नकार: Difference between revisions

From Vigyanwiki
(Created page with "{{short description|Logical operation}} {{for multi|negation in linguistics|Affirmation and negation||Negation (disambiguation)}} {{more footnotes|date=March 2013}} {{Use dmy...")
 
No edit summary
Line 1: Line 1:
{{short description|Logical operation}}
{{short description|Logical operation}}
{{for multi|negation in linguistics|Affirmation and negation||Negation (disambiguation)}}
''भाषा विज्ञान में निषेध के लिए पुष्टि और निषेध देखें। अन्य प्रयोगों के लिए, निषेध (बहुविकल्पी) देखें।''
{{more footnotes|date=March 2013}}
{{Use dmy dates|date=March 2020}}


{{Infobox logical connective
{{Infobox logical connective
Line 20: Line 18:
| self-dual    = yes
| self-dual    = yes
}}
}}
[[तर्क]] में, निषेध, जिसे तार्किक पूरक भी कहा जाता है, एक [[संक्रिया (गणित)]] है जो एक [[प्रस्ताव (गणित)]] लेता है। <math>P</math> दूसरे प्रस्ताव के लिए नहीं <math>P</math>, लिखा हुआ <math>\neg P</math>, <math>\mathord{\sim} P</math> या <math>\overline{P}</math>. इसे सहज रूप से सत्य होने के रूप में व्याख्या की जाती है <math>P</math> असत्य है, और असत्य है जब <math>P</math> क्या सच है।<ref>{{Cite web|last=Weisstein|first=Eric W.|title=नकार|url=https://mathworld.wolfram.com/नकार.html|access-date=2020-09-02|website=mathworld.wolfram.com|language=en}}</ref><ref>{{Cite web|title=Logic and Mathematical Statements - Worked Examples|url=https://www.math.toronto.edu/preparing-for-calculus/3_logic/we_3_negation.html|access-date=2020-09-02|website=www.math.toronto.edu}}</ref> इस प्रकार निषेध एक एकात्मक संक्रिया [[तार्किक संयोजक]] है। इसे आम तौर पर [[धारणा (दर्शन)]], [[प्रस्ताव]]ों, [[सत्य मूल्य]]ों, या [[व्याख्या (तर्क)]] पर एक ऑपरेशन के रूप में लागू किया जा सकता है। [[शास्त्रीय तर्क]] में, नकारात्मकता को सामान्य रूप से सत्य कार्य के साथ पहचाना जाता है जो सत्य को असत्यता (और इसके विपरीत) में ले जाता है। [[अंतर्ज्ञानवादी तर्क]] में, ब्रौवर-हेटिंग-कोल्मोगोरोव व्याख्या के अनुसार, एक प्रस्ताव की उपेक्षा <math>P</math> वह प्रस्ताव है जिसके प्रमाण का खंडन है <math>P</math>.
तर्क में, निषेध, जिसे तार्किक पूरक भी कहा जाता है, एक संक्रिया है जो एक प्रस्ताव <math>P</math> दूसरे प्रस्ताव के लिए <nowiki>''</nowiki>नॉट <math>P</math><nowiki>''</nowiki> मे ले जाता है जिसे <math>\neg P</math>, <math>\mathord{\sim} P</math> या <math>\overline{P}</math> मे लिखा जाता है। इसे सहज रूप से सत्य होने के रूप में व्याख्या की जाती है <math>P</math> असत्य है, और असत्य है जब <math>P</math> सत्य है।<ref>{{Cite web|last=Weisstein|first=Eric W.|title=नकार|url=https://mathworld.wolfram.com/नकार.html|access-date=2020-09-02|website=mathworld.wolfram.com|language=en}}</ref><ref>{{Cite web|title=Logic and Mathematical Statements - Worked Examples|url=https://www.math.toronto.edu/preparing-for-calculus/3_logic/we_3_negation.html|access-date=2020-09-02|website=www.math.toronto.edu}}</ref> इस प्रकार निषेध एक एकात्मक संक्रिया [[तार्किक संयोजक]] है। इसे सामान्य रूप से [[धारणा (दर्शन)]], [[प्रस्ताव]], [[सत्य मूल्य]], या [[व्याख्या (तर्क)]] पर एक संक्रिया के रूप में प्रयुक्त किया जा सकता है। [[शास्त्रीय तर्क]] में, निषेध को सामान्य रूप से सत्य फलन के साथ पहचाना जाता है जो सत्य को असत्यता (और इसके विपरीत) में ले जाता है। [[अंतर्ज्ञानवादी तर्क]] में, ब्रौवर-हेटिंग-कोल्मोगोरोव व्याख्या के अनुसार, एक प्रस्ताव <math>P</math> की उपेक्षा वह प्रस्ताव है जिसके प्रमाण का <math>P</math> खंडन है।


== परिभाषा ==
== परिभाषा ==
शास्त्रीय निषेध एक [[तार्किक मूल्य]] पर एक [[तार्किक संचालन]] है, आम तौर पर एक प्रस्ताव का मूल्य, जो सत्य का मान उत्पन्न करता है जब उसका संकार्य गलत होता है, और जब उसका संकार्य सत्य होता है तो असत्य का मान होता है। इस प्रकार यदि कथन {{mvar|P}} सच है, तो <math>\neg P</math> (उच्चारण नहीं P ) तब गलत होगा; और इसके विपरीत, अगर <math>\neg P</math> असत्य है तो {{mvar|P}} सच होगा।
उत्कृष्ट निषेध एक [[तार्किक मूल्य]] पर एक [[तार्किक संचालन|तार्किक संक्रिया]] है, सामान्य रूप से एक प्रस्ताव का मूल्य, जो सत्य का मान उत्पन्न करता है जब उसका संकार्य असत्य होता है, और जब उसका संकार्य सत्य होता है तो असत्य का मान होता है। इस प्रकार यदि कथन {{mvar|P}} सत्य है, तो <math>\neg P</math> (उच्चारण नॉट P ) तब असत्य होगा; और इसके विपरीत, यदि <math>\neg P</math> असत्य है तो {{mvar|P}} सत्य होगा।


