स्पिन (भौतिकी): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
''यह लेख क्वांटम यांत्रिकी में स्पिन के बारे में है। उत्कृष्ट यांत्रिकी में घूर्णन के लिए, [[कोणीय संवेग]] देखें।''{{short description|Intrinsic form of angular momentum as a property of quantum particles}}
''यह लेख क्वांटम यांत्रिकी में स्पिन के बारे में है। उत्कृष्ट यांत्रिकी में घूर्णन के लिए, [[कोणीय संवेग]] देखें।''{{short description|Intrinsic form of angular momentum as a property of quantum particles}}
'''''स्पिन''''' (प्रचक्रण) संरक्षित मात्रा है जो [[प्राथमिक कणों]] द्वारा और इस प्रकार मिश्रित कणों (हैड्रॉन्स) और [[परमाणु नाभिकों]] द्वारा वहन की जाती है।<ref name="merzbacher372">{{cite book |last=Merzbacher |first=Eugen |author-link=Eugen Merzbacher |title=क्वांटम यांत्रिकी|url=https://archive.org/details/quantummechanics00merz_136 |url-access=limited |edition=3rd |year=1998 |pages=[https://archive.org/details/quantummechanics00merz_136/page/n385 372]–373|isbn=9780471887027 }}</ref><ref name="griffiths183">{{cite book |last=Griffiths |first=David |author-link=David J. Griffiths |title=क्वांटम यांत्रिकी का परिचय|url=https://archive.org/details/introductiontoqu00grif_190 |url-access=limited |edition=2nd |year=2005 |pages=[https://archive.org/details/introductiontoqu00grif_190/page/n194 183]–184}}</ref>
'''''स्पिन''''' '''''(प्रचक्रण)''''' संरक्षित मात्रा है जो [[प्राथमिक कणों]] द्वारा और इस प्रकार मिश्रित कणों (हैड्रॉन्स) और [[परमाणु नाभिकों]] द्वारा वहन की जाती है।<ref name="merzbacher372">{{cite book |last=Merzbacher |first=Eugen |author-link=Eugen Merzbacher |title=क्वांटम यांत्रिकी|url=https://archive.org/details/quantummechanics00merz_136 |url-access=limited |edition=3rd |year=1998 |pages=[https://archive.org/details/quantummechanics00merz_136/page/n385 372]–373|isbn=9780471887027 }}</ref><ref name="griffiths183">{{cite book |last=Griffiths |first=David |author-link=David J. Griffiths |title=क्वांटम यांत्रिकी का परिचय|url=https://archive.org/details/introductiontoqu00grif_190 |url-access=limited |edition=2nd |year=2005 |pages=[https://archive.org/details/introductiontoqu00grif_190/page/n194 183]–184}}</ref>


क्वांटम यांत्रिकी में स्पिन दो प्रकार के कोणीय संवेग में से एक है, दूसरा कक्षीय कोणीय संवेग है। कक्षीय कोणीय संवेग संचालिका कक्षीय क्रांति के उत्कृष्ट कोणीय संवेग के लिए क्वांटम-यांत्रिकी समकक्ष है और तब प्रकट होता है जब कोण के रूप में इसकी तरंग के लिए आवधिक संरचना होती है।<ref>[http://galileo.phys.virginia.edu/classes/751.mf1i.fall02/AngularMomentum.htm "Angular Momentum Operator Algebra"], class notes by Michael Fowler.</ref><ref>[https://archive.org/details/modernapproachto0000town/page/31 ''A modern approach to quantum mechanics''], by Townsend, p.&nbsp;31, 80.</ref> फोटॉनों के लिए, स्पिन प्रकाश के ध्रुवीकरण का क्वांटम-यांत्रिकी समकक्ष है; इलेक्ट्रॉनों के लिए, स्पिन का कोई उत्कृष्ट समकक्ष नहीं है।।{{Citation needed|date=April 2021}}
क्वांटम यांत्रिकी में स्पिन दो प्रकार के कोणीय संवेग में से एक है, दूसरा कक्षीय कोणीय संवेग है। कक्षीय कोणीय संवेग संचालिका कक्षीय क्रांति के उत्कृष्ट कोणीय संवेग के लिए क्वांटम-यांत्रिकी समकक्ष है और तब प्रकट होता है जब कोण के रूप में इसकी तरंग के लिए आवधिक संरचना होती है।<ref>[http://galileo.phys.virginia.edu/classes/751.mf1i.fall02/AngularMomentum.htm "Angular Momentum Operator Algebra"], class notes by Michael Fowler.</ref><ref>[https://archive.org/details/modernapproachto0000town/page/31 ''A modern approach to quantum mechanics''], by Townsend, p.&nbsp;31, 80.</ref> फोटॉनों के लिए, स्पिन प्रकाश के ध्रुवीकरण का क्वांटम-यांत्रिकी समकक्ष है; इलेक्ट्रॉनों के लिए, स्पिन का कोई उत्कृष्ट समकक्ष नहीं है।।{{Citation needed|date=April 2021}}
Line 6: Line 6:
इलेक्ट्रॉन स्पिन कोणीय संवेग का विद्यमान प्रयोगों से अनुमानित है, जैसे कि स्टर्न-गेरलाच प्रयोग, जिसमें चांदी के परमाणुओं को कक्षीय कोणीय संवेग न होने के उपेक्षा दो संभावित असतत कोणीय संवेग रखने के लिए देखा गया था।<ref name="eisberg272">{{cite book |last1=Eisberg |first1=Robert |last2=Resnick |first2=Robert |author-link2=Robert Resnick |title=परमाणुओं, अणुओं, ठोस, नाभिक और कणों की क्वांटम भौतिकी|url=https://archive.org/details/quantumphysicsat00eisb |url-access=limited |edition=2nd |year=1985 |pages=[https://archive.org/details/quantumphysicsat00eisb/page/n288 272]–273|isbn=9780471873730 }}</ref> स्पिन-सांख्यिकी प्रमेय और पाउली अपवर्जन सिद्धांत से सैद्धांतिक रूप से इलेक्ट्रॉन स्पिन के विद्यमान होने का अनुमान लगाया जा सकता है- और इसके विपरीत, इलेक्ट्रॉन के विशेष स्पिन को देखते हुए, पाउली अपवर्जन सिद्धांत प्राप्त किया जा सकता है।
इलेक्ट्रॉन स्पिन कोणीय संवेग का विद्यमान प्रयोगों से अनुमानित है, जैसे कि स्टर्न-गेरलाच प्रयोग, जिसमें चांदी के परमाणुओं को कक्षीय कोणीय संवेग न होने के उपेक्षा दो संभावित असतत कोणीय संवेग रखने के लिए देखा गया था।<ref name="eisberg272">{{cite book |last1=Eisberg |first1=Robert |last2=Resnick |first2=Robert |author-link2=Robert Resnick |title=परमाणुओं, अणुओं, ठोस, नाभिक और कणों की क्वांटम भौतिकी|url=https://archive.org/details/quantumphysicsat00eisb |url-access=limited |edition=2nd |year=1985 |pages=[https://archive.org/details/quantumphysicsat00eisb/page/n288 272]–273|isbn=9780471873730 }}</ref> स्पिन-सांख्यिकी प्रमेय और पाउली अपवर्जन सिद्धांत से सैद्धांतिक रूप से इलेक्ट्रॉन स्पिन के विद्यमान होने का अनुमान लगाया जा सकता है- और इसके विपरीत, इलेक्ट्रॉन के विशेष स्पिन को देखते हुए, पाउली अपवर्जन सिद्धांत प्राप्त किया जा सकता है।


स्पिन को गणितीय रूप से फोटॉन जैसे कुछ कणों के लिए वेक्टर के रूप में और इलेक्ट्रॉनों जैसे अन्य कणों के लिए स्पिनर और बिस्पिनर के रूप में वर्णित किया गया है। स्पिनर और बिस्पिनर [[ यूक्लिडियन वेक्टर | यूक्लिडियन वेक्टर]] के समान व्यवहार करते हैं: उनके पास निश्चित परिमाण होते हैं और घूर्णन के अंतर्गत परिवर्तन होते हैं; हालाँकि, वे एक अपरंपरागत "दिशा" का उपयोग करते हैं। किसी दिए गए प्रकार के सभी प्राथमिक कणों में स्पिन कोणीय संवेग का समान परिमाण होता है, हालांकि इसकी दिशा परिवर्तित हो सकती है। ये कण को ​​​​[[ स्पिन क्वांटम संख्या | स्पिन क्वांटम संख्या]] निर्दिष्ट करके इंगित किया जाता है।<ref name="griffiths183" />
स्पिन को गणितीय रूप से फोटॉन जैसे कुछ कणों के लिए वेक्टर के रूप में और इलेक्ट्रॉनों जैसे अन्य कणों के लिए स्पिनर और बिस्पिनर के रूप में वर्णित किया गया है। स्पिनर और बिस्पिनर [[ यूक्लिडियन वेक्टर |यूक्लिडियन वेक्टर]] के समान व्यवहार करते हैं: उनके पास निश्चित परिमाण होते हैं और घूर्णन के अंतर्गत परिवर्तन होते हैं; हालाँकि, वे एक अपरंपरागत "दिशा" का उपयोग करते हैं। किसी दिए गए प्रकार के सभी प्राथमिक कणों में स्पिन कोणीय संवेग का समान परिमाण होता है, हालांकि इसकी दिशा परिवर्तित हो सकती है। ये कण को ​​​​[[ स्पिन क्वांटम संख्या | स्पिन क्वांटम संख्या]] निर्दिष्ट करके इंगित किया जाता है।<ref name="griffiths183" />


स्पिन की [[ इकाइयों की अंतर्राष्ट्रीय प्रणाली | इकाइयों की अंतर्राष्ट्रीय प्रणाली]] उत्कृष्ट कोणीय संवेग के समान है (अर्थात, [[ न्यूटन (इकाई) | न्यूटन (इकाई)]] [[ मीटर | मीटर सेकंड]], जूल सेकंड, या [[ किलोग्राम | किलोग्राम]] मीटर<sup>2</sup>/सेकंड<sup>−1</sup>)। व्यवहार में, स्पिन को कम प्लैंक स्थिरांक {{mvar|ħ}} द्वारा स्पिन कोणीय संवेग को विभाजित करके एक आयामहीन स्पिन क्वांटम संख्या के रूप में दिया जाता है , जिसका कोणीय संवेग के समान आयामी विश्लेषण है, हालांकि यह इस मान की पूर्ण गणना नहीं है। अधिक बार, <nowiki>''स्पिन क्वांटम संख्या'' को केवल ''स्पिन कहा''</nowiki> जाता है। यह तथ्य निहित है कि यह एक क्वांटम संख्या है।
स्पिन की [[ इकाइयों की अंतर्राष्ट्रीय प्रणाली |इकाइयों की अंतर्राष्ट्रीय प्रणाली]] उत्कृष्ट कोणीय संवेग के समान है (अर्थात, [[ न्यूटन (इकाई) |न्यूटन (इकाई)]] [[ मीटर |मीटर सेकंड]], जूल सेकंड, या [[ किलोग्राम |किलोग्राम]] मीटर<sup>2</sup>/सेकंड<sup>−1</sup>)। व्यवहार में, स्पिन को कम प्लैंक स्थिरांक {{mvar|ħ}} द्वारा स्पिन कोणीय संवेग को विभाजित करके एक आयामहीन स्पिन क्वांटम संख्या के रूप में दिया जाता है , जिसका कोणीय संवेग के समान आयामी विश्लेषण है, हालांकि यह इस मान की पूर्ण गणना नहीं है। अधिक बार, <nowiki>''स्पिन क्वांटम संख्या'' को केवल ''स्पिन कहा''</nowiki> जाता है। यह तथ्य निहित है कि यह एक क्वांटम संख्या है।


== इतिहास ==
== इतिहास ==


1924 में [[ वोल्फगैंग पाउली ]] दो-मूल्यवान वाले गैर-उत्कृष्ट <nowiki>''</nowiki>अप्रत्यक्ष घूर्णन<nowiki>''</nowiki> के कारण उपलब्ध इलेक्ट्रॉन अवस्थाओ की संख्या को दोगुना करने का प्रस्ताव देने वाले पहले व्यक्ति थे।<ref name=Pais201>{{cite book |last=Pais |first=Abraham |date=1991 |title=नील्स बोह्र टाइम्स|location=Oxford |publisher=Clarendon Press |page=[https://archive.org/details/nielsbohrstimesi00pais_0/page/201 201] |isbn=978-0-19-852049-8 |author-link=Abraham Pais |url=https://archive.org/details/nielsbohrstimesi00pais_0 |url-access=registration }}</ref> 1925 में, [[ लीडेन विश्वविद्यालय ]] में [[ जॉर्ज उहलेनबेक ]] और [[ शमूएल गौडस्मिट ]][[ नील्स बोह्र |नील्स बोह्र]] और [[ अर्नोल्ड सोमरफेल्ड | अर्नोल्ड सोमरफेल्ड]] के पुराने क्वांटम सिद्धांत की विचारधारा में, <ref>{{cite journal |last1=Uhlenbeck |first1=G. E. |last2=Goudsmit |first2=S. |title=कताई इलेक्ट्रॉन और स्पेक्ट्रा की संरचना|journal=Nature |date=February 1926 |volume=117 |issue=2938 |pages=264–265 |doi=10.1038/117264A0 |bibcode=1926Natur.117..264U |s2cid=4066649 |url=https://www.nature.com/articles/117264a0 |access-date=25 July 2021}}</ref> अपनी धुरी के चारों ओर स्पिन करते हुए एक कण की सरल भौतिक व्याख्या का सुझाव दिया।।<ref name=Pais241>{{cite book |last=Pais |first=Abraham |date=1991 |title=नील्स बोह्र टाइम्स|location=Oxford |publisher=Clarendon Press |pages=[https://archive.org/details/nielsbohrstimesi00pais_0/page/241 241]–244 |isbn=978-0-19-852049-8 |author-link=Abraham Pais |url=https://archive.org/details/nielsbohrstimesi00pais_0 |url-access=registration }}</ref> [[ राल्फ क्रोनिग ]] ने कई महीने पहले कोपेनहेगन में [[ हेनरी क्रेमर्स ]] के साथ चर्चा में उहलेनबेक-गॉडस्मिट मॉडल का अनुमान लगाया था, लेकिन प्रकाशित नहीं किया।<ref name=Pais241/> 1927 में पाउली द्वारा गणितीय सिद्धांत पर गहनता से काम किया गया था। जब [[ पॉल डिराक ]] ने 1928 में अपने सापेक्षवादी क्वांटम यांत्रिकी को व्युत्पन्न किया, तो इलेक्ट्रॉन स्पिन इसका एक अनिवार्य भाग था।
1924 में [[ वोल्फगैंग पाउली |वोल्फगैंग पाउली]] दो-मूल्यवान वाले गैर-उत्कृष्ट <nowiki>''</nowiki>अप्रत्यक्ष घूर्णन<nowiki>''</nowiki> के कारण उपलब्ध इलेक्ट्रॉन अवस्थाओ की संख्या को दोगुना करने का प्रस्ताव देने वाले पहले व्यक्ति थे।<ref name=Pais201>{{cite book |last=Pais |first=Abraham |date=1991 |title=नील्स बोह्र टाइम्स|location=Oxford |publisher=Clarendon Press |page=[https://archive.org/details/nielsbohrstimesi00pais_0/page/201 201] |isbn=978-0-19-852049-8 |author-link=Abraham Pais |url=https://archive.org/details/nielsbohrstimesi00pais_0 |url-access=registration }}</ref> 1925 में, [[ लीडेन विश्वविद्यालय |लीडेन विश्वविद्यालय]] में [[ जॉर्ज उहलेनबेक |जॉर्ज उहलेनबेक]] और [[ शमूएल गौडस्मिट |शमूएल गौडस्मिट]] [[ नील्स बोह्र |नील्स बोह्र]] और [[ अर्नोल्ड सोमरफेल्ड |अर्नोल्ड सोमरफेल्ड]] के पुराने क्वांटम सिद्धांत की विचारधारा में, <ref>{{cite journal |last1=Uhlenbeck |first1=G. E. |last2=Goudsmit |first2=S. |title=कताई इलेक्ट्रॉन और स्पेक्ट्रा की संरचना|journal=Nature |date=February 1926 |volume=117 |issue=2938 |pages=264–265 |doi=10.1038/117264A0 |bibcode=1926Natur.117..264U |s2cid=4066649 |url=https://www.nature.com/articles/117264a0 |access-date=25 July 2021}}</ref> अपनी धुरी के चारों ओर स्पिन करते हुए एक कण की सरल भौतिक व्याख्या का सुझाव दिया।।<ref name=Pais241>{{cite book |last=Pais |first=Abraham |date=1991 |title=नील्स बोह्र टाइम्स|location=Oxford |publisher=Clarendon Press |pages=[https://archive.org/details/nielsbohrstimesi00pais_0/page/241 241]–244 |isbn=978-0-19-852049-8 |author-link=Abraham Pais |url=https://archive.org/details/nielsbohrstimesi00pais_0 |url-access=registration }}</ref> [[ राल्फ क्रोनिग |राल्फ क्रोनिग]] ने कई महीने पहले कोपेनहेगन में [[ हेनरी क्रेमर्स |हेनरी क्रेमर्स]] के साथ चर्चा में उहलेनबेक-गॉडस्मिट मॉडल का अनुमान लगाया था, लेकिन प्रकाशित नहीं किया।<ref name=Pais241/> 1927 में पाउली द्वारा गणितीय सिद्धांत पर गहनता से काम किया गया था। जब [[ पॉल डिराक |पॉल डिराक]] ने 1928 में अपने सापेक्षवादी क्वांटम यांत्रिकी को व्युत्पन्न किया, तो इलेक्ट्रॉन स्पिन इसका एक अनिवार्य भाग था।


== क्वांटम संख्या ==
== क्वांटम संख्या ==


{{main|Spin quantum number}}
{{main|Spin quantum number}}
जैसा कि नाम से पता चलता है, स्पिन की कल्पना मूल रूप से किसी धुरी के चारों ओर एक कण के स्पिन के रूप में की गई थी। जबकि यह सवाल कि क्या प्राथमिक कण वास्तव में स्पिन करते हैं, अस्पष्ट है (जैसा कि वे [[ बिंदु की तरह ]] दिखाई देते हैं), यह तस्वीर सही है क्योंकि स्पिन उन्हीं गणितीय नियमों का क्रियान्वयन करता है जैसे [[ कोणीय गति परिमाणीकरण | कोणीय संवेग परिमाणीकरण]] कोणीय संवेग करते हैं; विशेष रूप से, स्पिन का अर्थ है कि कण का प्रावस्था कोण के साथ परिवर्तित होता है। दूसरी ओर, स्पिन में कुछ विलक्षण गुण होते हैं जो इसे कक्षीय कोणीय संवेग से अलग करते हैं:
जैसा कि नाम से पता चलता है, स्पिन की कल्पना मूल रूप से किसी धुरी के चारों ओर एक कण के स्पिन के रूप में की गई थी। जबकि यह सवाल कि क्या प्राथमिक कण वास्तव में स्पिन करते हैं, अस्पष्ट है (जैसा कि वे [[ बिंदु की तरह |बिंदु की तरह]] दिखाई देते हैं), यह तस्वीर सही है क्योंकि स्पिन उन्हीं गणितीय नियमों का क्रियान्वयन करता है जैसे [[ कोणीय गति परिमाणीकरण |कोणीय संवेग परिमाणीकरण]] कोणीय संवेग करते हैं; विशेष रूप से, स्पिन का अर्थ है कि कण का प्रावस्था कोण के साथ परिवर्तित होता है। दूसरी ओर, स्पिन में कुछ विलक्षण गुण होते हैं जो इसे कक्षीय कोणीय संवेग से अलग करते हैं:
* स्पिन क्वांटम संख्याएँ अर्ध-पूर्णांक मान ले सकती हैं।
* स्पिन क्वांटम संख्याएँ अर्ध-पूर्णांक मान ले सकती हैं।
* हालांकि इसके स्पिन की दिशा परिवर्तित की जा सकती है, एक प्राथमिक कण को ​​तीव्र या मंद गति से स्पिन के लिए नहीं बनाया जा सकता है।
* हालांकि इसके स्पिन की दिशा परिवर्तित की जा सकती है, एक प्राथमिक कण को ​​तीव्र या मंद गति से स्पिन के लिए नहीं बनाया जा सकता है।
* आवेशित कण का स्पिन एक चुंबकीय द्विध्रुव आघूर्ण से जुड़ा होता है जिसका g-कारक 1 से भिन्न होता है। यह उत्कृष्ट रूप से तभी हो सकता है जब कण के आंतरिक आवेश को उसके द्रव्यमान से भिन्न रूप से वितरित किया गया हो।
* आवेशित कण का स्पिन एक चुंबकीय द्विध्रुव आघूर्ण से जुड़ा होता है जिसका g-कारक 1 से भिन्न होता है। यह उत्कृष्ट रूप से तभी हो सकता है जब कण के आंतरिक आवेश को उसके द्रव्यमान से भिन्न रूप से वितरित किया गया हो।


स्पिन क्वांटम संख्या की पारंपरिक परिभाषा है {{math|1=''s'' = {{sfrac|''n''|2}}}}, जहां पर {{mvar|n}} कोई भी गैर-ऋणात्मक पूर्णांक हो सकता है। इसलिए {{mvar|s}} के अनुमत मान 0, स्पिन- 0,1/2, 1, 3/2 आदि है। {{mvar|s}} का मान एक प्राथमिक कण के लिए केवल कण के प्रकार पर निर्भर करता है और इसे किसी भी ज्ञात तरीके से नहीं परिवर्तित किया जा सकता है (नीचे वर्णित स्पिन दिशा के विपरीत)। किसी भी भौतिक तंत्र का प्रचक्रण कोणीय संवेग S परिमाणित होता है। S के अनुमत मान हैं
स्पिन क्वांटम संख्या की पारंपरिक परिभाषा है {{math|1=''s'' = {{sfrac|''n''|2}}}}, जहां पर {{mvar|n}} कोई भी गैर-ऋणात्मक पूर्णांक हो सकता है। इसलिए {{mvar|s}} के अनुमत मान 0, स्पिन- 0,1/2, 1, 3/2 आदि है। {{mvar|s}} का मान एक प्राथमिक कण के लिए केवल कण के प्रकार पर निर्भर करता है और इसे किसी भी ज्ञात तरीके से नहीं परिवर्तित किया जा सकता है (नीचे वर्णित स्पिन दिशा के विपरीत)। किसी भी भौतिक तंत्र का प्रचक्रण कोणीय संवेग S परिमाणित होता है। S के अनुमत मान हैं
<math display="block">S = \hbar \, \sqrt{s(s + 1)} = \frac{h}{2\pi} \, \sqrt{\frac{n}{2}\frac{(n + 2)}{2}} = \frac{h}{4\pi} \, \sqrt{n(n + 2)},</math>
<math display="block">S = \hbar \, \sqrt{s(s + 1)} = \frac{h}{2\pi} \, \sqrt{\frac{n}{2}\frac{(n + 2)}{2}} = \frac{h}{4\pi} \, \sqrt{n(n + 2)},</math>
जहां पर {{mvar|h}} [[ प्लैंक स्थिरांक ]] है, और <math display="inline">\hbar = \frac{h}{2\pi}</math> कम हुई प्लैंक स्थिरांक है। इसके विपरीत, कोणीय संवेग संचालिका केवल पूर्णांक मानों {{mvar|s}} को ही ले सकता है ; अर्थात, सम-संख्या वाले मान {{mvar|n}}.
जहां पर {{mvar|h}} [[ प्लैंक स्थिरांक |प्लैंक स्थिरांक]] है, और <math display="inline">\hbar = \frac{h}{2\pi}</math> कम हुई प्लैंक स्थिरांक है। इसके विपरीत, कोणीय संवेग संचालिका केवल पूर्णांक मानों {{mvar|s}} को ही ले सकता है ; अर्थात, सम-संख्या वाले मान {{mvar|n}}.


