 9: Line 9:


== परिचय ==
== परिचय ==
हम समानता रखने वाली "वस्तु" को ज्यामितीय आकृतियाँ, चित्र और पैटर्न मानते हैं, जैसे [[वॉलपेपर समूह]]। भौतिक वस्तुओं की समरूपता के लिए, पैटर्न के हिस्से के रूप में उनकी भौतिक संरचना भी ली जा सकती है। ( पैटर्न को औपचारिक रूप से अदिश क्षेत्र के रूप में निर्दिष्ट किया जा सकता है, रंग या पदार्थों के सेट में मानो के साथ स्थिति का कार्य; एक सदिश क्षेत्र के रूप में, या वस्तु पर अधिक सामान्य कार्य के रूप में।) समष्टि के सममिति का समूह प्रेरित करता है इसमें वस्तुओं पर [[समूह क्रिया (गणित)]], और समरूपता समूह Sym(X) में वे समरूपता होते हैं जो X को स्वयं से मैप करते हैं (साथ ही साथ किसी और पैटर्न को मैप करते हैं)। हम कहते हैं कि ''X'' ऐसी मैपिंग के अनुसार अपरिवर्तनीय है, और मैपिंग ''X'' की समरूपता है।
हम समानता रखने वाली "वस्तु" को ज्यामितीय आकृतियाँ, चित्र और पैटर्न मानते हैं, जैसे [[वॉलपेपर समूह]]। भौतिक वस्तुओं की समरूपता के लिए, पैटर्न के हिस्से के रूप में उनकी भौतिक संरचना भी ली जा सकती है। ( पैटर्न को औपचारिक रूप से अदिश क्षेत्र के रूप में निर्दिष्ट किया जा सकता है, रंग या पदार्थों के सेट में मानो के साथ स्थिति का कार्य, एक सदिश क्षेत्र के रूप में, या वस्तु पर अधिक सामान्य कार्य के रूप में।) समष्टि के सममिति का समूह प्रेरित करता है इसमें वस्तुओं पर [[समूह क्रिया (गणित)]], और समरूपता समूह Sym(X) में वे समरूपता होते हैं जो X को स्वयं से मैप करते हैं (साथ ही साथ किसी और पैटर्न को मैप करते हैं)। हम कहते हैं कि ''X'' ऐसी मैपिंग के अनुसार अपरिवर्तनीय है, और मैपिंग ''X'' की समरूपता है।


उपरोक्त को कभी-कभी X का पूर्ण समरूपता समूह कहा जाता है जिससे कि जोर दिया जा सके कि इसमें अभिविन्यास-उत्क्रमी समरूपता (प्रतिबिंब, ग्लाइड प्रतिबिंब और [[अनुचित घुमाव]]) सम्मलित हैं, जब तक कि ये समरूपता इस विशेष ''X'' को स्वयं में मैप करते हैं। अभिविन्यास-संरक्षण समरूपता के उपसमूह (अनुवाद, घुमाव और इनकी रचना) को इसका उचित समरूपता समूह कहा जाता है। एक वस्तु काइरल है जब उसके पास कोई [[अभिविन्यास (वेक्टर स्थान)|अभिविन्यास]] उत्क्रमी समरूपता नहीं है, जिससे कि उसका उचित समरूपता समूह उसके पूर्ण समरूपता समूह के बराबर हो।
उपरोक्त को कभी-कभी X का पूर्ण समरूपता समूह कहा जाता है जिससे कि जोर दिया जा सके कि इसमें अभिविन्यास-उत्क्रमी समरूपता (प्रतिबिंब, ग्लाइड प्रतिबिंब और [[अनुचित घुमाव]]) सम्मलित हैं, जब तक कि ये समरूपता इस विशेष ''X'' को स्वयं में मैप करते हैं। अभिविन्यास-संरक्षण समरूपता के उपसमूह (अनुवाद, घुमाव और इनकी रचना) को इसका उचित समरूपता समूह कहा जाता है। एक वस्तु काइरल है जब उसके पास कोई [[अभिविन्यास (वेक्टर स्थान)|अभिविन्यास]] उत्क्रमी समरूपता नहीं है, जिससे कि उसका उचित समरूपता समूह उसके पूर्ण समरूपता समूह के बराबर हो।
Line 17: Line 17:
[[असतत समूह|असतत समरूपता समूह]]' में, किसी दिए गए बिंदु के सममित बिंदु [[सीमा बिंदु]] की ओर जमा नहीं होते हैं। अर्थात्, समूह की प्रत्येक [[कक्षा (समूह सिद्धांत)]] (समूह के सभी तत्वों के अनुसार दिए गए बिंदु की छवियां) [[असतत सेट]] बनाती हैं। सभी परिमित समरूपता समूह असतत हैं।
[[असतत समूह|असतत समरूपता समूह]]' में, किसी दिए गए बिंदु के सममित बिंदु [[सीमा बिंदु]] की ओर जमा नहीं होते हैं। अर्थात्, समूह की प्रत्येक [[कक्षा (समूह सिद्धांत)]] (समूह के सभी तत्वों के अनुसार दिए गए बिंदु की छवियां) [[असतत सेट]] बनाती हैं। सभी परिमित समरूपता समूह असतत हैं।


असतत समरूपता समूह तीन प्रकारों में आते हैं: (1) परिमित '[[बिंदु समूह]]', जिसमें केवल घुमाव, प्रतिबिंब, व्युत्क्रम और अनुचित घुमाव सम्मलित हैं - अर्थात, O(''n'') के परिमित उपसमूह; (2) अनंत '[[जाली (समूह)]] समूह', जिसमें केवल अनुवाद सम्मलित हैं; और (3) अनंत '[[अंतरिक्ष समूह|समष्टि समूह]]' जिसमें पिछले दोनों प्रकार के तत्व सम्मलित हैं, और शायद स्क्रू विस्थापन और ग्लाइड प्रतिबिंब जैसे अतिरिक्त परिवर्तन भी हैं। [[निरंतर समरूपता]] समूह ([[झूठ समूह|लाइ समूह]]) भी हैं, जिनमें मनमाने ढंग से छोटे कोणों के घूर्णन या मनमाने ढंग से छोटी दूरी के अनुवाद होते हैं। एक उदाहरण है लंबकोणीय समूह| O(3), गोले का सममिति समूह। यूक्लिडियन वस्तुओं के सममिति समूहों को पूरी तरह से यूक्लिडियन समूह#उपसमूहों E(n) ('R' के समस्थानिक समूह) के रूप में वर्गीकृत किया जा सकता है<sup>एन</sup>).
असतत समरूपता समूह तीन प्रकारों में आते हैं: (1) परिमित '[[बिंदु समूह]]', जिसमें केवल घुमाव, प्रतिबिंब, व्युत्क्रम और अनुचित घुमाव सम्मलित हैं - अर्थात, O(''n'') के परिमित उपसमूह, (2) अनंत '[[जाली (समूह)]] समूह', जिसमें केवल अनुवाद सम्मलित हैं, और (3) अनंत '[[अंतरिक्ष समूह|समष्टि समूह]]' जिसमें पिछले दोनों प्रकार के तत्व सम्मलित हैं, और शायद स्क्रू विस्थापन और ग्लाइड प्रतिबिंब जैसे अतिरिक्त परिवर्तन भी हैं। [[निरंतर समरूपता]] समूह ([[झूठ समूह|लाइ समूह]]) भी हैं, जिनमें मनमाने ढंग से छोटे कोणों के घूर्णन या मनमाने ढंग से छोटी दूरी के अनुवाद होते हैं। एक उदाहरण O(3), गोले का सममिति समूह है। यूक्लिडियन वस्तुओं के सममिति समूहों को पूरी तरह से यूक्लिडियन समूह E(''n'') ('''R'''<sup>''n''</sup> के समस्थानिक समूह) के उपसमूहों के रूप में वर्गीकृत जा सकता है।


