वेग: Difference between revisions

From Vigyanwiki
Line 87: Line 87:
विशेष सापेक्षता की उपेक्षा करना, जहाँ ई<sub>k</sub> संवेग h ऊर्जा है और m द्रव्यमान है।[[ गति ]]ज ऊर्जा एक अदिश राशि है क्योंकि यह वेग के वर्ग पर निर्भर करती है, हालांकि संबंधित मात्रा, संवेग, एक सदिश है और इसे इसके द्वारा परिभाषित किया जाता है:
विशेष सापेक्षता की उपेक्षा करना, जहाँ ई<sub>k</sub> संवेग h ऊर्जा है और m द्रव्यमान है।[[ गति ]]ज ऊर्जा एक अदिश राशि है क्योंकि यह वेग के वर्ग पर निर्भर करती है, हालांकि संबंधित मात्रा, संवेग, एक सदिश है और इसे इसके द्वारा परिभाषित किया जाता है:
:<math qid=Q41273>\boldsymbol{p}=m\boldsymbol{v}</math>
:<math qid=Q41273>\boldsymbol{p}=m\boldsymbol{v}</math>
विशेष सापेक्षता में, आयामहीन [[ लोरेंत्ज़ कारक ]] अक्सर प्रकट होता है, और द्वारा दिया जाता है
विशेष सापेक्षता में, आयामहीन [[ लोरेंत्ज़ कारक ]] अक्सर प्रकट होता है, और इसके द्वारा दिया जाता है:
:<math qid=Q599404>\gamma = \frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}</math>
:<math qid=Q599404>\gamma = \frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}</math>
जहां लोरेंत्ज़ कारक है और c प्रकाश की गति है।
जहां लोरेंत्ज़ कारक है और c प्रकाश की गति है।


पलायन वेग वह न्यूनतम गति है जो एक बैलिस्टिक वस्तु को पृथ्वी जैसे विशाल पिंड से बचने के लिए आवश्यक है। यह गतिज ऊर्जा का प्रतिनिधित्व करता है, जब वस्तु की [[ गुरुत्वाकर्षण ऊर्जा ]] (जो हमेशा नकारात्मक होती है) में जोड़ा जाता है, शून्य के बराबर होता है। M द्रव्यमान वाले ग्रह के केंद्र से r दूरी पर किसी वस्तु के पलायन वेग का सामान्य सूत्र है
पलायन वेग वह न्यूनतम गति है जो एक बैलिस्टिक वस्तु को पृथ्वी जैसे विशाल पिंड से बचने के लिए आवश्यक है। यह गतिज ऊर्जा का प्रतिनिधित्व करता है, जब वस्तु की [[ गुरुत्वाकर्षण ऊर्जा ]] (जो हमेशा नकारात्मक होती है) में जोड़ा जाता है, शून्य के बराबर होता है।M द्रव्यमान वाले किसी ग्रह के केंद्र से r दूरी पर स्थित किसी वस्तु के पलायन वेग का सामान्य सूत्र है:
:<math>v_{\text{e}} = \sqrt{\frac{2GM}{r}} = \sqrt{2gr},</math>
:<math>v_{\text{e}} = \sqrt{\frac{2GM}{r}} = \sqrt{2gr},</math>
जहाँ G गुरुत्वीय स्थिरांक है और g गुरुत्वीय त्वरण है। पृथ्वी की सतह से पलायन वेग लगभग 11 200 m/s है, और यह वस्तु की दिशा पर ध्यान दिए बिना है। यह एस्केप वेलोसिटी को कुछ हद तक एक मिथ्या नाम बनाता है, क्योंकि अधिक सही शब्द एस्केप स्पीड होगा: कोई भी वस्तु उस परिमाण के वेग को प्राप्त करती है, भले ही वातावरण कुछ भी हो, बेस बॉडी के आसपास के क्षेत्र को तब तक छोड़ देगी जब तक कि यह किसी चीज के साथ प्रतिच्छेद न करे। इसके रास्ते में।
जहाँ G गुरुत्वीय स्थिरांक है और g गुरुत्वीय त्वरण है। पृथ्वी की सतह से पलायन वेग लगभग 11,200 m/s है, और यह वस्तु की दिशा की परवाह किए बिना है। यह कुछ हद तक एक मिथ्या नाम से बचने की गति बनाता है, क्योंकि अधिक सही शब्द बच निकलने की गति होगी: किसी भी वस्तु को उस परिमाण का वेग प्राप्त होता है, पर्यावरण की परवाह किए बिना, जब तक वह आधार निकाय के आसपास के क्षेत्र को छोड़ देता है। जब तक कि वह किसी चीज से प्रतिच्छेद न कर दे। अपनी राह पर।