की सत्य तालिका <math>\neg P</math> इस प्रकार है:
की सत्य तालिका <math>\neg P</math> इस प्रकार है:
Line 35: Line 33:
| {{no2|False}} || {{yes2|True}}
| {{no2|False}} || {{yes2|True}}
|}
|}
निषेध को अन्य तार्किक संक्रियाओं के संदर्भ में परिभाषित किया जा सकता है। उदाहरण के लिए, <math>\neg P</math> के रूप में परिभाषित किया जा सकता है <math>P \rightarrow \bot</math> (कहाँ <math>\rightarrow</math> [[तार्किक परिणाम]] है और <math>\bot</math> [[झूठा (तर्क)]] है)। इसके विपरीत परिभाषित किया जा सकता है <math>\bot</math> जैसा <math>Q \land \neg Q</math> किसी प्रस्ताव के लिए {{mvar|Q}} (कहाँ <math>\land</math> [[तार्किक संयोजन]] है)। यहाँ विचार यह है कि कोई भी [[विरोधाभास]] झूठा है, और जबकि ये विचार शास्त्रीय और अंतर्ज्ञानवादी तर्क दोनों में काम करते हैं, वे [[परासंगत तर्क]] में काम नहीं करते हैं, जहाँ विरोधाभास आवश्यक रूप से झूठे नहीं हैं। शास्त्रीय तर्कशास्त्र में हमें एक और पहचान भी मिलती है, <math>P \rightarrow Q</math> के रूप में परिभाषित किया जा सकता है <math>\neg P \lor Q</math>, कहाँ <math>\lor</math> तार्किक वियोजन है।
निषेध को अन्य तार्किक संक्रियाओं के संदर्भ में परिभाषित किया जा सकता है। उदाहरण के लिए, <math>\neg P</math> के रूप में परिभाषित किया जा सकता है <math>P \rightarrow \bot</math> (जहां <math>\rightarrow</math> [[तार्किक परिणाम]] है और <math>\bot</math> [[झूठा (तर्क)|असत्य (तर्क)]] है)। इसके विपरीत परिभाषित किया जा सकता है <math>\bot</math> जैसा <math>Q \land \neg Q</math> किसी प्रस्ताव के लिए {{mvar|Q}} (जहां <math>\land</math> [[तार्किक संयोजन]] है)। यहाँ विचार यह है कि कोई भी [[विरोधाभास]] असत्य है, और जबकि ये विचार शास्त्रीय और अंतर्ज्ञानवादी तर्क दोनों में कार्य करते हैं, वे [[परासंगत तर्क]] में कार्य नहीं करते हैं, जहाँ विरोधाभास आवश्यक रूप से असत्य नहीं हैं। शास्त्रीय तर्कशास्त्र में हमें एक अन्य पहचान भी मिलती है, <math>P \rightarrow Q</math> को  <math>\neg P \lor Q</math> के रूप में परिभाषित किया जा सकता है जहां <math>\lor</math> तार्किक वियोजन है।


बीजगणितीय रूप से, शास्त्रीय निषेध एक [[बूलियन बीजगणित (संरचना)]] में [[पूरक (आदेश सिद्धांत)]] से मेल खाता है, और एक [[हेटिंग बीजगणित]] में छद्म पूरकता के लिए अंतर्ज्ञानवादी निषेध। ये बीजगणित क्रमशः शास्त्रीय और अंतर्ज्ञानवादी तर्क के लिए [[बीजगणितीय शब्दार्थ (गणितीय तर्क)]] प्रदान करते हैं।
बीजगणितीय रूप से, शास्त्रीय निषेध एक [[बूलियन बीजगणित (संरचना)]] में [[पूरक (आदेश सिद्धांत)]] से अनुरूप है, और एक [[हेटिंग बीजगणित]] में छद्म पूरकता के लिए अंतर्ज्ञानवादी निषेध है। ये बीजगणित क्रमशः शास्त्रीय और अंतर्ज्ञानवादी तर्क के लिए [[बीजगणितीय शब्दार्थ (गणितीय तर्क)]] प्रदान करते हैं।


== नोटेशन ==
== संकेत ==
एक प्रस्ताव की अस्वीकृति {{mvar|p}} चर्चा के विभिन्न संदर्भों और आवेदन के क्षेत्रों में अलग-अलग तरीकों से नोट किया जाता है। निम्नलिखित तालिका में इनमें से कुछ प्रकार हैं:
एक प्रस्ताव की अस्वीकृति {{mvar|p}} चर्चा के विभिन्न संदर्भों और आवेदन के क्षेत्रों में अलग-अलग तरीकों से प्रलेखित किया जाता है। निम्नलिखित तालिका में इनमें से कुछ प्रकार हैं:


{| class="wikitable"
{| class="wikitable"
|- style="background:paleturquoise"
|- style="background:paleturquoise"
! Notation
! संकेत
! Plain Text
! प्लेनटेक्स्ट
! Vocalization
! शब्दोच्चारण
|-
|-
| style="text-align:center" | <math>\neg p</math>
| style="text-align:center" | <math>\neg p</math>
| style="text-align:center" | {{mono|¬p}}
| style="text-align:center" | {{mono|¬p}}
| Not ''p''
| नॉट ''p''
|-
|-
| style="text-align:center" | <math>\mathord{\sim} p</math>
| style="text-align:center" | <math>\mathord{\sim} p</math>
| style="text-align:center" | {{mono|~p}}
| style="text-align:center" | {{mono|~p}}
| Not ''p''
| नॉट ''p''
|-
|-
| style="text-align:center" | <math>-p</math>
| style="text-align:center" | <math>-p</math>
| style="text-align:center" | {{mono|-p}}
| style="text-align:center" | {{mono|-p}}
| Not ''p''
| नॉट ''p''
|-
|-
| style="text-align:center" | N''p''
| style="text-align:center" | N''p''
|
|
| En ''p''
| ईएन ''p''
|-
|-
| style="text-align:center" | <math>p'</math>
| style="text-align:center" | <math>p'</math>
Line 88: Line 86:
संकेतन एनपी पोलिश संकेतन है#तर्क के लिए पोलिश संकेतन|लुकासिविज़ संकेतन।
संकेतन एनपी पोलिश संकेतन है#तर्क के लिए पोलिश संकेतन|लुकासिविज़ संकेतन।


समुच्चय सिद्धांत#मूल अवधारणा और अंकन में, <math>\setminus</math> 'के सेट में नहीं' इंगित करने के लिए भी प्रयोग किया जाता है: <math>U \setminus A</math> के सभी सदस्यों का समुच्चय है {{mvar|U}} जो इसके सदस्य नहीं हैं {{mvar|A}}.
समुच्चय सिद्धांत#मूल अवधारणा और अंकन में, <math>\setminus</math> 'के समुच्चय में नहीं' इंगित करने के लिए भी प्रयोग किया जाता है: <math>U \setminus A</math> के सभी इकाइयों का समुच्चय है {{mvar|U}} जो इसके इकाई नहीं हैं {{mvar|A}}.


भले ही यह कैसे नोट किया गया हो या [[तर्क प्रतीकों की सूची]], निषेध <math>\neg P</math> पढ़ा जा सकता है क्योंकि ऐसा नहीं है {{mvar|P}},  नहीं कि {{mvar|P}}, या आमतौर पर अधिक सरल रूप में नहीं {{mvar|P}}.
तथापि यह कैसे प्रलेखित किया गया हो या [[तर्क प्रतीकों की सूची]], निषेध <math>\neg P</math> पढ़ा जा सकता है क्योंकि ऐसा नहीं है {{mvar|P}},  नहीं कि {{mvar|P}}, या सामान्य रूप से अधिक सरल रूप में नहीं {{mvar|P}}.