दो ज्यामितीय आकृतियों में समान समरूपता प्रकार होता है जब उनके समरूपता समूह यूक्लिडियन समूह के संयुग्मित उपसमूह होते हैं: अर्थात, जब उपसमूह H<sub>1</sub>, एच<sub>2</sub> में कुछ g के लिए {{nowrap|1=''H''<sub>1</sub> = ''g''<sup>−1</sup>''H''<sub>2</sub>''g''}} ई (एन) से संबंधित होते हैं। उदाहरण के लिए:
दो ज्यामितीय आकृतियों में समान समरूपता प्रकार होता है जब उनके समरूपता समूह यूक्लिडियन समूह के संयुग्मित उपसमूह होते हैं: अर्थात, जब उपसमूह ''H''<sub>1</sub>, ''H''<sub>2</sub> E(''n'') में कुछ g के लिए {{nowrap|1=''H''<sub>1</sub> = ''g''<sup>−1</sup>''H''<sub>2</sub>''g''}} से संबंधित होते हैं। उदाहरण के लिए:


*दो 3D आकृतियों में दर्पण सममिति है, लेकिन विभिन्न दर्पण तलों के संबंध में।
*दो 3D आकृतियों में दर्पण सममिति है, लेकिन विभिन्न दर्पण तलों के संबंध में।
*दो 3डी आकृतियों में 3 गुना [[घूर्णी समरूपता]] है, लेकिन विभिन्न अक्षों के संबंध में।
*दो 3D आकृतियों में 3 गुना [[घूर्णी समरूपता]] है, लेकिन विभिन्न अक्षों के संबंध में।
*दो 2डी पैटर्न में ट्रांसलेशनल समरूपता है, प्रत्येक एक दिशा में; दो अनुवाद वैक्टर की लंबाई समान है लेकिन एक अलग दिशा है।
*दो 2D पैटर्न में अनुवादकीय समरूपता है, प्रत्येक दिशा में, दो अनुवाद सदिश की लंबाई समान है लेकिन अलग दिशा है।


निम्नलिखित अनुभागों में, हम केवल सममिति समूहों पर विचार करते हैं जिनकी कक्षाएँ स्थैतिक रूप से [[बंद (टोपोलॉजी)]] है, जिनमें सभी असतत और निरंतर सममिति समूह सम्मलित हैं। हालाँकि, यह उदाहरण के लिए एक [[परिमेय संख्या]] द्वारा अनुवादों के 1D समूह को बाहर करता है; इस तरह के एक गैर-बंद आंकड़े को इसके मनमाने ढंग से ठीक विवरण के कारण उचित सटीकता के साथ नहीं खींचा जा सकता है।
निम्नलिखित अनुभागों में, हम केवल सममिति समूहों पर विचार करते हैं जिनकी कक्षाएँ स्थैतिक रूप से [[बंद (टोपोलॉजी)]] है, जिनमें सभी असतत और निरंतर सममिति समूह सम्मलित हैं। चूंकि, यह उदाहरण के लिए [[परिमेय संख्या]] द्वारा अनुवादों के 1D समूह को बाहर करता है, इस तरह के गैर-बंद आंकड़े को इसके मनमाने ढंग से ठीक विवरण के कारण उचित सटीकता के साथ नहीं खींचा जा सकता है।


== एक आयाम ==
== एक आयाम ==
{{main|One-dimensional symmetry group}}
{{main|एक आयामी समरूपता समूह}}
एक आयाम में सममिति समूह हैं:


* तुच्छ [[चक्रीय समूह]] सी<sub>1</sub>
आयाम में सममिति समूह हैं:
*प्रतिबिंब द्वारा उत्पन्न दो तत्वों के समूह; वे C2 के साथ आइसोमोर्फिक हैं
 
*एक अनुवाद द्वारा उत्पन्न अनंत असतत समूह; वे पूर्णांकों के योज्य समूह Z के साथ तुल्याकार हैं
* तुच्छ [[चक्रीय समूह]] C<sub>1</sub>
*एक अनुवाद और एक प्रतिबिंब द्वारा उत्पन्न अनंत असतत समूह; वे Z, Dih (Z) के सामान्यीकृत डायहेड्रल समूह के साथ आइसोमोर्फिक हैं, जिसे D∞ द्वारा भी निरूपित किया जाता है (जो कि Z और C2 का एक [[अर्ध-प्रत्यक्ष उत्पाद]] है)।
*प्रतिबिंब द्वारा उत्पन्न दो तत्वों के समूह, वे C2 के साथ समरूपी हैं
* सभी अनुवादों द्वारा उत्पन्न समूह (वास्तविक संख्या आर के योगात्मक समूह के साथ आइसोमॉर्फिक); यह समूह एक यूक्लिडियन आकृति का समरूपता समूह नहीं हो सकता है, यहां तक कि एक पैटर्न के साथ संपन्न: ऐसा पैटर्न सजातीय होगा, इसलिए प्रतिबिंबित भी हो सकता है। हालाँकि, एक निरंतर एक-आयामी वेक्टर क्षेत्र में यह समरूपता समूह होता है।
*एक अनुवाद द्वारा उत्पन्न अनंत असतत समूह, वे पूर्णांकों के योज्य समूह Z के साथ तुल्याकार हैं
*बिंदुओं में सभी अनुवादों और प्रतिबिंबों द्वारा उत्पन्न समूह; वे सामान्यीकृत डायहेड्रल समूह डीएच (आर) के साथ आइसोमॉर्फिक हैं।
*अनुवाद और प्रतिबिंब द्वारा उत्पन्न अनंत असतत समूह, वे f '''Z''', Dih('''Z'''), के सामान्यीकृत द्वितल समूह के साथ समरूपी हैं, जिसे D∞ द्वारा भी निरूपित किया जाता है (जो कि Z और C2 का [[अर्ध-प्रत्यक्ष उत्पाद]] है)।
* सभी अनुवादों द्वारा उत्पन्न समूह (वास्तविक संख्या आर के योगात्मक समूह के साथ समरूपी), यह समूह यूक्लिडियन आकृति का समरूपता समूह नहीं हो सकता है, यहां तक कि पैटर्न के साथ संपन्न: ऐसा पैटर्न सजातीय होगा, इसलिए प्रतिबिंबित भी हो सकता है। चूंकि, एक निरंतर एक-आयामी सदिश क्षेत्र में यह समरूपता समूह होता है।
*बिंदुओं में सभी अनुवादों और प्रतिबिंबों द्वारा उत्पन्न समूह, वे सामान्यीकृत द्वितल समूह Dih('''R''') के साथ समरूपी हैं।


