स्थिर अक्ष में घूर्णन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 89: Line 89:


=== जड़ता का क्षण ===
=== जड़ता का क्षण ===
{{main|Moment of inertia}}
{{main|जड़ता का क्षण}}
किसी वस्तु की जड़ता का क्षण, जिसका प्रतीक है <math>I</math>, इसके रोटेशन में परिवर्तन के लिए वस्तु के प्रतिरोध का एक उपाय है।जड़ता के क्षण को किलोग्राम मीटर (किलो एम) में मापा जाता है<sup>2 </sup>)।यह वस्तु के द्रव्यमान पर निर्भर करता है: किसी वस्तु के द्रव्यमान को बढ़ाने से जड़ता का क्षण बढ़ जाता है।यह द्रव्यमान के वितरण पर भी निर्भर करता है: रोटेशन के केंद्र से द्रव्यमान को आगे वितरित करने से जड़ता के क्षण को अधिक हद तक बढ़ जाता है।द्रव्यमान के एक ही कण के लिए <math>m</math> एक दूरी <math>r</math> रोटेशन की धुरी से, जड़ता का क्षण द्वारा दिया जाता है
किसी वस्तु की जड़ता का क्षण, जिसका प्रतीक है <math>I</math>, वस्तु के घूर्णन में परिवर्तन के प्रतिरोध का एक उपाय है। जड़त्व आघूर्ण को किलोग्राम मीटर² (kg m2) में मापा जाता है। यह वस्तु के द्रव्यमान पर निर्भर करता है: किसी वस्तु का द्रव्यमान बढ़ने से जड़ता का क्षण बढ़ जाता है। यह द्रव्यमान के वितरण पर भी निर्भर करता है: द्रव्यमान को घूर्णन के केंद्र से आगे वितरित करने से जड़ता का क्षण अधिक मात्रा में बढ़ जाता है।द्रव्यमान के कण के लिए <math>m</math> दूरी <math>r</math> रोटेशन के अक्ष से, जड़ता के क्षण द्वारा दिया जाता है


:<math qid=Q165618>I = mr^2.</math>
:<math qid=Q165618>I = mr^2.</math>
Line 96: Line 96:


=== टॉर्क ===
=== टॉर्क ===
{{main|Torque}}
{{main|टॉर्क}}
टॉर्कः <math>\boldsymbol{\tau}</math> एक घूर्णन ऑब्जेक्ट पर लागू एक बल एफ का घुमा प्रभाव है जो रोटेशन की अक्ष से स्थिति आर पर है।गणितीय रूप से,
टॉर्कः <math>\boldsymbol{\tau}</math> घूमने वाली वस्तु पर लगाए गए बल F का घुमावदार प्रभाव है जो अपने रोटेशन के अक्ष से स्थिति r पर है। गणितीय रूप से,
:<math qid=Q48103>\boldsymbol{\tau} = \mathbf{r} \times \mathbf{F},</math>
:<math qid=Q48103>\boldsymbol{\tau} = \mathbf{r} \times \mathbf{F},</math>
जहां × क्रॉस उत्पाद को दर्शाता है।किसी वस्तु पर अभिनय करने वाला एक शुद्ध टोक़ वस्तु के एक कोणीय त्वरण का उत्पादन करेगा
जहां × क्रॉस उत्पाद को दर्शाता है।किसी वस्तु पर अभिनय करने वाला एक शुद्ध टोक़ वस्तु के एक कोणीय त्वरण का उत्पादन करेगा

Revision as of 18:21, 1 February 2023

अपने एक व्यास के चारों ओर घूमता हुआ गोला

निश्चित अक्ष के चारों ओर घूमना घूर्णी गति की विशेष स्थिति है। फिक्स्ड-एक्सिस परिकल्पना धुरी के अपने अभिविन्यास को परिवर्तित करने की संभावना को बाहर करती है और इस तरह की घटनाओं को पुरस्सरण के रूप में वर्णित नहीं कर सकती है। यूलर के घुमाव प्रमेय के अनुसार, एक समय में कई स्थिर अक्षों के साथ-साथ घुमाव असंभव है; यदि एक ही समय में दो घुमावों को मजबूर किया जाता है, तो घुमाव की नई धुरी दिखाई देगी।

