नकार: Difference between revisions

From Vigyanwiki
(Created page with "{{short description|Logical operation}} {{for multi|negation in linguistics|Affirmation and negation||Negation (disambiguation)}} {{more footnotes|date=March 2013}} {{Use dmy...")
 
No edit summary
 
(9 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{short description|Logical operation}}
{{short description|Logical operation}}
{{for multi|negation in linguistics|Affirmation and negation||Negation (disambiguation)}}
{{more footnotes|date=March 2013}}
{{Use dmy dates|date=March 2020}}


{{Infobox logical connective
{{Infobox logical connective
| title        = Negation
| title        = निषेध
| other titles = NOT
| other titles = NOT
| Venn diagram = Venn10.svg
| Venn diagram = Venn10.svg
Line 20: Line 17:
| self-dual    = yes
| self-dual    = yes
}}
}}
[[तर्क]] में, निषेध, जिसे तार्किक पूरक भी कहा जाता है, एक [[संक्रिया (गणित)]] है जो एक [[प्रस्ताव (गणित)]] लेता है। <math>P</math> दूसरे प्रस्ताव के लिए नहीं <math>P</math>, लिखा हुआ <math>\neg P</math>, <math>\mathord{\sim} P</math> या <math>\overline{P}</math>. इसे सहज रूप से सत्य होने के रूप में व्याख्या की जाती है <math>P</math> असत्य है, और असत्य है जब <math>P</math> क्या सच है।<ref>{{Cite web|last=Weisstein|first=Eric W.|title=नकार|url=https://mathworld.wolfram.com/नकार.html|access-date=2020-09-02|website=mathworld.wolfram.com|language=en}}</ref><ref>{{Cite web|title=Logic and Mathematical Statements - Worked Examples|url=https://www.math.toronto.edu/preparing-for-calculus/3_logic/we_3_negation.html|access-date=2020-09-02|website=www.math.toronto.edu}}</ref> इस प्रकार निषेध एक एकात्मक संक्रिया [[तार्किक संयोजक]] है। इसे आम तौर पर [[धारणा (दर्शन)]], [[प्रस्ताव]]ों, [[सत्य मूल्य]]ों, या [[व्याख्या (तर्क)]] पर एक ऑपरेशन के रूप में लागू किया जा सकता है। [[शास्त्रीय तर्क]] में, नकारात्मकता को सामान्य रूप से सत्य कार्य के साथ पहचाना जाता है जो सत्य को असत्यता (और इसके विपरीत) में ले जाता है। [[अंतर्ज्ञानवादी तर्क]] में, ब्रौवर-हेटिंग-कोल्मोगोरोव व्याख्या के अनुसार, एक प्रस्ताव की उपेक्षा <math>P</math> वह प्रस्ताव है जिसके प्रमाण का खंडन है <math>P</math>.
तर्क में, '''निगेशन(निषेध)''', जिसे तार्किक पूरक भी कहा जाता है, एक संचालन है जो एक समस्या <math>P</math> दूसरे समस्या के लिए <nowiki>''</nowiki>not <math>P</math><nowiki>''</nowiki> पर ले जाता है जिसे <math>\neg P</math>, <math>\mathord{\sim} P</math> या <math>\overline{P}</math> मे लिखा जाता है। इसे सामान्य रूप से सत्य के रूप में व्याख्या की जाती है <math>P</math> असत्य है, और असत्य है जब <math>P</math> सत्य है।<ref>{{Cite web|last=Weisstein|first=Eric W.|title=नकार|url=https://mathworld.wolfram.com/नकार.html|access-date=2020-09-02|website=mathworld.wolfram.com|language=en}}</ref><ref>{{Cite web|title=Logic and Mathematical Statements - Worked Examples|url=https://www.math.toronto.edu/preparing-for-calculus/3_logic/we_3_negation.html|access-date=2020-09-02|website=www.math.toronto.edu}}</ref> इस प्रकार निगेशन एक गैर संक्रियक [[तार्किक संयोजक]] है। इसे सामान्य रूप से, [[प्रस्ताव|समस्या]], सत्य मान, या [[व्याख्या (तर्क)|सिमेंटिक मानों]] पर एक संचालन के रूप में प्रयुक्त किया जा सकता है। उत्कृष्ट [[शास्त्रीय तर्क|तर्क]] में, निगेशन को सामान्य रूप से सत्यमान फलन के साथ पहचाना जाता है जो सत्य-मान को असत्यता (और इसके विपरीत) पर ले जाता है। [[अंतर्ज्ञानवादी तर्क]] में, ब्रौवर-हेटिंग-कोल्मोगोरोव व्याख्या के अनुसार, एक समस्या <math>P</math> की उपेक्षा वह समस्या है जिसके प्रमाण का <math>P</math> विभाजक (रेफ्यूशन) है।


== परिभाषा ==
== परिभाषा ==
शास्त्रीय निषेध एक [[तार्किक मूल्य]] पर एक [[तार्किक संचालन]] है, आम तौर पर एक प्रस्ताव का मूल्य, जो सत्य का मान उत्पन्न करता है जब उसका संकार्य गलत होता है, और जब उसका संकार्य सत्य होता है तो असत्य का मान होता है। इस प्रकार यदि कथन {{mvar|P}} सच है, तो <math>\neg P</math> (उच्चारण नहीं P ) तब गलत होगा; और इसके विपरीत, अगर <math>\neg P</math> असत्य है तो {{mvar|P}} सच होगा।
उत्कृष्ट निगेशन एक [[तार्किक मूल्य|तार्किक मान]] पर एक [[तार्किक संचालन]] है, सामान्य रूप से एक समस्या का मान, जो सत्य मान उत्पन्न करता है जब उसका ऑपरेंड असत्य होता है, और जब उसका ऑपरेंड सत्य होता है तो असत्य का मान होता है। इस प्रकार यदि कथन {{mvar|P}} सत्य है, तो <math>\neg P</math> (उच्चारण not P ) तब असत्य होगा; और इसके विपरीत, यदि <math>\neg P</math> असत्य है तो {{mvar|P}} सत्य होगा।


की सत्य तालिका <math>\neg P</math> इस प्रकार है:
की सत्य तालिका <math>\neg P</math> इस प्रकार है:
Line 35: Line 32:
| {{no2|False}} || {{yes2|True}}
| {{no2|False}} || {{yes2|True}}
|}
|}
निषेध को अन्य तार्किक संक्रियाओं के संदर्भ में परिभाषित किया जा सकता है। उदाहरण के लिए, <math>\neg P</math> के रूप में परिभाषित किया जा सकता है <math>P \rightarrow \bot</math> (कहाँ <math>\rightarrow</math> [[तार्किक परिणाम]] है और <math>\bot</math> [[झूठा (तर्क)]] है)। इसके विपरीत परिभाषित किया जा सकता है <math>\bot</math> जैसा <math>Q \land \neg Q</math> किसी प्रस्ताव के लिए {{mvar|Q}} (कहाँ <math>\land</math> [[तार्किक संयोजन]] है)। यहाँ विचार यह है कि कोई भी [[विरोधाभास]] झूठा है, और जबकि ये विचार शास्त्रीय और अंतर्ज्ञानवादी तर्क दोनों में काम करते हैं, वे [[परासंगत तर्क]] में काम नहीं करते हैं, जहाँ विरोधाभास आवश्यक रूप से झूठे नहीं हैं। शास्त्रीय तर्कशास्त्र में हमें एक और पहचान भी मिलती है, <math>P \rightarrow Q</math> के रूप में परिभाषित किया जा सकता है <math>\neg P \lor Q</math>, कहाँ <math>\lor</math> तार्किक वियोजन है।
निगेशन को अन्य तार्किक संचालन के संदर्भ में परिभाषित किया जा सकता है। उदाहरण के लिए, <math>\neg P</math> के रूप में परिभाषित किया जा सकता है <math>P \rightarrow \bot</math> (जहां <math>\rightarrow</math> [[तार्किक परिणाम]] है और <math>\bot</math> असत्य [[झूठा (तर्क)|(तर्क)]] है)। इसके विपरीत परिभाषित किया जा सकता है <math>\bot</math> जैसा <math>Q \land \neg Q</math> किसी समस्या के लिए {{mvar|Q}} (जहां <math>\land</math> [[तार्किक संयोजन]] है)। यहाँ विचार यह है कि कोई भी [[विरोधाभास]] असत्य है, और जबकि ये विचार उत्कृष्ट और अंतर्ज्ञानवादी तर्क दोनों में कार्य करते हैं, वे [[परासंगत तर्क]] में कार्य नहीं करते हैं, जहाँ विरोधाभास आवश्यक रूप से असत्य नहीं हैं। उत्कृष्ट तर्कशास्त्र में हमें एक अन्य सर्वसमिका भी मिलती है, <math>P \rightarrow Q</math> को <math>\neg P \lor Q</math> के रूप में परिभाषित किया जा सकता है जहां <math>\lor</math> तार्किक वियोजन है।