== दो आयाम ==
== दो आयाम ==
संयुग्मन [[तक]] द्वि-आयामी स्थान में असतत बिंदु समूह निम्न वर्ग हैं:
संयुग्मन [[तक]] द्वि-आयामी स्थान में असतत बिंदु समूह निम्न वर्ग हैं:


* चक्रीय समूह C1, C2, C3, C4, ... जहां Cn में कोण 360°/n के गुणकों द्वारा एक निश्चित बिंदु के बारे में सभी घुमाव होते हैं
* चक्रीय समूह C1, C2, C3, C4, ... जहां Cn में कोण 360°/''n'' के गुणकों द्वारा एक निश्चित बिंदु के बारे में सभी घुमाव होते हैं
* द्वितल समूहD1, D2, D3, D4, ..., जहां Dn (ऑर्डर 2n) में Cn में घुमाव होते हैं, साथ में n अक्षों में प्रतिबिंब होते हैं जो निश्चित बिंदु से गुजरते हैं।
* द्वितल समूह D1, D2, D3, D4, ..., जहां D<sub>''n''</sub> (क्रम 2''n'') में C<sub>''n''</sub> में घुमाव होते हैं, साथ में ''n''  अक्षों में प्रतिबिंब होते हैं जो निश्चित बिंदु से गुजरते हैं।


C1 [[तुच्छ समूह]]है जिसमें केवल पहचान ऑपरेशन होता है, जो तब होता है जब आंकड़ा असममित होता है, उदाहरण के लिए "F" अक्षर। C2 अक्षर "Z" का सममिति समूह है, C3 त्रिशूल का, C4 स्वास्तिक का, और C5, C6, आदि पांच, छह, आदि भुजाओं के अतिरिक्त समान [[स्वस्तिक]]-जैसी आकृतियों के सममिति समूह हैं। चार।
C1 [[तुच्छ समूह]] है जिसमें केवल पहचान ऑपरेशन होता है, जो तब होता है जब आंकड़ा असममित होता है, उदाहरण के लिए "F" अक्षर। C2 अक्षर "Z" का सममिति समूह है, C3 त्रिशूल का, C4 स्वास्तिक का, और C5, C6, आदि पांच, छह, आदि भुजाओं के अतिरिक्त समान [[स्वस्तिक]]-जैसी आकृतियों के सममिति समूह हैं। चार।


D1 2-तत्व समूह है जिसमें पहचान संचालन और एक एकल प्रतिबिंब होता है, जो तब होता है जब आकृति में [[प्रतिबिंब समरूपता|द्विपक्षीय समरूपता]] का केवल एक अक्ष होता है, उदाहरण के लिए अक्षर "A"।
D1 2-तत्व समूह है जिसमें पहचान संचालन और एक एकल प्रतिबिंब होता है, जो तब होता है जब आकृति में [[प्रतिबिंब समरूपता|द्विपक्षीय समरूपता]] का केवल एक अक्ष होता है, उदाहरण के लिए अक्षर "A"।
Line 52: Line 53:
D3, D4 आदि [[नियमित बहुभुज]] के सममिति समूह हैं।
D3, D4 आदि [[नियमित बहुभुज]] के सममिति समूह हैं।


इनमें से प्रत्येक समरूपता प्रकार के भीतर, रोटेशन के केंद्र के लिए स्वतंत्रता की दो डिग्री होती हैं, और डायहेड्रल समूहों के मामले में, दर्पण की स्थिति के लिए एक और।
इनमें से प्रत्येक समरूपता प्रकार के भीतर, रोटेशन के केंद्र के लिए स्वतंत्रता की दो डिग्री होती हैं, और द्वितल समूहों के मामले में, दर्पण की स्थिति के लिए एक और।


शेष सममिति समूह दो आयामों में एक निश्चित बिंदु के साथ हैं:
शेष सममिति समूह दो आयामों में एक निश्चित बिंदु के साथ हैं:
* विशेष ऑर्थोगोनल समूह SO(2) जिसमें एक निश्चित बिंदु के बारे में सभी घुमाव सम्मलित हैं; इसे वृत्त समूह S1 भी कहा जाता है, निरपेक्ष मान 1 की जटिल संख्याओं का गुणक समूह। यह एक वृत्त का उचित समरूपता समूह है और Cn का निरंतर समतुल्य है। कोई ज्यामितीय आकृति नहीं है जिसमें पूर्ण समरूपता समूह के रूप में वृत्त समूह हो, लेकिन एक सदिश क्षेत्र के लिए यह लागू हो सकता है (नीचे त्रि-आयामी स्थिति देखें)।
* विशेष ऑर्थोगोनल समूह SO(2) जिसमें एक निश्चित बिंदु के बारे में सभी घुमाव सम्मलित हैं, इसे वृत्त समूह S1 भी कहा जाता है, निरपेक्ष मान 1 की जटिल संख्याओं का गुणक समूह। यह एक वृत्त का उचित समरूपता समूह है और Cn का निरंतर समतुल्य है। कोई ज्यामितीय आकृति नहीं है जिसमें पूर्ण समरूपता समूह के रूप में वृत्त समूह हो, लेकिन एक सदिश क्षेत्र के लिए यह लागू हो सकता है (नीचे त्रि-आयामी स्थिति देखें)।
*लंबकोणीय समूह O(2) एक निश्चित बिंदु के बारे में सभी घुमावों और उस निश्चित बिंदु के माध्यम से किसी अक्ष में प्रतिबिंबों से मिलकर बनता है। यह एक वृत्त का सममिति समूह है। इसे Dih(S1) भी कहा जाता है क्योंकि यह S1 का सामान्यीकृत डायहेड्रल समूह है।
*लंबकोणीय समूह O(2) एक निश्चित बिंदु के बारे में सभी घुमावों और उस निश्चित बिंदु के माध्यम से किसी अक्ष में प्रतिबिंबों से मिलकर बनता है। यह एक वृत्त का सममिति समूह है। इसे Dih(S1) भी कहा जाता है क्योंकि यह S1 का सामान्यीकृत द्वितल समूह है।