यह लेख मानता है कि घुमाव भी स्थिर है, जैसे कि इसे जारी रखने के लिए किसी टॉर्क की आवश्यकता नहीं है। कठोर पिंड के स्थिर अक्ष के चारों ओर घूर्णन की कीनेमेटिक्स और गतिकी, कठोर पिंड के मुक्त घूर्णन की तुलना में गणितीय रूप से बहुत सरल हैं; वे सम्पूर्ण रूप से निश्चित दिशा के साथ रैखिक गति के अनुरूप हैं, जो कठोर शरीर के मुक्त घूर्णन के लिए सही नहीं है वस्तु की गतिज ऊर्जा के लिए भाव, और वस्तु के भाग पर बलों के लिए, सामान्य घूर्णी गति की तुलना में निश्चित अक्ष के चारों ओर घूमने के लिए भी सरल होते हैं। इन कारणों से, छात्रों द्वारा रैखिक गति में दक्षता प्राप्त करने के बाद निश्चित अक्ष के चारों ओर घूमना  सामान्यता प्रारंभिक भौतिकी पाठ्यक्रमों में पढ़ाया जाता है; घूर्णी गति की पूर्ण व्यापकता  सामान्यता प्रारंभिक भौतिकी कक्षाओं में नहीं सिखाई जाती है।

अनुवाद और घुमाव

रोटेशन का एक उदाहरण।कृमि ड्राइव का प्रत्येक भाग - दोनों कृमि और कृमि गियर - अपने स्वयं के अक्ष पर घूम रहा है।

दृढ़ पिंड परिमित सीमा की वस्तु है जिसमें घटक कणों के मध्य की सभी दूरियां स्थिर होती हैं। वास्तव में कोई कठोर शरीर उपस्तिथ नहीं है; बाह्य बल किसी भी ठोस को विकृत कर सकते हैं। हमारे उद्देश्यों के लिए, कठोर शरीर ठोस है जिसके लिए बड़ी शक्तियो को इसे सराहनीय रूप से विकृत करने की आवश्यकता होती है।

त्रि-आयामी अंतरिक्ष में कण की स्थिति में परिवर्तन को तीन निर्देशांकों द्वारा पूर्ण रूप से निर्दिष्ट किया जा सकता है। कठोर शरीर की स्थिति में परिवर्तन का वर्णन करना अधिक जटिल है। इसे दो अलग-अलग प्रकार की गति के संयोजन के रूप में माना जा सकता है: अनुवाद संबंधी गति और परिपत्र गति।

विशुद्ध रूप से स्थानांतरणीय गति तब होती है जब शरीर के प्रत्येक कण में अन्य सभी कणों के समान तत्कालिक वेग होता है; तब किसी भी कण द्वारा निकाला गया पथ शरीर में हर दूसरे कण द्वारा निकाले गए पथ के बिल्कुल समानांतर होता है। ट्रांसलेशनल मोशन के अनुसार, कठोर शरीर की स्थिति में परिवर्तन को तीन निर्देशांक जैसे कि एक्स, वाई,और जेड द्वारा पूर्ण रूप से निर्दिष्ट किया जाता है, जो किसी भी बिंदु काविस्थापन देता है, जैसे द्रव्यमान का केंद्र, कठोर शरीर के लिए तय होता है।

विशुद्ध रूप से घूर्णी गति तब होती है जब शरीर का प्रत्येक कण रेखा के चारों ओर चक्र में घूमता है। इस रेखा को घूर्णन अक्ष कहते हैं। फिर धुरी से सभी कणों के वेक्टर ( त्रिज्या) समय में कोणीय विस्थापन से गुजरते हैं। घुमाव की धुरी को शरीर से गुजरने की जरूरत नहीं है। सामान्यतः किसी भी घुमाव को आयताकार-समन्वय अक्षों एक्स, वाई और जेड के संबंध में तीन कोणीय विस्थापनों द्वारा पूर्ण रूप से निर्दिष्ट किया जा सकता है। कठोर शरीर की स्थिति में कोई भी परिवर्तन इस प्रकार पूर्ण रूप से तीन स्थानान्तरण और तीन घूर्णी निर्देशांक द्वारा वर्णित है।