== गुण ==
== गुण ==
Line 98: Line 96:
शास्त्रीय तर्क की एक प्रणाली के भीतर, दोहरा निषेध, अर्थात, एक प्रस्ताव के निषेध का निषेध <math>P</math>, [[तार्किक रूप से समकक्ष]] है <math>P</math>. प्रतीकात्मक शब्दों में व्यक्त, <math>\neg \neg P \equiv P</math>. अंतर्ज्ञानवादी तर्क में, एक प्रस्ताव का तात्पर्य इसके दोहरे निषेध से है, लेकिन इसके विपरीत नहीं। यह शास्त्रीय और अंतर्ज्ञानवादी निषेध के बीच एक महत्वपूर्ण अंतर को चिन्हित करता है। बीजगणितीय रूप से, शास्त्रीय निषेध को अवधि दो का एक समावेशन (गणित) कहा जाता है।
शास्त्रीय तर्क की एक प्रणाली के भीतर, दोहरा निषेध, अर्थात, एक प्रस्ताव के निषेध का निषेध <math>P</math>, [[तार्किक रूप से समकक्ष]] है <math>P</math>. प्रतीकात्मक शब्दों में व्यक्त, <math>\neg \neg P \equiv P</math>. अंतर्ज्ञानवादी तर्क में, एक प्रस्ताव का तात्पर्य इसके दोहरे निषेध से है, लेकिन इसके विपरीत नहीं। यह शास्त्रीय और अंतर्ज्ञानवादी निषेध के बीच एक महत्वपूर्ण अंतर को चिन्हित करता है। बीजगणितीय रूप से, शास्त्रीय निषेध को अवधि दो का एक समावेशन (गणित) कहा जाता है।


हालांकि, अंतर्ज्ञानवादी तर्क में, कमजोर समानता <math>\neg \neg \neg P \equiv \neg P</math> धारण करता है। ऐसा इसलिए है क्योंकि अंतर्ज्ञानवादी तर्क में, <math>\neg P</math> के लिए मात्र एक लघुकथा है  <math>P \rightarrow \bot</math>, और हमारे पास भी है <math>P  \rightarrow \neg \neg P </math>. ट्रिपल नकार के साथ उस अंतिम निहितार्थ की रचना करना <math>\neg \neg P  \rightarrow  \bot </math> इसका आशय है <math>P \rightarrow \bot</math> .
हालांकि, अंतर्ज्ञानवादी तर्क में, दुर्बल समानता <math>\neg \neg \neg P \equiv \neg P</math> धारण करता है। ऐसा इसलिए है क्योंकि अंतर्ज्ञानवादी तर्क में, <math>\neg P</math> के लिए मात्र एक लघुकथा है  <math>P \rightarrow \bot</math>, और हमारे पास भी है <math>P  \rightarrow \neg \neg P </math>. त्रिपक्षीय निषेध के साथ उस अंतिम निहितार्थ की रचना करना <math>\neg \neg P  \rightarrow  \bot </math> इसका आशय है <math>P \rightarrow \bot</math> .


नतीजतन, प्रस्ताव के मामले में, एक वाक्य शास्त्रीय रूप से सिद्ध होता है, यदि इसकी दोहरी अस्वीकृति अंतर्ज्ञानवादी रूप से सिद्ध होती है। इस परिणाम को दोहरा-निषेध अनुवाद के रूप में जाना जाता है | ग्लिवेंको का प्रमेय।
परिणामस्वरूप, प्रस्ताव के स्थितिमें, एक वाक्य शास्त्रीय रूप से सिद्ध होता है, यदि इसकी दोहरी अस्वीकृति अंतर्ज्ञानवादी रूप से सिद्ध होती है। इस परिणाम को दोहरा-निषेध अनुवाद के रूप में जाना जाता है | ग्लिवेंको का प्रमेय।


=== वितरणशीलता ===
=== वितरणशीलता ===


डी मॉर्गन के कानून तार्किक संयोजन और तार्किक संयोजन पर वितरणात्मक संपत्ति निषेध का एक तरीका प्रदान करते हैं:
डी मॉर्गन के नियम तार्किक संयोजन और तार्किक संयोजन पर वितरणात्मक संपत्ति निषेध का एक तरीका प्रदान करते हैं:


:<math>\neg(P \lor Q) \equiv (\neg P \land \neg Q)</math>,  और
:<math>\neg(P \lor Q) \equiv (\neg P \land \neg Q)</math>,  और
Line 110: Line 108:


=== रैखिकता ===
=== रैखिकता ===
होने देना <math>\oplus</math> लॉजिकल [[एकमात्र]] ऑपरेशन को निरूपित करें। [[बूलियन बीजगणित (तर्क)]] में, एक रैखिक कार्य ऐसा है जो:
मान लीजिए <math>\oplus</math> तार्किक [[एकमात्र]] संक्रिया को निरूपित करें। [[बूलियन बीजगणित (तर्क)]] में, एक रैखिक फलन ऐसा है जो:


अगर मौजूद है <math>a_0, a_1, \dots, a_n \in \{0,1\}</math>,
यदि  <math>a_0, a_1, \dots, a_n \in \{0,1\}</math>,
<math>f(b_1, b_2, \dots, b_n) = a_0 \oplus (a_1 \land b_1) \oplus \dots \oplus (a_n \land b_n)</math>,
<math>f(b_1, b_2, \dots, b_n) = a_0 \oplus (a_1 \land b_1) \oplus \dots \oplus (a_n \land b_n)</math>,
सभी के लिए <math>b_1, b_2, \dots, b_n \in \{0,1\}</math>.
सभी के लिए <math>b_1, b_2, \dots, b_n \in \{0,1\}</math> सम्मिलित है।


इसे व्यक्त करने का एक अन्य तरीका यह है कि प्रत्येक चर हमेशा संक्रिया के सत्य-मूल्य में अंतर करता है, या यह कभी भी अंतर नहीं करता है। निषेध एक रैखिक तार्किक संकारक है।
इसे व्यक्त करने का एक अन्य तरीका यह है कि प्रत्येक चर सदैव संक्रिया के सत्य-मूल्य में अंतर करता है, या यह कभी भी अंतर नहीं करता है। निषेध एक रैखिक तार्किक संकारक है।


=== स्व द्वैत ===
=== स्व द्वैत ===
बूलियन बीजगणित (तर्क) में, एक स्व-द्वैत कार्य एक ऐसा कार्य है जो:
बूलियन बीजगणित (तर्क) में, एक स्व-द्वैत फलन एक ऐसा फलन है जो:


<math>f(a_1, \dots, a_n) = \neg f(\neg a_1, \dots, \neg a_n)</math> सभी के लिए
<math>f(a_1, \dots, a_n) = \neg f(\neg a_1, \dots, \neg a_n)</math> सभी के लिए
Line 126: Line 124:


=== परिमाणकों का निषेध ===
=== परिमाणकों का निषेध ===
प्रथम क्रम तर्क में, दो क्वांटिफायर होते हैं, एक सार्वभौमिक क्वांटिफायर होता है <math>\forall</math> (मतलब सबके लिए) और दूसरा अस्तित्वगत परिमाणक है <math>\exists</math> (मतलब वहाँ मौजूद है)। एक क्वांटिफायर का निषेध अन्य क्वांटिफायर है (<math>\neg \forall xP(x)\equiv\exists x\neg P(x)</math> और <math>\neg \exists xP(x)\equiv\forall x\neg P(x)</math>). उदाहरण के लिए, विधेय P के साथ x नश्वर है और सभी मनुष्यों के संग्रह के रूप में x का डोमेन है, <math>\forall xP(x)</math> का अर्थ है कि सभी मनुष्यों में एक व्यक्ति x नश्वर है या सभी मनुष्य नश्वर हैं। इसका निषेध है <math>\neg \forall xP(x)\equiv\exists x\neg P(x)</math>, जिसका अर्थ है कि सभी मनुष्यों में एक व्यक्ति x मौजूद है जो नश्वर नहीं है, या कोई ऐसा मौजूद है जो हमेशा के लिए रहता है।
प्रथम क्रम तर्क में, दो क्वांटिफायर होते हैं, एक सार्वभौमिक क्वांटिफायर होता है <math>\forall</math> (तात्पर्य सबके लिए) और दूसरा अस्तित्वगत परिमाणक है <math>\exists</math> (तात्पर्य वहाँ सम्मिलित है)। एक क्वांटिफायर का निषेध अन्य क्वांटिफायर है (<math>\neg \forall xP(x)\equiv\exists x\neg P(x)</math> और <math>\neg \exists xP(x)\equiv\forall x\neg P(x)</math>). उदाहरण के लिए, विधेय P के साथ x नश्वर है और सभी मनुष्यों के संग्रह के रूप में x का प्रक्षेत्र है, <math>\forall xP(x)</math> का अर्थ है कि सभी मनुष्यों में एक व्यक्ति x नश्वर है या सभी मनुष्य नश्वर हैं। इसका निषेध है <math>\neg \forall xP(x)\equiv\exists x\neg P(x)</math>, जिसका अर्थ है कि सभी मनुष्यों में एक व्यक्ति x सम्मिलित है जो नश्वर नहीं है, या कोई ऐसा सम्मिलित है जो हमेशा के लिए रहता है।


== अनुमान के नियम ==
== अनुमान के नियम ==
{{see also|double negation}}
{{see also|double negation}}
निषेध के लिए नियम तैयार करने के कई समतुल्य तरीके हैं। एक [[प्राकृतिक कटौती]] सेटिंग में शास्त्रीय निषेध को तैयार करने का एक सामान्य तरीका अनुमान निषेध परिचय के आदिम नियमों के रूप में लेना है (की व्युत्पत्ति से) <math>P</math> दोनों के लिए <math>Q</math> और <math>\neg Q</math>, अनुमान <math>\neg P</math>; इस नियम को [[रिडक्टियो एड बेतुका]] भी कहा जाता है), निषेध उन्मूलन (से <math>P</math> और <math>\neg P</math> तर्क करना <math>Q</math>; इस नियम को एक्स फाल्स क्वाडलिबेट भी कहा जाता है), और दोहरा निषेध उन्मूलन (से <math>\neg \neg P</math> तर्क करना <math>P</math>). एक ही तरह से अंतर्ज्ञानवादी निषेध के लिए नियम प्राप्त करता है लेकिन दोहरे निषेध उन्मूलन को छोड़कर।
निषेध के लिए नियम तैयार करने के कई समतुल्य तरीके हैं। एक [[प्राकृतिक कटौती]] संस्थापन में शास्त्रीय निषेध को तैयार करने का एक सामान्य तरीका अनुमान निषेध परिचय के प्राथमिक नियमों के रूप में लेना है (की व्युत्पत्ति से) <math>P</math> दोनों के लिए <math>Q</math> और <math>\neg Q</math>, अनुमान <math>\neg P</math>; इस नियम को [[रिडक्टियो एड बेतुका]] भी कहा जाता है), निषेध उन्मूलन (से <math>P</math> और <math>\neg P</math> तर्क करना <math>Q</math>; इस नियम को एक्स फाल्स क्वाडलिबेट भी कहा जाता है), और दोहरा निषेध उन्मूलन (से <math>\neg \neg P</math> तर्क करना <math>P</math>). एक ही तरह से अंतर्ज्ञानवादी निषेध के लिए नियम प्राप्त करता है लेकिन दोहरे निषेध उन्मूलन को छोड़कर।


निषेधात्मक परिचय में कहा गया है कि यदि निष्कर्ष के रूप में एक बेहूदगी निकाली जा सकती है <math>P</math> तब <math>P</math> ऐसा नहीं होना चाहिए (यानी <math>P</math> झूठा (शास्त्रीय रूप से) या खंडन योग्य (सहज ज्ञान युक्त) या आदि) है। नकारात्मक उन्मूलन बताता है कि कुछ भी एक बेहूदगी से होता है। कभी-कभी एक आदिम असावधानी चिह्न का उपयोग करके नकारात्मक उन्मूलन तैयार किया जाता है <math>\bot</math>. इस मामले में नियम कहता है कि से <math>P</math> और <math>\neg P</math> एक बेतुकेपन का पालन करता है। दोहरे निषेध उन्मूलन के साथ-साथ हमारे मूल रूप से तैयार किए गए नियम का अनुमान लगाया जा सकता है, अर्थात् कुछ भी एक मूर्खता से होता है।
निषेधात्मक परिचय में कहा गया है कि यदि निष्कर्ष के रूप में एक बेहूदगी निकाली जा सकती है <math>P</math> तब <math>P</math> ऐसा नहीं होना चाहिए (यानी <math>P</math> असत्य (शास्त्रीय रूप से) या खंडन योग्य (सहज ज्ञान युक्त) या आदि) है। निषेधात्मक उन्मूलन बताता है कि कुछ भी एक बेहूदगी से होता है। कभी-कभी एक प्राथमिक असावधानी चिह्न का उपयोग करके निषेधात्मक उन्मूलन तैयार किया जाता है <math>\bot</math>. इस स्थितिमें नियम कहता है कि से <math>P</math> और <math>\neg P</math> एक बेतुकेपन का पालन करता है। दोहरे निषेध उन्मूलन के साथ-साथ हमारे मूल रूप से तैयार किए गए नियम का अनुमान लगाया जा सकता है, अर्थात् कुछ भी एक मूर्खता से होता है।


