प्रतिक्रियाशील केन्द्रापसारक बल: Difference between revisions
No edit summary |
No edit summary |
||
| Line 77: | Line 77: | ||
चूँकि/यद्यपि प्रतिक्रियाशील केन्द्रापसारक का भौतिकी साहित्य में विश्लेषण में संभवतः ही कभी उपयोग किया जाता है, अवधारणा कुछ मैकेनिकल इंजीनियरिंग अवधारणाओं के अंदर प्रयुक्त होती है। इस तरह की इंजीनियरिंग अवधारणा का उदाहरण तेजी से घूमने वाले टरबाइन ब्लेड के अंदर तनावों का विश्लेषण है।<ref name=Roche/> ब्लेड को अक्ष से ब्लेड के किनारे तक जाने वाली परतों के ढेर के रूप में माना जा सकता है। प्रत्येक परत तुरंत आसन्न, रेडियल रूप से आवक परत पर बाहरी (केन्द्रापसारक) बल लगाती है और तुरंत आसन्न, रेडियल रूप से बाहरी परत पर आवक (सेंट्रीपेटल) बल लगाती है। उसी समय आंतरिक परत मध्य परत पर लोचदार केन्द्राभिमुख बल लगाती है, जबकि बाहरी परत लोचदार केन्द्रापसारक बल लगाती है, जिसके परिणामस्वरूप आंतरिक तनाव होता है। यह ब्लेड में तनाव और उनके कारण हैं जो मुख्य रूप से इस स्थिति में मैकेनिकल इंजीनियरों को रूचि देते हैं। | चूँकि/यद्यपि प्रतिक्रियाशील केन्द्रापसारक का भौतिकी साहित्य में विश्लेषण में संभवतः ही कभी उपयोग किया जाता है, अवधारणा कुछ मैकेनिकल इंजीनियरिंग अवधारणाओं के अंदर प्रयुक्त होती है। इस तरह की इंजीनियरिंग अवधारणा का उदाहरण तेजी से घूमने वाले टरबाइन ब्लेड के अंदर तनावों का विश्लेषण है।<ref name=Roche/> ब्लेड को अक्ष से ब्लेड के किनारे तक जाने वाली परतों के ढेर के रूप में माना जा सकता है। प्रत्येक परत तुरंत आसन्न, रेडियल रूप से आवक परत पर बाहरी (केन्द्रापसारक) बल लगाती है और तुरंत आसन्न, रेडियल रूप से बाहरी परत पर आवक (सेंट्रीपेटल) बल लगाती है। उसी समय आंतरिक परत मध्य परत पर लोचदार केन्द्राभिमुख बल लगाती है, जबकि बाहरी परत लोचदार केन्द्रापसारक बल लगाती है, जिसके परिणामस्वरूप आंतरिक तनाव होता है। यह ब्लेड में तनाव और उनके कारण हैं जो मुख्य रूप से इस स्थिति में मैकेनिकल इंजीनियरों को रूचि देते हैं। | ||
[[File:Frizione centrifuga.jpg|thumb|left|250px |दो-शूज [[केन्द्रापसारक क्लच]]। मोटर इनपुट शाफ्ट को घूर्णन करता है जिससे शूज घूमते हैं, और बाहरी ड्रम (हटा दिया जाता है) आउटपुट पावर शाफ्ट को घुमाता है।]]घूर्णन उपकरण का और उदाहरण जिसमें प्रतिक्रियाशील केन्द्रापसारक बल की पहचान की जा सकती है जिसका उपयोग प्रणाली के व्यवहार का वर्णन करने के लिए किया जाता है, केन्द्रापसारक क्लच है। केन्द्रापसारक क्लच का उपयोग छोटे इंजन चालित उपकरणों जैसे चेन आरी, गो-कार्ट और मॉडल हेलीकाप्टरों में किया जाता है। यह डिवाइस को चलाए बिना इंजन को चालू और निष्क्रिय करने की अनुमति देता है, किन्तु इंजन की गति बढ़ने पर स्वचालित रूप से और सुचारू रूप से ड्राइव को संलग्न करता है। स्पिनिंग क्लच शूज़ को कसने के लिए स्प्रिंग का उपयोग किया जाता है। कम गति पर, स्प्रिंग जूतों को केन्द्रापसारक बल प्रदान करता है, जो गति बढ़ने पर बड़े | [[File:Frizione centrifuga.jpg|thumb|left|250px |दो-शूज [[केन्द्रापसारक क्लच]]। मोटर इनपुट शाफ्ट को घूर्णन करता है जिससे शूज घूमते हैं, और बाहरी ड्रम (हटा दिया जाता है) आउटपुट पावर शाफ्ट को घुमाता है।]]