===फर्मियन और बोसॉन ===
===फर्मियन और बोसॉन ===
अर्ध-पूर्णांक स्पिन वाले वे कण, जैसे {{sfrac|1|2}}, {{sfrac|3|2}}, {{sfrac|5|2}}, को [[ फर्मियन ]] के रूप में जाना जाता है, जबकि पूर्णांक स्पिन वाले कण, जैसे 0, 1, 2, बोसोन के रूप में जाने जाते हैं। कणों के दो वर्ग अलग-अलग नियमों का क्रियान्वयन करते हैं और बड़े पैमाने पर हमारे आसपास की दुनिया में अलग-अलग भूमिकाएँ होती हैं। दो वर्गों के बीच एक महत्वपूर्ण अंतर यह है कि फ़र्मियन पाउली अपवर्जन सिद्धांत का क्रियान्वयन करते हैं: अर्थात्, एक ही क्वांटम संख्या (अर्थात्, बड़े पैमाने पर, समान स्थिति, वेग और स्पिन दिशा वाले) वाले दो समान फ़र्मियन एक साथ नहीं हो सकते। फ़र्मियन फ़र्मी-डिराक सांख्यिकी के नियमों का क्रियान्वयन करते हैं। इसके विपरीत, बोसोन बोस-आइंस्टीन सांख्यिकी के नियमों का क्रियान्वयन करते हैं और उन पर ऐसा कोई प्रतिबंध नहीं है, इसलिए वे समान अवस्थाओं में <nowiki>''</nowiki>एक साथ समूह<nowiki>''</nowiki> बना सकते हैं। साथ ही, मिश्रित कणों में स्पिन उनके घटक कणों से भिन्न हो सकते हैं। उदाहरण के लिए, मूल अवस्था में एक [[ हीलियम -4 ]] परमाणु में स्पिन 0 होता है और यह बोसोन की तरह व्यवहार करता है, यद्यपि इसे बनाने वाले [[ क्वार्क ]] और [[ इलेक्ट्रॉनों ]] सभी फ़र्मियन हैं।
अर्ध-पूर्णांक स्पिन वाले वे कण, जैसे {{sfrac|1|2}}, {{sfrac|3|2}}, {{sfrac|5|2}}, को [[ फर्मियन |फर्मियन]] के रूप में जाना जाता है, जबकि पूर्णांक स्पिन वाले कण, जैसे 0, 1, 2, बोसोन के रूप में जाने जाते हैं। कणों के दो वर्ग अलग-अलग नियमों का क्रियान्वयन करते हैं और बड़े पैमाने पर हमारे आसपास की दुनिया में अलग-अलग भूमिकाएँ होती हैं। दो वर्गों के बीच एक महत्वपूर्ण अंतर यह है कि फ़र्मियन पाउली अपवर्जन सिद्धांत का क्रियान्वयन करते हैं: अर्थात्, एक ही क्वांटम संख्या (अर्थात्, बड़े पैमाने पर, समान स्थिति, वेग और स्पिन दिशा वाले) वाले दो समान फ़र्मियन एक साथ नहीं हो सकते। फ़र्मियन फ़र्मी-डिराक सांख्यिकी के नियमों का क्रियान्वयन करते हैं। इसके विपरीत, बोसोन बोस-आइंस्टीन सांख्यिकी के नियमों का क्रियान्वयन करते हैं और उन पर ऐसा कोई प्रतिबंध नहीं है, इसलिए वे समान अवस्थाओं में <nowiki>''</nowiki>एक साथ समूह<nowiki>''</nowiki> बना सकते हैं। साथ ही, मिश्रित कणों में स्पिन उनके घटक कणों से भिन्न हो सकते हैं। उदाहरण के लिए, मूल अवस्था में एक [[ हीलियम -4 |हीलियम -4]] परमाणु में स्पिन 0 होता है और यह बोसोन की तरह व्यवहार करता है, यद्यपि इसे बनाने वाले [[ क्वार्क |क्वार्क]] और [[ इलेक्ट्रॉनों |इलेक्ट्रॉनों]] सभी फ़र्मियन हैं।


इसके कुछ गम्भीर परिणाम होते हैं:
इसके कुछ गम्भीर परिणाम होते हैं:
* क्वार्क और [[ लेप्टॉन ]] (इलेक्ट्रॉन और [[ न्युट्रीनो ]] सहित), जो उत्कृष्ट रूप से पदार्थ के रूप में जाना जाता है, सभी स्पिन- {{sfrac|1|2}} के साथ फ़र्मियन हैं। सामान्य विचार है कि "पदार्थ स्थान लेता है" वास्तव में पाउली अपवर्जन सिद्धांत से आता है जो इन कणों पर एक ही क्वांटम स्थिति में होने से रोकने के लिए इन कणों पर कार्य करता है। आगे के संघनन के लिए इलेक्ट्रॉनों को समान ऊर्जा अवस्थाओं पर अधिग्रहित करने की आवश्यकता होगी, और इसलिए एक प्रकार का [[ दबाव ]] (कभी-कभी इलेक्ट्रॉनों के अध: पतन दबाव के रूप में जाना जाता है) फर्मों को अत्यधिक करीब होने का विरोध करने के लिए कार्य करता है। अन्य स्पिन के साथ प्रारंभिक फर्मन ({{sfrac|3|2}}, {{sfrac|5|2}}, आदि) सम्मिलित नहीं हैं।
* क्वार्क और [[ लेप्टॉन |लेप्टॉन]] (इलेक्ट्रॉन और [[ न्युट्रीनो |न्युट्रीनो]] सहित), जो उत्कृष्ट रूप से पदार्थ के रूप में जाना जाता है, सभी स्पिन- {{sfrac|1|2}} के साथ फ़र्मियन हैं। सामान्य विचार है कि "पदार्थ स्थान लेता है" वास्तव में पाउली अपवर्जन सिद्धांत से आता है जो इन कणों पर एक ही क्वांटम स्थिति में होने से रोकने के लिए इन कणों पर कार्य करता है। आगे के संघनन के लिए इलेक्ट्रॉनों को समान ऊर्जा अवस्थाओं पर अधिग्रहित करने की आवश्यकता होगी, और इसलिए एक प्रकार का [[ दबाव |दबाव]] (कभी-कभी इलेक्ट्रॉनों के अध: पतन दबाव के रूप में जाना जाता है) फर्मों को अत्यधिक करीब होने का विरोध करने के लिए कार्य करता है। अन्य स्पिन के साथ प्रारंभिक फर्मन ({{sfrac|3|2}}, {{sfrac|5|2}}, आदि) सम्मिलित नहीं हैं।
* प्राथमिक कण जिन्हें [[ बल वाहक ]] माना जाता है, वे सभी स्पिन 1 वाले बोसोन हैं। इनमें फोटॉन सम्मिलित है, जो [[ विद्युत चुम्बकीय बल ]], ग्लूऑन ([[ मजबूत बल ]]), और [[W और Z बोसॉन]] ([[ कमजोर बल ]]) को वहन करता है। बोसोन की एक ही क्वांटम स्थिति पर अधिग्रहित करने की क्षमता का उपयोग [[ लेज़र ]] में किया जाता है, जो एक ही क्वांटम संख्या (समान दिशा और आवृत्ति) वाले कई फोटॉन को संरेखित करता है, हीलियम -4 परमाणुओं से उत्पन्न सुपरफ्लुइड [[ superfluid |(अतितरल)]] [[ तरल हीलियम | द्रव हीलियम]] बोसोन और [[ अतिचालकता ]] है, जहां इलेक्ट्रॉनों के युग्म (जो व्यक्तिगत रूप से फ़र्मियन हैं) एकल मिश्रित बोसोन के रूप में कार्य करते हैं। अन्य प्रचक्रणों (0, 2, 3, आदि) के साथ प्रारंभिक बोसोन ऐतिहासिक रूप से विद्यमान नहीं थे, हालांकि उन्हें काफी सैद्धांतिक समाधान प्राप्त हुआ है और वे अपने संबंधित मुख्यधारा के सिद्धांतों के अंदर अच्छी तरह से स्थापित हैं। विशेष रूप से, सिद्धांतकारों ने स्पिन 2 के साथ [[ गुरुत्वाकर्षण | गुरुत्वाकर्षण]] (कुछ क्वांटम गुरुत्व सिद्धांतों द्वारा विद्यमान होने की भविष्यवाणी की है) और स्पिन 0 के साथ [[ हिग्स बॉसन | हिग्स बॉसन]] ( विद्युत्-दुर्बल समरूपता को विभंजन की व्याख्या) का प्रस्ताव दिया है। 2013 से, स्पिन 0 के साथ सम्मिलित हिग्स बोसोन को सिद्ध माना गया है।<ref>[http://home.cern/topics/higgs-boson Information about Higgs Boson] in [[CERN]]'s official website.</ref> यह प्रकृति में सम्मिलित पहला [[अदिश प्राथमिक कण]] (स्पिन 0) है।
* प्राथमिक कण जिन्हें [[ बल वाहक |बल वाहक]] माना जाता है, वे सभी स्पिन 1 वाले बोसोन हैं। इनमें फोटॉन सम्मिलित है, जो [[ विद्युत चुम्बकीय बल |विद्युत चुम्बकीय बल]] , ग्लूऑन ([[ मजबूत बल ]]), और [[W और Z बोसॉन]] ([[ कमजोर बल ]]) को वहन करता है। बोसोन की एक ही क्वांटम स्थिति पर अधिग्रहित करने की क्षमता का उपयोग [[ लेज़र |लेज़र]] में किया जाता है, जो एक ही क्वांटम संख्या (समान दिशा और आवृत्ति) वाले कई फोटॉन को संरेखित करता है, हीलियम -4 परमाणुओं से उत्पन्न सुपरफ्लुइड [[ superfluid |(अतितरल)]] [[ तरल हीलियम |द्रव हीलियम]] बोसोन और [[ अतिचालकता |अतिचालकता]] है, जहां इलेक्ट्रॉनों के युग्म (जो व्यक्तिगत रूप से फ़र्मियन हैं) एकल मिश्रित बोसोन के रूप में कार्य करते हैं। अन्य प्रचक्रणों (0, 2, 3, आदि) के साथ प्रारंभिक बोसोन ऐतिहासिक रूप से विद्यमान नहीं थे, हालांकि उन्हें काफी सैद्धांतिक समाधान प्राप्त हुआ है और वे अपने संबंधित मुख्यधारा के सिद्धांतों के अंदर अच्छी तरह से स्थापित हैं। विशेष रूप से, सिद्धांतकारों ने स्पिन 2 के साथ [[ गुरुत्वाकर्षण |गुरुत्वाकर्षण]] (कुछ क्वांटम गुरुत्व सिद्धांतों द्वारा विद्यमान होने की भविष्यवाणी की है) और स्पिन 0 के साथ [[ हिग्स बॉसन |हिग्स बॉसन]] ( विद्युत्-दुर्बल समरूपता को विभंजन की व्याख्या) का प्रस्ताव दिया है। 2013 से, स्पिन 0 के साथ सम्मिलित हिग्स बोसोन को सिद्ध माना गया है।<ref>[http://home.cern/topics/higgs-boson Information about Higgs Boson] in [[CERN]]'s official website.</ref> यह प्रकृति में सम्मिलित पहला [[अदिश प्राथमिक कण]] (स्पिन 0) है।
* परमाणु नाभिक में परमाणु स्पिन होता है जो या तो अर्ध-पूर्णांक या पूर्णांक हो सकता है, जिससे कि नाभिक या तो फ़र्मियन या बोसोन हो सकते हैं।
* परमाणु नाभिक में परमाणु स्पिन होता है जो या तो अर्ध-पूर्णांक या पूर्णांक हो सकता है, जिससे कि नाभिक या तो फ़र्मियन या बोसोन हो सकते हैं।


=== स्पिन-सांख्यिकी प्रमेय ===
=== स्पिन-सांख्यिकी प्रमेय ===
{{main|स्पिन-सांख्यिकी प्रमेय}}
{{main|स्पिन-सांख्यिकी प्रमेय}}
स्पिन-सांख्यिकी प्रमेय कणों को दो समूहों में विभाजित करता है: बोसोन और [[ फरमिओन्स | फ़र्मियन]] , जहां बोसॉन बोस-आइंस्टीन सांख्यिकी का क्रियान्वयन करते हैं, और फ़र्मियन फ़र्मी-डिराक सांख्यिकी (और इसलिए पाउली अपवर्जन सिद्धांत) का क्रियान्वयन करते हैं। विशेष रूप से, सिद्धांत कहता है कि एक पूर्णांक स्पिन वाले कण बोसॉन हैं, जबकि अन्य सभी कणों में अर्ध-पूर्णांक स्पिन है और वे फ़र्मियन हैं। एक उदाहरण के रूप में, [[ इलेक्ट्रॉन | इलेक्ट्रॉनो]] में अर्ध-पूर्णांक स्पिन होता है और वे फ़र्मियन होते हैं जो पाउली अपवर्जन सिद्धांत का क्रियान्वयन करते हैं, जबकि फोटॉन में पूर्णांक स्पिन होता है और नहीं होता है। प्रमेय क्वांटम यांत्रिकी और [[ विशेष सापेक्षता ]] के सिद्धांत दोनों पर निर्भर करता है, और स्पिन और सांख्यिकी के बीच इस संबंध को "विशेष सापेक्षता सिद्धांत के सबसे महत्वपूर्ण अनुप्रयोगों में से एक" कहा जाता है।<ref>{{cite journal | last1 = Pauli | first1 = Wolfgang | author-link = Wolfgang Pauli | year = 1940 | title = स्पिन और सांख्यिकी के बीच संबंध| url = http://web.ihep.su/dbserv/compas/src/pauli40b/eng.pdf | journal = Phys. Rev. | volume = 58 | issue = 8 | pages = 716–722 | doi = 10.1103/PhysRev.58.716 |bibcode = 1940PhRv...58..716P }}</ref>
स्पिन-सांख्यिकी प्रमेय कणों को दो समूहों में विभाजित करता है: बोसोन और [[ फरमिओन्स |फ़र्मियन]] , जहां बोसॉन बोस-आइंस्टीन सांख्यिकी का क्रियान्वयन करते हैं, और फ़र्मियन फ़र्मी-डिराक सांख्यिकी (और इसलिए पाउली अपवर्जन सिद्धांत) का क्रियान्वयन करते हैं। विशेष रूप से, सिद्धांत कहता है कि एक पूर्णांक स्पिन वाले कण बोसॉन हैं, जबकि अन्य सभी कणों में अर्ध-पूर्णांक स्पिन है और वे फ़र्मियन हैं। एक उदाहरण के रूप में, [[ इलेक्ट्रॉन |इलेक्ट्रॉनो]] में अर्ध-पूर्णांक स्पिन होता है और वे फ़र्मियन होते हैं जो पाउली अपवर्जन सिद्धांत का क्रियान्वयन करते हैं, जबकि फोटॉन में पूर्णांक स्पिन होता है और नहीं होता है। प्रमेय क्वांटम यांत्रिकी और [[ विशेष सापेक्षता |विशेष सापेक्षता]] के सिद्धांत दोनों पर निर्भर करता है, और स्पिन और सांख्यिकी के बीच इस संबंध को "विशेष सापेक्षता सिद्धांत के सबसे महत्वपूर्ण अनुप्रयोगों में से एक" कहा जाता है।<ref>{{cite journal | last1 = Pauli | first1 = Wolfgang | author-link = Wolfgang Pauli | year = 1940 | title = स्पिन और सांख्यिकी के बीच संबंध| url = http://web.ihep.su/dbserv/compas/src/pauli40b/eng.pdf | journal = Phys. Rev. | volume = 58 | issue = 8 | pages = 716–722 | doi = 10.1103/PhysRev.58.716 |bibcode = 1940PhRv...58..716P }}</ref>
=== उत्कृष्ट घूर्णन से संबंध ===
=== उत्कृष्ट घूर्णन से संबंध ===
चूँकि प्राथमिक कण बिंदु-समान होते हैं, स्व-घूर्णन उनके लिए अच्छी तरह से परिभाषित नहीं है। हालाँकि, हालांकि, स्पिन का तात्पर्य है कि स्पिन एस के समानांतर धुरी के चारों ओर कोण θ के घूर्णन के लिए कण की प्रावस्था <math>e^{i S \theta}</math> के रूप में कोण पर निर्भर करता है। यह स्थिति में प्रावस्था निर्भरता के रूप में [[ गति | संवेग]] की क्वांटम-यांत्रिकी व्याख्या के समान है, और और कोणीय स्थिति में प्रावस्था निर्भरता के रूप में कक्षीय कोणीय संवेग के समान है।
चूँकि प्राथमिक कण बिंदु-समान होते हैं, स्व-घूर्णन उनके लिए अच्छी तरह से परिभाषित नहीं है। हालाँकि, हालांकि, स्पिन का तात्पर्य है कि स्पिन एस के समानांतर धुरी के चारों ओर कोण θ के घूर्णन के लिए कण की प्रावस्था <math>e^{i S \theta}</math> के रूप में कोण पर निर्भर करता है। यह स्थिति में प्रावस्था निर्भरता के रूप में [[ गति |संवेग]] की क्वांटम-यांत्रिकी व्याख्या के समान है, और और कोणीय स्थिति में प्रावस्था निर्भरता के रूप में कक्षीय कोणीय संवेग के समान है।


फोटॉन स्पिन प्रकाश ध्रुवीकरण (तरंगों) का क्वांटम-यांत्रिकी विवरण है,जहां स्पिन +1 और स्पिन -1 [[परिपत्र ध्रुवीकरण]] के दो विपरीत दिशाओं का प्रतिनिधित्व करते हैं। इस प्रकार, परिभाषित परिपत्र ध्रुवीकरण के प्रकाश में एक ही स्पिन वाले फोटॉन , या तो सभी +1 या सभी -1 होते हैं। स्पिन अन्य वेक्टर बोसोन के लिए भी ध्रुवीकरण का प्रतिनिधित्व करता है।
फोटॉन स्पिन प्रकाश ध्रुवीकरण (तरंगों) का क्वांटम-यांत्रिकी विवरण है,जहां स्पिन +1 और स्पिन -1 [[परिपत्र ध्रुवीकरण]] के दो विपरीत दिशाओं का प्रतिनिधित्व करते हैं। इस प्रकार, परिभाषित परिपत्र ध्रुवीकरण के प्रकाश में एक ही स्पिन वाले फोटॉन , या तो सभी +1 या सभी -1 होते हैं। स्पिन अन्य वेक्टर बोसोन के लिए भी ध्रुवीकरण का प्रतिनिधित्व करता है।


फर्मियंस के लिए, चित्र कम स्पष्ट है। कोणीय वेग एरेनफेस्ट प्रमेय द्वारा हैमिल्टनियन के व्युत्पन्न के बराबर संयुग्म गति के बराबर है, जो कुल कोणीय संवेग संचालिका {{nobr|1='''J''' = '''L''' + '''S'''}} है। इसलिए, यदि हैमिल्टन एच स्पिन एस पर निर्भर है, डीएच/डीएस गैर-शून्य है, और स्पिन कोणीय वेग का कारण बनता है, और इसलिए वास्तविक घूर्णन, अर्थात समय के साथ प्रावस्था-कोण संबंध में परिवर्तन होता है। हालांकि, क्या यह मुक्त इलेक्ट्रॉन के लिए धारण करता है अस्पष्ट है, क्योंकि एक इलेक्ट्रॉन के लिए, एस<sup>2</sup> स्थिर है, और इसलिए यह व्याख्या का विषय है कि मिल्टनियन में ऐसा शब्द सम्मिलित है या नहीं है। तथापि, [[ डायराक समीकरण ]] में स्पिन प्रकट होता है, और इस प्रकार इलेक्ट्रॉन के सापेक्षवादी हैमिल्टनियन, जिसे डायराक क्षेत्र के रूप में माना जाता है, एस को स्पिन में निर्भरता के रूप में व्याख्या की जा सकती है।<ref>[[Michael Peskin|Peskin, M. E.]], & Schroeder, D. V. (1995). ''Quantum field theory'', Ch.&nbsp;3. The Advanced Book Program.</ref> इस व्याख्या के अंतर्गत, मुक्त इलेक्ट्रॉन भी स्व-घूर्णन करते हैं, ज़िटरबेवेगंग प्रभाव के साथ इस घूर्णन के रूप में समझा जाता है।  
फर्मियंस के लिए, चित्र कम स्पष्ट है। कोणीय वेग एरेनफेस्ट प्रमेय द्वारा हैमिल्टनियन के व्युत्पन्न के बराबर संयुग्म गति के बराबर है, जो कुल कोणीय संवेग संचालिका {{nobr|1='''J''' = '''L''' + '''S'''}} है। इसलिए, यदि हैमिल्टन एच स्पिन एस पर निर्भर है, डीएच/डीएस गैर-शून्य है, और स्पिन कोणीय वेग का कारण बनता है, और इसलिए वास्तविक घूर्णन, अर्थात समय के साथ प्रावस्था-कोण संबंध में परिवर्तन होता है। हालांकि, क्या यह मुक्त इलेक्ट्रॉन के लिए धारण करता है अस्पष्ट है, क्योंकि एक इलेक्ट्रॉन के लिए, एस<sup>2</sup> स्थिर है, और इसलिए यह व्याख्या का विषय है कि मिल्टनियन में ऐसा शब्द सम्मिलित है या नहीं है। तथापि, [[ डायराक समीकरण |डायराक समीकरण]] में स्पिन प्रकट होता है, और इस प्रकार इलेक्ट्रॉन के सापेक्षवादी हैमिल्टनियन, जिसे डायराक क्षेत्र के रूप में माना जाता है, एस को स्पिन में निर्भरता के रूप में व्याख्या की जा सकती है।<ref>[[Michael Peskin|Peskin, M. E.]], & Schroeder, D. V. (1995). ''Quantum field theory'', Ch.&nbsp;3. The Advanced Book Program.</ref> इस व्याख्या के अंतर्गत, मुक्त इलेक्ट्रॉन भी स्व-घूर्णन करते हैं, ज़िटरबेवेगंग प्रभाव के साथ इस घूर्णन के रूप में समझा जाता है।  


== चुंबकीय आघूर्ण ==
== चुंबकीय आघूर्ण ==
{{main|स्पिन चुंबकीय आघूर्ण}}
{{main|स्पिन चुंबकीय आघूर्ण}}
[[File:Neutron spin dipole field.jpg|thumbnail|right|ब्लैक एरो के रूप में न्यूट्रॉन के स्पिन को दर्शाने वाला योजनाबद्ध आरेख और [[ न्यूट्रॉन चुंबकीय क्षण | न्यूट्रॉन चुंबकीय आघूर्ण]] से जुड़ी चुंबकीय क्षेत्र रेखाएँ। न्यूट्रॉन का एक नकारात्मक चुंबकीय आघूर्ण होता है। जबकि इस आरेख में न्यूट्रॉन का स्पिन ऊपर की ओर है, द्विध्रुव के केंद्र में चुंबकीय क्षेत्र रेखाएँ नीचे की ओर हैं।]]स्पिन वाले कणों में चुंबकीय द्विध्रुव आघूर्ण, उत्कृष्ट विद्युतगतिकी में एक घूर्णन विद्युत आवेशित पिंड की तरह हो सकता है। इन चुंबकीय आघूर्णो को प्रयोगात्मक रूप से कई तरीकों से देखा जा सकता है, उदा- स्टर्न-गेरलाच प्रयोग में अमानवीय [[ चुंबकीय क्षेत्र | चुंबकीय क्षेत्रो]] द्वारा कणों के विक्षेपण द्वारा, या स्वयं कणों द्वारा उत्पन्न चुंबकीय क्षेत्रों को मापकर देखा जा सकता है।
[[File:Neutron spin dipole field.jpg|thumbnail|right|ब्लैक एरो के रूप में न्यूट्रॉन के स्पिन को दर्शाने वाला योजनाबद्ध आरेख और [[ न्यूट्रॉन चुंबकीय क्षण |न्यूट्रॉन चुंबकीय आघूर्ण]] से जुड़ी चुंबकीय क्षेत्र रेखाएँ। न्यूट्रॉन का एक नकारात्मक चुंबकीय आघूर्ण होता है। जबकि इस आरेख में न्यूट्रॉन का स्पिन ऊपर की ओर है, द्विध्रुव के केंद्र में चुंबकीय क्षेत्र रेखाएँ नीचे की ओर हैं।]]स्पिन वाले कणों में चुंबकीय द्विध्रुव आघूर्ण, उत्कृष्ट विद्युतगतिकी में एक घूर्णन विद्युत आवेशित पिंड की तरह हो सकता है। इन चुंबकीय आघूर्णो को प्रयोगात्मक रूप से कई तरीकों से देखा जा सकता है, उदा- स्टर्न-गेरलाच प्रयोग में अमानवीय [[ चुंबकीय क्षेत्र |चुंबकीय क्षेत्रो]] द्वारा कणों के विक्षेपण द्वारा, या स्वयं कणों द्वारा उत्पन्न चुंबकीय क्षेत्रों को मापकर देखा जा सकता है।


स्पिन आंतरिक चुंबकीय आघूर्ण {{math|'''μ'''}}-{{sfrac|1|2}}आवेश {{mvar|q}}, द्रव्यमान {{mvar|m}}, और स्पिन कोणीय संवेग {{math|'''S'''}}, वाला कण है<ref>Physics of Atoms and Molecules, B.&nbsp;H. Bransden, C.&nbsp;J. Joachain, Longman, 1983, {{ISBN|0-582-44401-2}}.</ref>
स्पिन आंतरिक चुंबकीय आघूर्ण {{math|'''μ'''}}-{{sfrac|1|2}}आवेश {{mvar|q}}, द्रव्यमान {{mvar|m}}, और स्पिन कोणीय संवेग {{math|'''S'''}}, वाला कण है<ref>Physics of Atoms and Molecules, B.&nbsp;H. Bransden, C.&nbsp;J. Joachain, Longman, 1983, {{ISBN|0-582-44401-2}}.</ref>
: <math>\boldsymbol{\mu} = \frac{g_s q}{2m} \mathbf{S},</math>
: <math>\boldsymbol{\mu} = \frac{g_s q}{2m} \mathbf{S},</math>
जहां [[ आयाम रहित मात्रा ]] {{mvar|g<sub>s</sub>}} इसे स्पिन {{mvar|g}}-कारक कहा जाता है। विशेष रूप से कक्षीय घुमावों के लिए यह 1 होगा (यह मानते हुए कि द्रव्यमान और आवेश समान त्रिज्या के क्षेत्रों पर अधिग्रहित करते हैं)।
जहां [[ आयाम रहित मात्रा |आयाम रहित मात्रा]] {{mvar|g<sub>s</sub>}} इसे स्पिन {{mvar|g}}-कारक कहा जाता है। विशेष रूप से कक्षीय घुमावों के लिए यह 1 होगा (यह मानते हुए कि द्रव्यमान और आवेश समान त्रिज्या के क्षेत्रों पर अधिग्रहित करते हैं)।