बीजगणितीय रूप से, शास्त्रीय निषेध एक [[बूलियन बीजगणित (संरचना)]] में [[पूरक (आदेश सिद्धांत)]] से मेल खाता है, और एक [[हेटिंग बीजगणित]] में छद्म पूरकता के लिए अंतर्ज्ञानवादी निषेध। ये बीजगणित क्रमशः शास्त्रीय और अंतर्ज्ञानवादी तर्क के लिए [[बीजगणितीय शब्दार्थ (गणितीय तर्क)]] प्रदान करते हैं।
बीजगणितीय रूप से, उत्कृष्ट निगेशन एक [[बूलियन बीजगणित (संरचना)]] में [[पूरक (आदेश सिद्धांत)|पूरक क्रम सिद्धांत)]] से अनुरूप है, और एक [[हेटिंग बीजगणित]] में छद्म पूरकता के लिए अंतर्ज्ञानवादी निगेशन है। ये बीजगणित क्रमशः उत्कृष्ट और अंतर्ज्ञानवादी तर्क के लिए [[बीजगणितीय शब्दार्थ (गणितीय तर्क)|बीजगणितीय तर्क (गणितीय तर्क)]] प्रदान करते हैं।


== नोटेशन ==
== संकेत ==
एक प्रस्ताव की अस्वीकृति {{mvar|p}} चर्चा के विभिन्न संदर्भों और आवेदन के क्षेत्रों में अलग-अलग तरीकों से नोट किया जाता है। निम्नलिखित तालिका में इनमें से कुछ प्रकार हैं:
एक समस्या की उपेक्षा  {{mvar|p}} तर्क के विभिन्न संदर्भों और अनुप्रयोग के क्षेत्रों में अलग-अलग तरीकों से प्रलेखित किया जाता है। निम्नलिखित तालिका में इनमें से कुछ प्रकार हैं:


{| class="wikitable"
{| class="wikitable"
|- style="background:paleturquoise"
|- style="background:paleturquoise"
! Notation
! संकेत
! Plain Text
! प्लेनटेक्स्ट
! Vocalization
! शब्दोच्चारण
|-
|-
| style="text-align:center" | <math>\neg p</math>
| style="text-align:center" | <math>\neg p</math>
| style="text-align:center" | {{mono|¬p}}
| style="text-align:center" | {{mono|¬p}}
| Not ''p''
| not ''p''
|-
|-
| style="text-align:center" | <math>\mathord{\sim} p</math>
| style="text-align:center" | <math>\mathord{\sim} p</math>
| style="text-align:center" | {{mono|~p}}
| style="text-align:center" | {{mono|~p}}
| Not ''p''
| not ''p''
|-
|-
| style="text-align:center" | <math>-p</math>
| style="text-align:center" | <math>-p</math>
| style="text-align:center" | {{mono|-p}}
| style="text-align:center" | {{mono|-p}}
| Not ''p''
| not ''p''
|-
|-
| style="text-align:center" | N''p''
| style="text-align:center" | N''p''
Line 86: Line 83:
|-
|-
|}
|}
संकेतन एनपी पोलिश संकेतन है#तर्क के लिए पोलिश संकेतन|लुकासिविज़ संकेतन।
संकेतन Np लुकासिविक्ज़ संकेतन है।


समुच्चय सिद्धांत#मूल अवधारणा और अंकन में, <math>\setminus</math> 'के सेट में नहीं' इंगित करने के लिए भी प्रयोग किया जाता है: <math>U \setminus A</math> के सभी सदस्यों का समुच्चय है {{mvar|U}} जो इसके सदस्य नहीं हैं {{mvar|A}}.
समुच्चय सिद्धांत मे, <nowiki>''</nowiki><math>\setminus</math><nowiki>''</nowiki> का उपयोग समुच्चय में 'not' को इंगित करने के लिए भी किया जाता है: <math>U \setminus A</math> के सभी इकाइयों का समुच्चय {{mvar|U}} है जो {{mvar|A}} के भाग नहीं हैं।


भले ही यह कैसे नोट किया गया हो या [[तर्क प्रतीकों की सूची]], निषेध <math>\neg P</math> पढ़ा जा सकता है क्योंकि ऐसा नहीं है {{mvar|P}}, नहीं कि {{mvar|P}}, या आमतौर पर अधिक सरल रूप में नहीं {{mvar|P}}.
तथापि यह कैसे संकेतित या प्रतीकित हो, निगेशन <math>\neg P</math> की स्थिति <nowiki>''</nowiki>नहीं है कि {{mvar|P}}, <nowiki>''</nowiki>not that {{mvar|P}}<nowiki>''</nowiki>, या सामान्य रूप से अधिक सरल रूप में not {{mvar|P}} के रूप में पढ़ा जा सकता है।


== गुण ==
== गुण ==


=== दोहरा निषेध ===
=== द्विक निगेशन ===


शास्त्रीय तर्क की एक प्रणाली के भीतर, दोहरा निषेध, अर्थात, एक प्रस्ताव के निषेध का निषेध <math>P</math>, [[तार्किक रूप से समकक्ष]] है <math>P</math>. प्रतीकात्मक शब्दों में व्यक्त, <math>\neg \neg P \equiv P</math>. अंतर्ज्ञानवादी तर्क में, एक प्रस्ताव का तात्पर्य इसके दोहरे निषेध से है, लेकिन इसके विपरीत नहीं। यह शास्त्रीय और अंतर्ज्ञानवादी निषेध के बीच एक महत्वपूर्ण अंतर को चिन्हित करता है। बीजगणितीय रूप से, शास्त्रीय निषेध को अवधि दो का एक समावेशन (गणित) कहा जाता है।
उत्कृष्ट तर्क की एक प्रणाली के अंदर, द्विक निगेशन, अर्थात, एक समस्या के निगेशन का निगेशन <math>P</math>, [[तार्किक रूप से समकक्ष]] है <math>P</math>. प्रतीकात्मक शब्दों में <math>\neg \neg P \equiv P</math> व्यक्त किया जाता है। अंतर्ज्ञानवादी तर्क में, एक समस्या का तात्पर्य इसके दोहरे निगेशन से है लेकिन इसके विपरीत नहीं है। यह उत्कृष्ट और अंतर्ज्ञानवादी निगेशन के बीच एक महत्वपूर्ण अंतर को चिन्हित करता है। बीजगणितीय रूप से, उत्कृष्ट निगेशन को दो आवर्त का एक समावेशन (गणित) कहा जाता है।