घूर्णन उपकरण का और उदाहरण जिसमें प्रतिक्रियाशील केन्द्रापसारक बल की पहचान की जा सकती है जिसका उपयोग प्रणाली के व्यवहार का वर्णन करने के लिए किया जाता है, केन्द्रापसारक क्लच है। केन्द्रापसारक क्लच का उपयोग छोटे इंजन चालित उपकरणों जैसे चेन आरी, गो-कार्ट और मॉडल हेलीकाप्टरों में किया जाता है। यह डिवाइस को चलाए बिना इंजन को चालू और निष्क्रिय करने की अनुमति देता है, किन्तु इंजन की गति बढ़ने पर स्वचालित रूप से और सुचारू रूप से ड्राइव को संलग्न करता है। स्पिनिंग क्लच शूज़ को कसने के लिए स्प्रिंग का उपयोग किया जाता है। कम गति पर, स्प्रिंग जूतों को केन्द्रापसारक बल प्रदान करता है, जो गति बढ़ने पर बड़े सीमा में चले जाते हैं और स्प्रिंग तनाव में खिंच जाता है। उच्च गति पर, जब शूज वसंत तनाव को बढ़ाने के लिए और बाहर नहीं जा सकते हैं, बाहरी ड्रम के कारण, ड्रम कुछ केन्द्रापसारक बल प्रदान करता है जो शूज को गोलाकार पथ में घुमाता रहता है। वसंत पर प्रयुक्त तनाव का बल, और कताई के जूतों द्वारा ड्रम पर लगाया जाने वाला बाहरी बल, प्रतिक्रियाशील केन्द्रापसारक बल हैं। ड्रम और जूतों के बीच आपसी बल ड्रम से जुड़े आउटपुट ड्राइव शाफ्ट को संलग्न करने के लिए आवश्यक घर्षण प्रदान करता है।<ref>{{cite book | author = Anthony G. Atkins, Tony Atkins and Marcel Escudier | title = A Dictionary of Mechanical Engineering | date = 2013 | publisher = Oxford University Press | isbn = 9780199587438 | page = 53 | url = https://books.google.com/books?id=0TjtKmSIL48C&pg=PA53 | access-date = 5 June 2014}}</ref> इस प्रकार केन्द्रापसारक क्लच काल्पनिक केन्द्रापसारक बल और प्रतिक्रियाशील केन्द्रापसारक बल दोनों को दिखाता है। | ||
== केन्द्रापसारक स्यूडोफोर्स से अंतर == | == केन्द्रापसारक स्यूडोफोर्स से अंतर == | ||
| Line 94: | Line 94: | ||
|- | |- | ||
!लगाए गए | !लगाए गए | ||
|घूर्णन के समय से | |घूर्णन के समय से निकलनेे वाले निकाये | ||
|कार्य करता है जैसे घूर्णन अक्ष से निकलता है, | |कार्य करता है जैसे घूर्णन अक्ष से निकलता है, | ||
| Line 101: | Line 101: | ||
!ऊपर लगाए गए | !ऊपर लगाए गए | ||
|वह बाधा जो आवक केन्द्रापसारक बल का कारण बनती है | |वह बाधा जो आवक केन्द्रापसारक बल का कारण बनती है | ||
|सभी निकाय, गतिमान हैं या नहीं; यदि गतिमान है, तो कोरिओलिस बल भी | |सभी निकाय, गतिमान हैं या नहीं; यदि गतिमान है, तो कोरिओलिस बल भी उपस्थित है | ||
|- | |- | ||
!दिशा | !दिशा | ||
Revision as of 15:27, 13 February 2023
| Part of a series on |