== सापेक्ष वेग ==
== सापेक्ष वेग ==
{{main|Relative velocity}}
{{main|Relative velocity}}
सापेक्ष वेग एक समन्वय प्रणाली में निर्धारित दो वस्तुओं के बीच वेग का माप है। शास्त्रीय और आधुनिक भौतिकी दोनों में सापेक्ष वेग मौलिक है, क्योंकि भौतिकी में कई प्रणालियाँ दो या दो से अधिक कणों की सापेक्ष गति से निपटती हैं। न्यूटोनियन यांत्रिकी में, सापेक्ष वेग चुने हुए जड़त्वीय संदर्भ फ्रेम से स्वतंत्र होता है। विशेष सापेक्षता के मामले में अब ऐसा नहीं है जिसमें वेग संदर्भ फ्रेम की पसंद पर निर्भर करते हैं।
सापेक्ष वेग एक निर्देशांक प्रणाली में परिभाषित दो वस्तुओं के बीच वेग का माप है। सापेक्ष वेग शास्त्रीय और आधुनिक दोनों भौतिकी में मौलिक है, क्योंकि भौतिकी में कई प्रणालियाँ दो या दो से अधिक कणों की सापेक्ष गति से निपटती हैं। न्यूटनियन यांत्रिकी में, सापेक्ष वेग चुने हुए जड़त्वीय संदर्भ फ्रेम से स्वतंत्र है। यह अब विशेष सापेक्षता में ऐसा नहीं है जिसमें वेग संदर्भ फ्रेम की पसंद पर निर्भर करते हैं।


यदि कोई वस्तु A वेग सदिश (ज्यामिति) ''v'' के साथ गतिमान है और एक वस्तु B वेग सदिश ''w'' के साथ है, तो वस्तु A '' के सापेक्ष '' वस्तु B के वेग को अंतर के रूप में परिभाषित किया जाता है दो वेग वैक्टर:
यदि कोई वस्तु A वेग सदिश (ज्यामिति) v के साथ गतिमान है और कोई वस्तु B वेग सदिश w से गतिमान है, तो वस्तु A के सापेक्ष वस्तु B का वेग दो वेग सदिशों के अंतर के रूप में परिभाषित किया जाता है:
:<math>\boldsymbol{v}_{A\text{ relative to }B} = \boldsymbol{v} - \boldsymbol{w}</math>
:<math>\boldsymbol{v}_{A\text{ relative to }B} = \boldsymbol{v} - \boldsymbol{w}</math>
इसी प्रकार, वेग ''w'' से गतिमान वस्तु B का आपेक्षिक वेग, वेग ''v'' से गतिमान वस्तु A के सापेक्ष है:
इसी प्रकार, वेग ''w'' से गतिमान वस्तु B का आपेक्षिक वेग, वेग ''v'' से गतिमान वस्तु A के सापेक्ष है:
:<math>\boldsymbol{v}_{B\text{ relative to }A} = \boldsymbol{w} - \boldsymbol{v}</math>
:<math>\boldsymbol{v}_{B\text{ relative to }A} = \boldsymbol{w} - \boldsymbol{v}</math>
आमतौर पर, चुना गया जड़त्वीय फ्रेम वह होता है जिसमें दो उल्लिखित वस्तुओं में से बाद वाला आराम में होता है।
आमतौर पर, चुना गया जड़त्वीय फ्रेम वह होता है जिसमें दो उल्लिखित वस्तुओं में से उत्तरार्द्ध आराम पर होता है।


=== अदिश वेग ===
=== अदिश वेग ===

Revision as of 20:10, 19 November 2022

Velocity
File:US Navy 040501-N-1336S-037 The U.S. Navy sponsored Chevy Monte Carlo NASCAR leads a pack into turn four at California Speedway.jpg
As a change of direction occurs while the racing cars turn on the curved track, their velocity is not constant.
सामान्य प्रतीक
v, v, v
अन्य इकाइयां
मील प्रति घंटा, फुट प्रति दूसरा