हालांकि, अंतर्ज्ञानवादी तर्क में, कमजोर समानता <math>\neg \neg \neg P \equiv \neg P</math> धारण करता है। ऐसा इसलिए है क्योंकि अंतर्ज्ञानवादी तर्क में, <math>\neg P</math> के लिए मात्र एक लघुकथा है  <math>P \rightarrow \bot</math>, और हमारे पास भी है <math>P  \rightarrow \neg \neg P </math>. ट्रिपल नकार के साथ उस अंतिम निहितार्थ की रचना करना <math>\neg \neg P  \rightarrow  \bot </math> इसका आशय है <math>P \rightarrow \bot</math> .
हालांकि, अंतर्ज्ञानवादी तर्क में, दुर्बल समानता <math>\neg \neg \neg P \equiv \neg P</math> धारण करता है। ऐसा इसलिए है क्योंकि अंतर्ज्ञानवादी तर्क में, <math>\neg P</math> के लिए मात्र एक शॉर्टहैन्ड (आशुलिपि) <math>P \rightarrow \bot</math>, हमारे पास <math>P  \rightarrow \neg \neg P </math> भी है। त्रिपक्षीय निगेशन के साथ उस अंतिम निहितार्थ की रचना करने <math>\neg \neg P  \rightarrow  \bot </math> का आशय <math>P \rightarrow \bot</math> है।


नतीजतन, प्रस्ताव के मामले में, एक वाक्य शास्त्रीय रूप से सिद्ध होता है, यदि इसकी दोहरी अस्वीकृति अंतर्ज्ञानवादी रूप से सिद्ध होती है। इस परिणाम को दोहरा-निषेध अनुवाद के रूप में जाना जाता है | ग्लिवेंको का प्रमेय।
परिणामस्वरूप, समस्या के स्थिति में, एक कथन उत्कृष्ट रूप से सिद्ध होता है, यदि इसकी दोहरी अस्वीकृति अंतर्ज्ञानवादी रूप से सिद्ध होती है। इस परिणाम को ग्लिवेंको प्रमेय के रूप में जाना जाता है।


=== वितरणशीलता ===
=== वितरण ===


डी मॉर्गन के कानून तार्किक संयोजन और तार्किक संयोजन पर वितरणात्मक संपत्ति निषेध का एक तरीका प्रदान करते हैं:
डी मॉर्गन के नियम तार्किक संयोजन और तार्किक संयोजन पर वितरणात्मक गुण निगेशन का एक तरीका प्रदान करते हैं:


:<math>\neg(P \lor Q) \equiv (\neg P \land \neg Q)</math>, और
:<math>\neg(P \lor Q) \equiv (\neg P \land \neg Q)</math>, और
:<math>\neg(P \land Q) \equiv (\neg P \lor \neg Q)</math>.
:<math>\neg(P \land Q) \equiv (\neg P \lor \neg Q)</math>.


=== रैखिकता ===
=== रैखिकता ===
होने देना <math>\oplus</math> लॉजिकल [[एकमात्र]] ऑपरेशन को निरूपित करें। [[बूलियन बीजगणित (तर्क)]] में, एक रैखिक कार्य ऐसा है जो:
मान लीजिए <math>\oplus</math> तार्किक [[एकमात्र]] संचालन को निरूपित करें। [[बूलियन बीजगणित (तर्क)|बू]]लियन बीजगणित में, एक रेखीय फलन ऐसा होता है कि:


अगर मौजूद है <math>a_0, a_1, \dots, a_n \in \{0,1\}</math>,
यदि <math>a_0, a_1, \dots, a_n \in \{0,1\}</math>, <math>f(b_1, b_2, \dots, b_n) = a_0 \oplus (a_1 \land b_1) \oplus \dots \oplus (a_n \land b_n)</math>, सभी के लिए <math>b_1, b_2, \dots, b_n \in \{0,1\}</math> सम्मिलित है।
<math>f(b_1, b_2, \dots, b_n) = a_0 \oplus (a_1 \land b_1) \oplus \dots \oplus (a_n \land b_n)</math>,
सभी के लिए <math>b_1, b_2, \dots, b_n \in \{0,1\}</math>.


इसे व्यक्त करने का एक अन्य तरीका यह है कि प्रत्येक चर हमेशा संक्रिया के सत्य-मूल्य में अंतर करता है, या यह कभी भी अंतर नहीं करता है। निषेध एक रैखिक तार्किक संकारक है।
इसे व्यक्त करने का एक अन्य तरीका यह है कि प्रत्येक चर सदैव संचालन के सत्यमान में अंतर करता है, या यह कभी भी अंतर नहीं करता है। निगेशन एक रैखिक तार्किक ऑपरेटर (संकारक) है।


=== स्व द्वैत ===
=== स्व द्वैत ===
बूलियन बीजगणित (तर्क) में, एक स्व-द्वैत कार्य एक ऐसा कार्य है जो:
बूलियन बीजगणित (तर्क) में, एक स्व-द्वैत फलन एक ऐसा फलन है जो:


<math>f(a_1, \dots, a_n) = \neg f(\neg a_1, \dots, \neg a_n)</math> सभी के लिए
<math>f(a_1, \dots, a_n) = \neg f(\neg a_1, \dots, \neg a_n)</math> सभी के लिए <math>a_1, \dots, a_n \in \{0,1\}</math>. निगेशन एक स्व- द्वैत तार्किक संक्रिया है।
<math>a_1, \dots, a_n \in \{0,1\}</math>.
निषेध एक स्व-दोहरी तार्किक संचालिका है।


=== परिमाणकों का निषेध ===
=== परिमाणकों का निगेशन ===
प्रथम क्रम तर्क में, दो क्वांटिफायर होते हैं, एक सार्वभौमिक क्वांटिफायर होता है <math>\forall</math> (मतलब सबके लिए) और दूसरा अस्तित्वगत परिमाणक है <math>\exists</math> (मतलब वहाँ मौजूद है)। एक क्वांटिफायर का निषेध अन्य क्वांटिफायर है (<math>\neg \forall xP(x)\equiv\exists x\neg P(x)</math> और <math>\neg \exists xP(x)\equiv\forall x\neg P(x)</math>). उदाहरण के लिए, विधेय P के साथ x नश्वर है और सभी मनुष्यों के संग्रह के रूप में x का डोमेन है, <math>\forall xP(x)</math> का अर्थ है कि सभी मनुष्यों में एक व्यक्ति x नश्वर है या सभी मनुष्य नश्वर हैं। इसका निषेध है <math>\neg \forall xP(x)\equiv\exists x\neg P(x)</math>, जिसका अर्थ है कि सभी मनुष्यों में एक व्यक्ति x मौजूद है जो नश्वर नहीं है, या कोई ऐसा मौजूद है जो हमेशा के लिए रहता है।
प्रथम क्रम तर्क में, दो परिमाणक होते हैं, एक सार्वभौमिक परिमाणक होता है <math>\forall</math> (तात्पर्य सबके लिए) और दूसरा अस्तित्वगत परिमाणक <math>\exists</math> है (तात्पर्य वहाँ सम्मिलित है)। एक परिमाणक का निगेशन अन्य परिमाणक (<math>\neg \forall xP(x)\equiv\exists x\neg P(x)</math> और <math>\neg \exists xP(x)\equiv\forall x\neg P(x)</math>) है। उदाहरण के लिए, निर्धारक P के साथ x नश्वर (मॉर्टल) है और सभी मनुष्यों के संग्रह के रूप में x का प्रक्षेत्र है, <math>\forall xP(x)</math> का अर्थ है कि सभी मनुष्यों में एक व्यक्ति x नश्वर है या सभी मनुष्य नश्वर हैं। इसका निगेशन <math>\neg \forall xP(x)\equiv\exists x\neg P(x)</math> है। जिसका अर्थ है कि सभी मनुष्यों में एक व्यक्ति x सम्मिलित है जो नश्वर नहीं है, <nowiki>''</nowiki>या कोई ऐसा सम्मिलित है जो सदैव के लिए जीवित रहता है"।