कठोर पिंड के किसी भी विस्थापन को पहले पिंड को विस्थापन के बाद घुमाव, या इसके विपरीत, विस्थापन के बाद घुमाव के अधीन करके पहुँचा जा सकता है। हम पहले से ही जानते हैं कि कणों के किसी भी संग्रह के लिए - चाहे वे एक दूसरे के संबंध में स्थिर हों, जैसे कठोर शरीर में, या सापेक्ष गति में, जैसे कि खोल के फटने वाले भाग , द्रव्यमान के केंद्र का त्वरण द्वारा दिया जाता है

जहां एम सिस्टम का कुल द्रव्यमान है और एcm द्रव्यमान के केंद्र का त्वरण है। द्रव्यमान के केंद्र के विषय में शरीर के घूर्णन का वर्णन करने और इसे शरीर पर काम करने वाली बाह्य शक्तियो से संबंधित करने की बात बनी हुई है। एकल अक्ष के चारों ओर घूर्णी गति की कीनेमेटीक्स और गतिशीलता ट्रांसलेशनल गति की कीनेमेटिक्स और गतिकी से मिलती जुलती है; एकल अक्ष के चारों ओर घूर्णी गति में कण गतिकी के समान कार्य-ऊर्जा प्रमेय भी होता है।

किनेमेटिक्स

कोणीय विस्थापन

कण दिया गया है जो त्रिज्या के वृत्त की परिधि के साथ चलता है , चाप लंबाई ले जाया गया , इसकी कोणीय स्थिति है इसकी प्रारंभिक स्थिति के सापेक्ष, जहां

गणित और भौतिकी में यह रेडियन ,समतल कोण की इकाई, को 1 मानने के लिए पारंपरिक है, प्रायः इसे छोड़ दिया जाता है। इकाइयों को निम्नानुसार परिवर्तित किया जाता है:

कोणीय विस्थापन कोणीय स्थिति में परिवर्तन है:

कहाँ पे कोणीय विस्थापन है, प्रारंभिक कोणीय स्थिति है और अंतिम कोणीय स्थिति है।

कोणीय वेग

प्रति इकाई समय में कोणीय विस्थापन में परिवर्तन को घूर्णन अक्ष के अनुदिश दिशा के साथ कोणीय वेग कहते हैं। कोणीय वेग का प्रतीक है और इकाइयां सामान्यतः रेड s-1 हैं। कोणीय गति कोणीय वेग का परिमाण है।

तात्कालिक कोणीय वेग किसके द्वारा दिया जाता है

कोणीय स्थिति और देने के लिए सूत्र का उपयोग करना , हमारे पास यह भी है

कहाँ पे कण की स्थानांतरणीय गति है।

कोणीय वेग और आवृत्ति संबंधित हैं

कोणीय त्वरण

परिवर्तन होते हुए कोणीय वेग कठोर शरीर में कोणीय त्वरण की उपस्थिति को इंगित करता है, जिसे सामान्यतः रेड s−2 में मापा जाता है। औसत कोणीय त्वरण समय के अंतराल से अधिक Δt द्वारा दिया जाता है

तात्क्षणिक त्वरणα (t) द्वारा दिया जाता है

इस प्रकार, कोणीय त्वरण कोणीय वेग के परिवर्तन की दर है, जिस प्रकार त्वरण वेग के परिवर्तन की दर है।

घुमाव वाली वस्तु पर बिंदु का स्थानांतरीय त्वरण किसके द्वारा दिया जाता है

जहां R घूर्णन के अक्ष से त्रिज्या या दूरी है। यह भी त्वरण का स्पर्शरेखा घटक

भी है: यह बिंदु की गति की दिशा के स्पर्शरेखा है। यदि यह घटक 0 है, तो गति समान वर्तुल गति है, और वेग केवल दिशा में परिवर्तित होता है।