आमतौर पर अंतर्ज्ञानवादी निषेध <math>\neg P</math> का <math>P</math> परिभाषित किया जाता है <math>P \rightarrow \bot</math>. फिर निषेध परिचय और विलोपन निहितार्थ परिचय ([[सशर्त प्रमाण]]) और विलोपन ([[मूड सेट करना]]) के विशेष मामले हैं। इस मामले में एक आदिम नियम के रूप में भी जोड़ा जाना चाहिए।
सामान्य रूप से अंतर्ज्ञानवादी निषेध <math>\neg P</math> का <math>P</math> परिभाषित किया जाता है <math>P \rightarrow \bot</math>. फिर निषेध परिचय और विलोपन निहितार्थ परिचय ([[सशर्त प्रमाण]]) और विलोपन ([[मूड सेट करना]]) के विशेष स्थितिहैं। इस स्थितिमें एक प्राथमिक नियम के रूप में भी जोड़ा जाना चाहिए।


== प्रोग्रामिंग भाषा और सामान्य भाषा ==
== प्रोग्रामिंग भाषा और सामान्य भाषा ==
Line 141: Line 139:


<वाक्यविन्यास लैंग = सीपीपी>
<वाक्यविन्यास लैंग = सीपीपी>
अगर (!(आर == टी))
यदि (!(आर == टी))
{
{
    /*...बयान निष्पादित किए जाते हैं जब r, t के बराबर नहीं होता...*/
  if (!(r == t))
}
</वाक्यविन्यास हाइलाइट>


[[विस्मयादिबोधक चिह्न]]<code>!</code>बी (प्रोग्रामिंग लैंग्वेज), [[सी प्रोग्रामिंग भाषा]] और सी-इंस्पायर्ड सिंटैक्स जैसे [[सी ++]], [[जावा (प्रोग्रामिंग भाषा)]], [[जावास्क्रिप्ट]], [[पर्ल]] और [[पीएचपी]] वाली भाषाओं में तार्किक नहीं है।<code>NOT</code>[[ALGOL 60]], BASIC प्रोग्रामिंग लैंग्वेज, और ALGOL- या बेसिक-प्रेरित सिंटैक्स वाली भाषाओं जैसे [[पास्कल प्रोग्रामिंग भाषा]], Ada प्रोग्रामिंग लैंग्वेज, एफिल (प्रोग्रामिंग लैंग्वेज) और [[Seed7]] में इस्तेमाल किया जाने वाला ऑपरेटर है। कुछ भाषाएँ (C++, पर्ल, आदि) निषेध के लिए एक से अधिक ऑपरेटर प्रदान करती हैं। कुछ भाषाएँ जैसे PL/I और [[Ratfor]] उपयोग करती हैं <code>¬</code> निषेध के लिए। अधिकांश आधुनिक भाषाएँ उपरोक्त कथन को छोटा करने की अनुमति देती हैं <code>if (!(r == t))</code> को <code>if (r != t)</code>, जो कभी-कभी अनुमति देता है, जब संकलक/दुभाषिया इसे अनुकूलित करने में सक्षम नहीं होता है, तेज़ प्रोग्राम।
{
    /*...statements executed when r does NOT equal t...*/
}


कंप्यूटर साइंस में बिटवाइज़ नकार भी है। यह दिया गया मान लेता है और सभी बाइनरी अंक प्रणाली 1s को 0s और 0s को 1s में बदल देता है। [[बिटवाइज़ ऑपरेशन]] देखें। इसका उपयोग अक्सर हस्ताक्षरित संख्या प्रतिनिधित्व बनाने के लिए किया जाता है | एक का पूरक या<code>~</code>सी या सी ++ और दो के पूरक में (बस सरलीकृत<code>-</code>या ऋणात्मक चिह्न क्योंकि यह संख्या के अंकगणितीय ऋणात्मक मान को लेने के बराबर है) क्योंकि यह मूल रूप से मान के विपरीत (ऋणात्मक मान समतुल्य) या गणितीय पूरक बनाता है (जहां दोनों मान एक साथ जोड़े जाते हैं वे एक संपूर्ण बनाते हैं)।


किसी दिए गए पूर्णांक का पूर्ण (सकारात्मक समतुल्य) मान प्राप्त करने के लिए निम्नलिखित कार्य करेगा<code>-</code>इसे नकारात्मक से सकारात्मक में बदलता है (यह नकारात्मक है क्योंकि<code>x < 0</code>उपज सच है)
[[विस्मयादिबोधक चिह्न]]<code>!</code>बी (प्रोग्रामिंग लैंग्वेज), [[सी प्रोग्रामिंग भाषा]] और सी-इंस्पायर्ड सिंटैक्स जैसे [[सी ++]], [[जावा (प्रोग्रामिंग भाषा)]], [[जावास्क्रिप्ट]], [[पर्ल]] और [[पीएचपी]] वाली भाषाओं में तार्किक नहीं है।<code>NOT</code>[[ALGOL 60]], BASIC प्रोग्रामिंग लैंग्वेज, और ALGOL- या बेसिक-प्रेरित सिंटैक्स वाली भाषाओं जैसे [[पास्कल प्रोग्रामिंग भाषा]], Ada प्रोग्रामिंग लैंग्वेज, एफिल (प्रोग्रामिंग लैंग्वेज) और [[Seed7]] में इस्तेमाल किया जाने वाला संक्रियक है। कुछ भाषाएँ (C++, पर्ल, आदि) निषेध के लिए एक से अधिक संक्रियक प्रदान करती हैं। कुछ भाषाएँ जैसे PL/I और [[Ratfor]] उपयोग करती हैं <code>¬</code> निषेध के लिए। अधिकांश आधुनिक भाषाएँ उपरोक्त कथन को छोटा करने की अनुमति देती हैं <code>if (!(r == t))</code> को <code>if (r != t)</code>, जो कभी-कभी अनुमति देता है, जब संकलक/दुभाषिया इसे अनुकूलित करने में सक्षम नहीं होता है, तेज़ प्रोग्राम।
 
कंप्यूटर साइंस में बिटवाइज़ निषेध भी है। यह दिया गया मान लेता है और सभी बाइनरी अंक प्रणाली 1s को 0s और 0s को 1s में बदल देता है। [[बिटवाइज़ ऑपरेशन|बिटवाइज़ संक्रिया]] देखें। इसका उपयोग अक्सर हस्ताक्षरित संख्या प्रतिनिधित्व बनाने के लिए किया जाता है | एक का पूरक या<code>~</code>सी या सी ++ और दो के पूरक में (बस सरलीकृत<code>-</code>या ऋणात्मक चिह्न क्योंकि यह संख्या के अंकगणितीय ऋणात्मक मान को लेने के बराबर है) क्योंकि यह मूल रूप से मान के विपरीत (ऋणात्मक मान समतुल्य) या गणितीय पूरक बनाता है (जहां दोनों मान एक साथ जोड़े जाते हैं वे एक संपूर्ण बनाते हैं)।
 
किसी दिए गए पूर्णांक का पूर्ण (सकारात्मक समतुल्य) मान प्राप्त करने के लिए निम्नलिखित फलन करेगा<code>-</code>इसे निषेधात्मक से सकारात्मक में बदलता है (यह निषेधात्मक है क्योंकि<code>x < 0</code>उपज सत्य है)