वेग गति में एक भौतिक वस्तु की दिशात्मक व्युत्पन्न गति है, जो स्थिति (वेक्टर) में उसके समय व्युत्पन्न के संकेत के रूप देखी जाती है, जैसा कि समय के एक विशेष मानक (जैसे 60 km/h उत्तर की ओर) द्वारा मापा जाता है। गति गतिकी में वेग एक मौलिक अवधारणा है, शास्त्रीय यांत्रिकी की शाखा जो निकायों की गति का वर्णन करती है।

वेग एक भौतिक सदिश (ज्यामिति) भौतिक मात्रा है; इसे परिभाषित करने के लिए परिमाण और दिशा दोनों की आवश्यकता होती है। वेग का अदिश (भौतिकी) निरपेक्ष मान (परिमाण (गणित) )को गति कहा जाता है, एक सुसंगत व्युत्पन्न इकाई होने के कारण जिसकी मात्रा इकाइयों की अंतर्राष्ट्रीय प्रणाली (मीट्रिक प्रणाली ) में मीटर प्रति सेकंड (m/s या m⋅s) के रूप में मापी जाती है-1)। उदाहरण के लिए, "5 मीटर प्रति सेकंड" एक अदिश राशि है, जबकि "5 मीटर प्रति सेकंड पूर्व" एक सदिश है। यदि गति, दिशा या दोनों में कोई परिवर्तन होता है, तो कहा जाता है कि वस्तु त्वरण से गुजर रही है।

लगातार वेग बनाम त्वरण

एक स्थिर वेग रखने के लिए, किसी वस्तु की गति एक स्थिर दिशा में होनी चाहिए। स्थिर दिशा वस्तु को एक सीधे रास्ते में गति के लिए बाधित करती है, इस प्रकार एक स्थिर वेग का अर्थ है एक सीधी रेखा में एक स्थिर गति से गति। उदाहरण के लिए, एक वृत्ताकार पथ में निरंतर 20 किलोमीटर प्रति घंटे की गति से चलने वाली कार की गति स्थिर होती है, लेकिन उसका वेग स्थिर नहीं होता क्योंकि उसकी दिशा बदलती है। इसलिए, कार को त्वरण के दौर से गुजरना माना जाता है।

गति और वेग में अंतर

क्लासिकल कण की काइनेमैटिक मात्रा: द्रव्यमान m, स्थिति 'r', वेग 'v', त्वरण 'a'।

गति, एक वेग वेक्टर का अदिश (गणित) परिमाण, केवल यह दर्शाता है कि कोई वस्तु कितनी तेजी से आगे बढ़ रही है।[1][2]


गति का समीकरण


औसत वेग

वेग को समय के साथ स्थिति के परिवर्तन की दर के रूप में परिभाषित किया जाता है, जिसे औसत वेग से अंतर पर जोर देने के लिए तात्कालिक वेग भी कहा जा सकता है। कुछ अनुप्रयोगों में किसी वस्तु के औसत वेग की आवश्यकता हो सकती है, अर्थात स्थिर वेग जो एक ही समय अंतराल में एक चर वेग के रूप में एक ही परिणामी विस्थापन प्रदान करता है, v(t), कुछ समय अवधि में Δt। औसत वेग की गणना इस प्रकार की जा सकती है:

औसत वेग हमेशा किसी वस्तु की औसत गति से कम या उसके बराबर होता है। यह महसूस करके देखा जा सकता है कि दूरी हमेशा सख्ती से बढ़ रही है, विस्थापन परिमाण में वृद्धि या कमी के साथ-साथ दिशा बदल सकता है।

विस्थापन-समय (x बनाम t) ग्राफ के संदर्भ में, तात्कालिक वेग (या, बस, वेग) को किसी भी बिंदु पर वक्र पर स्पर्शरेखा रेखा की ढलान और औसत वेग को ढलान के रूप में माना जा सकता है। औसत वेग के लिए समय अवधि की सीमाओं के बराबर t निर्देशांक वाले दो बिंदुओं के बीच की छेदक रेखा का।

औसत वेग समय के साथ औसत वेग के समान होता है - यानी, इसका समय-भारित औसत, जिसे वेग के समय अभिन्न के रूप में गणना की जा सकती है:

जहां हम पहचान सकते हैं

तथा


तात्कालिक वेग

File:Velocity vs time graph.svg
वेग बनाम समय ग्राफ़ का उदाहरण, और y-अक्ष पर वेग v के बीच संबंध, त्वरण a (तीन हरी स्पर्श रेखाएँ वक्र के साथ विभिन्न बिंदुओं पर त्वरण के मानों का प्रतिनिधित्व करती हैं) और विस्थापन एस (वक्र के नीचे पीला क्षेत्र ।)