| चिरसम्मत यांत्रिकी |
|---|
मौलिक यांत्रिकी में, प्रतिक्रियाशीलता केन्द्रापसारक बल की क्रिया-प्रतिक्रिया की जोड़ी का एक प्रकार होता है जिसमें केंद्रीय बल होता है।
न्यूटन के गति के नियमों से न्यूटन के पहले नियम से न्यूटन के गति के पहले नियम के अनुसार, वस्तु पर कार्य करने वाले शुद्ध बल की अनुपस्थिति में वस्तु सीधी रेखा में चलती है। चूँकि/यद्यपि जब इस तरह का बल उस पर कार्य करता है तो घुमावदार रास्ता सुनिश्चित हो सकता है; इस बल को अधिकांशतः केन्द्रापसारक बल कहा जाता है, क्योंकि यह पथ के वक्रता के केंद्र की ओर निर्देशित होता है। फिर न्यूटन के गति के नियम से न्यूटन के तीसरे नियम से न्यूटन के गति के तीसरे नियम के अनुसार वस्तु द्वारा किसी अन्य वस्तु पर लगाया गया समान और विपरीत बल भी होगा,[1][2] जैसे बाधा जो पथ को घुमाने के लिए मजबूर करती है, और यह प्रतिक्रिया बल, इस आलेख का विषय, कभी-कभी प्रतिक्रियाशील केन्द्रापसारक बल कहा जाता है, क्योंकि यह केंद्रीय बल के विपरीत दिशा में निर्देशित होता है।
केन्द्रापसारक बल (घूर्णन संदर्भ फ्रेम) के रूप में जाना जाने वाला जड़त्वीय बल या काल्पनिक बल के विपरीत, जो सदैव संदर्भ के घूर्णन फ्रेम में प्रतिक्रियाशील बल के अतिरिक्त उपस्थित होता है, प्रतिक्रियाशील बल वास्तविक न्यूटोनियन बल होता है जो किसी भी संदर्भ फ्रेम में देखा जाता है। दो बलों का केवल विशेष मामलों में समान परिमाण होगा जहां परिपत्र गति उत्पन्न होती है और जहां घूर्णन की धुरी संदर्भ के घूर्णन फ्रेम की उत्पत्ति होती है। यह प्रतिक्रियाशील बल है जो इस लेख का विषय है।[3][4][5][6]
युग्मित बल
दाईं ओर का चित्र समान गोलाकार गति में गेंद को अचल खंभे से बंधे तार द्वारा अपने पथ पर पकड़े हुए दिखाता है। इस प्रणाली में स्ट्रिंग द्वारा प्रदान की गई गेंद पर केन्द्रापसारक बल परिपत्र गति को बनाए रखता है, और इसके प्रति प्रतिक्रिया, जो कुछ प्रतिक्रियाशील केन्द्रापसारक बल के रूप में संदर्भित होती है, स्ट्रिंग और पोस्ट पर कार्य करती है।
न्यूटन के पहले नियम के लिए आवश्यक है कि सीधी रेखा के अतिरिक्त किसी भी पथ के साथ चलने वाला कोई भी पिण्ड नेट गैर-शून्य बल के अधीन हो, और मुक्त पिण्ड आरेख गेंद को बनाए रखने के लिए स्ट्रिंग द्वारा लगाए गए गेंद (केंद्र पैनल) पर बल दिखाता है। इसकी गोलाकार गति।
न्यूटन के गति के नियम से न्यूटन के तीसरे नियम से न्यूटन के क्रिया और प्रतिक्रिया के तीसरे नियम में कहा गया है कि यदि डोरी गेंद पर अंदर की ओर केन्द्रापसारक बल लगाती है, तो गेंद डोरी पर बराबर किन्तु बाहरी प्रतिक्रिया करेगी, जो मुक्त पिण्ड आरेख में दिखाया गया है स्ट्रिंग (निचला पैनल) प्रतिक्रियाशील केन्द्रापसारक बल के रूप में।