गैर-बाध्य आंकड़ों में अनुवाद सहित सममिति समूह हो सकते हैं; य़े हैं:
गैर-बाध्य आंकड़ों में अनुवाद सहित सममिति समूह हो सकते हैं, य़े हैं:
* 7 फ्रीज़ समूह
* 7 फ्रीज़ समूह
* 17 वॉलपेपर समूह
* 17 वॉलपेपर समूह
Line 74: Line 75:
* गोलाकार समरूपता
* गोलाकार समरूपता


अदिश क्षेत्र पैटर्न वाली वस्तुओं के लिए, बेलनाकार समरूपता का तात्पर्य ऊर्ध्वाधर प्रतिबिंब समरूपता से भी है। चूंकि, यह वेक्टर फ़ील्ड पैटर्न के लिए सही नहीं है: उदाहरण के लिए, [[बेलनाकार निर्देशांक]] में कुछ अक्ष के संबंध में, वेक्टर फ़ील्ड
अदिश क्षेत्र पैटर्न वाली वस्तुओं के लिए, बेलनाकार समरूपता का तात्पर्य ऊर्ध्वाधर प्रतिबिंब समरूपता से भी है। चूंकि, यह सदिश फ़ील्ड पैटर्न के लिए सही नहीं है: उदाहरण के लिए, [[बेलनाकार निर्देशांक]] में कुछ अक्ष के संबंध में, सदिश फ़ील्ड
  <math>\mathbf{A} = A_\rho\boldsymbol{\hat \rho} + A_\phi\boldsymbol{\hat \phi} + A_z\boldsymbol{\hat z}</math> जब भी अक्ष के संबंध में बेलनाकार समरूपता होती है <math>A_\rho, A_\phi,</math> तथा <math> A_z</math> यह समरूपता है (इस पर कोई निर्भरता नहीं है <math>\phi</math>); और इसमें परावर्तक समरूपता तभी होती है जब <math>A_\phi = 0</math>.
  <math>\mathbf{A} = A_\rho\boldsymbol{\hat \rho} + A_\phi\boldsymbol{\hat \phi} + A_z\boldsymbol{\hat z}</math> जब भी अक्ष के संबंध में बेलनाकार समरूपता होती है <math>A_\rho, A_\phi,</math> तथा <math> A_z</math> यह समरूपता है (इस पर कोई निर्भरता नहीं है <math>\phi</math>), और इसमें परावर्तक समरूपता तभी होती है जब <math>A_\phi = 0</math>.


गोलाकार समरूपता के लिए, ऐसा कोई भेद नहीं है: किसी भी पैटर्न वाली वस्तु में प्रतिबिंब समरूपता के तल होते हैं।
गोलाकार समरूपता के लिए, ऐसा कोई भेद नहीं है: किसी भी पैटर्न वाली वस्तु में प्रतिबिंब समरूपता के तल होते हैं।
Line 83: Line 84:
== सामान्य रूप से समरूपता समूह ==
== सामान्य रूप से समरूपता समूह ==
{{see also|Automorphism|Automorphism group}}
{{see also|Automorphism|Automorphism group}}
व्यापक संदर्भों में, एक समरूपता समूह किसी भी प्रकार का परिवर्तन समूह या [[automorphism]] समूह हो सकता है। प्रत्येक प्रकार की [[गणितीय संरचना]] में [[Bijection]] होता है जो संरचना को संरक्षित करता है। इसके विपरीत, समरूपता समूह को निर्दिष्ट करना संरचना को परिभाषित कर सकता है, या कम से कम ज्यामितीय सर्वांगसमता या निश्चरता के अर्थ को स्पष्ट कर सकता है; यह Erlangen प्रोग्राम को देखने का एक तरीका है।
व्यापक संदर्भों में, एक समरूपता समूह किसी भी प्रकार का परिवर्तन समूह या [[automorphism]] समूह हो सकता है। प्रत्येक प्रकार की [[गणितीय संरचना]] में [[Bijection]] होता है जो संरचना को संरक्षित करता है। इसके विपरीत, समरूपता समूह को निर्दिष्ट करना संरचना को परिभाषित कर सकता है, या कम से कम ज्यामितीय सर्वांगसमता या निश्चरता के अर्थ को स्पष्ट कर सकता है, यह Erlangen प्रोग्राम को देखने का एक तरीका है।


उदाहरण के लिए, अतिशयोक्तिपूर्ण [[गैर-यूक्लिडियन ज्यामिति]] में वस्तुओं में फ्यूचियन समूह होता है, जो अतिशयोक्तिपूर्ण तल के सममिति समूह के असतत उपसमूह होते हैं, जो यूक्लिडियन दूरी के अतिरिक्त अतिशयोक्तिपूर्ण को संरक्षित करते हैं। (कुछ एम.सी. एस्चेर के रेखाचित्रों में दर्शाए गए हैं।) इसी तरह, [[परिमित ज्यामिति]] के ऑटोमोर्फिज़्म समूह यूक्लिडियन उप-स्थानों, दूरियों या आंतरिक उत्पादों के अतिरिक्त बिंदु-सेटों (असतत उप-स्थानों) के परिवारों को संरक्षित करते हैं। यूक्लिडियन आंकड़ों की तरह, किसी भी ज्यामितीय स्थान में वस्तुओं में समरूपता समूह होते हैं जो परिवेश स्थान की समरूपता के उपसमूह होते हैं।
उदाहरण के लिए, अतिशयोक्तिपूर्ण [[गैर-यूक्लिडियन ज्यामिति]] में वस्तुओं में फ्यूचियन समूह होता है, जो अतिशयोक्तिपूर्ण तल के सममिति समूह के असतत उपसमूह होते हैं, जो यूक्लिडियन दूरी के अतिरिक्त अतिशयोक्तिपूर्ण को संरक्षित करते हैं। (कुछ एम.सी. एस्चेर के रेखाचित्रों में दर्शाए गए हैं।) इसी तरह, [[परिमित ज्यामिति]] के ऑटोमोर्फिज़्म समूह यूक्लिडियन उप-स्थानों, दूरियों या आंतरिक उत्पादों के अतिरिक्त बिंदु-सेटों (असतत उप-स्थानों) के परिवारों को संरक्षित करते हैं। यूक्लिडियन आंकड़ों की तरह, किसी भी ज्यामितीय स्थान में वस्तुओं में समरूपता समूह होते हैं जो परिवेश स्थान की समरूपता के उपसमूह होते हैं।


समरूपता समूह का एक अन्य उदाहरण एक ग्राफ़ (असतत गणित) का है: एक ग्राफ़ समरूपता शीर्षों का क्रमचय है जो किनारों को किनारों तक ले जाता है। किसी समूह की कोई भी प्रस्तुति उसके [[केली ग्राफ]] का समरूपता समूह है; [[मुक्त समूह]] एक अनंत [[वृक्ष (ग्राफ सिद्धांत)]] का समरूपता समूह है।
समरूपता समूह का एक अन्य उदाहरण एक ग्राफ़ (असतत गणित) का है: एक ग्राफ़ समरूपता शीर्षों का क्रमचय है जो किनारों को किनारों तक ले जाता है। किसी समूह की कोई भी प्रस्तुति उसके [[केली ग्राफ]] का समरूपता समूह है, [[मुक्त समूह]] एक अनंत [[वृक्ष (ग्राफ सिद्धांत)]] का समरूपता समूह है।