यदि हम v को वेग के रूप में और x को विस्थापन (स्थिति में परिवर्तन) वेक्टर के रूप में मानते हैं, तो हम किसी कण या वस्तु के (तात्कालिक) वेग को, किसी विशेष समय t पर, समय के संबंध में स्थिति के व्युत्पन्न के रूप में व्यक्त कर सकते हैं:

इस व्युत्पन्न समीकरण से, एक-आयामी मामले में यह देखा जा सकता है कि वेग बनाम समय (v बनाम t ग्राफ) के तहत क्षेत्र विस्थापन, x है। कलन के संदर्भ में, वेग फलन v(t) का समाकल अभिन्न विस्थापन फलन x(t) है। चित्र में, यह s लेबल वाले वक्र के नीचे के पीले क्षेत्र से मेल खाता है (विस्थापन के लिए एक वैकल्पिक संकेतन होने के नाते)।

चूँकि समय के संबंध में स्थिति का व्युत्पन्न स्थिति में परिवर्तन (मीटर में) को समय में परिवर्तन (सेकंड में) से विभाजित करता है, वेग को मीटर प्रति सेकंड (m/s) में मापा जाता है। हालांकि तात्कालिक वेग की अवधारणा पहली बार में प्रति-सहज प्रतीत हो सकती है, इसे उस वेग के रूप में माना जा सकता है जिस पर वस्तु उस समय गति करना बंद कर देती है।

त्वरण से संबंध

यद्यपि वेग को स्थिति के परिवर्तन की दर के रूप में परिभाषित किया जाता है, किसी वस्तु के त्वरण के लिए अभिव्यक्ति के साथ शुरू करना अक्सर अधिक सामान्य होता है। जैसा कि चित्र में तीन हरी स्पर्शरेखा रेखाओं द्वारा देखा गया है, किसी बिंदु पर किसी वस्तु का तात्कालिक त्वरण उस बिंदु पर v(t) ग्राफ के वक्र के स्पर्शरेखा का ढलान है। दूसरे शब्दों में, त्वरण को समय के सापेक्ष वेग के व्युत्पन्न के रूप में परिभाषित किया जाता है:

वहां से, हम वेग के लिए a(t) त्वरण बनाम समय ग्राफ के तहत क्षेत्र के रूप में एक अभिव्यक्ति प्राप्त कर सकते हैं। जैसा कि ऊपर बताया गया है, यह इंटीग्रल की अवधारणा का उपयोग करके किया जाता है:


निरंतर त्वरण

स्थिर त्वरण के विशेष मामले में , गति के समीकरण ों का उपयोग करके वेग का अध्ययन किया जा सकता है। यह मानते हुए कि a को कुछ मनमाना स्थिर सदिश के बराबर माना जाता है, यह दिखाना तुच्छ है कि

समय t पर वेग के रूप में v और समय t = 0 पर वेग के रूप में u। इस समीकरण को प्रसिद्ध समीकरण x = ut + at2/2, के साथ जोड़कर, विस्थापन और औसत वेग के बीच संबंध स्थापित करना संभव है।

समय से स्वतंत्र वेग के लिए व्यंजक व्युत्पन्न करना भी संभव है, जिसेटोरिसेली समीकरण के रूप में जाना जाता है, जो इस प्रकार है:

कहाँ पे v = |v| आदि।

उपरोक्त समीकरण न्यूटोनियन यांत्रिकी और विशेष सापेक्षता दोनों के लिए मान्य हैं। जहां न्यूटोनियन यांत्रिकी और विशेष सापेक्षता भिन्न होती है, वहीं विभिन्न पर्यवेक्षक एक ही स्थिति का वर्णन कैसे करेंगे। विशेष रूप से, न्यूटोनियन यांत्रिकी में, सभी पर्यवेक्षक टी के मूल्य पर सहमत होते हैं और स्थिति नियमों में परिवर्तन एक ऐसी स्थिति पैदा करता है जिसमें सभी गैर-त्वरित पर्यवेक्षक समान मूल्यों के साथ किसी वस्तु के त्वरण का वर्णन करेंगे। वही विशेष सापेक्षता के लिए सही नहीं है। दूसरे शब्दों में, केवल आपेक्षिक वेग की गणना की जा सकती है।