== अनुमान के नियम ==
== अनुमान के नियम ==
{{see also|double negation}}
{{see also|द्विक निगेशन}}
निषेध के लिए नियम तैयार करने के कई समतुल्य तरीके हैं। एक [[प्राकृतिक कटौती]] सेटिंग में शास्त्रीय निषेध को तैयार करने का एक सामान्य तरीका अनुमान निषेध परिचय के आदिम नियमों के रूप में लेना है (की व्युत्पत्ति से) <math>P</math> दोनों के लिए <math>Q</math> और <math>\neg Q</math>, अनुमान <math>\neg P</math>; इस नियम को [[रिडक्टियो एड बेतुका]] भी कहा जाता है), निषेध उन्मूलन (से <math>P</math> और <math>\neg P</math> तर्क करना <math>Q</math>; इस नियम को एक्स फाल्स क्वाडलिबेट भी कहा जाता है), और दोहरा निषेध उन्मूलन (से <math>\neg \neg P</math> तर्क करना <math>P</math>). एक ही तरह से अंतर्ज्ञानवादी निषेध के लिए नियम प्राप्त करता है लेकिन दोहरे निषेध उन्मूलन को छोड़कर।


निषेधात्मक परिचय में कहा गया है कि यदि निष्कर्ष के रूप में एक बेहूदगी निकाली जा सकती है <math>P</math> तब <math>P</math> ऐसा नहीं होना चाहिए (यानी <math>P</math> झूठा (शास्त्रीय रूप से) या खंडन योग्य (सहज ज्ञान युक्त) या आदि) है। नकारात्मक उन्मूलन बताता है कि कुछ भी एक बेहूदगी से होता है। कभी-कभी एक आदिम असावधानी चिह्न का उपयोग करके नकारात्मक उन्मूलन तैयार किया जाता है <math>\bot</math>. इस मामले में नियम कहता है कि से <math>P</math> और <math>\neg P</math> एक बेतुकेपन का पालन करता है। दोहरे निषेध उन्मूलन के साथ-साथ हमारे मूल रूप से तैयार किए गए नियम का अनुमान लगाया जा सकता है, अर्थात् कुछ भी एक मूर्खता से होता है।
निगेशन के लिए नियम तैयार करने के कई समतुल्य तरीके हैं। एक [[प्राकृतिक कटौती|प्राकृतिक परिणाम]] संस्थापन में उत्कृष्ट निगेशन को तैयार करने का एक सामान्य तरीका अनुमान निगेशन परिचय के प्राथमिक नियमों के रूप में लेना है (की व्युत्पत्ति से) <math>P</math> दोनों के लिए <math>Q</math> और <math>\neg Q</math>, अनुमान <math>\neg P</math> है, इस नियम को रिडक्टियो एड एब्सर्डम भी कहा जाता है), निगेशन निरसन (से <math>P</math> और <math>\neg P</math> अनुमान <math>Q</math> से इस नियम को x असत्य क्वाडलिबेट भी कहा जाता है), और द्विक निगेशन निरसन (से <math>\neg \neg P</math> तर्क <math>P</math>) एक ही तरह से अंतर्ज्ञानवादी निगेशन के लिए नियम प्राप्त करता है लेकिन द्विक निगेशन निरसन को छोड़कर प्राप्त करता है।


आमतौर पर अंतर्ज्ञानवादी निषेध <math>\neg P</math> का <math>P</math> परिभाषित किया जाता है <math>P \rightarrow \bot</math>. फिर निषेध परिचय और विलोपन निहितार्थ परिचय ([[सशर्त प्रमाण]]) और विलोपन ([[मूड सेट करना]]) के विशेष मामले हैं। इस मामले में एक आदिम नियम के रूप में भी जोड़ा जाना चाहिए।
निगेशन परिचय में कहा गया है कि यदि <math>P</math> से निष्कर्ष के रूप में एक असंगति निकाली जा सकती है तब <math>P</math> स्थिति नहीं होना चाहिए (अर्थात <math>P</math> असत्य (उत्कृष्ट रूप से) या खंडन योग्य (सामान्य ज्ञान युक्त) या आदि) है। निगेशन निरसन बताता है कि कुछ भी असंगति से होता है। कभी-कभी एक प्राथमिक असंगति चिह्न <math>\bot</math> का उपयोग करके निगेशन निरसन तैयार किया जाता है इस स्थिति में नियम कहता है कि से <math>P</math> और <math>\neg P</math> एक असंगति का अनुसरण करता है। द्विक निगेशन निरसन के साथ-साथ हमारे मूल रूप से तैयार किए गए नियम का अनुमान लगाया जा सकता है, अर्थात् कुछ भी असंगति से होता है।
 
सामान्य रूप से अंतर्ज्ञानवादी निगेशन <math>\neg P</math> का <math>P</math> परिभाषित <math>P \rightarrow \bot</math> किया जाता है फिर निगेशन परिचय और असंगति निहितार्थ परिचय ([[सशर्त प्रमाण]]) और विलोपन ([[मूड सेट करना|एक वैध, सरल तर्क और निष्कर्ष के नियम के रूप]]) के विशेष स्थिति हैं। इस स्थिति में एक प्राथमिक नियम के रूप में भी जोड़ा जाना चाहिए।


== प्रोग्रामिंग भाषा और सामान्य भाषा ==
== प्रोग्रामिंग भाषा और सामान्य भाषा ==
{{redirect|!vote|use of !votes in Wikipedia discussions|Wikipedia:Polling is not a substitute for discussion#Not-votes|selfref=yes}}
''"वोट" यहाँ पुनर्प्रेषित होता है। विकिपीडिया तर्कओं में वोटों के उपयोग के लिए, विकिपीडिया देखें: पोलिंग तर्क का विकल्प नहीं है § not-वोट्स।''
गणित की तरह, तार्किक कथनों के निर्माण के लिए [[कंप्यूटर विज्ञान]] में निषेध का उपयोग किया जाता है।


<वाक्यविन्यास लैंग = सीपीपी>
गणित की तरह, तार्किक कथनों के निर्माण के लिए [[कंप्यूटर विज्ञान]] में निगेशन का उपयोग किया जाता है।
अगर (!(आर == टी))
{
    /*...बयान निष्पादित किए जाते हैं जब r, t के बराबर नहीं होता...*/
}
</वाक्यविन्यास हाइलाइट>