<वाक्यविन्यास [[बोलचाल की भाषा]] = सीपीपी>
<वाक्यविन्यास [[बोलचाल की भाषा]] = सीपीपी>
अहस्ताक्षरित इंट एब्स (इंट एक्स)
अहस्ताक्षरित इंट एब्स (इंट एक्स)
{
{
    अगर (एक्स <0)
unsigned int abs(int x)
        वापसी -एक्स;
{
    अन्य
    if (x < 0)
        वापसी एक्स;
        return -x;
}
    else
</वाक्यविन्यास हाइलाइट>
        return x;
}
तार्किक निषेध प्रदर्शित करने के लिए:


तार्किक निषेध प्रदर्शित करने के लिए:
unsigned int abs(int x)
{
    if (!(x < 0))
        return x;
    else
        return -x;
}


<वाक्यविन्यास लैंग = सीपीपी>
अहस्ताक्षरित इंट एब्स (इंट एक्स)
{
    अगर (!(एक्स <0))
        वापसी एक्स;
    अन्य
        वापसी -एक्स;
}
</वाक्यविन्यास हाइलाइट>


स्थिति को उलटने और परिणामों को उलटने से कोड उत्पन्न होता है जो तार्किक रूप से मूल कोड के समतुल्य होता है, अर्थात किसी भी इनपुट के लिए समान परिणाम होंगे (ध्यान दें कि उपयोग किए गए कंपाइलर के आधार पर, कंप्यूटर द्वारा किए गए वास्तविक निर्देश भिन्न हो सकते हैं)।
स्थिति को उलटने और परिणामों को उलटने से कोड उत्पन्न होता है जो तार्किक रूप से मूल कोड के समतुल्य होता है, अर्थात किसी भी इनपुट के लिए समान परिणाम होंगे (ध्यान दें कि उपयोग किए गए कंपाइलर के आधार पर, कंप्यूटर द्वारा किए गए वास्तविक निर्देश भिन्न हो सकते हैं)।


यह सम्मेलन कभी-कभी साधारण लिखित भाषण में सामने आता है, जैसे कि कंप्यूटर से संबंधित कठबोली नहीं। उदाहरण के लिए, मुहावरा <code>!voting</code> मतलब मतदान नहीं। एक अन्य उदाहरण मुहावरा है <code>!clue</code> जिसका उपयोग नो-क्लू या क्लूलेस के पर्याय के रूप में किया जाता है।<ref>[[Eric S. Raymond|Raymond, Eric]] and Steele, Guy.  [https://books.google.com/books?id=g80P_4v4QbIC&pg=PA18&lpg=PA18 The New Hacker's Dictionary], p. 18 (MIT Press 1996).</ref><ref>Munat, Judith.  [https://books.google.com/books?id=UOPXXYslemYC&pg=PA148&lpg=PA148 Lexical Creativity, Texts and Context], p. 148 (John Benjamins Publishing, 2007).</ref>
यह सम्मेलन कभी-कभी साधारण लिखित भाषण में सामने आता है, जैसे कि कंप्यूटर से संबंधित कठबोली नहीं। उदाहरण के लिए, मुहावरा <code>!voting</code> तात्पर्य मतदान नहीं। एक अन्य उदाहरण मुहावरा है <code>!clue</code> जिसका उपयोग नो-क्लू या क्लूलेस के पर्याय के रूप में किया जाता है।<ref>[[Eric S. Raymond|Raymond, Eric]] and Steele, Guy.  [https://books.google.com/books?id=g80P_4v4QbIC&pg=PA18&lpg=PA18 The New Hacker's Dictionary], p. 18 (MIT Press 1996).</ref><ref>Munat, Judith.  [https://books.google.com/books?id=UOPXXYslemYC&pg=PA148&lpg=PA148 Lexical Creativity, Texts and Context], p. 148 (John Benjamins Publishing, 2007).</ref>




== [[कृपके शब्दार्थ]] ==
== [[कृपके शब्दार्थ]] ==
कृपके शब्दार्थ में जहां सूत्रों के शब्दार्थ मूल्य संभावित दुनिया के सेट हैं, [[सेट-सैद्धांतिक पूरक]]ता के अर्थ में निषेध को लिया जा सकता है{{citation needed|date=August 2012}} (अधिक के लिए [[संभावित विश्व शब्दार्थ]] भी देखें)।
कृपके शब्दार्थ में जहां सूत्रों के शब्दार्थ मूल्य संभावित दुनिया के सेट हैं, [[सेट-सैद्धांतिक पूरक|समुच्चय-सैद्धांतिक पूरक]]ता के अर्थ में निषेध को लिया जा सकता है{{citation needed|date=August 2012}} (अधिक के लिए [[संभावित विश्व शब्दार्थ]] भी देखें)।


== यह भी देखें ==
== यह भी देखें ==

Revision as of 23:01, 21 February 2023

भाषा विज्ञान में निषेध के लिए पुष्टि और निषेध देखें। अन्य प्रयोगों के लिए, निषेध (बहुविकल्पी) देखें।

Negation
NOT
Venn diagram of Negation
Definition
Truth table
Logic gateNOT ANSI.svg
Normal forms
Disjunctive
Conjunctive
Zhegalkin polynomial
Post's lattices
0-preservingno
1-preservingno
Monotoneno
Affineyes

तर्क में, निषेध, जिसे तार्किक पूरक भी कहा जाता है, एक संक्रिया है जो एक प्रस्ताव दूसरे प्रस्ताव के लिए ''नॉट '' मे ले जाता है जिसे , या मे लिखा जाता है। इसे सहज रूप से सत्य होने के रूप में व्याख्या की जाती है असत्य है, और असत्य है जब सत्य है।[1][2] इस प्रकार निषेध एक एकात्मक संक्रिया तार्किक संयोजक है। इसे सामान्य रूप से धारणा (दर्शन), प्रस्ताव, सत्य मूल्य, या व्याख्या (तर्क) पर एक संक्रिया के रूप में प्रयुक्त किया जा सकता है। शास्त्रीय तर्क में, निषेध को सामान्य रूप से सत्य फलन के साथ पहचाना जाता है जो सत्य को असत्यता (और इसके विपरीत) में ले जाता है। अंतर्ज्ञानवादी तर्क में, ब्रौवर-हेटिंग-कोल्मोगोरोव व्याख्या के अनुसार, एक प्रस्ताव की उपेक्षा वह प्रस्ताव है जिसके प्रमाण का खंडन है।

परिभाषा

उत्कृष्ट निषेध एक तार्किक मूल्य पर एक तार्किक संक्रिया है, सामान्य रूप से एक प्रस्ताव का मूल्य, जो सत्य का मान उत्पन्न करता है जब उसका संकार्य असत्य होता है, और जब उसका संकार्य सत्य होता है तो असत्य का मान होता है। इस प्रकार यदि कथन P सत्य है, तो (उच्चारण नॉट P ) तब असत्य होगा; और इसके विपरीत, यदि असत्य है तो P सत्य होगा।