इलेक्ट्रॉन, एक आवेशित प्राथमिक कण होने के कारण, एक [[ इलेक्ट्रॉन चुंबकीय क्षण | इलेक्ट्रॉन चुंबकीय आघूर्ण]] रखता है। [[ क्वांटम इलेक्ट्रोडायनामिक्स | क्वांटम विद्युतगतिकी]] के सिद्धांत की अभिभूत में से एक इलेक्ट्रॉन {{mvar|g}}-कारक की शुद्ध पूर्वानुमानित है, जिसे प्रयोगात्मक रूप से मान -2.002 319 304 362 56(35) के रूप में निर्धारित किया गया है, कोष्ठक में अंक एक [[ मानक विचलन ]] पर अंतिम दो अंकों में [[ माप अनिश्चितता ]] को दर्शाते है।<ref>{{cite web |title=कोडाटा मूल्य: इलेक्ट्रॉन ''जी'' कारक|url=https://physics.nist.gov/cgi-bin/cuu/Value?gem%7Csearch_for=all! |year=2018 |work=The NIST Reference on Constants, Units, and Uncertainty |publisher=[[National Institute of Standards and Technology|NIST]] |access-date=2019-06-04}}</ref> 2 का मान डायराक समीकरण से उत्पन्न होता है, एक मौलिक समीकरण जो इलेक्ट्रॉन के स्पिन को उसके विद्युत चुम्बकीय गुणों से जोड़ता है, और इसका सुधार {{val|0.002319304}}... अपने स्वयं के क्षेत्र सहित आसपास के [[ विद्युत चुम्बकीय ]] क्षेत्र के साथ इलेक्ट्रॉन की परस्पर क्रिया से उत्पन्न होता है।<ref>{{cite book |author-link=Richard Feynman |author=Feynman, R. P. |title=QED: द स्ट्रेंज थ्योरी ऑफ़ लाइट एंड मैटर|chapter=Electrons and their interactions |page=115 |publisher=[[Princeton University Press]] |location=[[Princeton, New Jersey]] |year=1985 |isbn=978-0-691-08388-9 |quote=कुछ वर्षों के बाद, यह पता चला कि यह मान [{{math|−{{sfrac|1|2}}''g''}}] was not exactly 1, but slightly more – something like 1.00116. This correction was worked out for the first time in 1948 by Schwinger as {{math|''j''×''j''}} divided by 2{{mvar|π}} {{sic}} [where {{mvar|j}} is the square root of the [[fine-structure constant]]], and was due to an alternative way the electron can go from place to place: Instead of going directly from one point to another, the electron goes along for a while and suddenly emits a photon; then (horrors!) it absorbs its own photon. |title-link=QED: द स्ट्रेंज थ्योरी ऑफ़ लाइट एंड मैटर}}</ref>
इलेक्ट्रॉन, एक आवेशित प्राथमिक कण होने के कारण, एक [[ इलेक्ट्रॉन चुंबकीय क्षण |इलेक्ट्रॉन चुंबकीय आघूर्ण]] रखता है। [[ क्वांटम इलेक्ट्रोडायनामिक्स |क्वांटम विद्युतगतिकी]] के सिद्धांत की अभिभूत में से एक इलेक्ट्रॉन {{mvar|g}}-कारक की शुद्ध पूर्वानुमानित है, जिसे प्रयोगात्मक रूप से मान -2.002 319 304 362 56(35) के रूप में निर्धारित किया गया है, कोष्ठक में अंक एक [[ मानक विचलन |मानक विचलन]] पर अंतिम दो अंकों में [[ माप अनिश्चितता |माप अनिश्चितता]] को दर्शाते है।<ref>{{cite web |title=कोडाटा मूल्य: इलेक्ट्रॉन ''जी'' कारक|url=https://physics.nist.gov/cgi-bin/cuu/Value?gem%7Csearch_for=all! |year=2018 |work=The NIST Reference on Constants, Units, and Uncertainty |publisher=[[National Institute of Standards and Technology|NIST]] |access-date=2019-06-04}}</ref> 2 का मान डायराक समीकरण से उत्पन्न होता है, एक मौलिक समीकरण जो इलेक्ट्रॉन के स्पिन को उसके विद्युत चुम्बकीय गुणों से जोड़ता है, और इसका सुधार {{val|0.002319304}}... अपने स्वयं के क्षेत्र सहित आसपास के [[ विद्युत चुम्बकीय |विद्युत चुम्बकीय]] क्षेत्र के साथ इलेक्ट्रॉन की परस्पर क्रिया से उत्पन्न होता है।<ref>{{cite book |author-link=Richard Feynman |author=Feynman, R. P. |title=QED: द स्ट्रेंज थ्योरी ऑफ़ लाइट एंड मैटर|chapter=Electrons and their interactions |page=115 |publisher=[[Princeton University Press]] |location=[[Princeton, New Jersey]] |year=1985 |isbn=978-0-691-08388-9 |quote=कुछ वर्षों के बाद, यह पता चला कि यह मान [{{math|−{{sfrac|1|2}}''g''}}] was not exactly 1, but slightly more – something like 1.00116. This correction was worked out for the first time in 1948 by Schwinger as {{math|''j''×''j''}} divided by 2{{mvar|π}} {{sic}} [where {{mvar|j}} is the square root of the [[fine-structure constant]]], and was due to an alternative way the electron can go from place to place: Instead of going directly from one point to another, the electron goes along for a while and suddenly emits a photon; then (horrors!) it absorbs its own photon. |title-link=QED: द स्ट्रेंज थ्योरी ऑफ़ लाइट एंड मैटर}}</ref>


मिश्रित कणों में भी उनके स्पिन से जुड़े चुंबकीय आघूर्ण होते हैं। विशेष रूप से, विद्युत्-उदासीन होने के उपेक्षा [[ न्यूट्रॉन | न्यूट्रॉन]] में गैर-शून्य चुंबकीय आघूर्ण होता है। यह तथ्य एक प्रारंभिक संकेत था कि न्यूट्रॉन प्राथमिक कण नहीं है। वास्तव में, यह क्वार्क से बना है, जो विद्युत आवेशित कण हैं। [[न्यूट्रॉन चुंबकीय आघूर्ण]] व्यक्तिगत क्वार्कों और उनके कक्षीय गतियों के स्पिन से आता है।
मिश्रित कणों में भी उनके स्पिन से जुड़े चुंबकीय आघूर्ण होते हैं। विशेष रूप से, विद्युत्-उदासीन होने के उपेक्षा [[ न्यूट्रॉन |न्यूट्रॉन]] में गैर-शून्य चुंबकीय आघूर्ण होता है। यह तथ्य एक प्रारंभिक संकेत था कि न्यूट्रॉन प्राथमिक कण नहीं है। वास्तव में, यह क्वार्क से बना है, जो विद्युत आवेशित कण हैं। [[न्यूट्रॉन चुंबकीय आघूर्ण]] व्यक्तिगत क्वार्कों और उनके कक्षीय गतियों के स्पिन से आता है।


[[ न्युट्रीनो ]] प्राथमिक और विद्युत्-उदासीन दोनों हैं। उन्होंने गैर-शून्य [[न्यूट्रिनो द्रव्यमान]] को ध्यान में रखते हुए न्यूनतम रूप से मानक मॉडल का विस्तार किया, जो न्यूट्रिनो चुंबकीय आघूर्णो की भविष्यवाणी करता है:<ref>{{cite journal |author1=Marciano, W. J. |author-link=William Marciano |author2=Sanda, A. I. |author-link2=Anthony Ichiro Sanda |title=गेज सिद्धांतों में म्यूऑन और भारी लेप्टान के विदेशी क्षय|journal=[[Physics Letters]] |volume=B67 |issue=3 |pages=303–305 |year=1977 |doi=10.1016/0370-2693(77)90377-X |bibcode=1977PhLB...67..303M}}</ref><ref>{{cite journal |author1=Lee, B. W. |author-link=Benjamin W. Lee |author2=Shrock, R. E. |title=गेज सिद्धांतों में समरूपता उल्लंघन का प्राकृतिक दमन: म्यूऑन- और इलेक्ट्रॉन-लेप्टान-संख्या गैर-संरक्षण|journal=[[Physical Review]] |volume=D16 |issue=5 |pages=1444–1473 |year=1977 |doi=10.1103/PhysRevD.16.1444  |bibcode=1977PhRvD..16.1444L |s2cid=1430757 |url=https://semanticscholar.org/paper/4a4975a50a2be103a933b6802fef2386d8ab892d }}</ref><ref>{{cite journal |authors=K. Fujikawa, R. E. Shrock |title=विशाल न्यूट्रिनो और न्यूट्रिनो-स्पिन रोटेशन का चुंबकीय क्षण|journal=[[Physical Review Letters]] |volume=45 |issue=12 |pages=963–966 |year=1980 |doi=10.1103/PhysRevLett.45.963 |bibcode=1980PhRvL..45..963F}}</ref>
[[ न्युट्रीनो | न्युट्रीनो]] प्राथमिक और विद्युत्-उदासीन दोनों हैं। उन्होंने गैर-शून्य [[न्यूट्रिनो द्रव्यमान]] को ध्यान में रखते हुए न्यूनतम रूप से मानक मॉडल का विस्तार किया, जो न्यूट्रिनो चुंबकीय आघूर्णो की भविष्यवाणी करता है:<ref>{{cite journal |author1=Marciano, W. J. |author-link=William Marciano |author2=Sanda, A. I. |author-link2=Anthony Ichiro Sanda |title=गेज सिद्धांतों में म्यूऑन और भारी लेप्टान के विदेशी क्षय|journal=[[Physics Letters]] |volume=B67 |issue=3 |pages=303–305 |year=1977 |doi=10.1016/0370-2693(77)90377-X |bibcode=1977PhLB...67..303M}}</ref><ref>{{cite journal |author1=Lee, B. W. |author-link=Benjamin W. Lee |author2=Shrock, R. E. |title=गेज सिद्धांतों में समरूपता उल्लंघन का प्राकृतिक दमन: म्यूऑन- और इलेक्ट्रॉन-लेप्टान-संख्या गैर-संरक्षण|journal=[[Physical Review]] |volume=D16 |issue=5 |pages=1444–1473 |year=1977 |doi=10.1103/PhysRevD.16.1444  |bibcode=1977PhRvD..16.1444L |s2cid=1430757 |url=https://semanticscholar.org/paper/4a4975a50a2be103a933b6802fef2386d8ab892d }}</ref><ref>{{cite journal |authors=K. Fujikawa, R. E. Shrock |title=विशाल न्यूट्रिनो और न्यूट्रिनो-स्पिन रोटेशन का चुंबकीय क्षण|journal=[[Physical Review Letters]] |volume=45 |issue=12 |pages=963–966 |year=1980 |doi=10.1103/PhysRevLett.45.963 |bibcode=1980PhRvL..45..963F}}</ref>
: <math>\mu_\nu \approx 3 \times 10^{-19} \mu_\text{B} \frac{m_\nu}{\text{eV}},</math>
: <math>\mu_\nu \approx 3 \times 10^{-19} \mu_\text{B} \frac{m_\nu}{\text{eV}},</math>
जहां {{math|''μ''<sub>ν</sub>}} न्यूट्रिनो चुंबकीय आघूर्ण हैं, {{math|''m''<sub>ν</sub>}} न्यूट्रिनो द्रव्यमान हैं, और {{math|''μ''<sub>B</sub>}} [[ बोहर चुंबक | बोहर मैग्नेटॉन]] है। हालांकि, विद्युत्-दुर्बल पैमाने के ऊपर नई भौतिकी, महत्वपूर्ण रूप से उच्चतर न्यूट्रिनो चुंबकीय आघूर्णो को उत्पन्न दे सकती है। यह मॉडल-स्वतंत्र तरीके से दिखाया जा सकता है कि लगभग 10 <sup>-14</sup>{{math|''μ''<sub>B</sub>}} से बड़े न्यूट्रिनो चुंबकीय आघूर्ण <nowiki>''अप्राकृतिक''</nowiki> हैं क्योंकि वे न्यूट्रिनो द्रव्यमान में बड़े विकिरण योगदान का भी नेतृत्व करेंगे। चूंकि न्यूट्रिनो द्रव्यमान अधिकतम 1 eV के रूप में जाना जाता है, इसलिए बड़े विकिरण संबंधी संशोधन को एक दूसरे को निष्प्रभाव करने के लिए, एक बड़ी डिग्री तक, और न्यूट्रिनो द्रव्यमान को कम छोड़ने के लिए पूर्ण समायोजित करना होगा।<ref>{{cite journal |author=Bell, N. F. |title=डायराक न्यूट्रिनो कितना चुंबकीय है?|journal=[[Physical Review Letters]] |volume=95 |issue=15 |page=151802 |year=2005 |arxiv=hep-ph/0504134 |doi=10.1103/PhysRevLett.95.151802 |bibcode=2005PhRvL..95o1802B |pmid=16241715 |last2=Cirigliano |first2=V. |last3=Ramsey-Musolf |first3=M. |last4=Vogel |first4=P. |last5=Wise |first5=Mark |s2cid=7832411 |display-authors=etal}}</ref> न्यूट्रिनो चुंबकीय आघूर्णो का माप अनुसंधान का एक सक्रिय क्षेत्र है। प्रायोगिक परिणामों ने न्यूट्रिनो चुंबकीय आघूर्ण को इलेक्ट्रॉन के चुंबकीय आघूर्ण के 1.2×10-10 गुना से कम पर रखा है।
जहां {{math|''μ''<sub>ν</sub>}} न्यूट्रिनो चुंबकीय आघूर्ण हैं, {{math|''m''<sub>ν</sub>}} न्यूट्रिनो द्रव्यमान हैं, और {{math|''μ''<sub>B</sub>}} [[ बोहर चुंबक |बोहर मैग्नेटॉन]] है। हालांकि, विद्युत्-दुर्बल पैमाने के ऊपर नई भौतिकी, महत्वपूर्ण रूप से उच्चतर न्यूट्रिनो चुंबकीय आघूर्णो को उत्पन्न दे सकती है। यह मॉडल-स्वतंत्र तरीके से दिखाया जा सकता है कि लगभग 10 <sup>-14</sup>{{math|''μ''<sub>B</sub>}} से बड़े न्यूट्रिनो चुंबकीय आघूर्ण <nowiki>''अप्राकृतिक''</nowiki> हैं क्योंकि वे न्यूट्रिनो द्रव्यमान में बड़े विकिरण योगदान का भी नेतृत्व करेंगे। चूंकि न्यूट्रिनो द्रव्यमान अधिकतम 1 eV के रूप में जाना जाता है, इसलिए बड़े विकिरण संबंधी संशोधन को एक दूसरे को निष्प्रभाव करने के लिए, एक बड़ी श्रेणी तक, और न्यूट्रिनो द्रव्यमान को कम छोड़ने के लिए पूर्ण समायोजित करना होगा।<ref>{{cite journal |author=Bell, N. F. |title=डायराक न्यूट्रिनो कितना चुंबकीय है?|journal=[[Physical Review Letters]] |volume=95 |issue=15 |page=151802 |year=2005 |arxiv=hep-ph/0504134 |doi=10.1103/PhysRevLett.95.151802 |bibcode=2005PhRvL..95o1802B |pmid=16241715 |last2=Cirigliano |first2=V. |last3=Ramsey-Musolf |first3=M. |last4=Vogel |first4=P. |last5=Wise |first5=Mark |s2cid=7832411 |display-authors=etal}}</ref> न्यूट्रिनो चुंबकीय आघूर्णो का माप अनुसंधान का एक सक्रिय क्षेत्र है। प्रायोगिक परिणामों ने न्यूट्रिनो चुंबकीय आघूर्ण को इलेक्ट्रॉन के चुंबकीय आघूर्ण के 1.2×10-10 गुना से कम पर रखा है।


दूसरी ओर स्पिन के साथ प्राथमिक कण, लेकिन विद्युत आवेश के बिना, जैसे कि फोटॉन या जेड बोसॉन, में चुंबकीय आघूर्ण नहीं होता है।
दूसरी ओर स्पिन के साथ प्राथमिक कण, लेकिन विद्युत आवेश के बिना, जैसे कि फोटॉन या जेड बोसॉन, में चुंबकीय आघूर्ण नहीं होता है।


== [[ क्यूरी तापमान ]] और संरेखण का नुकसान ==
== [[ क्यूरी तापमान | क्यूरी तापमान]] और संरेखण का नुकसान ==
सामान्य सामग्रियों में, अलग-अलग परमाणुओं के चुंबकीय द्विध्रुवीय आघूर्ण चुंबकीय क्षेत्र उत्पन्न करते हैं जो एक दूसरे को निष्प्रभाव करते हैं, क्योंकि प्रत्येक द्विध्रुव एक यादृच्छिक दिशा में इंगित करता है,समग्र औसत शून्य के बहुत करीब होता है। हालांकि, उनके क्यूरी तापमान के नीचे लोह चुंबकीय सामग्री, [[ चुंबकीय डोमेन | चुंबकीय परिक्षेत्र]] प्रदर्शित करती है जिसमें परमाणु द्विध्रुवीय आघूर्ण स्वाभाविक तरीके से स्थानीय रूप से संरेखित होते हैं, परिक्षेत्र से एक असूक्ष्म, गैर-शून्य चुंबकीय क्षेत्र का उत्पादन करते हैं। ये साधारण चुम्बक हैं जिनसे हम सभी परिचित हैं।
सामान्य सामग्रियों में, अलग-अलग परमाणुओं के चुंबकीय द्विध्रुवीय आघूर्ण चुंबकीय क्षेत्र उत्पन्न करते हैं जो एक दूसरे को निष्प्रभाव करते हैं, क्योंकि प्रत्येक द्विध्रुव एक यादृच्छिक दिशा में इंगित करता है,समग्र औसत शून्य के बहुत करीब होता है। हालांकि, उनके क्यूरी तापमान के नीचे लोह चुंबकीय सामग्री, [[ चुंबकीय डोमेन |चुंबकीय परिक्षेत्र]] प्रदर्शित करती है जिसमें परमाणु द्विध्रुवीय आघूर्ण स्वाभाविक तरीके से स्थानीय रूप से संरेखित होते हैं, परिक्षेत्र से एक असूक्ष्म, गैर-शून्य चुंबकीय क्षेत्र का उत्पादन करते हैं। ये साधारण चुम्बक हैं जिनसे हम सभी परिचित हैं।


अनुचुम्बकीय पदार्थों में, अलग-अलग परमाणुओं के चुंबकीय द्विध्रुव आघूर्ण आंशिक रूप से बाहरी रूप से लगाए गए चुंबकीय क्षेत्र के साथ संरेखित होंगे। प्रतिचुम्बकीय पदार्थों में, दूसरी ओर, अलग-अलग परमाणुओं के चुंबकीय द्विध्रुव आघूर्ण किसी बाहरी रूप से लगाए गए चुंबकीय क्षेत्र के विपरीत संरेखित होते हैं, यद्यपि ऐसा करने के लिए ऊर्जा की आवश्यकता हो।
अनुचुम्बकीय पदार्थों में, अलग-अलग परमाणुओं के चुंबकीय द्विध्रुव आघूर्ण आंशिक रूप से बाहरी रूप से लगाए गए चुंबकीय क्षेत्र के साथ संरेखित होंगे। प्रतिचुम्बकीय पदार्थों में, दूसरी ओर, अलग-अलग परमाणुओं के चुंबकीय द्विध्रुव आघूर्ण किसी बाहरी रूप से लगाए गए चुंबकीय क्षेत्र के विपरीत संरेखित होते हैं, यद्यपि ऐसा करने के लिए ऊर्जा की आवश्यकता हो।


ऐसे [[ स्पिन मॉडल ]] के व्यवहार का अध्ययन [[ संघनित पदार्थ भौतिकी ]] में अनुसंधान का एक संपन्न क्षेत्र है। उदाहरण के लिए, ईज़िंग मॉडल स्पिन (डिपोल) का वर्णन करता है जिसमें केवल दो संभावित अवस्थाएँ होती हैं, ऊपर और नीचे, जबकि [[ हाइजेनबर्ग मॉडल (क्वांटम) ]] में स्पिन वेक्टर को किसी भी दिशा में इंगित करने की स्वीकृति होती है। इन मॉडलों में कई रोचक गुण हैं, जिससे [[ चरण संक्रमण | प्रावस्था संक्रमण]] के सिद्धांत में रोचक परिणाम सामने आए हैं।
ऐसे [[ स्पिन मॉडल |स्पिन मॉडल]] के व्यवहार का अध्ययन [[ संघनित पदार्थ भौतिकी |संघनित पदार्थ भौतिकी]] में अनुसंधान का एक संपन्न क्षेत्र है। उदाहरण के लिए, ईज़िंग मॉडल स्पिन (डिपोल) का वर्णन करता है जिसमें केवल दो संभावित अवस्थाएँ होती हैं, ऊपर और नीचे, जबकि [[ हाइजेनबर्ग मॉडल (क्वांटम) |हाइजेनबर्ग मॉडल (क्वांटम)]] में स्पिन वेक्टर को किसी भी दिशा में इंगित करने की स्वीकृति होती है। इन मॉडलों में कई रोचक गुण हैं, जिससे [[ चरण संक्रमण |प्रावस्था संक्रमण]] के सिद्धांत में रोचक परिणाम सामने आए हैं।


== दिशा ==
== दिशा ==
Line 73: Line 73:


=== स्पिन प्रक्षेपण क्वांटम संख्या और बहुलता ===
=== स्पिन प्रक्षेपण क्वांटम संख्या और बहुलता ===
उत्कृष्ट यांत्रिकी में, एक कण के कोणीय संवेग में न केवल एक परिमाण (पिंड कितनी तेजी से घूम रहा है) होता है, बल्कि एक दिशा (कण के घूर्णन के [[ अक्ष ]] पर ऊपर या नीचे) भी होती है। क्वांटम-यांत्रिकी स्पिन में दिशा के बारे में भी जानकारी होती है, लेकिन अधिक सूक्ष्म रूप में होती है। क्वांटम यांत्रिकी का कहना है कि किसी भी दिशा में मापे गए स्पिन-एस कण के लिए कोणीय संवेग का [[ स्थानिक वेक्टर | घटक]] केवल मान ले सकता है<ref>Quanta: A handbook of concepts, P.&nbsp;W. Atkins, Oxford University Press, 1974, {{ISBN|0-19-855493-1}}.</ref>
उत्कृष्ट यांत्रिकी में, एक कण के कोणीय संवेग में न केवल एक परिमाण (पिंड कितनी तेजी से घूम रहा है) होता है, बल्कि एक दिशा (कण के घूर्णन के [[ अक्ष |अक्ष]] पर ऊपर या नीचे) भी होती है। क्वांटम-यांत्रिकी स्पिन में दिशा के बारे में भी जानकारी होती है, लेकिन अधिक सूक्ष्म रूप में होती है। क्वांटम यांत्रिकी का कहना है कि किसी भी दिशा में मापे गए स्पिन-एस कण के लिए कोणीय संवेग का [[ स्थानिक वेक्टर |घटक]] केवल मान ले सकता है<ref>Quanta: A handbook of concepts, P.&nbsp;W. Atkins, Oxford University Press, 1974, {{ISBN|0-19-855493-1}}.</ref>
: <math>S_i = \hbar s_i, \quad s_i \in \{ -s, -(s - 1), \dots, s - 1, s \},</math>
: <math>S_i = \hbar s_i, \quad s_i \in \{ -s, -(s - 1), \dots, s - 1, s \},</math>
जहां पर {{mvar|S<sub>i</sub>}} {{mvar|i}}-वें अक्ष के साथ स्पिन घटक है (या तो {{mvar|x}}, {{mvar|y}}, या {{mvar|z}}), {{mvar|s<sub>i</sub>}} {{mvar|i}}-वें अक्ष के साथ स्पिन प्रक्षेपण क्वांटम संख्या है , और {{mvar|s}} प्रमुख स्पिन क्वांटम संख्या है (पिछले अनुभाग में चर्चा की गई)। परंपरागत रूप से चुनी गई दिशा {{mvar|z}} अक्ष है:
जहां पर {{mvar|S<sub>i</sub>}} {{mvar|i}}-वें अक्ष के साथ स्पिन घटक है (या तो {{mvar|x}}, {{mvar|y}}, या {{mvar|z}}), {{mvar|s<sub>i</sub>}} {{mvar|i}}-वें अक्ष के साथ स्पिन प्रक्षेपण क्वांटम संख्या है , और {{mvar|s}} प्रमुख स्पिन क्वांटम संख्या है (पिछले अनुभाग में चर्चा की गई)। परंपरागत रूप से चुनी गई दिशा {{mvar|z}} अक्ष है:


: <math>S_z = \hbar s_z, \quad s_z \in \{ -s, -(s - 1), \dots, s - 1, s \},</math>
: <math>S_z = \hbar s_z, \quad s_z \in \{ -s, -(s - 1), \dots, s - 1, s \},</math>
जहां पर {{mvar|S<sub>z</sub>}} {{mvar|z}} साथ स्पिन घटक {{mvar|s<sub>z</sub>}} है, {{mvar|z}} अक्ष साथ में स्पिन प्रक्षेपण क्वांटम संख्या है।
जहां पर {{mvar|S<sub>z</sub>}} {{mvar|z}} साथ स्पिन घटक {{mvar|s<sub>z</sub>}} है, {{mvar|z}} अक्ष साथ में स्पिन प्रक्षेपण क्वांटम संख्या है।


कोई देख सकता है कि {{mvar|s<sub>z</sub>}} के {{math|2''s'' + 1}} के संभावित मान है। जो संख्या <nowiki>''</nowiki>{{math|2''s'' + 1}}<nowiki>''</nowiki> स्पिन प्रणाली की [[ बहुलता (रसायन विज्ञान) ]] है। उदाहरण के लिए, स्पिन के लिए केवल दो संभावित मान हैं-{{sfrac|1|2}}कण: {{math|''s<sub>z</sub>'' {{=}} +{{sfrac|1|2}}}} और {{math|''s<sub>z</sub>'' {{=}} −{{sfrac|1|2}}}} ये क्वांटम अवस्थाओ के अनुरूप हैं जिनमें स्पिन घटक क्रमशः +z या -z दिशाओं में इंगित कर रहा है, और प्रायः इसे स्पिन ऊपर और स्पिन नीचे के रूप में संदर्भित किया जाता है। एक स्पिन के लिए-{{sfrac|3|2}} कण, एक डेल्टा बैरियन की तरह, संभावित मान + {{sfrac|3|2}}, +{{sfrac|1|2}}, −{{sfrac|1|2}}, −{{sfrac|3|2}}.
कोई देख सकता है कि {{mvar|s<sub>z</sub>}} के {{math|2''s'' + 1}} के संभावित मान है। जो संख्या <nowiki>''</nowiki>{{math|2''s'' + 1}}<nowiki>''</nowiki> स्पिन प्रणाली की [[ बहुलता (रसायन विज्ञान) |बहुलता (रसायन विज्ञान)]] है। उदाहरण के लिए, स्पिन के लिए केवल दो संभावित मान हैं-{{sfrac|1|2}}कण: {{math|''s<sub>z</sub>'' {{=}} +{{sfrac|1|2}}}} और {{math|''s<sub>z</sub>'' {{=}} −{{sfrac|1|2}}}} ये क्वांटम अवस्थाओ के अनुरूप हैं जिनमें स्पिन घटक क्रमशः +z या -z दिशाओं में इंगित कर रहा है, और प्रायः इसे स्पिन ऊपर और स्पिन नीचे के रूप में संदर्भित किया जाता है। एक स्पिन के लिए-{{sfrac|3|2}} कण, एक डेल्टा बैरियन की तरह, संभावित मान + {{sfrac|3|2}}, +{{sfrac|1|2}}, −{{sfrac|1|2}}, −{{sfrac|3|2}}.