[[विस्मयादिबोधक चिह्न]]<code>!</code>बी (प्रोग्रामिंग लैंग्वेज), [[सी प्रोग्रामिंग भाषा]] और सी-इंस्पायर्ड सिंटैक्स जैसे [[सी ++]], [[जावा (प्रोग्रामिंग भाषा)]], [[जावास्क्रिप्ट]], [[पर्ल]] और [[पीएचपी]] वाली भाषाओं में तार्किक नहीं है।<code>NOT</code>[[ALGOL 60]], BASIC प्रोग्रामिंग लैंग्वेज, और ALGOL- या बेसिक-प्रेरित सिंटैक्स वाली भाषाओं जैसे [[पास्कल प्रोग्रामिंग भाषा]], Ada प्रोग्रामिंग लैंग्वेज, एफिल (प्रोग्रामिंग लैंग्वेज) और [[Seed7]] में इस्तेमाल किया जाने वाला ऑपरेटर है। कुछ भाषाएँ (C++, पर्ल, आदि) निषेध के लिए एक से अधिक ऑपरेटर प्रदान करती हैं। कुछ भाषाएँ जैसे PL/I और [[Ratfor]] उपयोग करती हैं <code>¬</code> निषेध के लिए। अधिकांश आधुनिक भाषाएँ उपरोक्त कथन को छोटा करने की अनुमति देती हैं <code>if (!(r == t))</code> को <code>if (r != t)</code>, जो कभी-कभी अनुमति देता है, जब संकलक/दुभाषिया इसे अनुकूलित करने में सक्षम नहीं होता है, तेज़ प्रोग्राम।
  if (!(r == t))


कंप्यूटर साइंस में बिटवाइज़ नकार भी है। यह दिया गया मान लेता है और सभी बाइनरी अंक प्रणाली 1s को 0s और 0s को 1s में बदल देता है। [[बिटवाइज़ ऑपरेशन]] देखें। इसका उपयोग अक्सर हस्ताक्षरित संख्या प्रतिनिधित्व बनाने के लिए किया जाता है | एक का पूरक या<code>~</code>सी या सी ++ और दो के पूरक में (बस सरलीकृत<code>-</code>या ऋणात्मक चिह्न क्योंकि यह संख्या के अंकगणितीय ऋणात्मक मान को लेने के बराबर है) क्योंकि यह मूल रूप से मान के विपरीत (ऋणात्मक मान समतुल्य) या गणितीय पूरक बनाता है (जहां दोनों मान एक साथ जोड़े जाते हैं वे एक संपूर्ण बनाते हैं)।
{
    /*...statements executed when r does NOT equal t...*/
}


किसी दिए गए पूर्णांक का पूर्ण (सकारात्मक समतुल्य) मान प्राप्त करने के लिए निम्नलिखित कार्य करेगा<code>-</code>इसे नकारात्मक से सकारात्मक में बदलता है (यह नकारात्मक है क्योंकि<code>x < 0</code>उपज सच है)


<वाक्यविन्यास [[बोलचाल की भाषा]] = सीपीपी>
अहस्ताक्षरित इंट एब्स (इंट एक्स)
{
    अगर (एक्स <0)
        वापसी -एक्स;
    अन्य
        वापसी एक्स;
}
</वाक्यविन्यास हाइलाइट>


तार्किक निषेध प्रदर्शित करने के लिए:
[[विस्मयादिबोधक चिह्न]]<code>!</code> B, (प्रोग्रामिंग भाषा), [[सी प्रोग्रामिंग भाषा|C प्रोग्रामिंग भाषा]] और C-प्रेरित सिंटैक्स जैसे [[सी ++|C ++]], [[जावा (प्रोग्रामिंग भाषा)]], [[जावास्क्रिप्ट]], [[पर्ल]] और [[पीएचपी]] वाली भाषाओं में तार्किक नहीं है। <code>NOT</code>[[ALGOL 60|ऐल्गॉल 60]], प्रारंभ का सर्व-उद्देश्यीय प्रतीकात्मक निर्देश कोड प्रोग्रामिंग भाषा, और ऐल्गॉल- या बेसिक-प्रेरित सिंटैक्स वाली भाषाओं जैसे [[पास्कल प्रोग्रामिंग भाषा]], एडीए प्रोग्रामिंग भाषा, एफिल (प्रोग्रामिंग भाषा) और [[Seed7|एसईईदी 7]] में उपयोग किया जाने वाला संक्रियक है। कुछ भाषाएँ (C++, पर्ल, आदि) निगेशन के लिए एक से अधिक संक्रियक प्रदान करती हैं। कुछ भाषाएँ जैसे पीएल/एल और [[Ratfor|रैटफोर]] <code>¬</code> निगेशन के लिए उपयोग करती हैं। अधिकांश आधुनिक भाषाएँ <code>if (!(r == t))</code> को <code>if (r != t)</code> उपरोक्त कथन को कम करने की स्वीकृति देती हैं जो कभी-कभी स्वीकृति देता है कि जब संकलक/दुभाषिया इसे तीव्रता से प्रोग्राम को अनुकूलित करने में सक्षम नहीं होता है।


<वाक्यविन्यास लैंग = सीपीपी>
कंप्यूटर विज्ञान में बिटवाइज़ निगेशन भी है। यह दिया गया मान लेता है और सभी बाइनरी अंक प्रणाली 1s को 0s और 0s को 1s में बदल देता है। [[बिटवाइज़ ऑपरेशन|बिटवाइज़ संचालन]] देखें। इसका उपयोग प्रायः हस्ताक्षरित संख्या प्रतिनिधित्व बनाने के लिए किया जाता है | एक पूरक या<code>~C</code> या C ++ और दो के पूरक में ( सरलीकृत<code>-</code>या ऋणात्मक चिह्न क्योंकि यह संख्या के अंकगणितीय ऋणात्मक मान को लेने के समान है) क्योंकि यह मूल रूप से मान के विपरीत (ऋणात्मक मान समतुल्य) या गणितीय पूरक बनाता है (जहां दोनों मान एक साथ जोड़े जाते हैं वे एक संपूर्ण बनाते हैं)।
अहस्ताक्षरित इंट एब्स (इंट एक्स)
{
    अगर (!(एक्स <0))
        वापसी एक्स;
    अन्य
        वापसी -एक्स;
}
</वाक्यविन्यास हाइलाइट>


स्थिति को उलटने और परिणामों को उलटने से कोड उत्पन्न होता है जो तार्किक रूप से मूल कोड के समतुल्य होता है, अर्थात किसी भी इनपुट के लिए समान परिणाम होंगे (ध्यान दें कि उपयोग किए गए कंपाइलर के आधार पर, कंप्यूटर द्वारा किए गए वास्तविक निर्देश भिन्न हो सकते हैं)।
किसी दिए गए पूर्णांक का पूर्ण (धनात्मक समतुल्य) मान प्राप्त करने के लिए निम्नलिखित <code>-</code>के रूप में काम करेगा जो इसे ऋणात्मक से धनात्मक में परिवर्तित कर देता है क्योंकि<code>x < 0</code> सत्य सत्य है)।  


यह सम्मेलन कभी-कभी साधारण लिखित भाषण में सामने आता है, जैसे कि कंप्यूटर से संबंधित कठबोली नहीं। उदाहरण के लिए, मुहावरा <code>!voting</code> मतलब मतदान नहीं। एक अन्य उदाहरण मुहावरा है <code>!clue</code> जिसका उपयोग नो-क्लू या क्लूलेस के पर्याय के रूप में किया जाता है।<ref>[[Eric S. Raymond|Raymond, Eric]] and Steele, Guy. [https://books.google.com/books?id=g80P_4v4QbIC&pg=PA18&lpg=PA18 The New Hacker's Dictionary], p. 18 (MIT Press 1996).</ref><ref>Munat, Judith. [https://books.google.com/books?id=UOPXXYslemYC&pg=PA148&lpg=PA148 Lexical Creativity, Texts and Context], p. 148 (John Benjamins Publishing, 2007).</ref>
  unsigned int abs(int x)
{
    if (x < 0)
        return -x;
    else
        return x;
  }
तार्किक निगेशन प्रदर्शित करने के लिए:


unsigned int abs(int x)
{
    if (!(x < 0))
        return x;
    else
        return -x;
}