की सत्य तालिका इस प्रकार है:

True False
False True

निषेध को अन्य तार्किक संक्रियाओं के संदर्भ में परिभाषित किया जा सकता है। उदाहरण के लिए, के रूप में परिभाषित किया जा सकता है (जहां तार्किक परिणाम है और असत्य (तर्क) है)। इसके विपरीत परिभाषित किया जा सकता है जैसा किसी प्रस्ताव के लिए Q (जहां तार्किक संयोजन है)। यहाँ विचार यह है कि कोई भी विरोधाभास असत्य है, और जबकि ये विचार शास्त्रीय और अंतर्ज्ञानवादी तर्क दोनों में कार्य करते हैं, वे परासंगत तर्क में कार्य नहीं करते हैं, जहाँ विरोधाभास आवश्यक रूप से असत्य नहीं हैं। शास्त्रीय तर्कशास्त्र में हमें एक अन्य पहचान भी मिलती है, को के रूप में परिभाषित किया जा सकता है जहां तार्किक वियोजन है।

बीजगणितीय रूप से, शास्त्रीय निषेध एक बूलियन बीजगणित (संरचना) में पूरक (आदेश सिद्धांत) से अनुरूप है, और एक हेटिंग बीजगणित में छद्म पूरकता के लिए अंतर्ज्ञानवादी निषेध है। ये बीजगणित क्रमशः शास्त्रीय और अंतर्ज्ञानवादी तर्क के लिए बीजगणितीय शब्दार्थ (गणितीय तर्क) प्रदान करते हैं।

संकेत

एक प्रस्ताव की अस्वीकृति p चर्चा के विभिन्न संदर्भों और आवेदन के क्षेत्रों में अलग-अलग तरीकों से प्रलेखित किया जाता है। निम्नलिखित तालिका में इनमें से कुछ प्रकार हैं:

संकेत प्लेनटेक्स्ट शब्दोच्चारण
¬p नॉट p
~p नॉट p
-p नॉट p
Np ईएन p
p'
  • p prime,
  • p complement
̅p
  • p bar,
  • Bar p
!p
  • Bang p
  • Not p

संकेतन एनपी पोलिश संकेतन है#तर्क के लिए पोलिश संकेतन|लुकासिविज़ संकेतन।

समुच्चय सिद्धांत#मूल अवधारणा और अंकन में, 'के समुच्चय में नहीं' इंगित करने के लिए भी प्रयोग किया जाता है: के सभी इकाइयों का समुच्चय है U जो इसके इकाई नहीं हैं A.

तथापि यह कैसे प्रलेखित किया गया हो या तर्क प्रतीकों की सूची, निषेध पढ़ा जा सकता है क्योंकि ऐसा नहीं है P, नहीं कि P, या सामान्य रूप से अधिक सरल रूप में नहीं P.

गुण

दोहरा निषेध

शास्त्रीय तर्क की एक प्रणाली के भीतर, दोहरा निषेध, अर्थात, एक प्रस्ताव के निषेध का निषेध , तार्किक रूप से समकक्ष है . प्रतीकात्मक शब्दों में व्यक्त, . अंतर्ज्ञानवादी तर्क में, एक प्रस्ताव का तात्पर्य इसके दोहरे निषेध से है, लेकिन इसके विपरीत नहीं। यह शास्त्रीय और अंतर्ज्ञानवादी निषेध के बीच एक महत्वपूर्ण अंतर को चिन्हित करता है। बीजगणितीय रूप से, शास्त्रीय निषेध को अवधि दो का एक समावेशन (गणित) कहा जाता है।

हालांकि, अंतर्ज्ञानवादी तर्क में, दुर्बल समानता धारण करता है। ऐसा इसलिए है क्योंकि अंतर्ज्ञानवादी तर्क में, के लिए मात्र एक लघुकथा है , और हमारे पास भी है . त्रिपक्षीय निषेध के साथ उस अंतिम निहितार्थ की रचना करना इसका आशय है .

परिणामस्वरूप, प्रस्ताव के स्थितिमें, एक वाक्य शास्त्रीय रूप से सिद्ध होता है, यदि इसकी दोहरी अस्वीकृति अंतर्ज्ञानवादी रूप से सिद्ध होती है। इस परिणाम को दोहरा-निषेध अनुवाद के रूप में जाना जाता है | ग्लिवेंको का प्रमेय।

वितरणशीलता

डी मॉर्गन के नियम तार्किक संयोजन और तार्किक संयोजन पर वितरणात्मक संपत्ति निषेध का एक तरीका प्रदान करते हैं:

, और
.

रैखिकता

मान लीजिए तार्किक एकमात्र संक्रिया को निरूपित करें। बूलियन बीजगणित (तर्क) में, एक रैखिक फलन ऐसा है जो:

यदि , , सभी के लिए सम्मिलित है।

इसे व्यक्त करने का एक अन्य तरीका यह है कि प्रत्येक चर सदैव संक्रिया के सत्य-मूल्य में अंतर करता है, या यह कभी भी अंतर नहीं करता है। निषेध एक रैखिक तार्किक संकारक है।

स्व द्वैत

बूलियन बीजगणित (तर्क) में, एक स्व-द्वैत फलन एक ऐसा फलन है जो:

सभी के लिए . निषेध एक स्व-दोहरी तार्किक संचालिका है।

परिमाणकों का निषेध

प्रथम क्रम तर्क में, दो क्वांटिफायर होते हैं, एक सार्वभौमिक क्वांटिफायर होता है (तात्पर्य सबके लिए) और दूसरा अस्तित्वगत परिमाणक है (तात्पर्य वहाँ सम्मिलित है)। एक क्वांटिफायर का निषेध अन्य क्वांटिफायर है ( और ). उदाहरण के लिए, विधेय P के साथ x नश्वर है और सभी मनुष्यों के संग्रह के रूप में x का प्रक्षेत्र है, का अर्थ है कि सभी मनुष्यों में एक व्यक्ति x नश्वर है या सभी मनुष्य नश्वर हैं। इसका निषेध है , जिसका अर्थ है कि सभी मनुष्यों में एक व्यक्ति x सम्मिलित है जो नश्वर नहीं है, या कोई ऐसा सम्मिलित है जो हमेशा के लिए रहता है।

अनुमान के नियम

निषेध के लिए नियम तैयार करने के कई समतुल्य तरीके हैं। एक प्राकृतिक कटौती संस्थापन में शास्त्रीय निषेध को तैयार करने का एक सामान्य तरीका अनुमान निषेध परिचय के प्राथमिक नियमों के रूप में लेना है (की व्युत्पत्ति से) दोनों के लिए और , अनुमान ; इस नियम को रिडक्टियो एड बेतुका भी कहा जाता है), निषेध उन्मूलन (से और तर्क करना ; इस नियम को एक्स फाल्स क्वाडलिबेट भी कहा जाता है), और दोहरा निषेध उन्मूलन (से तर्क करना ). एक ही तरह से अंतर्ज्ञानवादी निषेध के लिए नियम प्राप्त करता है लेकिन दोहरे निषेध उन्मूलन को छोड़कर।