=== वेक्टर ===
=== वेक्टर ===
[[File:Spin One-Half (Slow).gif|thumb|अंतरिक्ष में एक बिंदु बिना स्पर्शरेखा के लगातार स्पिन कर सकता है। ध्यान दें कि 360 डिग्री घूर्णन के बाद, सर्पिल दक्षिणावर्त और वामावर्त झुकाव के बीच प्रतिवर्तन करता है। पूर्ण 720° स्पिन के बाद अपने मूल विन्यास में वापस आ जाता है।]]
[[File:Spin One-Half (Slow).gif|thumb|अंतरिक्ष में एक बिंदु बिना स्पर्शरेखा के लगातार स्पिन कर सकता है। ध्यान दें कि 360 श्रेणी घूर्णन के बाद, सर्पिल दक्षिणावर्त और वामावर्त झुकाव के बीच प्रतिवर्तन करता है। पूर्ण 720° स्पिन के बाद अपने मूल विन्यास में वापस आ जाता है।]]
किसी दी गई क्वांटम स्थिति के लिए, एक स्पिन वेक्टर,<math display="inline"> \lang S \rang </math> के बारे में सोचा जा सकता है जिनके घटक प्रत्येक अक्ष के साथ स्पिन घटकों का अपेक्षित मान (क्वांटम भौतिकी) हैं, अर्थात, <math display="inline"> \lang S \rang = [\lang S_x \rang, \lang S_y \rang, \lang S_z \rang]</math>। यह वेक्टर तब "दिशा" का वर्णन करेगा जिसमें स्पिन इंगित कर रहा है, जो घूर्णन के अक्ष की उत्कृष्ट अवधारणा के अनुरूप है। यह पता चला है कि स्पिन वेक्टर वास्तविक क्वांटम-यांत्रिक गणनाओं में अधिक उपयोगी नहीं है, क्योंकि इसे प्रत्यक्ष रूप से मापा नहीं जा सकता है: {{mvar|s<sub>x</sub>}}, {{mvar|s<sub>y</sub>}} और {{mvar|s<sub>z</sub>}} उनके बीच एक क्वांटम अनिश्चितता सिद्धांत के कारण एक साथ निश्चित मान नहीं हो सकते। हालांकि, कणों के सांख्यिकीय रूप से बड़े संग्रह के लिए जिन्हें एक ही शुद्ध क्वांटम अवस्था में रखा गया है, जैसे कि स्टर्न-गेरलाच तंत्र के उपयोग के माध्यम से, स्पिन वेक्टर का एक अच्छी तरह से परिभाषित प्रयोगात्मक अर्थ है: यह साधारण अंतरिक्ष में दिशा निर्दिष्ट करता है। जिसमें संग्रह में प्रत्येक कण का पता लगाने की अधिकतम संभव संभावना (100%) प्राप्त करने के लिए बाद के अभिज्ञापक को उन्मुख होना चाहिए। स्पिन के लिए-{{sfrac|1|2}} कण, यह संभावना सुचारू रूप से कम हो जाती है क्योंकि स्पिन वेक्टर और अभिज्ञापक के बीच का कोण 180 ° के कोण तक बढ़ जाता है - अर्थात, स्पिन वेक्टर के विपरीत दिशा में उन्मुख अभिज्ञापक के लिए - संग्रह से कणों का पता लगाने की अपेक्षा न्यूनतम 0% तक पहुँचता है।
किसी दी गई क्वांटम स्थिति के लिए, एक स्पिन वेक्टर,<math display="inline"> \lang S \rang </math> के बारे में सोचा जा सकता है जिनके घटक प्रत्येक अक्ष के साथ स्पिन घटकों का अपेक्षित मान (क्वांटम भौतिकी) हैं, अर्थात, <math display="inline"> \lang S \rang = [\lang S_x \rang, \lang S_y \rang, \lang S_z \rang]</math>। यह वेक्टर तब "दिशा" का वर्णन करेगा जिसमें स्पिन इंगित कर रहा है, जो घूर्णन के अक्ष की उत्कृष्ट अवधारणा के अनुरूप है। यह पता चला है कि स्पिन वेक्टर वास्तविक क्वांटम-यांत्रिक गणनाओं में अधिक उपयोगी नहीं है, क्योंकि इसे प्रत्यक्ष रूप से मापा नहीं जा सकता है: {{mvar|s<sub>x</sub>}}, {{mvar|s<sub>y</sub>}} और {{mvar|s<sub>z</sub>}} उनके बीच एक क्वांटम अनिश्चितता सिद्धांत के कारण एक साथ निश्चित मान नहीं हो सकते। हालांकि, कणों के सांख्यिकीय रूप से बड़े संग्रह के लिए जिन्हें एक ही शुद्ध क्वांटम अवस्था में रखा गया है, जैसे कि स्टर्न-गेरलाच तंत्र के उपयोग के माध्यम से, स्पिन वेक्टर का एक अच्छी तरह से परिभाषित प्रयोगात्मक अर्थ है: यह साधारण अंतरिक्ष में दिशा निर्दिष्ट करता है। जिसमें संग्रह में प्रत्येक कण का पता लगाने की अधिकतम संभव संभावना (100%) प्राप्त करने के लिए बाद के अभिज्ञापक को उन्मुख होना चाहिए। स्पिन के लिए-{{sfrac|1|2}} कण, यह संभावना सुचारू रूप से कम हो जाती है क्योंकि स्पिन वेक्टर और अभिज्ञापक के बीच का कोण 180 ° के कोण तक बढ़ जाता है - अर्थात, स्पिन वेक्टर के विपरीत दिशा में उन्मुख अभिज्ञापक के लिए - संग्रह से कणों का पता लगाने की अपेक्षा न्यूनतम 0% तक पहुँचता है।


एक गुणात्मक अवधारणा के रूप में, स्पिन वेक्टर प्रायः आसान होता है क्योंकि उत्कृष्ट रूप से चित्र बनाना आसान होता है। उदाहरण के लिए, क्वांटम-यांत्रिकी स्पिन उत्कृष्ट [[ जाइरोस्कोप | घूर्णाक्षस्थापी प्रभावों]] के अनुरूप घटना प्रदर्शित कर सकता है। कोई एक इलेक्ट्रॉन पर एक चुंबकीय क्षेत्र में डालकर एक प्रकार का "आघूर्ण बल" लगा सकता है (क्षेत्र इलेक्ट्रॉन के आंतरिक चुंबकीय द्विध्रुवीय आघूर्ण पर कार्य करता है-निम्न अनुभाग देखें)। इसका परिणाम यह होता है कि स्पिन वेक्टर उत्कृष्ट घूर्णाक्षस्थापी की तरह ही [[ अग्रगमन ]] से विगत है। इस घटना को [[ इलेक्ट्रॉन स्पिन अनुनाद | इलेक्ट्रॉन स्पिन प्रतिध्वनि]] (ईएसआर) के रूप में जाना जाता है। परमाणु नाभिक में प्रोटॉन के समतुल्य व्यवहार का उपयोग परमाणु चुंबकीय प्रतिध्वनि (एनएमआर) स्पेक्ट्रमदर्शी और प्रतिबिम्बन में किया जाता है।
एक गुणात्मक अवधारणा के रूप में, स्पिन वेक्टर प्रायः आसान होता है क्योंकि उत्कृष्ट रूप से चित्र बनाना आसान होता है। उदाहरण के लिए, क्वांटम-यांत्रिकी स्पिन उत्कृष्ट [[ जाइरोस्कोप |घूर्णाक्षस्थापी प्रभावों]] के अनुरूप घटना प्रदर्शित कर सकता है। कोई एक इलेक्ट्रॉन पर एक चुंबकीय क्षेत्र में डालकर एक प्रकार का "आघूर्ण बल" लगा सकता है (क्षेत्र इलेक्ट्रॉन के आंतरिक चुंबकीय द्विध्रुवीय आघूर्ण पर कार्य करता है-निम्न अनुभाग देखें)। इसका परिणाम यह होता है कि स्पिन वेक्टर उत्कृष्ट घूर्णाक्षस्थापी की तरह ही [[ अग्रगमन |अग्रगमन]] से विगत है। इस घटना को [[ इलेक्ट्रॉन स्पिन अनुनाद |इलेक्ट्रॉन स्पिन प्रतिध्वनि]] (ईएसआर) के रूप में जाना जाता है। परमाणु नाभिक में प्रोटॉन के समतुल्य व्यवहार का उपयोग परमाणु चुंबकीय प्रतिध्वनि (एनएमआर) स्पेक्ट्रमदर्शी और प्रतिबिम्बन में किया जाता है।


गणितीय रूप से, क्वांटम-यांत्रिकी स्पिन अवस्थाओ को वेक्टर-जैसी वस्तुओं द्वारा वर्णित किया जाता है जिन्हें स्पिनर कहा जाता है। निर्देशांक घूर्णन के अंतर्गत स्पिनरों और वेक्टरों के व्यवहार के बीच सूक्ष्म अंतर हैं। उदाहरण के लिए, स्पिन के घूर्णन-{{sfrac|1|2}} 360° का कण इसे उसी क्वांटम अवस्था में वापस नहीं लाता है, बल्कि विपरीत क्वांटम प्रावस्था (तरंगों) वाली अवस्था में लाता है; सिद्धांत रूप में, व्यतिकरण (तरंग प्रसार) प्रयोगों के साथ यह पता लगाने योग्य है। कण को ​​​​उसकी यथावत् मूल स्थिति में वापस लाने के लिए, 720 ° घूर्णन की आवश्यकता होती है। ([[ प्लेट ट्रिक ]] और मॉबियस स्ट्रिप गैर-क्वांटम उपमाएं देते हैं।) यहां तक ​​कि आघूर्ण बल अनुप्रयुक्त होने के बाद भी, एक स्पिन-शून्य कण में केवल एक क्वांटम स्थिति हो सकती है। एक स्पिन-2 कण को ​​180° पर घुमाकर वापस उसी क्वांटम अवस्था में लाया जा सकता है, और एक स्पिन-4 कण को ​​90° घुमाकर उसी क्वांटम अवस्था में वापस लाया जा सकता है। स्पिन-2 कण एक सीधी छड़ी के समान हो सकता है जो 180° घुमाए जाने के बाद भी वही दिखता है, और स्पिन-0 कण को ​​वृत के रूप में कल्पना की जा सकती है, जो किसी भी कोण से स्पिन के बाद समान दिखता है।
गणितीय रूप से, क्वांटम-यांत्रिकी स्पिन अवस्थाओ को वेक्टर-जैसी वस्तुओं द्वारा वर्णित किया जाता है जिन्हें स्पिनर कहा जाता है। निर्देशांक घूर्णन के अंतर्गत स्पिनरों और वेक्टरों के व्यवहार के बीच सूक्ष्म अंतर हैं। उदाहरण के लिए, स्पिन के घूर्णन-{{sfrac|1|2}} 360° का कण इसे उसी क्वांटम अवस्था में वापस नहीं लाता है, बल्कि विपरीत क्वांटम प्रावस्था (तरंगों) वाली अवस्था में लाता है; सिद्धांत रूप में, व्यतिकरण (तरंग प्रसार) प्रयोगों के साथ यह पता लगाने योग्य है। कण को ​​​​उसकी यथावत् मूल स्थिति में वापस लाने के लिए, 720 ° घूर्णन की आवश्यकता होती है। ([[ प्लेट ट्रिक | प्लेट ट्रिक]] और मॉबियस स्ट्रिप गैर-क्वांटम उपमाएं देते हैं।) यहां तक ​​कि आघूर्ण बल अनुप्रयुक्त होने के बाद भी, एक स्पिन-शून्य कण में केवल एक क्वांटम स्थिति हो सकती है। एक स्पिन-2 कण को ​​180° पर घुमाकर वापस उसी क्वांटम अवस्था में लाया जा सकता है, और एक स्पिन-4 कण को ​​90° घुमाकर उसी क्वांटम अवस्था में वापस लाया जा सकता है। स्पिन-2 कण एक सीधी छड़ी के समान हो सकता है जो 180° घुमाए जाने के बाद भी वही दिखता है, और स्पिन-0 कण को ​​वृत के रूप में कल्पना की जा सकती है, जो किसी भी कोण से स्पिन के बाद समान दिखता है।


== गणितीय सूत्रीकरण ==
== गणितीय सूत्रीकरण ==
Line 96: Line 96:


: <math>\left[\hat S_j, \hat S_k\right] = i \hbar \varepsilon_{jkl} \hat S_l,</math>
: <math>\left[\hat S_j, \hat S_k\right] = i \hbar \varepsilon_{jkl} \hat S_l,</math>
जहां पर {{mvar|ε<sub>jkl</sub>}} [[ लेवी-Civita प्रतीक | लेवी-सिविटा प्रतीक]] है। यह (कोणीय संवेग के साथ) इस प्रकार है कि   <math>\hat S^2</math> और <math>\hat S_z</math> [[ eigenvectors | आइजन्वेक्टर]] के (कुल {{mvar|S}} [[ आधार (रैखिक बीजगणित) | आधार (रैखिक बीजगणित) में केट संकेतन के रूप में व्यक्त किया गया]] ) हैं
जहां पर {{mvar|ε<sub>jkl</sub>}} [[ लेवी-Civita प्रतीक |लेवी-सिविटा प्रतीक]] है। यह (कोणीय संवेग के साथ) इस प्रकार है कि <math>\hat S^2</math> और <math>\hat S_z</math> [[ eigenvectors |आइजन्वेक्टर]] के (कुल {{mvar|S}} [[ आधार (रैखिक बीजगणित) |आधार (रैखिक बीजगणित) में केट संकेतन के रूप में व्यक्त किया गया]] ) हैं


: <math>\begin{align}
: <math>\begin{align}
Line 107: Line 107:
जहां पर <math>\hat S_\pm = \hat S_x \pm i \hat S_y</math>.
जहां पर <math>\hat S_\pm = \hat S_x \pm i \hat S_y</math>.


लेकिन कक्षीय कोणीय संवेग के विपरीत, आइजन्वेक्टर [[ गोलाकार हार्मोनिक्स | परिपत्र समरूप]] नहीं हैं। वे {{mvar|θ}} और {{mvar|φ}} के फलन नहीं है। {{mvar|s}} और {{mvar|m<sub>s</sub>}} अर्ध-पूर्णांक मानों को बाहर करने का भी कोई कारण नहीं है।
लेकिन कक्षीय कोणीय संवेग के विपरीत, आइजन्वेक्टर [[ गोलाकार हार्मोनिक्स |परिपत्र समरूप]] नहीं हैं। वे {{mvar|θ}} और {{mvar|φ}} के फलन नहीं है। {{mvar|s}} और {{mvar|m<sub>s</sub>}} अर्ध-पूर्णांक मानों को बाहर करने का भी कोई कारण नहीं है।


सभी क्वांटम-यांत्रिकी कणों में एक आंतरिक स्पिन <math>s</math> होती है (हालांकि यह मान शून्य के समान हो सकता है)। स्पिन का प्रक्षेपण <math>s</math> किसी भी अक्ष पर कम हुई प्लैंक स्थिरांक की इकाइयों में मात्रा निर्धारित की जाती है, जैसे कि कण का अवस्था फलन है, कहते हैं, नहीं <math>\psi=\psi(\vec r)</math>, लेकिन <math>\psi=\psi(\vec r,s_z)</math>, जहां पर <math>s_z</math> निम्नलिखित असतत समूह के केवल मान ले सकते हैं:
सभी क्वांटम-यांत्रिकी कणों में एक आंतरिक स्पिन <math>s</math> होती है (हालांकि यह मान शून्य के समान हो सकता है)। स्पिन का प्रक्षेपण <math>s</math> किसी भी अक्ष पर कम हुई प्लैंक स्थिरांक की इकाइयों में मात्रा निर्धारित की जाती है, जैसे कि कण का अवस्था फलन है, कहते हैं, नहीं <math>\psi=\psi(\vec r)</math>, लेकिन <math>\psi=\psi(\vec r,s_z)</math>, जहां पर निम्नलिखित असतत समूह <math>s_z</math>के केवल मान ले सकते हैं:


: <math>s_z \in \{-s\hbar, -(s - 1)\hbar, \cdots, +(s - 1)\hbar, +s\hbar\}.</math>
: <math>s_z \in \{-s\hbar, -(s - 1)\hbar, \cdots, +(s - 1)\hbar, +s\hbar\}.</math>
एक [[ बोसॉन ]] (पूर्णांक स्पिन) और फ़र्मियन (अर्ध-पूर्णांक स्पिन) को अलग करता है। पारस्परिक प्रभाव प्रक्रियाओं में संरक्षित कुल कोणीय संवेग तब कक्षीय कोणीय संवेग और स्पिन का योग है।
एक [[ बोसॉन |बोसॉन]] (पूर्णांक स्पिन) और फ़र्मियन (अर्ध-पूर्णांक स्पिन) को अलग करता है। पारस्परिक प्रभाव प्रक्रियाओं में संरक्षित कुल कोणीय संवेग तब कक्षीय कोणीय संवेग और स्पिन का योग है।


=== पाउली आव्यूह (मेट्रिसेस) ===
=== पाउली आव्यूह (मेट्रिसेस) ===
{{main|पाउली आव्यूह}}
{{main|पाउली आव्यूह}}
संचालिका (भौतिकी) क्वांटम यांत्रिकी में संचालिका स्पिन से जुड़े क्वांटम-यांत्रिकी संचालिका-{{sfrac|1|2}} [[ अवलोकनीय ]] हैं
संचालिका (भौतिकी) क्वांटम यांत्रिकी में संचालिका स्पिन से जुड़े क्वांटम-यांत्रिकी संचालिका-{{sfrac|1|2}} [[ अवलोकनीय |अवलोकनीय]] हैं


: <math>\hat{\mathbf{S}} = \frac{\hbar}{2} \boldsymbol{\sigma},</math>
: <math>\hat{\mathbf{S}} = \frac{\hbar}{2} \boldsymbol{\sigma},</math>
Line 122: Line 122:


: <math>S_x = \frac{\hbar}{2} \sigma_x, \quad S_y = \frac{\hbar}{2} \sigma_y, \quad S_z = \frac{\hbar}{2} \sigma_z.</math>
: <math>S_x = \frac{\hbar}{2} \sigma_x, \quad S_y = \frac{\hbar}{2} \sigma_y, \quad S_z = \frac{\hbar}{2} \sigma_z.</math>
स्पिन के विशेष स्थिति के लिए-{{sfrac|1|2}} कण, {{mvar|σ<sub>x</sub>}}, {{mvar|σ<sub>y</sub>}} और {{mvar|σ<sub>z</sub>}} तीन [[ पॉल मैट्रिसेस | पाउली आव्यूह]] हैं:
स्पिन के विशेष स्थिति के लिए-{{sfrac|1|2}} कण, {{mvar|σ<sub>x</sub>}}, {{mvar|σ<sub>y</sub>}} और {{mvar|σ<sub>z</sub>}} तीन [[ पॉल मैट्रिसेस |पाउली आव्यूह]] हैं:


:<math>
:<math>
Line 144: Line 144:
===पाउली अपवर्जन सिद्धांत    ===
===पाउली अपवर्जन सिद्धांत    ===


{{mvar|N}} समान कणों की प्रणालियों के लिए यह पाउली अपवर्जन सिद्धांत से संबंधित है, जो बताता है कि इसकी [[ तरंग क्रिया ]] <math>\psi(\mathbf r_1, \sigma_1, \dots, \mathbf r_N, \sigma_N)</math> किन्हीं दो {{mvar|N}} कणों के रूप में परस्पर विनिमय पर परिवर्तित करना चाहिए   
{{mvar|N}} समान कणों की प्रणालियों के लिए यह पाउली अपवर्जन सिद्धांत से संबंधित है, जो बताता है कि इसकी [[ तरंग क्रिया |तरंग क्रिया]] <math>\psi(\mathbf r_1, \sigma_1, \dots, \mathbf r_N, \sigma_N)</math> किन्हीं दो {{mvar|N}} कणों के रूप में परस्पर विनिमय पर परिवर्तित करना चाहिए   


: <math>\psi(\dots, \mathbf r_i, \sigma_i, \dots, \mathbf r_j, \sigma_j, \dots ) =
: <math>\psi(\dots, \mathbf r_i, \sigma_i, \dots, \mathbf r_j, \sigma_j, \dots ) =
  (-1)^{2s} \psi(\dots, \mathbf r_j, \sigma_j, \dots, \mathbf r_i, \sigma_i, \dots).</math>
  (-1)^{2s} \psi(\dots, \mathbf r_j, \sigma_j, \dots, \mathbf r_i, \sigma_i, \dots).</math>
इस प्रकार, बोसोन पूर्व-कारक के लिए {{math|(−1)<sup>2''s''</sup>}} घटकर +1 हो जाएगा, फ़र्मियन के लिए -1 हो जाएगा। क्वांटम यांत्रिकी में सभी कण या तो बोसोन या फ़र्मियन होते हैं। कुछ अव्यवहार्य सापेक्षतावादी क्वांटम क्षेत्र सिद्धांतों में [[ सुपरसिमेट्री | अतिसममित]] कण भी सम्मिलित हैं, जहां बोसोनिक और फर्मीओनिक घटकों के रैखिक संयोजन दिखाई देते हैं। दो आयामों में, पूर्व-कारक {{math|(−1)<sup>2''s''</sup>}} 1 परिमाण की किसी भी जटिल संख्या द्वारा प्रतिस्थापित किया जा सकता है जैसे कि किसी में भी।
इस प्रकार, बोसोन पूर्व-कारक के लिए {{math|(−1)<sup>2''s''</sup>}} घटकर +1 हो जाएगा, फ़र्मियन के लिए -1 हो जाएगा। क्वांटम यांत्रिकी में सभी कण या तो बोसोन या फ़र्मियन होते हैं। कुछ अव्यवहार्य सापेक्षतावादी क्वांटम क्षेत्र सिद्धांतों में [[ सुपरसिमेट्री |अतिसममित]] कण भी सम्मिलित हैं, जहां बोसोनिक और फर्मीओनिक घटकों के रैखिक संयोजन दिखाई देते हैं। दो आयामों में, पूर्व-कारक {{math|(−1)<sup>2''s''</sup>}} 1 परिमाण की किसी भी जटिल संख्या द्वारा प्रतिस्थापित किया जा सकता है जैसे कि किसी में भी।
   
   
{{mvar|N}}-कण अवस्था फलन के लिए उपरोक्त क्रमचय अभिधारणा का दैनिक जीवन में सबसे महत्वपूर्ण परिणाम होते हैं, उदा रासायनिक तत्वों की [[ आवर्त सारणी ]]।
{{mvar|N}}-कण अवस्था फलन के लिए उपरोक्त क्रमचय अभिधारणा का दैनिक जीवन में सबसे महत्वपूर्ण परिणाम होते हैं, उदा रासायनिक तत्वों की [[ आवर्त सारणी |आवर्त सारणी]] ।