रेडियल त्वरण (गति की दिशा के लंबवत) द्वारा दिया जाता है

यह घूर्णी गति के केंद्र की ओर निर्देशित होता है, और इसे प्रायः केन्द्रपसारक त्वरण कहा जाता है।

कोणीय त्वरण टोक़ के कारण होता है, जो सकारात्मक और नकारात्मक कोणीय आवृत्ति के सम्मेलन के अनुसार सकारात्मक या नकारात्मक मूल्य हो सकता है। टोक़ और कोणीय त्वरण के मध्य संबंध (घूर्णन को आरम्भ करना, रोकना अन्यथा परिवर्तन करना कितना कठिन है) जड़ता के क्षण द्वारा दिया जाता है:

किनेमेटिक्स के समीकरण

जब कोणीय त्वरण स्थिर होता है, तो पाँच मात्राएँ कोणीय विस्थापन होती हैं , प्रारंभिक कोणीय वेग , अंतिम कोणीय वेग , कोणीय त्वरण , और समय कीनेमेटीक्स के चार समीकरणों से संबंधित हो सकता है:


डायनामिक्स

जड़ता का क्षण

किसी वस्तु की जड़ता का क्षण, जिसका प्रतीक है , वस्तु के घूर्णन में परिवर्तन के प्रतिरोध का एक उपाय है। जड़त्व आघूर्ण को किलोग्राम मीटर² (kg m2) में मापा जाता है। यह वस्तु के द्रव्यमान पर निर्भर करता है: किसी वस्तु का द्रव्यमान बढ़ने से जड़ता का क्षण बढ़ जाता है। यह द्रव्यमान के वितरण पर भी निर्भर करता है: द्रव्यमान को घूर्णन के केंद्र से आगे वितरित करने से जड़ता का क्षण अधिक मात्रा में बढ़ जाता है।द्रव्यमान के कण के लिए दूरी रोटेशन के अक्ष से, जड़ता के क्षण द्वारा दिया जाता है


टॉर्क

टॉर्कः घूमने वाली वस्तु पर लगाए गए बल F का घुमावदार प्रभाव है जो अपने रोटेशन के अक्ष से स्थिति r पर है। गणितीय रूप से,

जहां × क्रॉस उत्पाद को दर्शाता है।किसी वस्तु पर अभिनय करने वाला एक शुद्ध टोक़ वस्तु के एक कोणीय त्वरण का उत्पादन करेगा

जैसा कि f = ma रैखिक गतिशीलता में।

किसी वस्तु पर अभिनय करने वाले टोक़ द्वारा किया गया कार्य टोक़ के समय के परिमाण के बराबर होता है, जिसके माध्यम से टोक़ लागू होता है:

एक टोक़ की शक्ति प्रति यूनिट समय टोक़ द्वारा किए गए कार्य के बराबर है, इसलिए:


कोणीय गति

कोणीय गति आराम करने के लिए एक घूर्णन वस्तु लाने की कठिनाई का एक उपाय है।यह द्वारा दिया गया है

ऑब्जेक्ट में सभी कणों के लिए।

कोणीय गति जड़ता और कोणीय वेग के क्षण का उत्पाद है:

जैसा कि p = mv रैखिक गतिशीलता में।

घूर्णी गति में रैखिक गति का एनालॉग कोणीय गति है।कताई ऑब्जेक्ट की कोणीय गति जैसे कि एक शीर्ष के रूप में, स्पिन करने के लिए जारी रखने के लिए इसकी प्रवृत्ति उतनी ही अधिक होती है।

एक घूर्णन शरीर की कोणीय गति इसके द्रव्यमान के लिए आनुपातिक है और यह कितनी तेजी से बदल रही है।इसके अलावा, कोणीय गति इस बात पर निर्भर करती है कि कैसे द्रव्यमान को रोटेशन की धुरी के सापेक्ष वितरित किया जाता है: आगे द्रव्यमान रोटेशन की धुरी से स्थित होता है, कोणीय गति से अधिक।एक फ्लैट डिस्क जैसे कि रिकॉर्ड टर्नटेबल में एक ही द्रव्यमान के खोखले सिलेंडर और रोटेशन के वेग की तुलना में कम कोणीय गति होती है।