स्ट्रिंग प्रतिक्रियाशील केन्द्रापसारक बल को गेंद से पोस्ट पर खींचकर निश्चित पोस्ट तक पहुंचाती है। पुनः न्यूटन के तीसरे नियम के अनुसार, पोस्ट स्ट्रिंग पर प्रतिक्रिया करता है, पोस्ट प्रतिक्रिया को लेबल करता है, स्ट्रिंग पर खींचता है। डोरी पर दो बल बराबर और विपरीत होते हैं, डोरी पर कोई शुद्ध बल नहीं लगता (यह मानते हुए कि डोरी द्रव्यमान रहित है), किन्तु डोरी को तनाव में रखकर।
खंभा अचल प्रतीत होने का कारण यह है कि यह पृथ्वी से जुड़ा हुआ है। यदि घूमती हुई गेंद को नाव के मस्तूल से बांध दिया जाता है, उदाहरण के लिए, नाव का मस्तूल और गेंद दोनों केंद्रीय बिंदु के चारों ओर घूमने का अनुभव करेंगे।
अनुप्रयोग
चूँकि/यद्यपि प्रतिक्रियाशील केन्द्रापसारक का भौतिकी साहित्य में विश्लेषण में संभवतः ही कभी उपयोग किया जाता है, अवधारणा कुछ मैकेनिकल इंजीनियरिंग अवधारणाओं के अंदर प्रयुक्त होती है। इस तरह की इंजीनियरिंग अवधारणा का उदाहरण तेजी से घूमने वाले टरबाइन ब्लेड के अंदर तनावों का विश्लेषण है।[1] ब्लेड को अक्ष से ब्लेड के किनारे तक जाने वाली परतों के ढेर के रूप में माना जा सकता है। प्रत्येक परत तुरंत आसन्न, रेडियल रूप से आवक परत पर बाहरी (केन्द्रापसारक) बल लगाती है और तुरंत आसन्न, रेडियल रूप से बाहरी परत पर आवक (सेंट्रीपेटल) बल लगाती है। उसी समय आंतरिक परत मध्य परत पर लोचदार केन्द्राभिमुख बल लगाती है, जबकि बाहरी परत लोचदार केन्द्रापसारक बल लगाती है, जिसके परिणामस्वरूप आंतरिक तनाव होता है। यह ब्लेड में तनाव और उनके कारण हैं जो मुख्य रूप से इस स्थिति में मैकेनिकल इंजीनियरों को रूचि देते हैं।
घूर्णन उपकरण का और उदाहरण जिसमें प्रतिक्रियाशील केन्द्रापसारक बल की पहचान की जा सकती है जिसका उपयोग प्रणाली के व्यवहार का वर्णन करने के लिए किया जाता है, केन्द्रापसारक क्लच है। केन्द्रापसारक क्लच का उपयोग छोटे इंजन चालित उपकरणों जैसे चेन आरी, गो-कार्ट और मॉडल हेलीकाप्टरों में किया जाता है। यह डिवाइस को चलाए बिना इंजन को चालू और निष्क्रिय करने की अनुमति देता है, किन्तु इंजन की गति बढ़ने पर स्वचालित रूप से और सुचारू रूप से ड्राइव को संलग्न करता है। स्पिनिंग क्लच शूज़ को कसने के लिए स्प्रिंग का उपयोग किया जाता है। कम गति पर, स्प्रिंग जूतों को केन्द्रापसारक बल प्रदान करता है, जो गति बढ़ने पर बड़े सीमा में चले जाते हैं और स्प्रिंग तनाव में खिंच जाता है। उच्च गति पर, जब शूज वसंत तनाव को बढ़ाने के लिए और बाहर नहीं जा सकते हैं, बाहरी ड्रम के कारण, ड्रम कुछ केन्द्रापसारक बल प्रदान करता है जो शूज को गोलाकार पथ में घुमाता रहता है। वसंत पर प्रयुक्त तनाव का बल, और कताई के जूतों द्वारा ड्रम पर लगाया जाने वाला बाहरी बल, प्रतिक्रियाशील केन्द्रापसारक बल हैं। ड्रम और जूतों के बीच आपसी बल ड्रम से जुड़े आउटपुट ड्राइव शाफ्ट को संलग्न करने के लिए आवश्यक घर्षण प्रदान करता है।[7] इस प्रकार केन्द्रापसारक क्लच काल्पनिक केन्द्रापसारक बल और प्रतिक्रियाशील केन्द्रापसारक बल दोनों को दिखाता है।
केन्द्रापसारक स्यूडोफोर्स से अंतर