== समरूपता के संदर्भ में समूह संरचना ==
== समरूपता के संदर्भ में समूह संरचना ==
केली के प्रमेय में कहा गया है कि कोई भी सार समूह कुछ सेट एक्स के क्रमपरिवर्तन का एक उपसमूह है, और इसलिए कुछ अतिरिक्त संरचना के साथ एक्स के समरूपता समूह के रूप में माना जा सकता है। इसके अतिरिक्त, समूह की कई सार विशेषताएं (समूह संचालन के संदर्भ में पूरी तरह से परिभाषित) समरूपता के संदर्भ में व्याख्या की जा सकती हैं।
केली के प्रमेय में कहा गया है कि कोई भी सार समूह कुछ सेट एक्स के क्रमपरिवर्तन का एक उपसमूह है, और इसलिए कुछ अतिरिक्त संरचना के साथ एक्स के समरूपता समूह के रूप में माना जा सकता है। इसके अतिरिक्त, समूह की कई सार विशेषताएं (समूह संचालन के संदर्भ में पूरी तरह से परिभाषित) समरूपता के संदर्भ में व्याख्या की जा सकती हैं।


उदाहरण के लिए, मान लीजिए G = Sym(X) एक [[यूक्लिडियन अंतरिक्ष|यूक्लिडियन समष्टि]] में आकृति X का परिमित समरूपता समूह है, और H ⊂ G को एक उपसमूह होने दें। तब H की व्याख्या X के समरूपता समूह के रूप में की जा सकती है<sup>+</sup>, X का एक सजाया हुआ संस्करण। इस तरह की सजावट का निर्माण निम्नानुसार किया जा सकता है। कुछ पैटर्न जैसे कि तीर या रंग को X में जोड़ें जिससे कि सभी समरूपता को तोड़ सकें, एक आकृति X प्राप्त करें<sup>#</sup> साथ में Sym(X<sup>#</sup>) = {1}, तुच्छ उपसमूह; अर्थात जीएक्स<sup>#</sup> ≠ एक्स<sup>#</sup> सभी गैर-तुच्छ g ∈ G के लिए। अब हमें मिलता है:
उदाहरण के लिए, मान लीजिए G = Sym(X) एक [[यूक्लिडियन अंतरिक्ष|यूक्लिडियन समष्टि]] में आकृति X का परिमित समरूपता समूह है, और H ⊂ G को एक उपसमूह होने दें। तब H की व्याख्या X के समरूपता समूह के रूप में की जा सकती है<sup>+</sup>, X का एक सजाया हुआ संस्करण। इस तरह की सजावट का निर्माण निम्नानुसार किया जा सकता है। कुछ पैटर्न जैसे कि तीर या रंग को X में जोड़ें जिससे कि सभी समरूपता को तोड़ सकें, एक आकृति X प्राप्त करें<sup>#</sup> साथ में Sym(X<sup>#</sup>) = {1}, तुच्छ उपसमूह, अर्थात जीएक्स<sup>#</sup> ≠ एक्स<sup>#</sup> सभी गैर-तुच्छ g ∈ G के लिए। अब हमें मिलता है:
:<math>
:<math>
X^+ \ = \ \bigcup_{h\in H} hX^{\#} \quad\text{satisfies}\quad  
X^+ \ = \ \bigcup_{h\in H} hX^{\#} \quad\text{satisfies}\quad  
Line 106: Line 107:
एक उदाहरण के रूप में, द्वितल समूह G = D पर विचार करें<sub>3</sub> = सिम (एक्स), जहां एक्स एक समबाहु त्रिभुज है। हम इसे एक किनारे पर एक तीर से सजा सकते हैं, एक असममित आकृति X प्राप्त कर सकते हैं<sup>#</sup>. τ ∈ G को तीर वाले किनारे का प्रतिबिंब होने दें, समग्र आकृति X<sup>+</sup> = एक्स<sup>#</sup> ∪ τX<sup>#</sup> के किनारे पर एक द्विदिश तीर है, और इसका समरूपता समूह H = {1, τ} है। यह उपसमूह सामान्य नहीं है, क्योंकि gX<sup>+</sup> में एक अलग किनारे पर द्वि-तीर हो सकता है, जो एक अलग प्रतिबिंब समरूपता समूह देता है।
एक उदाहरण के रूप में, द्वितल समूह G = D पर विचार करें<sub>3</sub> = सिम (एक्स), जहां एक्स एक समबाहु त्रिभुज है। हम इसे एक किनारे पर एक तीर से सजा सकते हैं, एक असममित आकृति X प्राप्त कर सकते हैं<sup>#</sup>. τ ∈ G को तीर वाले किनारे का प्रतिबिंब होने दें, समग्र आकृति X<sup>+</sup> = एक्स<sup>#</sup> ∪ τX<sup>#</sup> के किनारे पर एक द्विदिश तीर है, और इसका समरूपता समूह H = {1, τ} है। यह उपसमूह सामान्य नहीं है, क्योंकि gX<sup>+</sup> में एक अलग किनारे पर द्वि-तीर हो सकता है, जो एक अलग प्रतिबिंब समरूपता समूह देता है।


हालाँकि, H = {1, ρ, ρ<sup>2</sup>} ⊂ डी<sub>3</sub> एक घूर्णन द्वारा उत्पन्न चक्रीय उपसमूह हो, सजी हुई आकृति X<sup>+</sup> में लगातार अभिविन्यास वाले तीरों का 3-चक्र होता है। तब एच सामान्य है, क्योंकि इस तरह के चक्र को या तो अभिविन्यास के साथ समान समरूपता समूह एच उत्पन्न करता है।
चूंकि, H = {1, ρ, ρ<sup>2</sup>} ⊂ डी<sub>3</sub> एक घूर्णन द्वारा उत्पन्न चक्रीय उपसमूह हो, सजी हुई आकृति X<sup>+</sup> में लगातार अभिविन्यास वाले तीरों का 3-चक्र होता है। तब एच सामान्य है, क्योंकि इस तरह के चक्र को या तो अभिविन्यास के साथ समान समरूपता समूह एच उत्पन्न करता है।


== यह भी देखें ==
== यह भी देखें ==

Revision as of 17:04, 26 December 2022

एक नियमित चतुर्पाश्वीय बारह अलग-अलग घुमावों के अनुसार अपरिवर्तनीय है (यदि पहचान परिवर्तन को तुच्छ रोटेशन के रूप में सम्मलित किया गया है और प्रतिबिंबों को बाहर रखा गया है)। इन्हें यहां चक्र ग्राफ (बीजगणित) प्रारूप में चित्रित किया गया है, साथ ही 180 डिग्री किनारे (नीले तीर) और 120 डिग्री वर्टेक्स (गुलाबी और नारंगी तीर) घूर्णन के साथ जो पदों के माध्यम से टेट्राहेड्रॉन को क्रमबद्ध करता है। बारह घुमाव आकृति के घूर्णन (समरूपता) समूह का निर्माण करते हैं।