=== घूर्णन ===
=== घूर्णन ===


{{see also|क्वांटम यांत्रिकी में समरूपता}}
{{see also|क्वांटम यांत्रिकी में समरूपता}}
जैसा कि ऊपर वर्णित है, क्वांटम यांत्रिकी में कहा गया है कि किसी भी दिशा में मापा गया कोणीय संवेग का स्थानिक वेक्टर केवल कई असतत मान ले सकता है। कण के स्पिन का सबसे सुविधाजनक क्वांटम-यांत्रिकी विवरण इसलिए एक दिए गए अक्ष पर अपने आंतरिक कोणीय संवेग के प्रक्षेपण के दिए गए मान को खोजने के आयामों के अनुरूप जटिल संख्याओं के एक समूह के साथ है। उदाहरण के लिए, स्पिन के लिए-{{sfrac|1|2}} कण, हमें दो संख्याओ {{math|''a''<sub>±1/2</sub>}} की आवश्यकता होगी, समान कोणीय संवेग के प्रक्षेपण के साथ इसे खोजने का आयाम दे रहा है {{math|+{{sfrac|''ħ''|2}}}} और {{math|−{{sfrac|''ħ''|2}}}}, आवश्यकता को पूरा करना
जैसा कि ऊपर वर्णित है, क्वांटम यांत्रिकी में कहा गया है कि किसी भी दिशा में मापा गया कोणीय संवेग का स्थानिक वेक्टर केवल कई असतत मान ले सकता है। कण के स्पिन का सबसे सुविधाजनक क्वांटम-यांत्रिकी विवरण इसलिए एक दिए गए अक्ष पर अपने आंतरिक कोणीय संवेग के प्रक्षेपण के दिए गए मान को खोजने के आयामों के अनुरूप जटिल संख्याओं के एक समूह के साथ है। उदाहरण के लिए, स्पिन के लिए-{{sfrac|1|2}} कण, हमें दो संख्याओ {{math|''a''<sub>±1/2</sub>}} की आवश्यकता होगी, समान कोणीय संवेग के प्रक्षेपण के साथ इसे खोजने का आयाम दे रहा है {{math|+{{sfrac|''ħ''|2}}}} और {{math|−{{sfrac|''ħ''|2}}}}, आवश्यकता को पूरा करना


: <math>|a_{+1/2}|^2 + |a_{-1/2}|^2 = 1.</math>
: <math>|a_{+1/2}|^2 + |a_{-1/2}|^2 = 1.</math>
स्पिन {{mvar|s}} के साथ एक सामान्य कण के लिए , हमे {{math|2''s'' + 1}} ऐसे पैरामीटरकी आवश्यकता होगी। चूँकि ये संख्याएँ अक्ष के चयन पर निर्भर करती हैं, इसलिए जब इस अक्ष को घुमाया जाता है तो वे गैर-नगण्यतापूर्वक रूप से एक दूसरे में परिवर्तित हो जाती हैं। यह स्पष्ट है कि परिवर्तन सिद्धांत रैखिक होना चाहिए, इसलिए हम प्रत्येक घूर्णन के साथ एक आव्यूह को जोड़कर इसका प्रतिनिधित्व कर सकते हैं, और घूर्णन ए और बी के अनुरूप दो रूपांतरण आव्यूह का उत्पाद घूर्णन का प्रतिनिधित्व करने वाले आव्यूह के समान (प्रावस्था तक) होना चाहिए। AB इसके अतिरिक्त, घूर्णन क्वांटम-यांत्रिकी आंतरिक उत्पाद को संरक्षित करते हैं, और इसलिए हमारे परिवर्तन आव्यूह भी होने चाहिए:
स्पिन {{mvar|s}} के साथ एक सामान्य कण के लिए , हमे {{math|2''s'' + 1}} ऐसे पैरामीटरकी आवश्यकता होगी। चूँकि ये संख्याएँ अक्ष के चयन पर निर्भर करती हैं, इसलिए जब इस अक्ष को घुमाया जाता है तो वे गैर-नगण्यतापूर्वक रूप से एक दूसरे में परिवर्तित हो जाती हैं। यह स्पष्ट है कि परिवर्तन सिद्धांत रैखिक होना चाहिए, इसलिए हम प्रत्येक घूर्णन के साथ एक आव्यूह को जोड़कर इसका प्रतिनिधित्व कर सकते हैं, और घूर्णन ए और बी के अनुरूप दो रूपांतरण आव्यूह का उत्पाद घूर्णन का प्रतिनिधित्व करने वाले आव्यूह के समान (प्रावस्था तक) होना चाहिए। AB इसके अतिरिक्त, घूर्णन क्वांटम-यांत्रिकी आंतरिक उत्पाद को संरक्षित करते हैं, और इसलिए हमारे परिवर्तन आव्यूह भी होने चाहिए:


: <math>
: <math>
Line 166: Line 166:
  \sum_{n=-j}^j \sum_{k=-j}^j U_{np}^* U_{kq} = \delta_{pq}.
  \sum_{n=-j}^j \sum_{k=-j}^j U_{np}^* U_{kq} = \delta_{pq}.
</math>
</math>
गणितीय रूप से बोलते हुए, ये आव्यूह घूर्णन समूह SO(3) का एक एकात्मक प्रक्षेपीय प्रतिनिधित्व प्रस्तुत करते हैं। ऐसा प्रत्येक प्रतिनिधित्व SO(3) के आच्छादन समूह के प्रतिनिधित्व से अनुरूप है, जो [[ SU(2) ]] है।<ref>{{cite book
गणितीय रूप से बोलते हुए, ये आव्यूह घूर्णन समूह SO(3) का एक एकात्मक प्रक्षेपीय प्रतिनिधित्व प्रस्तुत करते हैं। ऐसा प्रत्येक प्रतिनिधित्व SO(3) के आच्छादन समूह के प्रतिनिधित्व से अनुरूप है, जो [[ SU(2) |SU(2)]] है।<ref>{{cite book
  |author=B. C. Hall
  |author=B. C. Hall
  |title=गणितज्ञों के लिए क्वांटम थ्योरी|publisher=Springer
  |title=गणितज्ञों के लिए क्वांटम थ्योरी|publisher=Springer
  |pages=354–358
  |pages=354–358
  |year=2013
  |year=2013
}}</ref> प्रत्येक आयाम कर लिए[[ SU(2) |SU(2)]] एक {{mvar|n}} आयाम अपरिवर्तनीय प्रतिनिधित्व है, हालांकि यह प्रतिनिधित्व विषम {{mvar|n}} के लिए {{mvar|n}} आयामी वास्तविक है और सम {{mvar|n}} के लिए आयामी सम्मिश्र {{mvar|n}} (इसलिए वास्तविक आयाम {{math|2''n''}}) है। सामान्य वेक्टर के साथ <math display="inline">\hat{\boldsymbol{\theta}}</math> के साथ समतल में कोण θ द्वारा घूर्णन के लिए,
}}</ref> प्रत्येक आयाम कर लिए[[ SU(2) |SU(2)]] एक {{mvar|n}} आयाम अपरिवर्तनीय प्रतिनिधित्व है, हालांकि यह प्रतिनिधित्व विषम {{mvar|n}} के लिए {{mvar|n}} आयामी वास्तविक है और सम {{mvar|n}} के लिए आयामी सम्मिश्र {{mvar|n}} (इसलिए वास्तविक आयाम {{math|2''n''}}) है। सामान्य वेक्टर के साथ <math display="inline">\hat{\boldsymbol{\theta}}</math> के साथ समतल में कोण θ द्वारा घूर्णन के लिए,


: <math>U = e^{-\frac{i}{\hbar} \boldsymbol{\theta} \cdot \mathbf{S}},</math>
: <math>U = e^{-\frac{i}{\hbar} \boldsymbol{\theta} \cdot \mathbf{S}},</math>
Line 205: Line 205:


: <math>d^s_{m'm}(\beta) = \langle sm' | e^{-i\beta s_y} | sm \rangle</math>
: <math>d^s_{m'm}(\beta) = \langle sm' | e^{-i\beta s_y} | sm \rangle</math>
विग्नर का छोटा डी-आव्यूह है ध्यान दें कि के लिए {{math|1=''γ'' = 2π}} और {{math|1=''α'' = ''β'' = 0}}; अर्थात, के बारे में एक पूर्ण घूर्णन {{mvar|z}}अक्ष, विग्नेर डी-आव्यूह तत्व बन जाते हैं
विग्नर का छोटा डी-आव्यूह है ध्यान दें कि के लिए {{math|1=''γ'' = 2π}} और {{math|1=''α'' = ''β'' = 0}}; अर्थात, के बारे में एक पूर्ण घूर्णन {{mvar|z}} अक्ष, विग्नेर डी-आव्यूह तत्व बन जाते हैं


: <math>D^s_{m'm}(0, 0, 2\pi) = d^s_{m'm}(0) e^{-i m 2 \pi} = \delta_{m'm} (-1)^{2m}.</math>
: <math>D^s_{m'm}(0, 0, 2\pi) = d^s_{m'm}(0) e^{-i m 2 \pi} = \delta_{m'm} (-1)^{2m}.</math>
यह स्मरण करते हुए कि एक सामान्य स्पिन स्थिति को निश्चित {{mvar|m}} वाले अवस्थाओ के अध्यारोपण के रूप में लिखा जा सकता है , हम देखते हैं कि यदि {{mvar|s}} एक पूर्णांक है, तो {{mvar|m}} के मान सभी पूर्णांक हैं, और यह आव्यूह पहचान संचालिका से अनुरूप होती है। हालांकि, यदि {{mvar|s}} एक आधा पूर्णांक है, तो {{mvar|m}} के मान सभी अर्ध-पूर्णांक हैं, जिसमे सभी {{mvar|m}} के लिए {{math|1=(−1)<sup>2''m''</sup> = −1}} मिलता है , और इसलिए 2{{pi}} द्वारा घुमाने पर स्थिति एक ऋण चिह्न चयन करती है। यह तथ्य स्पिन-सांख्यिकी प्रमेय के प्रमाण का एक महत्वपूर्ण तत्व है।
यह स्मरण करते हुए कि एक सामान्य स्पिन स्थिति को निश्चित {{mvar|m}} वाले अवस्थाओ के अध्यारोपण के रूप में लिखा जा सकता है , हम देखते हैं कि यदि {{mvar|s}} एक पूर्णांक है, तो {{mvar|m}} के मान सभी पूर्णांक हैं, और यह आव्यूह पहचान संचालिका से अनुरूप होती है। हालांकि, यदि {{mvar|s}} एक आधा पूर्णांक है, तो {{mvar|m}} के मान सभी अर्ध-पूर्णांक हैं, जिसमे सभी {{mvar|m}} के लिए {{math|1=(−1)<sup>2''m''</sup> = −1}} मिलता है , और इसलिए 2{{pi}} द्वारा घुमाने पर स्थिति एक ऋण चिह्न चयन करती है। यह तथ्य स्पिन-सांख्यिकी प्रमेय के प्रमाण का एक महत्वपूर्ण तत्व है।


=== लोरेंत्ज़ परिवर्तन ===
=== लोरेंत्ज़ परिवर्तन ===
हम सामान्य लोरेन्ट्ज़ परिवर्तनों के अंतर्गत स्पिन के व्यवहार को निर्धारित करने के लिए एक ही दृष्टिकोण का प्रयास कर सकते हैं, लेकिन हम तुरंत एक बड़ी बाधा खोज लेंगे। SO(3) के विपरीत, [[ लोरेंत्ज़ परिवर्तन | लोरेंत्ज़ परिवर्तनो]] का [[ कॉम्पैक्ट समूह |समूह]] SO (3,1)   असंहत है और इसलिए इसमें कोई विश्वसनीय, एकात्मक, परिमित-आयामी प्रतिनिधित्व नहीं है।
हम सामान्य लोरेन्ट्ज़ परिवर्तनों के अंतर्गत स्पिन के व्यवहार को निर्धारित करने के लिए एक ही दृष्टिकोण का प्रयास कर सकते हैं, लेकिन हम तुरंत एक बड़ी बाधा खोज लेंगे। SO(3) के विपरीत, [[ लोरेंत्ज़ परिवर्तन |लोरेंत्ज़ परिवर्तनो]] का [[ कॉम्पैक्ट समूह |समूह]] SO (3,1) असंहत है और इसलिए इसमें कोई विश्वसनीय, एकात्मक, परिमित-आयामी प्रतिनिधित्व नहीं है।


स्पिन के स्थिति में-{{sfrac|1|2}} कण, एक निर्माण को खोजना संभव है जिसमें परिमित-आयामी प्रतिनिधित्व और एक अदिश उत्पाद सम्मिलित है जो इस प्रतिनिधित्व द्वारा संरक्षित है। हम प्रत्येक कण के साथ एक 4-घटक डायराक स्पिनर {{mvar|ψ}} को संबद्ध करते हैं । ये स्पिनर सिद्धांत के अनुसार लोरेंत्ज़ परिवर्तनों के अंतर्गत रूपांतरित होते हैं
स्पिन के स्थिति में-{{sfrac|1|2}} कण, एक निर्माण को खोजना संभव है जिसमें परिमित-आयामी प्रतिनिधित्व और एक अदिश उत्पाद सम्मिलित है जो इस प्रतिनिधित्व द्वारा संरक्षित है। हम प्रत्येक कण के साथ एक 4-घटक डायराक स्पिनर {{mvar|ψ}} को संबद्ध करते हैं । ये स्पिनर सिद्धांत के अनुसार लोरेंत्ज़ परिवर्तनों के अंतर्गत रूपांतरित होते हैं


: <math>\psi' = \exp{\left(\tfrac{1}{8} \omega_{\mu\nu} [\gamma_{\mu}, \gamma_{\nu}]\right)} \psi,</math>
: <math>\psi' = \exp{\left(\tfrac{1}{8} \omega_{\mu\nu} [\gamma_{\mu}, \gamma_{\nu}]\right)} \psi,</math>
जहां पर {{mvar|γ<sub>ν</sub>}} [[ गामा मैट्रिक्स | गामा आव्यूह]] हैं, और {{mvar|ω<sub>μν</sub>}} एक प्रतिसममित 4 × 4 आव्यूह है जो परिवर्तन को प्राचलीकरण कर रहा है। यह दिखाया जा सकता है कि अदिश उत्पाद
जहां पर {{mvar|γ<sub>ν</sub>}} [[ गामा मैट्रिक्स |गामा आव्यूह]] हैं, और {{mvar|ω<sub>μν</sub>}} एक प्रतिसममित 4 × 4 आव्यूह है जो परिवर्तन को प्राचलीकरण कर रहा है। यह दिखाया जा सकता है कि अदिश उत्पाद


: <math>\langle\psi|\phi\rangle = \bar{\psi}\phi = \psi^\dagger \gamma_0 \phi</math>
: <math>\langle\psi|\phi\rangle = \bar{\psi}\phi = \psi^\dagger \gamma_0 \phi</math>
संरक्षित है। हालाँकि, यह सकारात्मक-निश्चित नहीं है, इसलिए प्रतिनिधित्व एकात्मक नहीं है।
संरक्षित है। हालाँकि, यह सकारात्मक-निश्चित नहीं है, इसलिए प्रतिनिधित्व एकात्मक नहीं है।


=== {{mvar|x}}, {{mvar|y}}, या {{mvar|z}} अक्षों के साथ स्पिन का मापन ===
=== {{mvar|x}}, {{mvar|y}}, या {{mvar|z}} अक्षों के साथ स्पिन का मापन ===
स्पिन के प्रत्येक ([[ हर्मिटियन मैट्रिक्स | हर्मिटियन आव्यूह]] ) पाउली आव्यूह-{{sfrac|1|2}} कणों के दो [[ eigenvalues |इगन-मूल्य]] ​​​​ +1 और -1 हैं, संबंधित [[ सामान्यीकृत तरंग समारोह | सामान्यीकृत]] आइजन्वेक्टर हैं
स्पिन के प्रत्येक ([[ हर्मिटियन मैट्रिक्स | हर्मिटियन आव्यूह]] ) पाउली आव्यूह-{{sfrac|1|2}} कणों के दो [[ eigenvalues |इगन-मूल्य]] ​​​​ +1 और -1 हैं, संबंधित [[ सामान्यीकृत तरंग समारोह |सामान्यीकृत]] आइजन्वेक्टर हैं


: <math>\begin{array}{lclc}
: <math>\begin{array}{lclc}
Line 238: Line 238:
     \begin{pmatrix}{0}\\{1}\end{pmatrix}.
     \begin{pmatrix}{0}\\{1}\end{pmatrix}.
\end{array}</math>
\end{array}</math>
(चूँकि किसी स्थिरांक से गुणा किया गया कोई भी आइजन्वेक्टर अभी भी एक आइजन्वेक्टर है, मिश्रित संकेत के बारे में अस्पष्टता है। इस लेख में, संकेत अस्पष्टता होने पर पहले तत्व को काल्पनिक और नकारात्मक बनाने के लिए संकेत को चुना गया है। वर्तमान संकेत द्वारा उपयोग किया जाता है। [[ SymPy ]] जैसे सॉफ्टवेयर; जबकि कई भौतिकी पाठ्यपुस्तकें, जैसे सकुराई और ग्रिफिथ्स, इसे वास्तविक और सकारात्मक बनाना अपेक्षाकृत अधिक पसंद करती हैं।)
(चूँकि किसी स्थिरांक से गुणा किया गया कोई भी आइजन्वेक्टर अभी भी एक आइजन्वेक्टर है, मिश्रित संकेत के बारे में अस्पष्टता है। इस लेख में, संकेत अस्पष्टता होने पर पहले तत्व को काल्पनिक और नकारात्मक बनाने के लिए संकेत को चुना गया है। वर्तमान संकेत द्वारा उपयोग किया जाता है। [[ SymPy |SymPy]] जैसे सॉफ्टवेयर; जबकि कई भौतिकी पाठ्यपुस्तकें, जैसे सकुराई और ग्रिफिथ्स, इसे वास्तविक और सकारात्मक बनाना अपेक्षाकृत अधिक पसंद करती हैं।)


क्वांटम यांत्रिकी के अभिधारणाओं द्वारा {{mvar|x}}, {{mvar|y}}, या {{mvar|z}}अक्ष केवल संबंधित स्पिन संचालिका का एक आइगेनमान उत्पन्न कर सकता है ({{mvar|S<sub>x</sub>}}, {{mvar|S<sub>y</sub>}} या {{mvar|S<sub>z</sub>}}) उस धुरी पर, अर्थात {{math|{{sfrac|''ħ''|2}}}} या {{math|–{{sfrac|''ħ''|2}}}}. एक कण की क्वांटम स्थिति (स्पिन के संबंध में), दो-घटक स्पिनर द्वारा प्रदर्शित की जा सकती है:
क्वांटम यांत्रिकी के अभिधारणाओं द्वारा {{mvar|x}}, {{mvar|y}}, या {{mvar|z}}अक्ष केवल संबंधित स्पिन संचालिका का एक आइगेनमान उत्पन्न कर सकता ({{mvar|S<sub>x</sub>}}, {{mvar|S<sub>y</sub>}} या {{mvar|S<sub>z</sub>}}) है उस धुरी पर, अर्थात {{math|{{sfrac|''ħ''|2}}}} या {{math|–{{sfrac|''ħ''|2}}}}. एक कण की क्वांटम स्थिति (स्पिन के संबंध में), दो-घटक स्पिनर द्वारा प्रदर्शित की जा सकती है:


: <math>\psi = \begin{pmatrix} a + bi \\ c + di \end{pmatrix}.</math>
: <math>\psi = \begin{pmatrix} a + bi \\ c + di \end{pmatrix}.</math>
जब इस कण के स्पिन को किसी दिए गए अक्ष के संबंध में मापा जाता है (इस उदाहरण में, {{mvar|x}}अक्ष), संभावना है कि इसके स्पिन को मापा जाएगा {{math|{{sfrac|''ħ''|2}}}} बस है <math>\big|\langle \psi_{x+}|\psi\rangle\big|^2</math>. तदनुसार, संभावना है कि इसके स्पिन को मापा जाएगा {{math|–{{sfrac|''ħ''|2}}}} बस है <math>\big|\langle\psi_{x-}|\psi\rangle\big|^2</math>. माप के बाद, कण [[ वेवफंक्शन पतन ]] स्पिन स्थिति संबंधित ईजेनस्टेट में गिर जाती है। परिणामस्वरूप, यदि किसी दिए गए अक्ष के साथ कण के स्पिन को एक दिए गए ईजेनवेल्यू के लिए मापा गया है, तो सभी मापों से एक ही आइगेनवेल्यू निकलेगा (चूंकि <math>\big|\langle\psi_{x+}|\psi_{x+}\rangle\big|^2 = 1</math>, आदि), बशर्ते कि स्पिन का कोई माप अन्य अक्षों के साथ न किया जाए।
जब इस कण के स्पिन को किसी दिए गए अक्ष के संबंध में मापा जाता है (इस उदाहरण में, {{mvar|x}}अक्ष), संभावना है कि इसके स्पिन को मापा जाएगा {{math|{{sfrac|''ħ''|2}}}} पूर्णतः <math>\big|\langle \psi_{x+}|\psi\rangle\big|^2</math>है तदनुसार, संभावना है कि इसके स्पिन को मापा जाएगा {{math|–{{sfrac|''ħ''|2}}}} पूर्णतः <math>\big|\langle\psi_{x-}|\psi\rangle\big|^2</math> माप के बाद, कण की स्पिन स्थिति संबंधित ईजेनअवस्था में समाप्त हो जाती है। परिणामस्वरूप, यदि किसी दिए गए अक्ष के साथ कण के स्पिन को एक दिए गए ईजेनमान के लिए मापा गया है, तो सभी मापों से एक ही आइगेनमान निकलेगा (चूंकि <math>\big|\langle\psi_{x+}|\psi_{x+}\rangle\big|^2 = 1</math>, आदि), बशर्ते कि स्पिन का कोई माप अन्य अक्षों के साथ न किया जाए।


=== एक यादृच्छिक अक्ष के साथ स्पिन का माप ===
=== एक यादृच्छिक अक्ष के साथ स्पिन का माप ===
एक अनियंत्रित अक्ष दिशा के साथ स्पिन को मापने के लिए संचालिका पाउली स्पिन आव्यूह से आसानी से प्राप्त किया जाता है। होने देना {{math|''u'' {{=}} (''u<sub>x</sub>'', ''u<sub>y</sub>'', ''u<sub>z</sub>'')}} एक यादृच्छिक इकाई वेक्टर बनें। फिर इस दिशा में घुमाने के लिए संचालिका सरल है
एक अनियंत्रित अक्ष दिशा के साथ स्पिन को मापने के लिए संचालिका पाउली स्पिन आव्यूह से आसानी से प्राप्त किया जाता है। माना {{math|''u'' {{=}} (''u<sub>x</sub>'', ''u<sub>y</sub>'', ''u<sub>z</sub>'')}} एक यादृच्छिक इकाई वेक्टर हो। फिर इस दिशा में घुमाने के लिए संचालिका सरल है


: <math>S_u = \frac{\hbar}{2}(u_x \sigma_x + u_y \sigma_y + u_z \sigma_z).</math>
: <math>S_u = \frac{\hbar}{2}(u_x \sigma_x + u_y \sigma_y + u_z \sigma_z).</math>
संचालिका {{mvar|S<sub>u</sub>}} के आइगेनवैल्यू हैं {{math|±{{sfrac|''ħ''|2}}}}, सामान्य स्पिन मेट्रिसेस की तरह। एक यादृच्छिक दिशा में स्पिन के लिए संचालिका खोजने का यह तरीका उच्च स्पिन अवस्थाओ को सामान्यीकृत करता है, तीन के लिए तीन संचालिको के वेक्टर के साथ दिशा का डॉट उत्पाद लेता है {{mvar|x}}-, {{mvar|y}}-, {{mvar|z}}-अक्ष दिशाएँ।
संचालिका {{mvar|S<sub>u</sub>}} के आइगेनमान {{math|±{{sfrac|''ħ''|2}}}} हैं, सामान्य स्पिन आव्यूह की तरह एक यादृच्छिक दिशा में स्पिन के लिए संचालिका खोजने का यह तरीका उच्च स्पिन अवस्थाओ को सामान्यीकृत करता है, तीन {{mvar|x}}-, {{mvar|y}}-, {{mvar|z}}-अक्ष दिशाएँ के लिए तीन संचालिको के वेक्टर के साथ दिशा का डॉट उत्पाद लेता है।


स्पिन के लिए एक सामान्यीकृत स्पिनर-{{sfrac|1|2}} में {{math|(''u<sub>x</sub>'', ''u<sub>y</sub>'', ''u<sub>z</sub>'')}} दिशा (जो स्पिन नीचे को छोड़कर सभी स्पिन स्टेट्स के लिए काम करती है, जहां यह देगी {{sfrac|0|0}}) है
स्पिन के लिए एक सामान्यीकृत स्पिनर-{{sfrac|1|2}} में {{math|(''u<sub>x</sub>'', ''u<sub>y</sub>'', ''u<sub>z</sub>'')}} दिशा (जो स्पिन नीचे को छोड़कर सभी स्पिन स्थिति के लिए काम करती है, जहां यह देगी {{sfrac|0|0}}) है