== [[कृपके शब्दार्थ]] ==
 
कृपके शब्दार्थ में जहां सूत्रों के शब्दार्थ मूल्य संभावित दुनिया के सेट हैं, [[सेट-सैद्धांतिक पूरक]]ता के अर्थ में निषेध को लिया जा सकता है{{citation needed|date=August 2012}} (अधिक के लिए [[संभावित विश्व शब्दार्थ]] भी देखें)।
 
स्थिति को प्रतिलोमक और परिणामों को प्रतिवर्ती से कोड उत्पन्न होता है जो तार्किक रूप से मूल कोड के समतुल्य होता है, अर्थात किसी भी इनपुट के लिए समान परिणाम होंगे (ध्यान दें कि उपयोग किए गए कंपाइलर के आधार पर, कंप्यूटर द्वारा किए गए वास्तविक निर्देश भिन्न हो सकते हैं)।
 
यह कन्वेंशन कभी-कभी साधारण लिखित भाषा में कंप्यूटर से संबंधित अपरिष्कृत भाषा NOT सामने आता है। उदाहरण के लिए, चरण <code>!voting</code> का तात्पर्य not वोटिंग है। एक अन्य उदाहरण <code>!clue</code> जिसका उपयोग नो-क्लू या क्लूलेस के पर्याय के रूप में किया जाता है।<ref>[[Eric S. Raymond|Raymond, Eric]] and Steele, Guy.  [https://books.google.com/books?id=g80P_4v4QbIC&pg=PA18&lpg=PA18 The New Hacker's Dictionary], p. 18 (MIT Press 1996).</ref><ref>Munat, Judith.  [https://books.google.com/books?id=UOPXXYslemYC&pg=PA148&lpg=PA148 Lexical Creativity, Texts and Context], p. 148 (John Benjamins Publishing, 2007).</ref>
 
 
== [[कृपके शब्दार्थ|कृपके सिमेन्टिक]] ==
कृपके सिमेन्टिक में जहां सूत्रों के [[कृपके शब्दार्थ|सिमेन्टिक]] मान संभावित विश्व के समुच्चय हैं, [[सेट-सैद्धांतिक पूरक|समुच्चय-सैद्धांतिक पूरक]]ता के अर्थ में निगेशन को लिया जा सकता है{{citation needed|date=August 2012}} (अधिक के लिए [[संभावित विश्व शब्दार्थ|संभावित विश्व]] [[कृपके शब्दार्थ|सिमेन्टिक]] भी देखें)।


== यह भी देखें ==
== यह भी देखें ==
{{Div col|colwidth=20em}}
{{Div col|colwidth=20em}}
* [[पुष्टि और निषेध]] (व्याकरणिक ध्रुवीयता)
* [[पुष्टि और निगेशन]] (व्याकरणिक ध्रुवीयता)
* [[अम्फेक]]
* [[अम्फेक]]
* [[एपोफैसिस]]
* [[एपोफैसिस]]
* [[द्विआधारी विरोध]]
* [[बाइनरी विपक्ष]]
* बिटवाइज़ ऑपरेशन # नहीं
* बिटवाइज़ NOT
* विरोधाभास
* विरोधाभास
* [[चक्रीय निषेध]]
* [[चक्रीय निगेशन]]
* तार्किक संयोजन
* तार्किक संयोजन
* तार्किक वियोग
* तार्किक विच्छेदन
* असफलता के रूप में नकारात्मकता
* असफलता के रूप में निगेशन
* [[गेट नहीं]]
* [[गेट NOT]]
* प्लेटो की दाढ़ी
* प्लेटो बेयर्ड
* [[विरोध का चौक]]
* [[वर्ग का विरोध]]
* सत्य समारोह
* सत्य फलन
* ट्रुथ टेबल
* सत्य तालिका
{{Div col end}}
{{Div col end}}


Line 216: Line 209:


==बाहरी संबंध==
==बाहरी संबंध==
{{Commons category}}
*{{cite SEP |url-id=negation |title=Negation |first=Laurence R. |last=Horn |first2=Heinrich |last2=Wansing}}
*{{cite SEP |url-id=negation |title=Negation |first=Laurence R. |last=Horn |first2=Heinrich |last2=Wansing}}
* {{springer|title=Negation|id=p/n066170}}
* {{springer|title=Negation|id=p/n066170}}
Line 225: Line 217:
* {{cite web|url= http://www.math.hawaii.edu/~ramsey/Logic/NotOr.html|title= NOT clause of an OR sentence|archive-url= https://web.archive.org/web/20000117134708/http://www.math.hawaii.edu/~ramsey/Logic/NotOr.html|archive-date= 17 January 2000|url-status= live}}
* {{cite web|url= http://www.math.hawaii.edu/~ramsey/Logic/NotOr.html|title= NOT clause of an OR sentence|archive-url= https://web.archive.org/web/20000117134708/http://www.math.hawaii.edu/~ramsey/Logic/NotOr.html|archive-date= 17 January 2000|url-status= live}}
* {{cite web|url= http://www.math.hawaii.edu/~ramsey/Logic/NotIfThen.html|title= NOT clause of an IF...THEN period|archive-url= https://web.archive.org/web/20000301223435/http://www.math.hawaii.edu/~ramsey/Logic/NotIfThen.html/|archive-date= 1 March 2000|url-status= live}}
* {{cite web|url= http://www.math.hawaii.edu/~ramsey/Logic/NotIfThen.html|title= NOT clause of an IF...THEN period|archive-url= https://web.archive.org/web/20000301223435/http://www.math.hawaii.edu/~ramsey/Logic/NotIfThen.html/|archive-date= 1 March 2000|url-status= live}}
{{Logical connectives}}
{{Common logical symbols}}
{{Formal semantics}}
{{Mathematical logic}}
{{Mathematical logic}}
[[Category: अर्थ विज्ञान]] [[Category: तार्किक संयोजक]] [[Category: एकात्मक संचालन]] [[Category: C++ कोड उदाहरण के साथ लेख]] [[Category: औपचारिक शब्दार्थ (प्राकृतिक भाषा)]]


[[Category: Machine Translated Page]]
[[Category:All articles with unsourced statements]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Articles with unsourced statements from August 2012]]
[[Category:C++ कोड उदाहरण के साथ लेख]]
[[Category:CS1 English-language sources (en)]]
[[Category:Collapse templates]]
[[Category:Created On 16/02/2023]]
[[Category:Created On 16/02/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Mathematics navigational boxes]]
[[Category:Multi-column templates]]
[[Category:Navbox orphans]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages using div col with small parameter]]
[[Category:Pages with empty portal template]]
[[Category:Pages with script errors]]
[[Category:Philosophy and thinking navigational boxes]]
[[Category:Portal-inline template with redlinked portals]]
[[Category:Short description with empty Wikidata description]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Translated in Hindi]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Templates using under-protected Lua modules]]
[[Category:Wikipedia fully protected templates|Div col]]
[[Category:Wikipedia metatemplates]]
[[Category:अर्थ विज्ञान]]
[[Category:एकात्मक संचालन]]
[[Category:औपचारिक शब्दार्थ (प्राकृतिक भाषा)]]
[[Category:तार्किक संयोजक]]

Latest revision as of 10:15, 1 March 2023

निषेध
NOT
Venn diagram of निषेध
Definition
Truth table
Logic gateNOT ANSI.svg
Normal forms
Disjunctive
Conjunctive
Zhegalkin polynomial
Post's lattices
0-preservingno
1-preservingno
Monotoneno
Affineyes