रैखिक गति की तरह, कोणीय गति वेक्टर मात्रा है, और इसके संरक्षण का अर्थ है कि स्पिन अक्ष की दिशा अपरिवर्तित रहती है।इस कारण से, कताई शीर्ष सीधा रहता है जबकि एक स्थिर व्यक्ति तुरंत गिर जाता है।

कोणीय गति समीकरण का उपयोग एक अक्ष के बारे में एक शरीर पर परिणामी बल के क्षण से संबंधित करने के लिए किया जा सकता है (कभी -कभी टॉर्क कहा जाता है), और उस अक्ष के बारे में रोटेशन की दर।

टॉर्क और कोणीय गति के अनुसार संबंधित हैं

जिस तरह f = d 'p/' 'dt' 'रैखिक गतिशीलता में।एक बाहरी टोक़ की अनुपस्थिति में, एक शरीर की कोणीय गति स्थिर रहती है।कोणीय गति के संरक्षण को फिगर स्केटिंग में विशेष रूप से प्रदर्शित किया जाता है: जब एक स्पिन के दौरान शरीर के करीब हथियारों को खींचते हैं, तो जड़ता का क्षण कम हो जाता है, और इसलिए कोणीय वेग बढ़ जाता है।

काइनेटिक ऊर्जा

काइनेटिक ऊर्जा शरीर के रोटेशन के कारण द्वारा दिया जाता है

बस के रूप में रैखिक गतिशीलता में।

गतिज ऊर्जा गति की ऊर्जा है।दो चर में पाई जाने वाली अनुवादात्मक गतिज ऊर्जा की मात्रा: वस्तु का द्रव्यमान () और वस्तु की गति () जैसा कि ऊपर के समीकरण में दिखाया गया है।काइनेटिक ऊर्जा हमेशा या तो शून्य या सकारात्मक मूल्य होनी चाहिए।जबकि वेग में या तो एक सकारात्मक या नकारात्मक मूल्य हो सकता है, वेग वर्ग हमेशा सकारात्मक होगा।[1]


वेक्टर अभिव्यक्ति

उपरोक्त विकास सामान्य घूर्णी गति का एक विशेष मामला है।सामान्य मामले में, कोणीय विस्थापन, कोणीय वेग, कोणीय त्वरण और टोक़ को वैक्टर माना जाता है।

एक कोणीय विस्थापन को एक वेक्टर माना जाता है, अक्ष के साथ, परिमाण के बराबर होता है ।एक दाहिने हाथ के नियम का उपयोग यह पता लगाने के लिए किया जाता है कि यह अक्ष के साथ किस तरह से इंगित करता है;यदि दाहिने हाथ की उंगलियों को उस तरह से इंगित करने के लिए कर्ल किया जाता है जिस तरह से वस्तु घुमा दी गई है, तो दाहिने हाथ का अंगूठा वेक्टर की दिशा में इंगित करता है।

कोणीय वेग वेक्टर भी रोटेशन की धुरी के साथ उसी तरह से इंगित करता है जैसे कि कोणीय विस्थापन का कारण बनता है।यदि एक डिस्क ऊपर से देखा गया वामावर्त घूमता है, तो इसका कोणीय वेग वेक्टर ऊपर की ओर इशारा करता है।इसी तरह, कोणीय त्वरण वेक्टर एक ही दिशा में रोटेशन की धुरी के साथ इंगित करता है कि कोणीय वेग को इंगित करेगा यदि कोणीय त्वरण लंबे समय तक बनाए रखा गया था।