: <math>\frac{1}{\sqrt{2 + 2u_z}} \begin{pmatrix} 1 + u_z \\ u_x + iu_y \end{pmatrix}.</math>
: <math>\frac{1}{\sqrt{2 + 2u_z}} \begin{pmatrix} 1 + u_z \\ u_x + iu_y \end{pmatrix}.</math>
उपरोक्त स्पिनर को सामान्य तरीके से विकर्ण करके प्राप्त किया जाता है {{mvar|σ<sub>u</sub>}} आव्यूह और eigenvalues ​​​​के अनुरूप eigenstates ढूँढना। क्वांटम यांत्रिकी में, वैक्टर को सामान्यीकृत कारक से गुणा करने पर सामान्यीकृत कहा जाता है, जिसके परिणामस्वरूप वेक्टर में एकता की लंबाई होती है।
उपरोक्त स्पिनर को सामान्य तरीके से विकर्ण करके प्राप्त किया जाता है {{mvar|σ<sub>u</sub>}} आव्यूह और आइगेनमान ​​​​के अनुरूप आइगेनस्थिति का पता लगाकर प्राप्त किया जाता है। क्वांटम यांत्रिकी में, वैक्टर को सामान्यीकृत कारक से गुणा करने पर सामान्यीकृत कहा जाता है, जिसके परिणामस्वरूप वेक्टर में एकता की लंबाई होती है।


=== स्पिन माप की संगतत ===
=== स्पिन माप की संगतता ===
चूंकि पाउली मेट्रिसेस [[ क्रमविनिमेयता ]] नहीं करते हैं, विभिन्न अक्षों के साथ स्पिन के माप असंगत हैं। इसका मतलब है कि यदि, उदाहरण के लिए, हम स्पिन को जानते हैं {{mvar|x}}धुरी, और फिर हम स्पिन को मापते हैं {{mvar|y}}धुरी, हमने अपने पिछले ज्ञान को अमान्य कर दिया है {{mvar|x}}धुरी स्पिन। इसे पाउली मेट्रिसेस के आइजन्वेक्टर (अर्थात् ईजेनस्टेट्स) के गुण से देखा जा सकता है कि
चूंकि पाउली आव्यूह [[ क्रमविनिमेयता |क्रमविनिमेयता]] नहीं करते हैं, विभिन्न अक्षों के साथ स्पिन के माप असंगत हैं। इसका तात्पर्य है कि यदि, उदाहरण के लिए, हम {{mvar|x}} अक्ष के साथ स्पिन को जानते हैं, और फिर हम {{mvar|y}} अक्ष स्पिन को मापते हैं, हमने {{mvar|x}} अक्ष स्पिन के अपने पिछले ज्ञान को अमान्य कर दिया है। इसे पाउली आव्यूह के आइजन्वेक्टर (अर्थात् आइगेनस्थिति) के गुण से देखा जा सकता है कि


: <math>\big| \langle \psi_{x\pm} | \psi_{y\pm} \rangle \big|^2 =
: <math>\big| \langle \psi_{x\pm} | \psi_{y\pm} \rangle \big|^2 =
  \big| \langle \psi_{x\pm} | \psi_{z\pm} \rangle \big|^2 =
  \big| \langle \psi_{x\pm} | \psi_{z\pm} \rangle \big|^2 =
  \big| \langle \psi_{y\pm} | \psi_{z\pm} \rangle \big|^2 = \tfrac{1}{2}.</math>
  \big| \langle \psi_{y\pm} | \psi_{z\pm} \rangle \big|^2 = \tfrac{1}{2}.</math>
तो जब [[ भौतिक विज्ञानी ]] एक कण के स्पिन को मापते हैं {{mvar|x}}अक्ष के रूप में, उदाहरण के लिए, {{math|{{sfrac|''ħ''|2}}}}, कण की स्पिन अवस्था वेवफंक्शन ईजेनस्टेट में गिर जाती है <math>|\psi_{x+}\rangle</math>. जब हम बाद में कण के स्पिन को मापते हैं {{mvar|y}}अक्ष, स्पिन स्थिति अब या तो ढह जाएगी <math>|\psi_{y+}\rangle</math> या <math>|\psi_{y-}\rangle</math>, प्रत्येक संभावना के साथ {{sfrac|1|2}}. आइए हम अपने उदाहरण में कहें कि हम मापते हैं {{math|−{{sfrac|''ħ''|2}}}}. अब जब हम कण के स्पिन को नापने के लिए लौटते हैं {{mvar|x}}अक्ष फिर से, संभावनाएँ जो हम मापेंगे {{math|{{sfrac|''ħ''|2}}}} या {{math|−{{sfrac|''ħ''|2}}}} प्रत्येक हैं {{sfrac|1|2}} (अर्थात वे हैं <math>\big| \langle \psi_{x+} | \psi_{y-} \rangle \big|^2</math> और <math>\big| \langle \psi_{x-} | \psi_{y-} \rangle \big|^2</math> क्रमश)इसका तात्पर्य है कि स्पिन के साथ मूल माप {{mvar|x}}अक्ष अब मान्य नहीं है, क्योंकि स्पिन साथ में है {{mvar|x}}अक्ष को अब समान प्रायिकता के साथ या तो eigenvalue के रूप में मापा जाएगा।
तो जब [[ भौतिक विज्ञानी |भौतिक विज्ञानी]] {{mvar|x}}[[ भौतिक विज्ञानी | अक्ष के रूप में]] एक कण के स्पिन को मापते हैं , उदाहरण के लिए, {{math|{{sfrac|''ħ''|2}}}}, कण की स्पिन अवस्था तरंग क्रिया आइगेनस्थिति में समाप्त हो जाती <math>|\psi_{x+}\rangle</math> है जब हम बाद में {{mvar|y}} अक्ष कण के स्पिन को मापते हैं, स्पिन स्थिति अब या तो <math>|\psi_{y+}\rangle</math> या <math>|\psi_{y-}\rangle</math>नष्ट हो जाएगी, प्रत्येक प्रायिकता के साथ {{sfrac|1|2}} आइए हम अपने उदाहरण में कहें कि हम मापते {{math|−{{sfrac|''ħ''|2}}}} हैं अब जब हम कण {{mvar|x}} अक्ष के स्पिन को नापने के लिए निर्वाचित हैं फिर से, प्रायिकता जो हम मापेंगे {{math|{{sfrac|''ħ''|2}}}} या {{math|−{{sfrac|''ħ''|2}}}} प्रत्येक {{sfrac|1|2}} (अर्थात वे क्रमश <math>\big| \langle \psi_{x+} | \psi_{y-} \rangle \big|^2</math> और <math>\big| \langle \psi_{x-} | \psi_{y-} \rangle \big|^2</math>)है। इसका तात्पर्य है कि स्पिन के साथ मूल माप {{mvar|x}}अक्ष अब मान्य नहीं है, क्योंकि {{mvar|x}}अक्ष के साथ स्पिन को अब समान प्रायिकता के साथ या तो आइगेनमान के रूप में मापा जाएगा।


=== उच्च स्पिन ===
=== उच्च स्पिन ===
{{See also|3D rotation group#A note on Lie algebras}}
{{See also|3D घूर्णन समूह#असत्य बीजगणित पर एक टिप्पणी}}
स्पिन-{{sfrac|1|2}} संचालिका {{math|'''S''' {{=}} {{sfrac|''ħ''|2}}'''σ'''}} SU(2)SU(2) के प्रतिनिधित्व सिद्धांत का [[ मौलिक प्रतिनिधित्व ]] करता है। इस प्रतिनिधित्व के क्रोनेकर उत्पादों को बार-बार अपने साथ ले कर, कोई भी सभी उच्च अप्रासंगिक प्रतिनिधित्वों का निर्माण कर सकता है। यही है, तीन स्थानिक आयामों में उच्च-स्पिन प्रणाली के लिए परिणामी [[ स्पिन ऑपरेटर | स्पिन परिचालको]] की गणना मनमाने ढंग से बड़े आकार के लिए की जा सकती है। {{mvar|s}} इस स्पिन संचालिका और लैडर संचालिका # कोणीय संवेग का उपयोग करना। उदाहरण के लिए, दो स्पिन का क्रोनकर उत्पाद लेना-{{sfrac|1|2}} एक चार-आयामी प्रतिनिधित्व उत्पन्न करता है, जो एक 3-आयामी स्पिन-1 ([[ त्रिक अवस्था ]]) और 1-आयामी स्पिन-0 प्रतिनिधित्व ([[ एकल अवस्था ]]) में वियोज्य है।
स्पिन-{{sfrac|1|2}} संचालिका {{math|'''S''' {{=}} {{sfrac|''ħ''|2}}'''σ'''}} SU(2) के प्रतिनिधित्व सिद्धांत का [[ मौलिक प्रतिनिधित्व |मौलिक प्रतिनिधित्व]] करता है। इस प्रतिनिधित्व के क्रोनेकर उत्पादों को बार-बार अपने साथ ले कर, कोई भी सभी उच्च अप्रासंगिक प्रतिनिधित्वों का निर्माण कर सकता है। यही , तीन स्थानिक आयामों में उच्च-स्पिन प्रणाली के लिए परिणामी [[ स्पिन ऑपरेटर |स्पिन परिचालको]] की गणना अव्यवस्थित रूप से बड़े {{mvar|s}} आकार के लिए की जा सकती है। उदाहरण के लिए, दो स्पिन का क्रोनकर उत्पाद लेना-{{sfrac|1|2}} एक चार-आयामी प्रतिनिधित्व उत्पन्न करता है जो एक 3-आयामी स्पिन-1 ([[ त्रिक अवस्था ]]) और 1-आयामी स्पिन-0 प्रतिनिधित्व ([[ एकल अवस्था ]]) में वियोज्य है।  


परिणामी अलघुकरणीय अभ्यावेदन जेड-आधार में निम्नलिखित स्पिन मेट्रिसेस और ईजेनवेल्यूज उत्पन्न करते हैं:
परिणामी अलघुकरणीय प्रतिनिधित्व z-आधार में निम्नलिखित स्पिन आव्यूह और आइगेनमान उत्पन्न करते हैं:
{{ordered list
{{ordered list
| For spin 1 they are
| For spin 1 they are
Line 376: Line 376:
}}
}}


बहुकण प्रणाली के [[ क्वांटम यांत्रिकी ]] में भी उपयोगी, सामान्य [[ पाउली समूह ]] {{mvar|G<sub>n</sub>}} सभी को सम्मिलित करने के लिए परिभाषित किया गया है {{mvar|n}}पाउली मेट्रिसेस के फोल्ड [[ टेन्सर ]] उत्पाद।
बहुकण प्रणाली के [[ क्वांटम यांत्रिकी |क्वांटम यांत्रिकी]] में भी उपयोगी, सामान्य [[ पाउली समूह |पाउली समूह]] {{mvar|G<sub>n</sub>}} को पाउली आव्यूह के {{mvar|n}} वलन [[ टेन्सर |प्रदिश]] उत्पादो सभी को सम्मिलित करने के लिए परिभाषित किया गया है


पाउली आव्यूह का अनुरूप सूत्र
पाउली आव्यूह के संदर्भ में यूलर के सूत्र का अनुरूप सूत्र
: <math>
: <math>
   \hat{R}(\theta, \hat{\mathbf{n}}) = e^{i \frac{\theta}{2} \hat{\mathbf{n}} \cdot \boldsymbol{\sigma}} =
   \hat{R}(\theta, \hat{\mathbf{n}}) = e^{i \frac{\theta}{2} \hat{\mathbf{n}} \cdot \boldsymbol{\sigma}} =
Line 396: Line 396:


== समतुल्यता ==
== समतुल्यता ==
नाभिक या कणों के लिए स्पिन क्वांटम संख्या s की तालिकाओं में, स्पिन के बाद प्रायः "+" या "−" आता है।। यह समतुल्यता के लिए + के साथ [[ समता (भौतिकी) | समतुल्यता (भौतिकी)]] को संदर्भित करता है यह समतुल्यता के लिए "+" के साथ समतुल्यता को संदर्भित करता है (स्थानिक व्युत्क्रम द्वारा अपरिवर्तित तरंग फलन) और विषम समतुल्यता के लिए "-" (स्थानिक व्युत्क्रम द्वारा अस्वीकृत तरंग फलन)। उदाहरण के लिए, [[ बिस्मथ के समस्थानिक ]] देखें, जिसमें समस्थानिकों की सूची में कॉलम स्पिन क्वांटम संख्या परमाणु प्रचक्रण और समता सम्मिलित है। द्वि-209 के लिए, एकमात्र स्थिर समस्थानिक, प्रविष्टि 9/2– का अर्थ है कि परमाणु स्पिन 9/2 है और समतुल्यता विषम है।
नाभिक या कणों के लिए स्पिन क्वांटम संख्या s की तालिकाओं में, स्पिन के बाद प्रायः "+" या "−" आता है।। यह समतुल्यता के लिए + के साथ [[ समता (भौतिकी) |समतुल्यता (भौतिकी)]] को संदर्भित करता है यह समतुल्यता के लिए "+" के साथ समतुल्यता को संदर्भित करता है (स्थानिक व्युत्क्रम द्वारा अपरिवर्तित तरंग फलन) और विषम समतुल्यता के लिए "-" (स्थानिक व्युत्क्रम द्वारा अस्वीकृत तरंग फलन)। उदाहरण के लिए, [[ बिस्मथ के समस्थानिक |बिस्मथ के समस्थानिक]] देखें, जिसमें समस्थानिकों की सूची में कॉलम स्पिन क्वांटम संख्या परमाणु प्रचक्रण और समता सम्मिलित है। द्वि-209 के लिए, एकमात्र स्थिर समस्थानिक, प्रविष्टि 9/2– का अर्थ है कि परमाणु स्पिन 9/2 है और समतुल्यता विषम है।


== अनुप्रयोग ==
== अनुप्रयोग ==
Line 403: Line 403:
* रसायन विज्ञान और भौतिकी में इलेक्ट्रॉन स्पिन प्रतिध्वनि (ईएसआर या ईपीआर) स्पेक्ट्रमदर्शी;
* रसायन विज्ञान और भौतिकी में इलेक्ट्रॉन स्पिन प्रतिध्वनि (ईएसआर या ईपीआर) स्पेक्ट्रमदर्शी;
* चिकित्सा में चुंबकीय प्रतिध्वनि प्रतिबिम्बन (एमआरआई), एक प्रकार का अनुप्रयुक्त एनएमआर, जो प्रोटॉन स्पिन घनत्व पर निर्भर करता है;
* चिकित्सा में चुंबकीय प्रतिध्वनि प्रतिबिम्बन (एमआरआई), एक प्रकार का अनुप्रयुक्त एनएमआर, जो प्रोटॉन स्पिन घनत्व पर निर्भर करता है;
* आधुनिक [[ हार्ड डिस्क ]] में [[ विशाल मैग्नेटोरेसिस्टिव प्रभाव | विशाल चुंबकीय प्रतिरोधी प्रभाव]] (जीएमआर) ड्राइव-हेड तकनीक।
* आधुनिक [[ हार्ड डिस्क |हार्ड डिस्क]] में [[ विशाल मैग्नेटोरेसिस्टिव प्रभाव |विशाल चुंबकीय प्रतिरोधी प्रभाव]] (जीएमआर) ड्राइव-हेड तकनीक।


कंप्यूटर मेमोरी में उदाहरण के लिए अनुप्रयोगों के साथ इलेक्ट्रॉन स्पिन [[ चुंबकत्व ]] में एक महत्वपूर्ण भूमिका निभाता है। रासायनिक स्पेक्ट्रमदर्शी और चिकित्सा प्रतिबिम्बन में रेडियो आवृत्ति तरंगों (परमाणु चुंबकीय प्रतिध्वनि) द्वारा परमाणु स्पिन का कुशलतापूर्वक प्रयोग महत्वपूर्ण है।
कंप्यूटर मेमोरी में उदाहरण के लिए अनुप्रयोगों के साथ इलेक्ट्रॉन स्पिन [[ चुंबकत्व |चुंबकत्व]] में एक महत्वपूर्ण भूमिका निभाता है। रासायनिक स्पेक्ट्रमदर्शी और चिकित्सा प्रतिबिम्बन में रेडियो आवृत्ति तरंगों (परमाणु चुंबकीय प्रतिध्वनि) द्वारा परमाणु स्पिन का कुशलतापूर्वक प्रयोग महत्वपूर्ण है।


स्पिन-कक्षीय युग्मन परमाणु स्पेक्ट्रा की शुद्ध संरचना की ओर ले जाती है, जिसका उपयोग परमाणु घड़ियों में और दूसरी की आधुनिक परिभाषा में किया जाता है। इलेक्ट्रॉन के {{mvar|g}}-कारक की यथावत् माप ने क्वांटम विद्युतगतिकी के विकास और सत्यापन में महत्वपूर्ण भूमिका निभाई है। फोटॉन स्पिन प्रकाश के ध्रुवीकरण (तरंगों) ([[ फोटॉन ध्रुवीकरण ]]) से जुड़ा है।
स्पिन-कक्षीय युग्मन परमाणु स्पेक्ट्रा की शुद्ध संरचना की ओर ले जाती है, जिसका उपयोग परमाणु घड़ियों में और दूसरी की आधुनिक परिभाषा में किया जाता है। इलेक्ट्रॉन के {{mvar|g}}-कारक की यथावत् माप ने क्वांटम विद्युतगतिकी के विकास और सत्यापन में महत्वपूर्ण भूमिका निभाई है। फोटॉन स्पिन प्रकाश के ध्रुवीकरण (तरंगों) ([[ फोटॉन ध्रुवीकरण ]]) से जुड़ा है।


स्पिन का एक विकसित हुआ अनुप्रयोग [[ स्पिन ट्रांजिस्टर | स्पिन प्रतिरोधान्तरित्र]] में बाइनरी सूचना वाहक के रूप में है। 1990 में प्रस्तावित मूल अवधारणा को दत्ता-दास स्पिन प्रतिरोधान्तरित्र के रूप में जाना जाता है।<ref>{{cite journal |doi =  10.1063/1.102730 |author =  Datta, S. |author-link = Supriyo Datta |author2= Das, B. |title = इलेक्ट्रोऑप्टिक न्यूनाधिक का इलेक्ट्रॉनिक एनालॉग|journal = Applied Physics Letters |volume = 56 |pages = 665–667 |year = 1990 |issue = 7 |bibcode = 1990ApPhL..56..665D }}</ref> स्पिन प्रतिरोधान्तरित्र पर आधारित इलेक्ट्रॉनिक को [[ spintronics | स्पेक्ट्रॉनिक]] कहा जाता है। [[ ZnO-आधारित पतला चुंबकीय अर्धचालक | तनु चुंबकीय अर्धचालक सामग्री]] में स्पिन का कुशलतापूर्वक प्रयोग, जैसे कि धातु-डोप्ड [[ ज़िंक ऑक्साइड | ज़िंक ऑक्साइड (ZnO)]] या टाइटेनियम डाइऑक्साइड ( TiO<sub>2</sub>) अबद्धता की एक और मात्रा प्रदान करता है और अधिक कुशल इलेक्ट्रॉनिक के निर्माण की सुविधा प्रदान करने की क्षमता रखता है।<ref>{{cite journal |last1=Assadi |first1=M. H. N. |last2=Hanaor |first2=D. A. H. |title=TiO<sub>2</sub> पॉलीमॉर्फ्स में तांबे के ऊर्जावान और चुंबकत्व पर सैद्धांतिक अध्ययन|journal=Journal of Applied Physics |year=2013 |volume=113 |issue=23 |pages=233913–233913–5 |doi=10.1063/1.4811539 |arxiv = 1304.1854 |bibcode = 2013JAP...113w3913A |s2cid=94599250}}</ref>
स्पिन का एक विकसित हुआ अनुप्रयोग [[ स्पिन ट्रांजिस्टर |स्पिन प्रतिरोधान्तरित्र]] में बाइनरी सूचना वाहक के रूप में है। 1990 में प्रस्तावित मूल अवधारणा को दत्ता-दास स्पिन प्रतिरोधान्तरित्र के रूप में जाना जाता है।<ref>{{cite journal |doi =  10.1063/1.102730 |author =  Datta, S. |author-link = Supriyo Datta |author2= Das, B. |title = इलेक्ट्रोऑप्टिक न्यूनाधिक का इलेक्ट्रॉनिक एनालॉग|journal = Applied Physics Letters |volume = 56 |pages = 665–667 |year = 1990 |issue = 7 |bibcode = 1990ApPhL..56..665D }}</ref> स्पिन प्रतिरोधान्तरित्र पर आधारित इलेक्ट्रॉनिक को [[ spintronics |स्पेक्ट्रॉनिक]] कहा जाता है। [[ ZnO-आधारित पतला चुंबकीय अर्धचालक |तनु चुंबकीय अर्धचालक सामग्री]] में स्पिन का कुशलतापूर्वक प्रयोग, जैसे कि धातु-डोप्ड [[ ज़िंक ऑक्साइड |ज़िंक ऑक्साइड (ZnO)]] या टाइटेनियम डाइऑक्साइड ( TiO<sub>2</sub>) अबद्धता की एक और मात्रा प्रदान करता है और अधिक कुशल इलेक्ट्रॉनिक के निर्माण की सुविधा प्रदान करने की क्षमता रखता है।<ref>{{cite journal |last1=Assadi |first1=M. H. N. |last2=Hanaor |first2=D. A. H. |title=TiO<sub>2</sub> पॉलीमॉर्फ्स में तांबे के ऊर्जावान और चुंबकत्व पर सैद्धांतिक अध्ययन|journal=Journal of Applied Physics |year=2013 |volume=113 |issue=23 |pages=233913–233913–5 |doi=10.1063/1.4811539 |arxiv = 1304.1854 |bibcode = 2013JAP...113w3913A |s2cid=94599250}}</ref>


रसायन विज्ञान की आवर्त सारणी से प्रारंभ होने वाले स्पिन और संबद्ध पाउली प्रतिरोध सिद्धांत के कई अप्रत्यक्ष अनुप्रयोग और प्रत्यक्षीकरण हैं।
रसायन विज्ञान की आवर्त सारणी से प्रारंभ होने वाले स्पिन और संबद्ध पाउली प्रतिरोध सिद्धांत के कई अप्रत्यक्ष अनुप्रयोग और प्रत्यक्षीकरण हैं।


== इतिहास ==
== इतिहास ==
[[File:Wolfgang Pauli young.jpg|thumb|वोल्फगैंग पाउली व्याख्यान दे रहे हैं]]
[[File:Wolfgang Pauli young.jpg|thumb|वोल्फगैंग पाउली व्याख्यान दे रहे हैं]]
स्पिन की खोज सबसे पहले क्षार धातुओं के उत्सर्जन स्पेक्ट्रम के संदर्भ में की गई थी। 1924 में, [[ वोल्फगैंग अर्नेस्ट पाउली ]] ने प्रस्तुत किया जिसे उन्होंने <nowiki>''</nowiki>दो-मूल्यवानता<nowiki>''</nowiki> कहा जो उत्कृष्ट रूप से वर्णित नहीं है<ref>{{cite web |url=https://www.nobelprize.org/prizes/physics/1945/pauli/lecture/ |author=Wolfgang Pauli |title=बहिष्करण सिद्धांत और क्वांटम यांत्रिकी|date=December 13, 1946 |work=Nobel Lecture |publisher=[[Nobel Prize]]}}</ref> बाह्यतम कोश में इलेक्ट्रॉन के साथ जुड़ा हुआ है। इसने उन्हें पाउली अपवर्जन सिद्धांत तैयार करने की स्वीकृति दी, जिसमें कहा गया था कि एक ही क्वांटम प्रणाली में दो इलेक्ट्रॉनों की समान क्वांटम स्थिति नहीं हो सकती है।
स्पिन की खोज सबसे पहले क्षार धातुओं के उत्सर्जन स्पेक्ट्रम के संदर्भ में की गई थी। 1924 में, [[ वोल्फगैंग अर्नेस्ट पाउली |वोल्फगैंग अर्नेस्ट पाउली]] ने प्रस्तुत किया जिसे उन्होंने <nowiki>''</nowiki>दो-मूल्यवानता<nowiki>''</nowiki> कहा जो उत्कृष्ट रूप से वर्णित नहीं है<ref>{{cite web |url=https://www.nobelprize.org/prizes/physics/1945/pauli/lecture/ |author=Wolfgang Pauli |title=बहिष्करण सिद्धांत और क्वांटम यांत्रिकी|date=December 13, 1946 |work=Nobel Lecture |publisher=[[Nobel Prize]]}}</ref> बाह्यतम कोश में इलेक्ट्रॉन के साथ जुड़ा हुआ है। इसने उन्हें पाउली अपवर्जन सिद्धांत तैयार करने की स्वीकृति दी, जिसमें कहा गया था कि एक ही क्वांटम प्रणाली में दो इलेक्ट्रॉनों की समान क्वांटम स्थिति नहीं हो सकती है।