समूह सिद्धांत में, ज्यामितीय वस्तु का समरूपता समूह सभी परिवर्तन (ज्यामिति) का समूह (गणित) होता है, जिसके अनुसार वस्तु अपरिवर्तनीय (गणित) होती है, जो रचना के समूह संचालन से संपन्न होती है। ऐसा परिवर्तन परिवेश स्थान का परिवर्तनीय मानचित्रण है जो वस्तु को अपने पास ले जाता है, और जो वस्तु की सभी प्रासंगिक संरचना को संरक्षित करता है। किसी वस्तु X के समरूपता समूह के लिए बारंबार अंकन G = Sym(X) है।

मीट्रिक (गणित) स्थान में किसी वस्तु के लिए, इसकी समरूपता परिवेशी स्थान के सममिति समूह का एक उपसमूह बनाती है। यह लेख मुख्य रूप से यूक्लिडियन ज्यामिति में समरूपता समूहों पर विचार करता है, लेकिन इस अवधारणा का अध्ययन अधिक सामान्य प्रकार की ज्यामितीय संरचना के लिए भी किया जा सकता है।

परिचय

हम समानता रखने वाली "वस्तु" को ज्यामितीय आकृतियाँ, चित्र और पैटर्न मानते हैं, जैसे वॉलपेपर समूह। भौतिक वस्तुओं की समरूपता के लिए, पैटर्न के हिस्से के रूप में उनकी भौतिक संरचना भी ली जा सकती है। ( पैटर्न को औपचारिक रूप से अदिश क्षेत्र के रूप में निर्दिष्ट किया जा सकता है, रंग या पदार्थों के सेट में मानो के साथ स्थिति का कार्य, एक सदिश क्षेत्र के रूप में, या वस्तु पर अधिक सामान्य कार्य के रूप में।) समष्टि के सममिति का समूह प्रेरित करता है इसमें वस्तुओं पर समूह क्रिया (गणित), और समरूपता समूह Sym(X) में वे समरूपता होते हैं जो X को स्वयं से मैप करते हैं (साथ ही साथ किसी और पैटर्न को मैप करते हैं)। हम कहते हैं कि X ऐसी मैपिंग के अनुसार अपरिवर्तनीय है, और मैपिंग X की समरूपता है।

उपरोक्त को कभी-कभी X का पूर्ण समरूपता समूह कहा जाता है जिससे कि जोर दिया जा सके कि इसमें अभिविन्यास-उत्क्रमी समरूपता (प्रतिबिंब, ग्लाइड प्रतिबिंब और अनुचित घुमाव) सम्मलित हैं, जब तक कि ये समरूपता इस विशेष X को स्वयं में मैप करते हैं। अभिविन्यास-संरक्षण समरूपता के उपसमूह (अनुवाद, घुमाव और इनकी रचना) को इसका उचित समरूपता समूह कहा जाता है। एक वस्तु काइरल है जब उसके पास कोई अभिविन्यास उत्क्रमी समरूपता नहीं है, जिससे कि उसका उचित समरूपता समूह उसके पूर्ण समरूपता समूह के बराबर हो।

कोई भी समरूपता समूह जिसके तत्वों में सामान्य निश्चित बिंदु (गणित) होता है, जो सत्य है यदि समूह परिमित है या आकृति परिबद्ध है, को लंबकोणीय समूह O(n)) के उपसमूह के रूप में प्रतिनिधित्व किया जा सकता है, जो कि निश्चित बिंदु होने के लिए उत्पत्ति का चयन करता है। उचित समरूपता समूह तब विशेष लंबकोणीय समूह SO(n) का उपसमूह होता है, और इसे आकृति का घूर्णन समूह कहा जाता है।

असतत समरूपता समूह' में, किसी दिए गए बिंदु के सममित बिंदु सीमा बिंदु की ओर जमा नहीं होते हैं। अर्थात्, समूह की प्रत्येक कक्षा (समूह सिद्धांत) (समूह के सभी तत्वों के अनुसार दिए गए बिंदु की छवियां) असतत सेट बनाती हैं। सभी परिमित समरूपता समूह असतत हैं।

असतत समरूपता समूह तीन प्रकारों में आते हैं: (1) परिमित 'बिंदु समूह', जिसमें केवल घुमाव, प्रतिबिंब, व्युत्क्रम और अनुचित घुमाव सम्मलित हैं - अर्थात, O(n) के परिमित उपसमूह, (2) अनंत 'जाली (समूह) समूह', जिसमें केवल अनुवाद सम्मलित हैं, और (3) अनंत 'समष्टि समूह' जिसमें पिछले दोनों प्रकार के तत्व सम्मलित हैं, और शायद स्क्रू विस्थापन और ग्लाइड प्रतिबिंब जैसे अतिरिक्त परिवर्तन भी हैं। निरंतर समरूपता समूह (लाइ समूह) भी हैं, जिनमें मनमाने ढंग से छोटे कोणों के घूर्णन या मनमाने ढंग से छोटी दूरी के अनुवाद होते हैं। एक उदाहरण O(3), गोले का सममिति समूह है। यूक्लिडियन वस्तुओं के सममिति समूहों को पूरी तरह से यूक्लिडियन समूह E(n) (Rn के समस्थानिक समूह) के उपसमूहों के रूप में वर्गीकृत जा सकता है।

दो ज्यामितीय आकृतियों में समान समरूपता प्रकार होता है जब उनके समरूपता समूह यूक्लिडियन समूह के संयुग्मित उपसमूह होते हैं: अर्थात, जब उपसमूह H1, H2 E(n) में कुछ g के लिए H1 = g−1H2g से संबंधित होते हैं। उदाहरण के लिए:

  • दो 3D आकृतियों में दर्पण सममिति है, लेकिन विभिन्न दर्पण तलों के संबंध में।
  • दो 3D आकृतियों में 3 गुना घूर्णी समरूपता है, लेकिन विभिन्न अक्षों के संबंध में।
  • दो 2D पैटर्न में अनुवादकीय समरूपता है, प्रत्येक दिशा में, दो अनुवाद सदिश की लंबाई समान है लेकिन अलग दिशा है।

निम्नलिखित अनुभागों में, हम केवल सममिति समूहों पर विचार करते हैं जिनकी कक्षाएँ स्थैतिक रूप से बंद (टोपोलॉजी) है, जिनमें सभी असतत और निरंतर सममिति समूह सम्मलित हैं। चूंकि, यह उदाहरण के लिए परिमेय संख्या द्वारा अनुवादों के 1D समूह को बाहर करता है, इस तरह के गैर-बंद आंकड़े को इसके मनमाने ढंग से ठीक विवरण के कारण उचित सटीकता के साथ नहीं खींचा जा सकता है।