टोक़ वेक्टर अक्ष के साथ इंगित करता है जिसके चारों ओर टोक़ रोटेशन का कारण बनता है।एक निश्चित अक्ष के चारों ओर रोटेशन बनाए रखने के लिए, कुल टोक़ वेक्टर को अक्ष के साथ होना चाहिए, ताकि यह केवल परिमाण को बदलता है न कि कोणीय वेग वेक्टर की दिशा।एक काज के मामले में, अक्ष के साथ टॉर्क वेक्टर के केवल घटक का रोटेशन पर प्रभाव पड़ता है, अन्य बलों और टोरियों को संरचना द्वारा मुआवजा दिया जाता है।

उदाहरण और अनुप्रयोग

निरंतर कोणीय गति

एक निश्चित अक्ष के चारों ओर रोटेशन का सबसे सरल मामला निरंतर कोणीय गति का है।फिर कुल टोक़ शून्य है।पृथ्वी के उदाहरण के लिए इसकी धुरी के चारों ओर घूमती है, बहुत कम घर्षण है।एक प्रशंसक (यांत्रिक) के लिए, मोटर घर्षण की भरपाई के लिए एक टॉर्क लागू करता है।प्रशंसक के समान, बड़े पैमाने पर उत्पादन निर्माण उद्योग में पाए जाने वाले उपकरण प्रभावी रूप से एक निश्चित अक्ष के आसपास रोटेशन प्रदर्शित करते हैं।उदाहरण के लिए, एक मल्टी-स्पिंडल खराद का उपयोग अपनी अक्ष पर सामग्री को घुमाने के लिए किया जाता है ताकि कटिंग, विरूपण और मोड़ संचालन की उत्पादकता को प्रभावी ढंग से बढ़ाया जा सके।[2] रोटेशन का कोण समय का एक रैखिक कार्य है, जिसे मॉडुलो 360 ° एक आवधिक कार्य है।

इसका एक उदाहरण गोलाकार कक्षा ओं के साथ दो-शरीर की समस्या है।

सेंट्रिपेटल बल

आंतरिक तन्यता तनाव केन्द्राभिमुख शक्ति प्रदान करता है जो एक कताई वस्तु को एक साथ रखता है।एक कठोर बॉडी मॉडल के साथ तनाव (सामग्री विज्ञान) की उपेक्षा करता है।यदि शरीर कठोर नहीं है तो यह तनाव इसे आकार बदलने का कारण होगा।यह केन्द्रापसारक बल के कारण ऑब्जेक्ट चेंजिंग शेप के रूप में व्यक्त किया जाता है।

एक दूसरे के बारे में घूमने वाले आकाशीय शरीर में अक्सर अण्डाकार कक्षा एं होती हैं।गोलाकार कक्षाओं का विशेष मामला एक निश्चित अक्ष के चारों ओर एक रोटेशन का एक उदाहरण है: यह अक्ष गति के विमान के लिए द्रव्यमान लंबवत केंद्र के माध्यम से रेखा है।सेंट्रिपेटल बल गुरुत्वाकर्षण द्वारा प्रदान किया जाता है, दो-शरीर की समस्या भी देखें।यह आमतौर पर एक कताई आकाशीय शरीर के लिए भी लागू होता है, इसलिए इसे एक साथ रखने के लिए ठोस होने की आवश्यकता नहीं है जब तक कि कोणीय गति इसके घनत्व के संबंध में बहुत अधिक न हो।(यह, हालांकि, चपटा अंडाकार आकृति बन जाएगा।) उदाहरण के लिए, पानी के एक कताई सेलेस्टियल बॉडी को कम से कम 3 घंटे और 18 मिनट का समय लेना चाहिए, जो कि आकार की परवाह किए बिना, या पानी अलग हो जाएगा[citation needed]।यदि द्रव का घनत्व अधिक है तो समय कम हो सकता है।कक्षीय अवधि देखें।[3]


यह भी देखें


संदर्भ

  1. "Khan Academy". Khan Academy (in English). Retrieved 2017-08-02.
  2. "Multi Spindle Machines - An In-Depth Overview". Davenport Machine (in English). Retrieved 2017-08-02.
  3. Mobberley, Martin (2009-03-01). Cataclysmic Cosmic Events and How to Observe Them (in English). Springer Science & Business Media. ISBN 9780387799469.