निषेधात्मक परिचय में कहा गया है कि यदि निष्कर्ष के रूप में एक बेहूदगी निकाली जा सकती है तब ऐसा नहीं होना चाहिए (यानी असत्य (शास्त्रीय रूप से) या खंडन योग्य (सहज ज्ञान युक्त) या आदि) है। निषेधात्मक उन्मूलन बताता है कि कुछ भी एक बेहूदगी से होता है। कभी-कभी एक प्राथमिक असावधानी चिह्न का उपयोग करके निषेधात्मक उन्मूलन तैयार किया जाता है . इस स्थितिमें नियम कहता है कि से और एक बेतुकेपन का पालन करता है। दोहरे निषेध उन्मूलन के साथ-साथ हमारे मूल रूप से तैयार किए गए नियम का अनुमान लगाया जा सकता है, अर्थात् कुछ भी एक मूर्खता से होता है।

सामान्य रूप से अंतर्ज्ञानवादी निषेध का परिभाषित किया जाता है . फिर निषेध परिचय और विलोपन निहितार्थ परिचय (सशर्त प्रमाण) और विलोपन (मूड सेट करना) के विशेष स्थितिहैं। इस स्थितिमें एक प्राथमिक नियम के रूप में भी जोड़ा जाना चाहिए।

प्रोग्रामिंग भाषा और सामान्य भाषा

गणित की तरह, तार्किक कथनों के निर्माण के लिए कंप्यूटर विज्ञान में निषेध का उपयोग किया जाता है।

<वाक्यविन्यास लैंग = सीपीपी> यदि (!(आर == टी)) {

  if (!(r == t))
{
    /*...statements executed when r does NOT equal t...*/
}


विस्मयादिबोधक चिह्न!बी (प्रोग्रामिंग लैंग्वेज), सी प्रोग्रामिंग भाषा और सी-इंस्पायर्ड सिंटैक्स जैसे सी ++, जावा (प्रोग्रामिंग भाषा), जावास्क्रिप्ट, पर्ल और पीएचपी वाली भाषाओं में तार्किक नहीं है।NOTALGOL 60, BASIC प्रोग्रामिंग लैंग्वेज, और ALGOL- या बेसिक-प्रेरित सिंटैक्स वाली भाषाओं जैसे पास्कल प्रोग्रामिंग भाषा, Ada प्रोग्रामिंग लैंग्वेज, एफिल (प्रोग्रामिंग लैंग्वेज) और Seed7 में इस्तेमाल किया जाने वाला संक्रियक है। कुछ भाषाएँ (C++, पर्ल, आदि) निषेध के लिए एक से अधिक संक्रियक प्रदान करती हैं। कुछ भाषाएँ जैसे PL/I और Ratfor उपयोग करती हैं ¬ निषेध के लिए। अधिकांश आधुनिक भाषाएँ उपरोक्त कथन को छोटा करने की अनुमति देती हैं if (!(r == t)) को if (r != t), जो कभी-कभी अनुमति देता है, जब संकलक/दुभाषिया इसे अनुकूलित करने में सक्षम नहीं होता है, तेज़ प्रोग्राम।

कंप्यूटर साइंस में बिटवाइज़ निषेध भी है। यह दिया गया मान लेता है और सभी बाइनरी अंक प्रणाली 1s को 0s और 0s को 1s में बदल देता है। बिटवाइज़ संक्रिया देखें। इसका उपयोग अक्सर हस्ताक्षरित संख्या प्रतिनिधित्व बनाने के लिए किया जाता है | एक का पूरक या~सी या सी ++ और दो के पूरक में (बस सरलीकृत-या ऋणात्मक चिह्न क्योंकि यह संख्या के अंकगणितीय ऋणात्मक मान को लेने के बराबर है) क्योंकि यह मूल रूप से मान के विपरीत (ऋणात्मक मान समतुल्य) या गणितीय पूरक बनाता है (जहां दोनों मान एक साथ जोड़े जाते हैं वे एक संपूर्ण बनाते हैं)।

किसी दिए गए पूर्णांक का पूर्ण (सकारात्मक समतुल्य) मान प्राप्त करने के लिए निम्नलिखित फलन करेगा-इसे निषेधात्मक से सकारात्मक में बदलता है (यह निषेधात्मक है क्योंकिx < 0उपज सत्य है)

<वाक्यविन्यास बोलचाल की भाषा = सीपीपी> अहस्ताक्षरित इंट एब्स (इंट एक्स) {

unsigned int abs(int x)
{
    if (x < 0)
        return -x;
    else
        return x;
}

तार्किक निषेध प्रदर्शित करने के लिए:

unsigned int abs(int x)
{
    if (!(x < 0))
        return x;
    else
        return -x;
}


स्थिति को उलटने और परिणामों को उलटने से कोड उत्पन्न होता है जो तार्किक रूप से मूल कोड के समतुल्य होता है, अर्थात किसी भी इनपुट के लिए समान परिणाम होंगे (ध्यान दें कि उपयोग किए गए कंपाइलर के आधार पर, कंप्यूटर द्वारा किए गए वास्तविक निर्देश भिन्न हो सकते हैं)।

यह सम्मेलन कभी-कभी साधारण लिखित भाषण में सामने आता है, जैसे कि कंप्यूटर से संबंधित कठबोली नहीं। उदाहरण के लिए, मुहावरा !voting तात्पर्य मतदान नहीं। एक अन्य उदाहरण मुहावरा है !clue जिसका उपयोग नो-क्लू या क्लूलेस के पर्याय के रूप में किया जाता है।[3][4]


कृपके शब्दार्थ

कृपके शब्दार्थ में जहां सूत्रों के शब्दार्थ मूल्य संभावित दुनिया के सेट हैं, समुच्चय-सैद्धांतिक पूरकता के अर्थ में निषेध को लिया जा सकता है[citation needed] (अधिक के लिए संभावित विश्व शब्दार्थ भी देखें)।

यह भी देखें


संदर्भ

  1. Weisstein, Eric W. "नकार". mathworld.wolfram.com (in English). Retrieved 2020-09-02.
  2. "Logic and Mathematical Statements - Worked Examples". www.math.toronto.edu. Retrieved 2020-09-02.
  3. Raymond, Eric and Steele, Guy. The New Hacker's Dictionary, p. 18 (MIT Press 1996).
  4. Munat, Judith. Lexical Creativity, Texts and Context, p. 148 (John Benjamins Publishing, 2007).


अग्रिम पठन


बाहरी संबंध

Tables of Truth of composite clauses