तर्क में, निगेशन(निषेध), जिसे तार्किक पूरक भी कहा जाता है, एक संचालन है जो एक समस्या दूसरे समस्या के लिए ''not '' पर ले जाता है जिसे , या मे लिखा जाता है। इसे सामान्य रूप से सत्य के रूप में व्याख्या की जाती है असत्य है, और असत्य है जब सत्य है।[1][2] इस प्रकार निगेशन एक गैर संक्रियक तार्किक संयोजक है। इसे सामान्य रूप से, समस्या, सत्य मान, या सिमेंटिक मानों पर एक संचालन के रूप में प्रयुक्त किया जा सकता है। उत्कृष्ट तर्क में, निगेशन को सामान्य रूप से सत्यमान फलन के साथ पहचाना जाता है जो सत्य-मान को असत्यता (और इसके विपरीत) पर ले जाता है। अंतर्ज्ञानवादी तर्क में, ब्रौवर-हेटिंग-कोल्मोगोरोव व्याख्या के अनुसार, एक समस्या की उपेक्षा वह समस्या है जिसके प्रमाण का विभाजक (रेफ्यूशन) है।

परिभाषा

उत्कृष्ट निगेशन एक तार्किक मान पर एक तार्किक संचालन है, सामान्य रूप से एक समस्या का मान, जो सत्य मान उत्पन्न करता है जब उसका ऑपरेंड असत्य होता है, और जब उसका ऑपरेंड सत्य होता है तो असत्य का मान होता है। इस प्रकार यदि कथन P सत्य है, तो (उच्चारण not P ) तब असत्य होगा; और इसके विपरीत, यदि असत्य है तो P सत्य होगा।

की सत्य तालिका इस प्रकार है:

True False
False True

निगेशन को अन्य तार्किक संचालन के संदर्भ में परिभाषित किया जा सकता है। उदाहरण के लिए, के रूप में परिभाषित किया जा सकता है (जहां तार्किक परिणाम है और असत्य (तर्क) है)। इसके विपरीत परिभाषित किया जा सकता है जैसा किसी समस्या के लिए Q (जहां तार्किक संयोजन है)। यहाँ विचार यह है कि कोई भी विरोधाभास असत्य है, और जबकि ये विचार उत्कृष्ट और अंतर्ज्ञानवादी तर्क दोनों में कार्य करते हैं, वे परासंगत तर्क में कार्य नहीं करते हैं, जहाँ विरोधाभास आवश्यक रूप से असत्य नहीं हैं। उत्कृष्ट तर्कशास्त्र में हमें एक अन्य सर्वसमिका भी मिलती है, को के रूप में परिभाषित किया जा सकता है जहां तार्किक वियोजन है।

बीजगणितीय रूप से, उत्कृष्ट निगेशन एक बूलियन बीजगणित (संरचना) में पूरक क्रम सिद्धांत) से अनुरूप है, और एक हेटिंग बीजगणित में छद्म पूरकता के लिए अंतर्ज्ञानवादी निगेशन है। ये बीजगणित क्रमशः उत्कृष्ट और अंतर्ज्ञानवादी तर्क के लिए बीजगणितीय तर्क (गणितीय तर्क) प्रदान करते हैं।

संकेत

एक समस्या की उपेक्षा p तर्क के विभिन्न संदर्भों और अनुप्रयोग के क्षेत्रों में अलग-अलग तरीकों से प्रलेखित किया जाता है। निम्नलिखित तालिका में इनमें से कुछ प्रकार हैं:

संकेत प्लेनटेक्स्ट शब्दोच्चारण
¬p not p
~p not p
-p not p
Np En p
p'
  • p prime,
  • p complement
̅p
  • p bar,
  • Bar p
!p
  • Bang p
  • Not p

संकेतन Np लुकासिविक्ज़ संकेतन है।

समुच्चय सिद्धांत मे, '''' का उपयोग समुच्चय में 'not' को इंगित करने के लिए भी किया जाता है: के सभी इकाइयों का समुच्चय U है जो A के भाग नहीं हैं।

तथापि यह कैसे संकेतित या प्रतीकित हो, निगेशन की स्थिति ''नहीं है कि P, ''not that P'', या सामान्य रूप से अधिक सरल रूप में not P के रूप में पढ़ा जा सकता है।

गुण

द्विक निगेशन

उत्कृष्ट तर्क की एक प्रणाली के अंदर, द्विक निगेशन, अर्थात, एक समस्या के निगेशन का निगेशन , तार्किक रूप से समकक्ष है . प्रतीकात्मक शब्दों में व्यक्त किया जाता है। अंतर्ज्ञानवादी तर्क में, एक समस्या का तात्पर्य इसके दोहरे निगेशन से है लेकिन इसके विपरीत नहीं है। यह उत्कृष्ट और अंतर्ज्ञानवादी निगेशन के बीच एक महत्वपूर्ण अंतर को चिन्हित करता है। बीजगणितीय रूप से, उत्कृष्ट निगेशन को दो आवर्त का एक समावेशन (गणित) कहा जाता है।

हालांकि, अंतर्ज्ञानवादी तर्क में, दुर्बल समानता धारण करता है। ऐसा इसलिए है क्योंकि अंतर्ज्ञानवादी तर्क में, के लिए मात्र एक शॉर्टहैन्ड (आशुलिपि) , हमारे पास भी है। त्रिपक्षीय निगेशन के साथ उस अंतिम निहितार्थ की रचना करने का आशय है।

परिणामस्वरूप, समस्या के स्थिति में, एक कथन उत्कृष्ट रूप से सिद्ध होता है, यदि इसकी दोहरी अस्वीकृति अंतर्ज्ञानवादी रूप से सिद्ध होती है। इस परिणाम को ग्लिवेंको प्रमेय के रूप में जाना जाता है।

वितरण

डी मॉर्गन के नियम तार्किक संयोजन और तार्किक संयोजन पर वितरणात्मक गुण निगेशन का एक तरीका प्रदान करते हैं:

, और
.

रैखिकता

मान लीजिए तार्किक एकमात्र संचालन को निरूपित करें। बूलियन बीजगणित में, एक रेखीय फलन ऐसा होता है कि:

यदि , , सभी के लिए सम्मिलित है।

इसे व्यक्त करने का एक अन्य तरीका यह है कि प्रत्येक चर सदैव संचालन के सत्यमान में अंतर करता है, या यह कभी भी अंतर नहीं करता है। निगेशन एक रैखिक तार्किक ऑपरेटर (संकारक) है।

स्व द्वैत

बूलियन बीजगणित (तर्क) में, एक स्व-द्वैत फलन एक ऐसा फलन है जो:

सभी के लिए . निगेशन एक स्व- द्वैत तार्किक संक्रिया है।

परिमाणकों का निगेशन

प्रथम क्रम तर्क में, दो परिमाणक होते हैं, एक सार्वभौमिक परिमाणक होता है (तात्पर्य सबके लिए) और दूसरा अस्तित्वगत परिमाणक है (तात्पर्य वहाँ सम्मिलित है)। एक परिमाणक का निगेशन अन्य परिमाणक ( और ) है। उदाहरण के लिए, निर्धारक P के साथ x नश्वर (मॉर्टल) है और सभी मनुष्यों के संग्रह के रूप में x का प्रक्षेत्र है, का अर्थ है कि सभी मनुष्यों में एक व्यक्ति x नश्वर है या सभी मनुष्य नश्वर हैं। इसका निगेशन है। जिसका अर्थ है कि सभी मनुष्यों में एक व्यक्ति x सम्मिलित है जो नश्वर नहीं है, ''या कोई ऐसा सम्मिलित है जो सदैव के लिए जीवित रहता है"।