वेग पर निर्भर मात्रा

किसी गतिमान वस्तु की गतिज ऊर्जा उसके वेग पर निर्भर करती है और इसे समीकरण द्वारा दिया जाता है:

विशेष सापेक्षता की उपेक्षा करना, जहाँ ईk संवेग h ऊर्जा है और m द्रव्यमान है।गति ज ऊर्जा एक अदिश राशि है क्योंकि यह वेग के वर्ग पर निर्भर करती है, हालांकि संबंधित मात्रा, संवेग, एक सदिश है और इसे इसके द्वारा परिभाषित किया जाता है:

विशेष सापेक्षता में, आयामहीन लोरेंत्ज़ कारक अक्सर प्रकट होता है, और इसके द्वारा दिया जाता है:

जहां लोरेंत्ज़ कारक है और c प्रकाश की गति है।

पलायन वेग वह न्यूनतम गति है जो एक बैलिस्टिक वस्तु को पृथ्वी जैसे विशाल पिंड से बचने के लिए आवश्यक है। यह गतिज ऊर्जा का प्रतिनिधित्व करता है, जब वस्तु की गुरुत्वाकर्षण ऊर्जा (जो हमेशा नकारात्मक होती है) में जोड़ा जाता है, शून्य के बराबर होता है।M द्रव्यमान वाले किसी ग्रह के केंद्र से r दूरी पर स्थित किसी वस्तु के पलायन वेग का सामान्य सूत्र है:

जहाँ G गुरुत्वीय स्थिरांक है और g गुरुत्वीय त्वरण है। पृथ्वी की सतह से पलायन वेग लगभग 11,200 m/s है, और यह वस्तु की दिशा की परवाह किए बिना है। यह कुछ हद तक एक मिथ्या नाम से बचने की गति बनाता है, क्योंकि अधिक सही शब्द बच निकलने की गति होगी: किसी भी वस्तु को उस परिमाण का वेग प्राप्त होता है, पर्यावरण की परवाह किए बिना, जब तक वह आधार निकाय के आसपास के क्षेत्र को छोड़ देता है। जब तक कि वह किसी चीज से प्रतिच्छेद न कर दे। अपनी राह पर।

सापेक्ष वेग

सापेक्ष वेग एक निर्देशांक प्रणाली में परिभाषित दो वस्तुओं के बीच वेग का माप है। सापेक्ष वेग शास्त्रीय और आधुनिक दोनों भौतिकी में मौलिक है, क्योंकि भौतिकी में कई प्रणालियाँ दो या दो से अधिक कणों की सापेक्ष गति से निपटती हैं। न्यूटनियन यांत्रिकी में, सापेक्ष वेग चुने हुए जड़त्वीय संदर्भ फ्रेम से स्वतंत्र है। यह अब विशेष सापेक्षता में ऐसा नहीं है जिसमें वेग संदर्भ फ्रेम की पसंद पर निर्भर करते हैं।

यदि कोई वस्तु A वेग सदिश (ज्यामिति) v के साथ गतिमान है और कोई वस्तु B वेग सदिश w से गतिमान है, तो वस्तु A के सापेक्ष वस्तु B का वेग दो वेग सदिशों के अंतर के रूप में परिभाषित किया जाता है:

इसी प्रकार, वेग w से गतिमान वस्तु B का आपेक्षिक वेग, वेग v से गतिमान वस्तु A के सापेक्ष है:

आमतौर पर, चुना गया जड़त्वीय फ्रेम वह होता है जिसमें दो उल्लिखित वस्तुओं में से उत्तरार्द्ध आराम पर होता है।

अदिश वेग

एक आयामी मामले में,[3] वेग अदिश हैं और समीकरण या तो है:

, अगर दो ऑब्जेक्ट विपरीत दिशाओं में चल रहे हैं, या:
, यदि दो वस्तुएँ एक ही दिशा में गतिमान हैं।

ध्रुवीय निर्देशांक

File:Radial and tangential.svg
एक पर्यवेक्षक ओ के चारों ओर वस्तु के निरंतर वेग के साथ रैखिक गति के विभिन्न क्षणों में वेग के रेडियल और स्पर्शरेखा घटकों का प्रतिनिधित्व (यह मेल खाता है, उदाहरण के लिए, फुटपाथ पर खड़े पैदल यात्री के चारों ओर एक सीधी सड़क पर एक कार के पारित होने के लिए)। डॉपलर प्रभाव के कारण रेडियल घटक देखा जा सकता है, स्पर्शरेखा घटक वस्तु की स्थिति में दृश्य परिवर्तन का कारण बनता है।