एक आयाम

आयाम में सममिति समूह हैं:

  • तुच्छ चक्रीय समूह C1
  • प्रतिबिंब द्वारा उत्पन्न दो तत्वों के समूह, वे C2 के साथ समरूपी हैं
  • एक अनुवाद द्वारा उत्पन्न अनंत असतत समूह, वे पूर्णांकों के योज्य समूह Z के साथ तुल्याकार हैं
  • अनुवाद और प्रतिबिंब द्वारा उत्पन्न अनंत असतत समूह, वे f Z, Dih(Z), के सामान्यीकृत द्वितल समूह के साथ समरूपी हैं, जिसे D∞ द्वारा भी निरूपित किया जाता है (जो कि Z और C2 का अर्ध-प्रत्यक्ष उत्पाद है)।
  • सभी अनुवादों द्वारा उत्पन्न समूह (वास्तविक संख्या आर के योगात्मक समूह के साथ समरूपी), यह समूह यूक्लिडियन आकृति का समरूपता समूह नहीं हो सकता है, यहां तक कि पैटर्न के साथ संपन्न: ऐसा पैटर्न सजातीय होगा, इसलिए प्रतिबिंबित भी हो सकता है। चूंकि, एक निरंतर एक-आयामी सदिश क्षेत्र में यह समरूपता समूह होता है।
  • बिंदुओं में सभी अनुवादों और प्रतिबिंबों द्वारा उत्पन्न समूह, वे सामान्यीकृत द्वितल समूह Dih(R) के साथ समरूपी हैं।

दो आयाम

संयुग्मन तक द्वि-आयामी स्थान में असतत बिंदु समूह निम्न वर्ग हैं:

  • चक्रीय समूह C1, C2, C3, C4, ... जहां Cn में कोण 360°/n के गुणकों द्वारा एक निश्चित बिंदु के बारे में सभी घुमाव होते हैं
  • द्वितल समूह D1, D2, D3, D4, ..., जहां Dn (क्रम 2n) में Cn में घुमाव होते हैं, साथ में n अक्षों में प्रतिबिंब होते हैं जो निश्चित बिंदु से गुजरते हैं।

C1 तुच्छ समूह है जिसमें केवल पहचान ऑपरेशन होता है, जो तब होता है जब आंकड़ा असममित होता है, उदाहरण के लिए "F" अक्षर। C2 अक्षर "Z" का सममिति समूह है, C3 त्रिशूल का, C4 स्वास्तिक का, और C5, C6, आदि पांच, छह, आदि भुजाओं के अतिरिक्त समान स्वस्तिक-जैसी आकृतियों के सममिति समूह हैं। चार।

D1 2-तत्व समूह है जिसमें पहचान संचालन और एक एकल प्रतिबिंब होता है, जो तब होता है जब आकृति में द्विपक्षीय समरूपता का केवल एक अक्ष होता है, उदाहरण के लिए अक्षर "A"।

D2, जो कि क्लेन चार-समूह के लिए समरूपी है, एक गैर-समबाहु आयत का समरूपता समूह है। इस आकृति में चार समरूपता संक्रियाएँ हैं: पहचान संक्रिया, घूर्णन का एक दुगुना अक्ष, और दो असमान दर्पण तल।

D3, D4 आदि नियमित बहुभुज के सममिति समूह हैं।

इनमें से प्रत्येक समरूपता प्रकार के भीतर, रोटेशन के केंद्र के लिए स्वतंत्रता की दो डिग्री होती हैं, और द्वितल समूहों के मामले में, दर्पण की स्थिति के लिए एक और।

शेष सममिति समूह दो आयामों में एक निश्चित बिंदु के साथ हैं:

  • विशेष ऑर्थोगोनल समूह SO(2) जिसमें एक निश्चित बिंदु के बारे में सभी घुमाव सम्मलित हैं, इसे वृत्त समूह S1 भी कहा जाता है, निरपेक्ष मान 1 की जटिल संख्याओं का गुणक समूह। यह एक वृत्त का उचित समरूपता समूह है और Cn का निरंतर समतुल्य है। कोई ज्यामितीय आकृति नहीं है जिसमें पूर्ण समरूपता समूह के रूप में वृत्त समूह हो, लेकिन एक सदिश क्षेत्र के लिए यह लागू हो सकता है (नीचे त्रि-आयामी स्थिति देखें)।
  • लंबकोणीय समूह O(2) एक निश्चित बिंदु के बारे में सभी घुमावों और उस निश्चित बिंदु के माध्यम से किसी अक्ष में प्रतिबिंबों से मिलकर बनता है। यह एक वृत्त का सममिति समूह है। इसे Dih(S1) भी कहा जाता है क्योंकि यह S1 का सामान्यीकृत द्वितल समूह है।

गैर-बाध्य आंकड़ों में अनुवाद सहित सममिति समूह हो सकते हैं, य़े हैं:

  • 7 फ्रीज़ समूह
  • 17 वॉलपेपर समूह
  • प्रत्येक समरूपता समूह के लिए एक आयाम में, उस समूह में सभी समरूपता का संयोजन एक दिशा में, और लंबवत दिशा में सभी अनुवादों का समूह
  • पहली दिशा में एक पंक्ति में भी प्रतिबिंब के साथ।

तीन आयाम

संयुग्मन तक त्रि-आयामी बिंदु समूहों के सेट में 7 अनंत श्रृंखलाएं और 7 अन्य अलग-अलग समूह होते हैं। क्रिस्टलोग्राफी में, केवल उन बिंदु समूहों पर विचार किया जाता है जो कुछ क्रिस्टल जाली को संरक्षित करते हैं (इसलिए उनके घुमावों में केवल 1, 2, 3, 4, या 6 क्रम हो सकते हैं)। सामान्य बिंदु समूहों के अनंत परिवारों के इस क्रिस्टलोग्राफिक प्रतिबंध प्रमेयके परिणामस्वरूप 32 क्रिस्टलोग्राफिक बिंदु समूह (7 श्रृंखलाओं में से 27 व्यक्तिगत समूह, और 7 अन्य व्यक्तियों में से 5) होते हैं।

एक निश्चित बिंदु वाले निरंतर समरूपता समूहों में ये सम्मलित हैं:

  • अक्ष के लम्बवत् सममिति तल के बिना बेलनाकार सममिति, यह उदाहरण के लिए बीयर की बोतल पर लागू होता है
  • अक्ष के लम्बवत् समरूपता तल के साथ बेलनाकार सममिति
  • गोलाकार समरूपता

अदिश क्षेत्र पैटर्न वाली वस्तुओं के लिए, बेलनाकार समरूपता का तात्पर्य ऊर्ध्वाधर प्रतिबिंब समरूपता से भी है। चूंकि, यह सदिश फ़ील्ड पैटर्न के लिए सही नहीं है: उदाहरण के लिए, बेलनाकार निर्देशांक में कुछ अक्ष के संबंध में, सदिश फ़ील्ड

 जब भी अक्ष के संबंध में बेलनाकार समरूपता होती है  तथा  यह समरूपता है (इस पर कोई निर्भरता नहीं है ), और इसमें परावर्तक समरूपता तभी होती है जब .