अनुमान के नियम

निगेशन के लिए नियम तैयार करने के कई समतुल्य तरीके हैं। एक प्राकृतिक परिणाम संस्थापन में उत्कृष्ट निगेशन को तैयार करने का एक सामान्य तरीका अनुमान निगेशन परिचय के प्राथमिक नियमों के रूप में लेना है (की व्युत्पत्ति से) दोनों के लिए और , अनुमान है, इस नियम को रिडक्टियो एड एब्सर्डम भी कहा जाता है), निगेशन निरसन (से और अनुमान से इस नियम को x असत्य क्वाडलिबेट भी कहा जाता है), और द्विक निगेशन निरसन (से तर्क ) एक ही तरह से अंतर्ज्ञानवादी निगेशन के लिए नियम प्राप्त करता है लेकिन द्विक निगेशन निरसन को छोड़कर प्राप्त करता है।

निगेशन परिचय में कहा गया है कि यदि से निष्कर्ष के रूप में एक असंगति निकाली जा सकती है तब स्थिति नहीं होना चाहिए (अर्थात असत्य (उत्कृष्ट रूप से) या खंडन योग्य (सामान्य ज्ञान युक्त) या आदि) है। निगेशन निरसन बताता है कि कुछ भी असंगति से होता है। कभी-कभी एक प्राथमिक असंगति चिह्न का उपयोग करके निगेशन निरसन तैयार किया जाता है इस स्थिति में नियम कहता है कि से और एक असंगति का अनुसरण करता है। द्विक निगेशन निरसन के साथ-साथ हमारे मूल रूप से तैयार किए गए नियम का अनुमान लगाया जा सकता है, अर्थात् कुछ भी असंगति से होता है।

सामान्य रूप से अंतर्ज्ञानवादी निगेशन का परिभाषित किया जाता है फिर निगेशन परिचय और असंगति निहितार्थ परिचय (सशर्त प्रमाण) और विलोपन (एक वैध, सरल तर्क और निष्कर्ष के नियम के रूप) के विशेष स्थिति हैं। इस स्थिति में एक प्राथमिक नियम के रूप में भी जोड़ा जाना चाहिए।

प्रोग्रामिंग भाषा और सामान्य भाषा

"वोट" यहाँ पुनर्प्रेषित होता है। विकिपीडिया तर्कओं में वोटों के उपयोग के लिए, विकिपीडिया देखें: पोलिंग तर्क का विकल्प नहीं है § not-वोट्स।

गणित की तरह, तार्किक कथनों के निर्माण के लिए कंप्यूटर विज्ञान में निगेशन का उपयोग किया जाता है।

  if (!(r == t))
{
    /*...statements executed when r does NOT equal t...*/
}


विस्मयादिबोधक चिह्न! B, (प्रोग्रामिंग भाषा), C प्रोग्रामिंग भाषा और C-प्रेरित सिंटैक्स जैसे C ++, जावा (प्रोग्रामिंग भाषा), जावास्क्रिप्ट, पर्ल और पीएचपी वाली भाषाओं में तार्किक नहीं है। NOTऐल्गॉल 60, प्रारंभ का सर्व-उद्देश्यीय प्रतीकात्मक निर्देश कोड प्रोग्रामिंग भाषा, और ऐल्गॉल- या बेसिक-प्रेरित सिंटैक्स वाली भाषाओं जैसे पास्कल प्रोग्रामिंग भाषा, एडीए प्रोग्रामिंग भाषा, एफिल (प्रोग्रामिंग भाषा) और एसईईदी 7 में उपयोग किया जाने वाला संक्रियक है। कुछ भाषाएँ (C++, पर्ल, आदि) निगेशन के लिए एक से अधिक संक्रियक प्रदान करती हैं। कुछ भाषाएँ जैसे पीएल/एल और रैटफोर ¬ निगेशन के लिए उपयोग करती हैं। अधिकांश आधुनिक भाषाएँ if (!(r == t)) को if (r != t) उपरोक्त कथन को कम करने की स्वीकृति देती हैं जो कभी-कभी स्वीकृति देता है कि जब संकलक/दुभाषिया इसे तीव्रता से प्रोग्राम को अनुकूलित करने में सक्षम नहीं होता है।

कंप्यूटर विज्ञान में बिटवाइज़ निगेशन भी है। यह दिया गया मान लेता है और सभी बाइनरी अंक प्रणाली 1s को 0s और 0s को 1s में बदल देता है। बिटवाइज़ संचालन देखें। इसका उपयोग प्रायः हस्ताक्षरित संख्या प्रतिनिधित्व बनाने के लिए किया जाता है | एक पूरक या~C या C ++ और दो के पूरक में ( सरलीकृत-या ऋणात्मक चिह्न क्योंकि यह संख्या के अंकगणितीय ऋणात्मक मान को लेने के समान है) क्योंकि यह मूल रूप से मान के विपरीत (ऋणात्मक मान समतुल्य) या गणितीय पूरक बनाता है (जहां दोनों मान एक साथ जोड़े जाते हैं वे एक संपूर्ण बनाते हैं)।

किसी दिए गए पूर्णांक का पूर्ण (धनात्मक समतुल्य) मान प्राप्त करने के लिए निम्नलिखित -के रूप में काम करेगा जो इसे ऋणात्मक से धनात्मक में परिवर्तित कर देता है क्योंकिx < 0 सत्य सत्य है)।

unsigned int abs(int x)
{
    if (x < 0)
        return -x;
    else
        return x;
}

तार्किक निगेशन प्रदर्शित करने के लिए:

unsigned int abs(int x)
{
    if (!(x < 0))
        return x;
    else
        return -x;
}


स्थिति को प्रतिलोमक और परिणामों को प्रतिवर्ती से कोड उत्पन्न होता है जो तार्किक रूप से मूल कोड के समतुल्य होता है, अर्थात किसी भी इनपुट के लिए समान परिणाम होंगे (ध्यान दें कि उपयोग किए गए कंपाइलर के आधार पर, कंप्यूटर द्वारा किए गए वास्तविक निर्देश भिन्न हो सकते हैं)।

यह कन्वेंशन कभी-कभी साधारण लिखित भाषा में कंप्यूटर से संबंधित अपरिष्कृत भाषा NOT सामने आता है। उदाहरण के लिए, चरण !voting का तात्पर्य not वोटिंग है। एक अन्य उदाहरण !clue जिसका उपयोग नो-क्लू या क्लूलेस के पर्याय के रूप में किया जाता है।[3][4]


कृपके सिमेन्टिक

कृपके सिमेन्टिक में जहां सूत्रों के सिमेन्टिक मान संभावित विश्व के समुच्चय हैं, समुच्चय-सैद्धांतिक पूरकता के अर्थ में निगेशन को लिया जा सकता है[citation needed] (अधिक के लिए संभावित विश्व सिमेन्टिक भी देखें)।

यह भी देखें


संदर्भ

  1. Weisstein, Eric W. "नकार". mathworld.wolfram.com (in English). Retrieved 2020-09-02.
  2. "Logic and Mathematical Statements - Worked Examples". www.math.toronto.edu. Retrieved 2020-09-02.
  3. Raymond, Eric and Steele, Guy. The New Hacker's Dictionary, p. 18 (MIT Press 1996).
  4. Munat, Judith. Lexical Creativity, Texts and Context, p. 148 (John Benjamins Publishing, 2007).


अग्रिम पठन


बाहरी संबंध

Tables of Truth of composite clauses