ध्रुवीय समन्वय प्रणाली में, एक द्वि-आयामी वेग को एक रेडियल वेग द्वारा वर्णित किया जाता है, जिसे मूल से दूर या वेग के घटक के रूप में परिभाषित किया जाता है (जिसे वेलोसिटी मेड गुड भी कहा जाता है), और एक कोणीय वेग, जो रोटेशन की दर है मूल (सकारात्मक मात्राओं के साथ वामावर्त रोटेशन का प्रतिनिधित्व करते हैं और ऋणात्मक मात्राएं दक्षिणावर्त रोटेशन का प्रतिनिधित्व करती हैं, दाएं हाथ की समन्वय प्रणाली में)।

रेडियल और अनुप्रस्थ घटकों में वेग वेक्टर को विघटित करके रेडियल और कोणीय वेगों को कार्टेशियन वेग और विस्थापन वैक्टर से प्राप्त किया जा सकता है। अनुप्रस्थता (गणित) वेग मूल पर केंद्रित एक वृत्त के साथ वेग का घटक है।

कहाँ पे

  • अनुप्रस्थ वेग है
  • रेडियल वेग है।

रेडियल वेग का परिमाण वेग सदिश और विस्थापन की दिशा में इकाई सदिश का डॉट उत्पाद है।

कहाँ पे विस्थापन है।

अनुप्रस्थ वेग का परिमाण विस्थापन और वेग वेक्टर की दिशा में यूनिट वेक्टर के क्रॉस उत्पाद का है। यह कोणीय वेग का गुणनफल भी है और विस्थापन का परिमाण।

ऐसा है कि

अदिश रूप में कोणीय संवेग, अनुप्रस्थ वेग के मूल समय से दूरी का द्रव्यमान गुणा है, या समतुल्य रूप से, कोणीय गति से दूरी के वर्ग गुणा का द्रव्यमान गुणा है। कोणीय गति के लिए साइन कन्वेंशन वही है जो कोणीय वेग के लिए है।

कहाँ पे

  • द्रव्यमान है

भावाभिव्यक्ति जड़त्व के क्षण के रूप में जाना जाता है। यदि बल केवल व्युत्क्रम वर्ग निर्भरता के साथ रेडियल दिशा में हैं, जैसा कि गुरुत्वाकर्षण कक्षा के मामले में, कोणीय गति स्थिर है, और अनुप्रस्थ गति दूरी के व्युत्क्रमानुपाती है, कोणीय गति दूरी वर्ग के व्युत्क्रमानुपाती होती है, और दर जिस पर क्षेत्र बह गया है वह स्थिर है। इन संबंधों को केपलर के ग्रहों की गति के नियम के रूप में जाना जाता है।

यह भी देखें


टिप्पणियाँ

  1. Rowland, Todd (2019). "वेग वेक्टर". Wolfram MathWorld. Retrieved 2 June 2019.
  2. Wilson, Edwin Bidwell (1901). वेक्टर विश्लेषण: जे. विलार्ड गिब्स के व्याख्यानों पर स्थापित गणित और भौतिकी के छात्रों के उपयोग के लिए एक पाठ्य-पुस्तक. Yale bicentennial publications. C. Scribner's Sons. p. 125. hdl:2027/mdp.39015000962285. Earliest occurrence of the speed/velocity terminology.
  3. Basic principle


संदर्भ

  • Robert Resnick and Jearl Walker, Fundamentals of Physics, Wiley; 7 Sub edition (June 16, 2004). ISBN 0-471-23231-9.


इस पृष्ठ में अनुपलब्ध आंतरिक कड़ियों की सूची

  • मील प्रति घंटे
  • आदर्श सिद्धान्त
  • रफ़्तार
  • स्थिति वेक्टर)
  • निरपेक्ष मूल्य
  • वेक्टर (ज्यामिति)
  • यौगिक
  • स्पर्शरेखा
  • एस्केप वेलोसिटी
  • गुरुत्वाकर्षण स्थिरांक
  • गुरुत्वाकर्षण त्वरण
  • ट्रांसवर्सलिटी (गणित)
  • कोणीय गति
  • पार उत्पाद
  • कोणीय गति
  • की परिक्रमा
  • निष्क्रियता के पल

बाहरी संबंध