पाउली की <nowiki>''</nowiki>स्वतंत्रता की कोटि<nowiki>''</nowiki> की भौतिक व्याख्या प्रारंभ में अज्ञात थी। अल्फ्रेड लैंडे के सहायकों में से एक राल्फ क्रोनिग ने 1925 की प्रारंभ में सुझाव दिया कि यह इलेक्ट्रॉन के स्व-घूर्णन द्वारा निर्मित किया गया था। जब पाउली ने इस विचार के बारे में सुना, तो उन्होंने इसकी कड़ी आलोचना की, यह देखते हुए कि इलेक्ट्रॉन की काल्पनिक सतह को [[ प्रकाश की गति ]] से अधिक तेजी से आगे बढ़ना होगा ताकि यह आवश्यक कोणीय संवेग उत्पन्न करने के लिए पर्याप्त रूप से घूम सके। यह सापेक्षता के सिद्धांत का उल्लंघन करेगा। बड़े पैमाने पर पाउली की आलोचना के कारण, क्रोनिग ने अपने विचार को प्रकाशित नहीं करने का निर्णय लिया।
पाउली की <nowiki>''</nowiki>स्वतंत्रता की कोटि<nowiki>''</nowiki> की भौतिक व्याख्या प्रारंभ में अज्ञात थी। अल्फ्रेड लैंडे के सहायकों में से एक राल्फ क्रोनिग ने 1925 की प्रारंभ में सुझाव दिया कि यह इलेक्ट्रॉन के स्व-घूर्णन द्वारा निर्मित किया गया था। जब पाउली ने इस विचार के बारे में सुना, तो उन्होंने इसकी कड़ी आलोचना की, यह देखते हुए कि इलेक्ट्रॉन की काल्पनिक सतह को [[ प्रकाश की गति |प्रकाश की गति]] से अधिक तेजी से आगे बढ़ना होगा ताकि यह आवश्यक कोणीय संवेग उत्पन्न करने के लिए पर्याप्त रूप से घूम सके। यह सापेक्षता के सिद्धांत का उल्लंघन करेगा। बड़े पैमाने पर पाउली की आलोचना के कारण, क्रोनिग ने अपने विचार को प्रकाशित नहीं करने का निर्णय लिया।


1925 की शरद ऋतु में, लीडेन विश्वविद्यालय में डच भौतिकविदों जॉर्ज उहलेनबेक और सैमुअल गौडस्मिट के मन में भी यही विचार आया। [[ पॉल एहरनफेस्ट ]] की सलाह के अंतर्गत उन्होंने अपने परिणाम प्रकाशित किए।<ref>{{Cite journal |last=Ehrenfest |first=P. |date=November 1925 |title=प्रत्येक व्यक्तिगत इलेक्ट्रॉन के आंतरिक व्यवहार के संबंध में एक आवश्यकता द्वारा गैर-यांत्रिक बाधा की परिकल्पना का प्रतिस्थापन|language=de |url=http://dx.doi.org/10.1007/bf01558878 |journal=Die Naturwissenschaften |volume=13 |issue=47 |pages=953–954 |doi=10.1007/bf01558878 |s2cid=32211960 |issn=0028-1042}}</ref> इसे एक अनुकूल प्रतिक्रिया मिली, विशेष रूप से [[ लेवेलिन थॉमस ]] द्वारा प्रयोगात्मक परिणामों और उहलेनबेक और गौडस्मिट की गणनाओं (और क्रोनिग के अप्रकाशित परिणामों) के बीच एक कारक-दो विसंगति को हल करने में कामयाब रहे। यह विसंगति इलेक्ट्रॉन की स्पर्शरेखा संरचना के अभिविन्यास के साथ-साथ इसकी स्थिति के कारण थी।
1925 की शरद ऋतु में, लीडेन विश्वविद्यालय में डच भौतिकविदों जॉर्ज उहलेनबेक और सैमुअल गौडस्मिट के मन में भी यही विचार आया। [[ पॉल एहरनफेस्ट |पॉल एहरनफेस्ट]] की सलाह के अंतर्गत उन्होंने अपने परिणाम प्रकाशित किए।<ref>{{Cite journal |last=Ehrenfest |first=P. |date=November 1925 |title=प्रत्येक व्यक्तिगत इलेक्ट्रॉन के आंतरिक व्यवहार के संबंध में एक आवश्यकता द्वारा गैर-यांत्रिक बाधा की परिकल्पना का प्रतिस्थापन|language=de |url=http://dx.doi.org/10.1007/bf01558878 |journal=Die Naturwissenschaften |volume=13 |issue=47 |pages=953–954 |doi=10.1007/bf01558878 |s2cid=32211960 |issn=0028-1042}}</ref> इसे एक अनुकूल प्रतिक्रिया मिली, विशेष रूप से [[ लेवेलिन थॉमस |लेवेलिन थॉमस]] द्वारा प्रयोगात्मक परिणामों और उहलेनबेक और गौडस्मिट की गणनाओं (और क्रोनिग के अप्रकाशित परिणामों) के बीच एक कारक-दो विसंगति को हल करने में कामयाब रहे। यह विसंगति इलेक्ट्रॉन की स्पर्शरेखा संरचना के अभिविन्यास के साथ-साथ इसकी स्थिति के कारण थी।


गणितीय रूप से बोलना, [[ फाइबर बंडल ]] विवरण की आवश्यकता है। [[ स्पर्शरेखा बंडल ]] प्रभाव योज्य और सापेक्षवादी है; अर्थात {{mvar|c}} अनंत तक जाता है तो यह नष्ट हो जाता है। लेकिन विपरीत चिह्न के साथ यह स्पर्शरेखा-अंतरिक्ष अभिविन्यास के संबंध में प्राप्त मान का आधा है। इस प्रकार संयुक्त प्रभाव उत्तरार्द्ध से एक कारक दो ([[ थॉमस प्रीसेशन ]], जिसे 1914 में [[ लुडविग सिल्बरस्टीन ]] के नाम से जाना जाता है) से भिन्न होता है।
गणितीय रूप से बोलना, [[ फाइबर बंडल |फाइबर बंडल]] विवरण की आवश्यकता है। [[ स्पर्शरेखा बंडल |स्पर्शरेखा बंडल]] प्रभाव योज्य और सापेक्षवादी है; अर्थात {{mvar|c}} अनंत तक जाता है तो यह नष्ट हो जाता है। लेकिन विपरीत चिह्न के साथ यह स्पर्शरेखा-अंतरिक्ष अभिविन्यास के संबंध में प्राप्त मान का आधा है। इस प्रकार संयुक्त प्रभाव उत्तरार्द्ध से एक कारक दो ([[ थॉमस प्रीसेशन ]], जिसे 1914 में [[ लुडविग सिल्बरस्टीन |लुडविग सिल्बरस्टीन]] के नाम से जाना जाता है) से भिन्न होता है।


अपनी प्रारंभिक आपत्तियों के उपेक्षा, पाउली ने इरविन श्रोडिंगर श्रोडिंगर और [[ वर्नर हाइजेनबर्ग ]] द्वारा आविष्कृत क्वांटम यांत्रिकी के आधुनिक सिद्धांत का उपयोग करते हुए, 1927 में स्पिन के सिद्धांत को औपचारिक रूप दिया। उन्होंने स्पिन संचालिको के एक [[ समूह प्रतिनिधित्व ]] के रूप में पाउली मेट्रिसेस के उपयोग का संचालन किया और दो-घटक स्पिनर तरंग-फलक की प्रारंभ की। उहलेनबेक और गौडस्मिट ने स्पिन को उत्कृष्ट घूर्णन से उत्पन्न माना, जबकि पाउली ने जोर दिया कि स्पिन गैर-उत्कृष्ट और आंतरिक गुण है।<ref>{{Cite journal|last=Ohanian|first=Hans C.|date=June 1986|title=स्पिन क्या है?|url=http://aapt.scitation.org/doi/10.1119/1.14580|journal=American Journal of Physics|language=en|volume=54|issue=6|pages=500–505|doi=10.1119/1.14580|bibcode=1986AmJPh..54..500O |issn=0002-9505}}</ref>
अपनी प्रारंभिक आपत्तियों के उपेक्षा, पाउली ने इरविन श्रोडिंगर श्रोडिंगर और [[ वर्नर हाइजेनबर्ग |वर्नर हाइजेनबर्ग]] द्वारा आविष्कृत क्वांटम यांत्रिकी के आधुनिक सिद्धांत का उपयोग करते हुए, 1927 में स्पिन के सिद्धांत को औपचारिक रूप दिया। उन्होंने स्पिन संचालिको के एक [[ समूह प्रतिनिधित्व |समूह प्रतिनिधित्व]] के रूप में पाउली आव्यूह के उपयोग का संचालन किया और दो-घटक स्पिनर तरंग-फलक की प्रारंभ की। उहलेनबेक और गौडस्मिट ने स्पिन को उत्कृष्ट घूर्णन से उत्पन्न माना, जबकि पाउली ने जोर दिया कि स्पिन गैर-उत्कृष्ट और आंतरिक गुण है।<ref>{{Cite journal|last=Ohanian|first=Hans C.|date=June 1986|title=स्पिन क्या है?|url=http://aapt.scitation.org/doi/10.1119/1.14580|journal=American Journal of Physics|language=en|volume=54|issue=6|pages=500–505|doi=10.1119/1.14580|bibcode=1986AmJPh..54..500O |issn=0002-9505}}</ref>


पाउली का स्पिन का सिद्धांत गैर-सापेक्षवादी था। हालाँकि, 1928 में, पॉल डिराक ने डिराक समीकरण प्रकाशित किया, जिसमें सापेक्षतावादी इलेक्ट्रॉन का वर्णन किया गया था। डिराक समीकरण में, एक चार-घटक स्पिनर (जिसे डायराक स्पिनर के रूप में जाना जाता है) का उपयोग इलेक्ट्रॉन तरंग-फलन के लिए किया गया था। सापेक्षतावादी स्पिन ने घूर्णचुंबकीय विसंगति की व्याख्या की, जो (पूर्वव्यापी में) पहली बार 1914 में [[ शमूएल जैक्सन बार्नेट | शमूएल जैक्सन बार्नेट]] द्वारा देखी गई थी (आइंस्टीन-डी हास प्रभाव देखें)। 1940 में, पाउली ने स्पिन-सांख्यिकी प्रमेय को सिद्ध किया, जिसमें कहा गया है कि फ़र्मियन में अर्ध-पूर्णांक स्पिन होता है, और बोसॉन में पूर्णांक स्पिन होता है।
पाउली का स्पिन का सिद्धांत गैर-सापेक्षवादी था। हालाँकि, 1928 में, पॉल डिराक ने डिराक समीकरण प्रकाशित किया, जिसमें सापेक्षतावादी इलेक्ट्रॉन का वर्णन किया गया था। डिराक समीकरण में, एक चार-घटक स्पिनर (जिसे डायराक स्पिनर के रूप में जाना जाता है) का उपयोग इलेक्ट्रॉन तरंग-फलन के लिए किया गया था। सापेक्षतावादी स्पिन ने घूर्णचुंबकीय विसंगति की व्याख्या की, जो (पूर्वव्यापी में) पहली बार 1914 में [[ शमूएल जैक्सन बार्नेट |शमूएल जैक्सन बार्नेट]] द्वारा देखी गई थी (आइंस्टीन-डी हास प्रभाव देखें)। 1940 में, पाउली ने स्पिन-सांख्यिकी प्रमेय को सिद्ध किया, जिसमें कहा गया है कि फ़र्मियन में अर्ध-पूर्णांक स्पिन होता है, और बोसॉन में पूर्णांक स्पिन होता है।


पुनरावलोकन में, इलेक्ट्रॉन स्पिन का पहला प्रत्यक्ष प्रायोगिक साक्ष्य 1922 का स्टर्न-गेरलाच प्रयोग था। हालाँकि, इस प्रयोग की सही व्याख्या केवल 1927 में दी गई थी।<ref>{{cite journal
पुनरावलोकन में, इलेक्ट्रॉन स्पिन का पहला प्रत्यक्ष प्रायोगिक साक्ष्य 1922 का स्टर्न-गेरलाच प्रयोग था। हालाँकि, इस प्रयोग की सही व्याख्या केवल 1927 में दी गई थी।<ref>{{cite journal

Revision as of 11:47, 11 January 2023

यह लेख क्वांटम यांत्रिकी में स्पिन के बारे में है। उत्कृष्ट यांत्रिकी में घूर्णन के लिए, कोणीय संवेग देखें।

स्पिन (प्रचक्रण) संरक्षित मात्रा है जो प्राथमिक कणों द्वारा और इस प्रकार मिश्रित कणों (हैड्रॉन्स) और परमाणु नाभिकों द्वारा वहन की जाती है।[1][2]

क्वांटम यांत्रिकी में स्पिन दो प्रकार के कोणीय संवेग में से एक है, दूसरा कक्षीय कोणीय संवेग है। कक्षीय कोणीय संवेग संचालिका कक्षीय क्रांति के उत्कृष्ट कोणीय संवेग के लिए क्वांटम-यांत्रिकी समकक्ष है और तब प्रकट होता है जब कोण के रूप में इसकी तरंग के लिए आवधिक संरचना होती है।[3][4] फोटॉनों के लिए, स्पिन प्रकाश के ध्रुवीकरण का क्वांटम-यांत्रिकी समकक्ष है; इलेक्ट्रॉनों के लिए, स्पिन का कोई उत्कृष्ट समकक्ष नहीं है।।[citation needed]

इलेक्ट्रॉन स्पिन कोणीय संवेग का विद्यमान प्रयोगों से अनुमानित है, जैसे कि स्टर्न-गेरलाच प्रयोग, जिसमें चांदी के परमाणुओं को कक्षीय कोणीय संवेग न होने के उपेक्षा दो संभावित असतत कोणीय संवेग रखने के लिए देखा गया था।[5] स्पिन-सांख्यिकी प्रमेय और पाउली अपवर्जन सिद्धांत से सैद्धांतिक रूप से इलेक्ट्रॉन स्पिन के विद्यमान होने का अनुमान लगाया जा सकता है- और इसके विपरीत, इलेक्ट्रॉन के विशेष स्पिन को देखते हुए, पाउली अपवर्जन सिद्धांत प्राप्त किया जा सकता है।

स्पिन को गणितीय रूप से फोटॉन जैसे कुछ कणों के लिए वेक्टर के रूप में और इलेक्ट्रॉनों जैसे अन्य कणों के लिए स्पिनर और बिस्पिनर के रूप में वर्णित किया गया है। स्पिनर और बिस्पिनर यूक्लिडियन वेक्टर के समान व्यवहार करते हैं: उनके पास निश्चित परिमाण होते हैं और घूर्णन के अंतर्गत परिवर्तन होते हैं; हालाँकि, वे एक अपरंपरागत "दिशा" का उपयोग करते हैं। किसी दिए गए प्रकार के सभी प्राथमिक कणों में स्पिन कोणीय संवेग का समान परिमाण होता है, हालांकि इसकी दिशा परिवर्तित हो सकती है। ये कण को ​​​​ स्पिन क्वांटम संख्या निर्दिष्ट करके इंगित किया जाता है।[2]

स्पिन की इकाइयों की अंतर्राष्ट्रीय प्रणाली उत्कृष्ट कोणीय संवेग के समान है (अर्थात, न्यूटन (इकाई) मीटर सेकंड, जूल सेकंड, या किलोग्राम मीटर2/सेकंड−1)। व्यवहार में, स्पिन को कम प्लैंक स्थिरांक ħ द्वारा स्पिन कोणीय संवेग को विभाजित करके एक आयामहीन स्पिन क्वांटम संख्या के रूप में दिया जाता है , जिसका कोणीय संवेग के समान आयामी विश्लेषण है, हालांकि यह इस मान की पूर्ण गणना नहीं है। अधिक बार, ''स्पिन क्वांटम संख्या'' को केवल ''स्पिन कहा'' जाता है। यह तथ्य निहित है कि यह एक क्वांटम संख्या है।

इतिहास

1924 में वोल्फगैंग पाउली दो-मूल्यवान वाले गैर-उत्कृष्ट ''अप्रत्यक्ष घूर्णन'' के कारण उपलब्ध इलेक्ट्रॉन अवस्थाओ की संख्या को दोगुना करने का प्रस्ताव देने वाले पहले व्यक्ति थे।[6] 1925 में, लीडेन विश्वविद्यालय में जॉर्ज उहलेनबेक और शमूएल गौडस्मिट नील्स बोह्र और अर्नोल्ड सोमरफेल्ड के पुराने क्वांटम सिद्धांत की विचारधारा में, [7] अपनी धुरी के चारों ओर स्पिन करते हुए एक कण की सरल भौतिक व्याख्या का सुझाव दिया।।[8] राल्फ क्रोनिग ने कई महीने पहले कोपेनहेगन में हेनरी क्रेमर्स के साथ चर्चा में उहलेनबेक-गॉडस्मिट मॉडल का अनुमान लगाया था, लेकिन प्रकाशित नहीं किया।[8] 1927 में पाउली द्वारा गणितीय सिद्धांत पर गहनता से काम किया गया था। जब पॉल डिराक ने 1928 में अपने सापेक्षवादी क्वांटम यांत्रिकी को व्युत्पन्न किया, तो इलेक्ट्रॉन स्पिन इसका एक अनिवार्य भाग था।

क्वांटम संख्या

जैसा कि नाम से पता चलता है, स्पिन की कल्पना मूल रूप से किसी धुरी के चारों ओर एक कण के स्पिन के रूप में की गई थी। जबकि यह सवाल कि क्या प्राथमिक कण वास्तव में स्पिन करते हैं, अस्पष्ट है (जैसा कि वे बिंदु की तरह दिखाई देते हैं), यह तस्वीर सही है क्योंकि स्पिन उन्हीं गणितीय नियमों का क्रियान्वयन करता है जैसे कोणीय संवेग परिमाणीकरण कोणीय संवेग करते हैं; विशेष रूप से, स्पिन का अर्थ है कि कण का प्रावस्था कोण के साथ परिवर्तित होता है। दूसरी ओर, स्पिन में कुछ विलक्षण गुण होते हैं जो इसे कक्षीय कोणीय संवेग से अलग करते हैं:

  • स्पिन क्वांटम संख्याएँ अर्ध-पूर्णांक मान ले सकती हैं।
  • हालांकि इसके स्पिन की दिशा परिवर्तित की जा सकती है, एक प्राथमिक कण को ​​तीव्र या मंद गति से स्पिन के लिए नहीं बनाया जा सकता है।
  • आवेशित कण का स्पिन एक चुंबकीय द्विध्रुव आघूर्ण से जुड़ा होता है जिसका g-कारक 1 से भिन्न होता है। यह उत्कृष्ट रूप से तभी हो सकता है जब कण के आंतरिक आवेश को उसके द्रव्यमान से भिन्न रूप से वितरित किया गया हो।

स्पिन क्वांटम संख्या की पारंपरिक परिभाषा है s = n/2, जहां पर n कोई भी गैर-ऋणात्मक पूर्णांक हो सकता है। इसलिए s के अनुमत मान 0, स्पिन- 0,1/2, 1, 3/2 आदि है। s का मान एक प्राथमिक कण के लिए केवल कण के प्रकार पर निर्भर करता है और इसे किसी भी ज्ञात तरीके से नहीं परिवर्तित किया जा सकता है (नीचे वर्णित स्पिन दिशा के विपरीत)। किसी भी भौतिक तंत्र का प्रचक्रण कोणीय संवेग S परिमाणित होता है। S के अनुमत मान हैं

जहां पर h प्लैंक स्थिरांक है, और कम हुई प्लैंक स्थिरांक है। इसके विपरीत, कोणीय संवेग संचालिका केवल पूर्णांक मानों s को ही ले सकता है ; अर्थात, सम-संख्या वाले मान n.

फर्मियन और बोसॉन

अर्ध-पूर्णांक स्पिन वाले वे कण, जैसे 1/2, 3/2, 5/2, को फर्मियन के रूप में जाना जाता है, जबकि पूर्णांक स्पिन वाले कण, जैसे 0, 1, 2, बोसोन के रूप में जाने जाते हैं। कणों के दो वर्ग अलग-अलग नियमों का क्रियान्वयन करते हैं और बड़े पैमाने पर हमारे आसपास की दुनिया में अलग-अलग भूमिकाएँ होती हैं। दो वर्गों के बीच एक महत्वपूर्ण अंतर यह है कि फ़र्मियन पाउली अपवर्जन सिद्धांत का क्रियान्वयन करते हैं: अर्थात्, एक ही क्वांटम संख्या (अर्थात्, बड़े पैमाने पर, समान स्थिति, वेग और स्पिन दिशा वाले) वाले दो समान फ़र्मियन एक साथ नहीं हो सकते। फ़र्मियन फ़र्मी-डिराक सांख्यिकी के नियमों का क्रियान्वयन करते हैं। इसके विपरीत, बोसोन बोस-आइंस्टीन सांख्यिकी के नियमों का क्रियान्वयन करते हैं और उन पर ऐसा कोई प्रतिबंध नहीं है, इसलिए वे समान अवस्थाओं में ''एक साथ समूह'' बना सकते हैं। साथ ही, मिश्रित कणों में स्पिन उनके घटक कणों से भिन्न हो सकते हैं। उदाहरण के लिए, मूल अवस्था में एक हीलियम -4 परमाणु में स्पिन 0 होता है और यह बोसोन की तरह व्यवहार करता है, यद्यपि इसे बनाने वाले क्वार्क और इलेक्ट्रॉनों सभी फ़र्मियन हैं।

इसके कुछ गम्भीर परिणाम होते हैं:

  • क्वार्क और लेप्टॉन (इलेक्ट्रॉन और न्युट्रीनो सहित), जो उत्कृष्ट रूप से पदार्थ के रूप में जाना जाता है, सभी स्पिन- 1/2 के साथ फ़र्मियन हैं। सामान्य विचार है कि "पदार्थ स्थान लेता है" वास्तव में पाउली अपवर्जन सिद्धांत से आता है जो इन कणों पर एक ही क्वांटम स्थिति में होने से रोकने के लिए इन कणों पर कार्य करता है। आगे के संघनन के लिए इलेक्ट्रॉनों को समान ऊर्जा अवस्थाओं पर अधिग्रहित करने की आवश्यकता होगी, और इसलिए एक प्रकार का दबाव (कभी-कभी इलेक्ट्रॉनों के अध: पतन दबाव के रूप में जाना जाता है) फर्मों को अत्यधिक करीब होने का विरोध करने के लिए कार्य करता है। अन्य स्पिन के साथ प्रारंभिक फर्मन (3/2, 5/2, आदि) सम्मिलित नहीं हैं।
  • प्राथमिक कण जिन्हें बल वाहक माना जाता है, वे सभी स्पिन 1 वाले बोसोन हैं। इनमें फोटॉन सम्मिलित है, जो विद्युत चुम्बकीय बल , ग्लूऑन (मजबूत बल ), और W और Z बोसॉन (कमजोर बल ) को वहन करता है। बोसोन की एक ही क्वांटम स्थिति पर अधिग्रहित करने की क्षमता का उपयोग लेज़र में किया जाता है, जो एक ही क्वांटम संख्या (समान दिशा और आवृत्ति) वाले कई फोटॉन को संरेखित करता है, हीलियम -4 परमाणुओं से उत्पन्न सुपरफ्लुइड (अतितरल) द्रव हीलियम बोसोन और अतिचालकता है, जहां इलेक्ट्रॉनों के युग्म (जो व्यक्तिगत रूप से फ़र्मियन हैं) एकल मिश्रित बोसोन के रूप में कार्य करते हैं। अन्य प्रचक्रणों (0, 2, 3, आदि) के साथ प्रारंभिक बोसोन ऐतिहासिक रूप से विद्यमान नहीं थे, हालांकि उन्हें काफी सैद्धांतिक समाधान प्राप्त हुआ है और वे अपने संबंधित मुख्यधारा के सिद्धांतों के अंदर अच्छी तरह से स्थापित हैं। विशेष रूप से, सिद्धांतकारों ने स्पिन 2 के साथ गुरुत्वाकर्षण (कुछ क्वांटम गुरुत्व सिद्धांतों द्वारा विद्यमान होने की भविष्यवाणी की है) और स्पिन 0 के साथ हिग्स बॉसन ( विद्युत्-दुर्बल समरूपता को विभंजन की व्याख्या) का प्रस्ताव दिया है। 2013 से, स्पिन 0 के साथ सम्मिलित हिग्स बोसोन को सिद्ध माना गया है।[9] यह प्रकृति में सम्मिलित पहला अदिश प्राथमिक कण (स्पिन 0) है।
  • परमाणु नाभिक में परमाणु स्पिन होता है जो या तो अर्ध-पूर्णांक या पूर्णांक हो सकता है, जिससे कि नाभिक या तो फ़र्मियन या बोसोन हो सकते हैं।

स्पिन-सांख्यिकी प्रमेय

स्पिन-सांख्यिकी प्रमेय कणों को दो समूहों में विभाजित करता है: बोसोन और फ़र्मियन , जहां बोसॉन बोस-आइंस्टीन सांख्यिकी का क्रियान्वयन करते हैं, और फ़र्मियन फ़र्मी-डिराक सांख्यिकी (और इसलिए पाउली अपवर्जन सिद्धांत) का क्रियान्वयन करते हैं। विशेष रूप से, सिद्धांत कहता है कि एक पूर्णांक स्पिन वाले कण बोसॉन हैं, जबकि अन्य सभी कणों में अर्ध-पूर्णांक स्पिन है और वे फ़र्मियन हैं। एक उदाहरण के रूप में, इलेक्ट्रॉनो में अर्ध-पूर्णांक स्पिन होता है और वे फ़र्मियन होते हैं जो पाउली अपवर्जन सिद्धांत का क्रियान्वयन करते हैं, जबकि फोटॉन में पूर्णांक स्पिन होता है और नहीं होता है। प्रमेय क्वांटम यांत्रिकी और विशेष सापेक्षता के सिद्धांत दोनों पर निर्भर करता है, और स्पिन और सांख्यिकी के बीच इस संबंध को "विशेष सापेक्षता सिद्धांत के सबसे महत्वपूर्ण अनुप्रयोगों में से एक" कहा जाता है।[10]