इस लेख में चर्चा की गई प्रतिक्रियाशील केन्द्रापसारक बल, केन्द्रापसारक बल के समान नहीं है, जो सामान्यतः केन्द्रापसारक बल शब्द का अर्थ है।
प्रतिक्रियात्मक केन्द्रापसारक बल, केन्द्रापसारक बल के साथ मिलकर प्रतिक्रिया जोड़ी का आधा होना, अवधारणा है जो किसी भी संदर्भ फ्रेम में प्रयुक्त होती है। यह इसे जड़त्वीय या काल्पनिक केन्द्रापसारक बल से अलग करता है, जो केवल घूर्णन फ्रेम में दिखाई देता है।
| प्रतिक्रियाशील केन्द्रापसारक बल | जड़त्वीय केन्द्रापसारक बल | |
|---|---|---|
| संदर्भ फ्रेम | कोई | केवल घूमने वाले फ्रेम |
| लगाए गए | घूर्णन के समय से निकलनेे वाले निकाये | कार्य करता है जैसे घूर्णन अक्ष से निकलता है,
यह एक तथाकथित काल्पनिक शक्ति है |
| ऊपर लगाए गए | वह बाधा जो आवक केन्द्रापसारक बल का कारण बनती है | सभी निकाय, गतिमान हैं या नहीं; यदि गतिमान है, तो कोरिओलिस बल भी उपस्थित है |
| दिशा | केन्द्रापसारक बल के विपरीत | रोटेशन की धुरी से दूर, पिण्ड के पथ की परवाह किए बिना |
| गतिज विश्लेषण | न्यूटन के तीसरे नियम के अनुसार अभिकेन्द्री बल के साथ क्रिया-प्रतिक्रिया युग्म का भाग | न्यूटन के दूसरे नियम में एक काल्पनिक बल के रूप में सम्मिलित है और कभी भी अभिकेन्द्र बल के साथ क्रिया-प्रतिक्रिया जोड़ी का हिस्सा नहीं है |
गुरुत्वाकर्षण की दो-पिण्ड की स्थिति
दो पिंडों के घूर्णन में, जैसे कि ग्रह और चंद्रमा अपने द्रव्यमान के सामान्य केंद्र या केन्द्रक के चारों ओर घूमते हैं, दोनों पिंडों पर बल केन्द्रापसारक होते हैं। उस स्थिति में, चंद्रमा पर ग्रह के केन्द्रापसारक बल की प्रतिक्रिया ग्रह पर चंद्रमा की अभिकेन्द्रीय शक्ति होती है।[6]
संदर्भ
- ↑ 1.0 1.1 Roche, John (2001). "Introducing motion in a circle". Physics Education. 36 (5): 399–405. Bibcode:2001PhyEd..36..399R. doi:10.1088/0031-9120/36/5/305. S2CID 250827660.
- ↑ Kobayashi, Yukio (2008). "Remarks on viewing situation in a rotating frame". European Journal of Physics. 29 (3): 599–606. Bibcode:2008EJPh...29..599K. doi:10.1088/0143-0807/29/3/019. S2CID 120947179.
- ↑ Delo E. Mook & Thomas Vargish (1987). Inside relativity. Princeton NJ: Princeton University Press. p. 47. ISBN 0-691-02520-7.
- ↑ J. S. Brar and R. K. Bansal (2004). A Text Book of Theory of Machines (3rd ed.). Firewall Media. p. 39. ISBN 9788170084181.
- ↑ De Volson Wood (1884). The elements of analytical mechanics: solids and fluids (4th ed.). J. Wiley & sons. p. 310.
- ↑ 6.0 6.1 G. David Scott (1957). "Centrifugal Forces and Newton's Laws of Motion". Vol. 25. American Journal of Physics. p. 325.
- ↑ Anthony G. Atkins, Tony Atkins and Marcel Escudier (2013). A Dictionary of Mechanical Engineering. Oxford University Press. p. 53. ISBN 9780199587438. Retrieved 5 June 2014.