गोलाकार समरूपता के लिए, ऐसा कोई भेद नहीं है: किसी भी पैटर्न वाली वस्तु में प्रतिबिंब समरूपता के तल होते हैं।

एक निश्चित बिंदु के बिना निरंतर समरूपता समूहों में पेंच अक्ष वाले लोग सम्मलित होते हैं, जैसे कि एक अनंत कुंडलित वक्रता। यूक्लिडियन समूह#उपसमूह भी देखें।

सामान्य रूप से समरूपता समूह

व्यापक संदर्भों में, एक समरूपता समूह किसी भी प्रकार का परिवर्तन समूह या automorphism समूह हो सकता है। प्रत्येक प्रकार की गणितीय संरचना में Bijection होता है जो संरचना को संरक्षित करता है। इसके विपरीत, समरूपता समूह को निर्दिष्ट करना संरचना को परिभाषित कर सकता है, या कम से कम ज्यामितीय सर्वांगसमता या निश्चरता के अर्थ को स्पष्ट कर सकता है, यह Erlangen प्रोग्राम को देखने का एक तरीका है।

उदाहरण के लिए, अतिशयोक्तिपूर्ण गैर-यूक्लिडियन ज्यामिति में वस्तुओं में फ्यूचियन समूह होता है, जो अतिशयोक्तिपूर्ण तल के सममिति समूह के असतत उपसमूह होते हैं, जो यूक्लिडियन दूरी के अतिरिक्त अतिशयोक्तिपूर्ण को संरक्षित करते हैं। (कुछ एम.सी. एस्चेर के रेखाचित्रों में दर्शाए गए हैं।) इसी तरह, परिमित ज्यामिति के ऑटोमोर्फिज़्म समूह यूक्लिडियन उप-स्थानों, दूरियों या आंतरिक उत्पादों के अतिरिक्त बिंदु-सेटों (असतत उप-स्थानों) के परिवारों को संरक्षित करते हैं। यूक्लिडियन आंकड़ों की तरह, किसी भी ज्यामितीय स्थान में वस्तुओं में समरूपता समूह होते हैं जो परिवेश स्थान की समरूपता के उपसमूह होते हैं।

समरूपता समूह का एक अन्य उदाहरण एक ग्राफ़ (असतत गणित) का है: एक ग्राफ़ समरूपता शीर्षों का क्रमचय है जो किनारों को किनारों तक ले जाता है। किसी समूह की कोई भी प्रस्तुति उसके केली ग्राफ का समरूपता समूह है, मुक्त समूह एक अनंत वृक्ष (ग्राफ सिद्धांत) का समरूपता समूह है।

समरूपता के संदर्भ में समूह संरचना

केली के प्रमेय में कहा गया है कि कोई भी सार समूह कुछ सेट एक्स के क्रमपरिवर्तन का एक उपसमूह है, और इसलिए कुछ अतिरिक्त संरचना के साथ एक्स के समरूपता समूह के रूप में माना जा सकता है। इसके अतिरिक्त, समूह की कई सार विशेषताएं (समूह संचालन के संदर्भ में पूरी तरह से परिभाषित) समरूपता के संदर्भ में व्याख्या की जा सकती हैं।

उदाहरण के लिए, मान लीजिए G = Sym(X) एक यूक्लिडियन समष्टि में आकृति X का परिमित समरूपता समूह है, और H ⊂ G को एक उपसमूह होने दें। तब H की व्याख्या X के समरूपता समूह के रूप में की जा सकती है+, X का एक सजाया हुआ संस्करण। इस तरह की सजावट का निर्माण निम्नानुसार किया जा सकता है। कुछ पैटर्न जैसे कि तीर या रंग को X में जोड़ें जिससे कि सभी समरूपता को तोड़ सकें, एक आकृति X प्राप्त करें# साथ में Sym(X#) = {1}, तुच्छ उपसमूह, अर्थात जीएक्स# ≠ एक्स# सभी गैर-तुच्छ g ∈ G के लिए। अब हमें मिलता है:

इस ढांचे में सामान्य उपसमूहों को भी चित्रित किया जा सकता है। अनुवाद जीएक्स का समरूपता समूह + संयुग्मी उपसमूह gHg है-1. इस प्रकार एच सामान्य है जब भी:

अर्थात जब भी एक्स की सजावट+ X के किसी भी पक्ष या विशेषता के संबंध में किसी भी अभिविन्यास में खींचा जा सकता है, और अभी भी समान समरूपता समूह gHg उत्पन्न कर सकता है-1 = एच.

एक उदाहरण के रूप में, द्वितल समूह G = D पर विचार करें3 = सिम (एक्स), जहां एक्स एक समबाहु त्रिभुज है। हम इसे एक किनारे पर एक तीर से सजा सकते हैं, एक असममित आकृति X प्राप्त कर सकते हैं#. τ ∈ G को तीर वाले किनारे का प्रतिबिंब होने दें, समग्र आकृति X+ = एक्स# ∪ τX# के किनारे पर एक द्विदिश तीर है, और इसका समरूपता समूह H = {1, τ} है। यह उपसमूह सामान्य नहीं है, क्योंकि gX+ में एक अलग किनारे पर द्वि-तीर हो सकता है, जो एक अलग प्रतिबिंब समरूपता समूह देता है।

चूंकि, H = {1, ρ, ρ2} ⊂ डी3 एक घूर्णन द्वारा उत्पन्न चक्रीय उपसमूह हो, सजी हुई आकृति X+ में लगातार अभिविन्यास वाले तीरों का 3-चक्र होता है। तब एच सामान्य है, क्योंकि इस तरह के चक्र को या तो अभिविन्यास के साथ समान समरूपता समूह एच उत्पन्न करता है।

यह भी देखें


अग्रिम पठन

  • Burns, G.; Glazer, A. M. (1990). Space Groups for Scientists and Engineers (2nd ed.). Boston: Academic Press, Inc. ISBN 0-12-145761-3.
  • Clegg, W (1998). Crystal Structure Determination (Oxford Chemistry Primer). Oxford: Oxford University Press. ISBN 0-19-855901-1.
  • O'Keeffe, M.; Hyde, B. G. (1996). Crystal Structures; I. Patterns and Symmetry. Washington, DC: Mineralogical Society of America, Monograph Series. ISBN 0-939950-40-5.
  • Miller, Willard Jr. (1972). Symmetry Groups and Their Applications. New York: Academic Press. OCLC 589081. Archived from the original on 2010-02-17. Retrieved 2009-09-28.


बाहरी संबंध