उत्कृष्ट घूर्णन से संबंध

चूँकि प्राथमिक कण बिंदु-समान होते हैं, स्व-घूर्णन उनके लिए अच्छी तरह से परिभाषित नहीं है। हालाँकि, हालांकि, स्पिन का तात्पर्य है कि स्पिन एस के समानांतर धुरी के चारों ओर कोण θ के घूर्णन के लिए कण की प्रावस्था के रूप में कोण पर निर्भर करता है। यह स्थिति में प्रावस्था निर्भरता के रूप में संवेग की क्वांटम-यांत्रिकी व्याख्या के समान है, और और कोणीय स्थिति में प्रावस्था निर्भरता के रूप में कक्षीय कोणीय संवेग के समान है।

फोटॉन स्पिन प्रकाश ध्रुवीकरण (तरंगों) का क्वांटम-यांत्रिकी विवरण है,जहां स्पिन +1 और स्पिन -1 परिपत्र ध्रुवीकरण के दो विपरीत दिशाओं का प्रतिनिधित्व करते हैं। इस प्रकार, परिभाषित परिपत्र ध्रुवीकरण के प्रकाश में एक ही स्पिन वाले फोटॉन , या तो सभी +1 या सभी -1 होते हैं। स्पिन अन्य वेक्टर बोसोन के लिए भी ध्रुवीकरण का प्रतिनिधित्व करता है।

फर्मियंस के लिए, चित्र कम स्पष्ट है। कोणीय वेग एरेनफेस्ट प्रमेय द्वारा हैमिल्टनियन के व्युत्पन्न के बराबर संयुग्म गति के बराबर है, जो कुल कोणीय संवेग संचालिका J = L + S है। इसलिए, यदि हैमिल्टन एच स्पिन एस पर निर्भर है, डीएच/डीएस गैर-शून्य है, और स्पिन कोणीय वेग का कारण बनता है, और इसलिए वास्तविक घूर्णन, अर्थात समय के साथ प्रावस्था-कोण संबंध में परिवर्तन होता है। हालांकि, क्या यह मुक्त इलेक्ट्रॉन के लिए धारण करता है अस्पष्ट है, क्योंकि एक इलेक्ट्रॉन के लिए, एस2 स्थिर है, और इसलिए यह व्याख्या का विषय है कि मिल्टनियन में ऐसा शब्द सम्मिलित है या नहीं है। तथापि, डायराक समीकरण में स्पिन प्रकट होता है, और इस प्रकार इलेक्ट्रॉन के सापेक्षवादी हैमिल्टनियन, जिसे डायराक क्षेत्र के रूप में माना जाता है, एस को स्पिन में निर्भरता के रूप में व्याख्या की जा सकती है।[11] इस व्याख्या के अंतर्गत, मुक्त इलेक्ट्रॉन भी स्व-घूर्णन करते हैं, ज़िटरबेवेगंग प्रभाव के साथ इस घूर्णन के रूप में समझा जाता है।

चुंबकीय आघूर्ण

ब्लैक एरो के रूप में न्यूट्रॉन के स्पिन को दर्शाने वाला योजनाबद्ध आरेख और न्यूट्रॉन चुंबकीय आघूर्ण से जुड़ी चुंबकीय क्षेत्र रेखाएँ। न्यूट्रॉन का एक नकारात्मक चुंबकीय आघूर्ण होता है। जबकि इस आरेख में न्यूट्रॉन का स्पिन ऊपर की ओर है, द्विध्रुव के केंद्र में चुंबकीय क्षेत्र रेखाएँ नीचे की ओर हैं।

स्पिन वाले कणों में चुंबकीय द्विध्रुव आघूर्ण, उत्कृष्ट विद्युतगतिकी में एक घूर्णन विद्युत आवेशित पिंड की तरह हो सकता है। इन चुंबकीय आघूर्णो को प्रयोगात्मक रूप से कई तरीकों से देखा जा सकता है, उदा- स्टर्न-गेरलाच प्रयोग में अमानवीय चुंबकीय क्षेत्रो द्वारा कणों के विक्षेपण द्वारा, या स्वयं कणों द्वारा उत्पन्न चुंबकीय क्षेत्रों को मापकर देखा जा सकता है।

स्पिन आंतरिक चुंबकीय आघूर्ण μ-1/2आवेश q, द्रव्यमान m, और स्पिन कोणीय संवेग S, वाला कण है[12]

जहां आयाम रहित मात्रा gs इसे स्पिन g-कारक कहा जाता है। विशेष रूप से कक्षीय घुमावों के लिए यह 1 होगा (यह मानते हुए कि द्रव्यमान और आवेश समान त्रिज्या के क्षेत्रों पर अधिग्रहित करते हैं)।

इलेक्ट्रॉन, एक आवेशित प्राथमिक कण होने के कारण, एक इलेक्ट्रॉन चुंबकीय आघूर्ण रखता है। क्वांटम विद्युतगतिकी के सिद्धांत की अभिभूत में से एक इलेक्ट्रॉन g-कारक की शुद्ध पूर्वानुमानित है, जिसे प्रयोगात्मक रूप से मान -2.002 319 304 362 56(35) के रूप में निर्धारित किया गया है, कोष्ठक में अंक एक मानक विचलन पर अंतिम दो अंकों में माप अनिश्चितता को दर्शाते है।[13] 2 का मान डायराक समीकरण से उत्पन्न होता है, एक मौलिक समीकरण जो इलेक्ट्रॉन के स्पिन को उसके विद्युत चुम्बकीय गुणों से जोड़ता है, और इसका सुधार 0.002319304... अपने स्वयं के क्षेत्र सहित आसपास के विद्युत चुम्बकीय क्षेत्र के साथ इलेक्ट्रॉन की परस्पर क्रिया से उत्पन्न होता है।[14]

मिश्रित कणों में भी उनके स्पिन से जुड़े चुंबकीय आघूर्ण होते हैं। विशेष रूप से, विद्युत्-उदासीन होने के उपेक्षा न्यूट्रॉन में गैर-शून्य चुंबकीय आघूर्ण होता है। यह तथ्य एक प्रारंभिक संकेत था कि न्यूट्रॉन प्राथमिक कण नहीं है। वास्तव में, यह क्वार्क से बना है, जो विद्युत आवेशित कण हैं। न्यूट्रॉन चुंबकीय आघूर्ण व्यक्तिगत क्वार्कों और उनके कक्षीय गतियों के स्पिन से आता है।

न्युट्रीनो प्राथमिक और विद्युत्-उदासीन दोनों हैं। उन्होंने गैर-शून्य न्यूट्रिनो द्रव्यमान को ध्यान में रखते हुए न्यूनतम रूप से मानक मॉडल का विस्तार किया, जो न्यूट्रिनो चुंबकीय आघूर्णो की भविष्यवाणी करता है:[15][16][17]

जहां μν न्यूट्रिनो चुंबकीय आघूर्ण हैं, mν न्यूट्रिनो द्रव्यमान हैं, और μB बोहर मैग्नेटॉन है। हालांकि, विद्युत्-दुर्बल पैमाने के ऊपर नई भौतिकी, महत्वपूर्ण रूप से उच्चतर न्यूट्रिनो चुंबकीय आघूर्णो को उत्पन्न दे सकती है। यह मॉडल-स्वतंत्र तरीके से दिखाया जा सकता है कि लगभग 10 -14μB से बड़े न्यूट्रिनो चुंबकीय आघूर्ण ''अप्राकृतिक'' हैं क्योंकि वे न्यूट्रिनो द्रव्यमान में बड़े विकिरण योगदान का भी नेतृत्व करेंगे। चूंकि न्यूट्रिनो द्रव्यमान अधिकतम 1 eV के रूप में जाना जाता है, इसलिए बड़े विकिरण संबंधी संशोधन को एक दूसरे को निष्प्रभाव करने के लिए, एक बड़ी श्रेणी तक, और न्यूट्रिनो द्रव्यमान को कम छोड़ने के लिए पूर्ण समायोजित करना होगा।[18] न्यूट्रिनो चुंबकीय आघूर्णो का माप अनुसंधान का एक सक्रिय क्षेत्र है। प्रायोगिक परिणामों ने न्यूट्रिनो चुंबकीय आघूर्ण को इलेक्ट्रॉन के चुंबकीय आघूर्ण के 1.2×10-10 गुना से कम पर रखा है।

दूसरी ओर स्पिन के साथ प्राथमिक कण, लेकिन विद्युत आवेश के बिना, जैसे कि फोटॉन या जेड बोसॉन, में चुंबकीय आघूर्ण नहीं होता है।

क्यूरी तापमान और संरेखण का नुकसान

सामान्य सामग्रियों में, अलग-अलग परमाणुओं के चुंबकीय द्विध्रुवीय आघूर्ण चुंबकीय क्षेत्र उत्पन्न करते हैं जो एक दूसरे को निष्प्रभाव करते हैं, क्योंकि प्रत्येक द्विध्रुव एक यादृच्छिक दिशा में इंगित करता है,समग्र औसत शून्य के बहुत करीब होता है। हालांकि, उनके क्यूरी तापमान के नीचे लोह चुंबकीय सामग्री, चुंबकीय परिक्षेत्र प्रदर्शित करती है जिसमें परमाणु द्विध्रुवीय आघूर्ण स्वाभाविक तरीके से स्थानीय रूप से संरेखित होते हैं, परिक्षेत्र से एक असूक्ष्म, गैर-शून्य चुंबकीय क्षेत्र का उत्पादन करते हैं। ये साधारण चुम्बक हैं जिनसे हम सभी परिचित हैं।

अनुचुम्बकीय पदार्थों में, अलग-अलग परमाणुओं के चुंबकीय द्विध्रुव आघूर्ण आंशिक रूप से बाहरी रूप से लगाए गए चुंबकीय क्षेत्र के साथ संरेखित होंगे। प्रतिचुम्बकीय पदार्थों में, दूसरी ओर, अलग-अलग परमाणुओं के चुंबकीय द्विध्रुव आघूर्ण किसी बाहरी रूप से लगाए गए चुंबकीय क्षेत्र के विपरीत संरेखित होते हैं, यद्यपि ऐसा करने के लिए ऊर्जा की आवश्यकता हो।

ऐसे स्पिन मॉडल के व्यवहार का अध्ययन संघनित पदार्थ भौतिकी में अनुसंधान का एक संपन्न क्षेत्र है। उदाहरण के लिए, ईज़िंग मॉडल स्पिन (डिपोल) का वर्णन करता है जिसमें केवल दो संभावित अवस्थाएँ होती हैं, ऊपर और नीचे, जबकि हाइजेनबर्ग मॉडल (क्वांटम) में स्पिन वेक्टर को किसी भी दिशा में इंगित करने की स्वीकृति होती है। इन मॉडलों में कई रोचक गुण हैं, जिससे प्रावस्था संक्रमण के सिद्धांत में रोचक परिणाम सामने आए हैं।

दिशा

स्पिन प्रक्षेपण क्वांटम संख्या और बहुलता

उत्कृष्ट यांत्रिकी में, एक कण के कोणीय संवेग में न केवल एक परिमाण (पिंड कितनी तेजी से घूम रहा है) होता है, बल्कि एक दिशा (कण के घूर्णन के अक्ष पर ऊपर या नीचे) भी होती है। क्वांटम-यांत्रिकी स्पिन में दिशा के बारे में भी जानकारी होती है, लेकिन अधिक सूक्ष्म रूप में होती है। क्वांटम यांत्रिकी का कहना है कि किसी भी दिशा में मापे गए स्पिन-एस कण के लिए कोणीय संवेग का घटक केवल मान ले सकता है[19]

जहां पर Si i-वें अक्ष के साथ स्पिन घटक है (या तो x, y, या z), si i-वें अक्ष के साथ स्पिन प्रक्षेपण क्वांटम संख्या है , और s प्रमुख स्पिन क्वांटम संख्या है (पिछले अनुभाग में चर्चा की गई)। परंपरागत रूप से चुनी गई दिशा z अक्ष है:

जहां पर Sz z साथ स्पिन घटक sz है, z अक्ष साथ में स्पिन प्रक्षेपण क्वांटम संख्या है।

कोई देख सकता है कि sz के 2s + 1 के संभावित मान है। जो संख्या ''2s + 1'' स्पिन प्रणाली की बहुलता (रसायन विज्ञान) है। उदाहरण के लिए, स्पिन के लिए केवल दो संभावित मान हैं-1/2कण: sz = +1/2 और sz = −1/2 ये क्वांटम अवस्थाओ के अनुरूप हैं जिनमें स्पिन घटक क्रमशः +z या -z दिशाओं में इंगित कर रहा है, और प्रायः इसे स्पिन ऊपर और स्पिन नीचे के रूप में संदर्भित किया जाता है। एक स्पिन के लिए-3/2 कण, एक डेल्टा बैरियन की तरह, संभावित मान + 3/2, +1/2, −1/2, −3/2.

वेक्टर

अंतरिक्ष में एक बिंदु बिना स्पर्शरेखा के लगातार स्पिन कर सकता है। ध्यान दें कि 360 श्रेणी घूर्णन के बाद, सर्पिल दक्षिणावर्त और वामावर्त झुकाव के बीच प्रतिवर्तन करता है। पूर्ण 720° स्पिन के बाद अपने मूल विन्यास में वापस आ जाता है।

किसी दी गई क्वांटम स्थिति के लिए, एक स्पिन वेक्टर, के बारे में सोचा जा सकता है जिनके घटक प्रत्येक अक्ष के साथ स्पिन घटकों का अपेक्षित मान (क्वांटम भौतिकी) हैं, अर्थात, । यह वेक्टर तब "दिशा" का वर्णन करेगा जिसमें स्पिन इंगित कर रहा है, जो घूर्णन के अक्ष की उत्कृष्ट अवधारणा के अनुरूप है। यह पता चला है कि स्पिन वेक्टर वास्तविक क्वांटम-यांत्रिक गणनाओं में अधिक उपयोगी नहीं है, क्योंकि इसे प्रत्यक्ष रूप से मापा नहीं जा सकता है: sx, sy और sz उनके बीच एक क्वांटम अनिश्चितता सिद्धांत के कारण एक साथ निश्चित मान नहीं हो सकते। हालांकि, कणों के सांख्यिकीय रूप से बड़े संग्रह के लिए जिन्हें एक ही शुद्ध क्वांटम अवस्था में रखा गया है, जैसे कि स्टर्न-गेरलाच तंत्र के उपयोग के माध्यम से, स्पिन वेक्टर का एक अच्छी तरह से परिभाषित प्रयोगात्मक अर्थ है: यह साधारण अंतरिक्ष में दिशा निर्दिष्ट करता है। जिसमें संग्रह में प्रत्येक कण का पता लगाने की अधिकतम संभव संभावना (100%) प्राप्त करने के लिए बाद के अभिज्ञापक को उन्मुख होना चाहिए। स्पिन के लिए-1/2 कण, यह संभावना सुचारू रूप से कम हो जाती है क्योंकि स्पिन वेक्टर और अभिज्ञापक के बीच का कोण 180 ° के कोण तक बढ़ जाता है - अर्थात, स्पिन वेक्टर के विपरीत दिशा में उन्मुख अभिज्ञापक के लिए - संग्रह से कणों का पता लगाने की अपेक्षा न्यूनतम 0% तक पहुँचता है।

एक गुणात्मक अवधारणा के रूप में, स्पिन वेक्टर प्रायः आसान होता है क्योंकि उत्कृष्ट रूप से चित्र बनाना आसान होता है। उदाहरण के लिए, क्वांटम-यांत्रिकी स्पिन उत्कृष्ट घूर्णाक्षस्थापी प्रभावों के अनुरूप घटना प्रदर्शित कर सकता है। कोई एक इलेक्ट्रॉन पर एक चुंबकीय क्षेत्र में डालकर एक प्रकार का "आघूर्ण बल" लगा सकता है (क्षेत्र इलेक्ट्रॉन के आंतरिक चुंबकीय द्विध्रुवीय आघूर्ण पर कार्य करता है-निम्न अनुभाग देखें)। इसका परिणाम यह होता है कि स्पिन वेक्टर उत्कृष्ट घूर्णाक्षस्थापी की तरह ही अग्रगमन से विगत है। इस घटना को इलेक्ट्रॉन स्पिन प्रतिध्वनि (ईएसआर) के रूप में जाना जाता है। परमाणु नाभिक में प्रोटॉन के समतुल्य व्यवहार का उपयोग परमाणु चुंबकीय प्रतिध्वनि (एनएमआर) स्पेक्ट्रमदर्शी और प्रतिबिम्बन में किया जाता है।

गणितीय रूप से, क्वांटम-यांत्रिकी स्पिन अवस्थाओ को वेक्टर-जैसी वस्तुओं द्वारा वर्णित किया जाता है जिन्हें स्पिनर कहा जाता है। निर्देशांक घूर्णन के अंतर्गत स्पिनरों और वेक्टरों के व्यवहार के बीच सूक्ष्म अंतर हैं। उदाहरण के लिए, स्पिन के घूर्णन-1/2 360° का कण इसे उसी क्वांटम अवस्था में वापस नहीं लाता है, बल्कि विपरीत क्वांटम प्रावस्था (तरंगों) वाली अवस्था में लाता है; सिद्धांत रूप में, व्यतिकरण (तरंग प्रसार) प्रयोगों के साथ यह पता लगाने योग्य है। कण को ​​​​उसकी यथावत् मूल स्थिति में वापस लाने के लिए, 720 ° घूर्णन की आवश्यकता होती है। ( प्लेट ट्रिक और मॉबियस स्ट्रिप गैर-क्वांटम उपमाएं देते हैं।) यहां तक ​​कि आघूर्ण बल अनुप्रयुक्त होने के बाद भी, एक स्पिन-शून्य कण में केवल एक क्वांटम स्थिति हो सकती है। एक स्पिन-2 कण को ​​180° पर घुमाकर वापस उसी क्वांटम अवस्था में लाया जा सकता है, और एक स्पिन-4 कण को ​​90° घुमाकर उसी क्वांटम अवस्था में वापस लाया जा सकता है। स्पिन-2 कण एक सीधी छड़ी के समान हो सकता है जो 180° घुमाए जाने के बाद भी वही दिखता है, और स्पिन-0 कण को ​​वृत के रूप में कल्पना की जा सकती है, जो किसी भी कोण से स्पिन के बाद समान दिखता है।

गणितीय सूत्रीकरण

संचालिका

स्पिन दिक्-परिवर्तन संबंधों का [20] कोणीय संवेग के अनुरूप क्रियान्वयन करता है:

जहां पर εjkl लेवी-सिविटा प्रतीक है। यह (कोणीय संवेग के साथ) इस प्रकार है कि और आइजन्वेक्टर के (कुल S आधार (रैखिक बीजगणित) में केट संकेतन के रूप में व्यक्त किया गया ) हैं

इन आइजन्वेक्टर पर काम करने वाले स्पिन बढ़ाने और कम करने वाले संचालक देते हैं

जहां पर .

लेकिन कक्षीय कोणीय संवेग के विपरीत, आइजन्वेक्टर परिपत्र समरूप नहीं हैं। वे θ और φ के फलन नहीं है। s और ms अर्ध-पूर्णांक मानों को बाहर करने का भी कोई कारण नहीं है।

सभी क्वांटम-यांत्रिकी कणों में एक आंतरिक स्पिन होती है (हालांकि यह मान शून्य के समान हो सकता है)। स्पिन का प्रक्षेपण किसी भी अक्ष पर कम हुई प्लैंक स्थिरांक की इकाइयों में मात्रा निर्धारित की जाती है, जैसे कि कण का अवस्था फलन है, कहते हैं, नहीं , लेकिन , जहां पर निम्नलिखित असतत समूह के केवल मान ले सकते हैं:

एक बोसॉन (पूर्णांक स्पिन) और फ़र्मियन (अर्ध-पूर्णांक स्पिन) को अलग करता है। पारस्परिक प्रभाव प्रक्रियाओं में संरक्षित कुल कोणीय संवेग तब कक्षीय कोणीय संवेग और स्पिन का योग है।

पाउली आव्यूह (मेट्रिसेस)

संचालिका (भौतिकी) क्वांटम यांत्रिकी में संचालिका स्पिन से जुड़े क्वांटम-यांत्रिकी संचालिका-1/2 अवलोकनीय हैं

जहां कार्टेशियन घटकों में

स्पिन के विशेष स्थिति के लिए-1/2 कण, σx, σy और σz तीन पाउली आव्यूह हैं:


पाउली अपवर्जन सिद्धांत

N समान कणों की प्रणालियों के लिए यह पाउली अपवर्जन सिद्धांत से संबंधित है, जो बताता है कि इसकी तरंग क्रिया किन्हीं दो N कणों के रूप में परस्पर विनिमय पर परिवर्तित करना चाहिए

इस प्रकार, बोसोन पूर्व-कारक के लिए (−1)2s घटकर +1 हो जाएगा, फ़र्मियन के लिए -1 हो जाएगा। क्वांटम यांत्रिकी में सभी कण या तो बोसोन या फ़र्मियन होते हैं। कुछ अव्यवहार्य सापेक्षतावादी क्वांटम क्षेत्र सिद्धांतों में अतिसममित कण भी सम्मिलित हैं, जहां बोसोनिक और फर्मीओनिक घटकों के रैखिक संयोजन दिखाई देते हैं। दो आयामों में, पूर्व-कारक (−1)2s 1 परिमाण की किसी भी जटिल संख्या द्वारा प्रतिस्थापित किया जा सकता है जैसे कि किसी में भी।

N-कण अवस्था फलन के लिए उपरोक्त क्रमचय अभिधारणा का दैनिक जीवन में सबसे महत्वपूर्ण परिणाम होते हैं, उदा रासायनिक तत्वों की आवर्त सारणी

घूर्णन

जैसा कि ऊपर वर्णित है, क्वांटम यांत्रिकी में कहा गया है कि किसी भी दिशा में मापा गया कोणीय संवेग का स्थानिक वेक्टर केवल कई असतत मान ले सकता है। कण के स्पिन का सबसे सुविधाजनक क्वांटम-यांत्रिकी विवरण इसलिए एक दिए गए अक्ष पर अपने आंतरिक कोणीय संवेग के प्रक्षेपण के दिए गए मान को खोजने के आयामों के अनुरूप जटिल संख्याओं के एक समूह के साथ है। उदाहरण के लिए, स्पिन के लिए-1/2 कण, हमें दो संख्याओ a±1/2 की आवश्यकता होगी, समान कोणीय संवेग के प्रक्षेपण के साथ इसे खोजने का आयाम दे रहा है +ħ/2 और ħ/2, आवश्यकता को पूरा करना

स्पिन s के साथ एक सामान्य कण के लिए , हमे 2s + 1 ऐसे पैरामीटरकी आवश्यकता होगी। चूँकि ये संख्याएँ अक्ष के चयन पर निर्भर करती हैं, इसलिए जब इस अक्ष को घुमाया जाता है तो वे गैर-नगण्यतापूर्वक रूप से एक दूसरे में परिवर्तित हो जाती हैं। यह स्पष्ट है कि परिवर्तन सिद्धांत रैखिक होना चाहिए, इसलिए हम प्रत्येक घूर्णन के साथ एक आव्यूह को जोड़कर इसका प्रतिनिधित्व कर सकते हैं, और घूर्णन ए और बी के अनुरूप दो रूपांतरण आव्यूह का उत्पाद घूर्णन का प्रतिनिधित्व करने वाले आव्यूह के समान (प्रावस्था तक) होना चाहिए। AB इसके अतिरिक्त, घूर्णन क्वांटम-यांत्रिकी आंतरिक उत्पाद को संरक्षित करते हैं, और इसलिए हमारे परिवर्तन आव्यूह भी होने चाहिए:

गणितीय रूप से बोलते हुए, ये आव्यूह घूर्णन समूह SO(3) का एक एकात्मक प्रक्षेपीय प्रतिनिधित्व प्रस्तुत करते हैं। ऐसा प्रत्येक प्रतिनिधित्व SO(3) के आच्छादन समूह के प्रतिनिधित्व से अनुरूप है, जो SU(2) है।[21] प्रत्येक आयाम कर लिएSU(2) एक n आयाम अपरिवर्तनीय प्रतिनिधित्व है, हालांकि यह प्रतिनिधित्व विषम n के लिए n आयामी वास्तविक है और सम n के लिए आयामी सम्मिश्र n (इसलिए वास्तविक आयाम 2n) है। सामान्य वेक्टर के साथ के साथ समतल में कोण θ द्वारा घूर्णन के लिए,

जहां पर , और S संचालिका का वेक्टर है।

Proof

समन्वय प्रणाली में काम करना जहां , हम चाहेंगे यह दिखाने के लिए कि Sx और Sy द्वारा एक दूसरे में घुमाए जाते हैं। कोण θ. प्रारंभ Sx. इकाइयों का उपयोग करना जहां ħ = 1:

स्पिन संचालिका दिक्-परिवर्तन संबंधों का उपयोग करते हुए, हम देखते हैं कि दिक्-परिवर्तन श्रृंखला में विषम शर्तों के लिए i Sy का मूल्यांकन करते हैं और सभी समान शर्तों के लिए Sx का मूल्यांकन करते हैं। इस प्रकार :

अनुमान के अनुसार ध्यान दें कि चूंकि हम केवल स्पिनसंचालिका दिक्-परिवर्तन संबंधों पर निभर करते है, यह प्रमाण किसी भी आयाम के लिए है (अर्थात, किसी भी प्रमुख स्पिन क्वांटम संख्या के लिए) s)।[22]

यूलर कोणो का उपयोग करके इस प्रकार के संयुक्तीकरण संचालिको द्वारा 3-आयामी अंतरिक्ष में एक सामान्य घूर्णन बनाया जा सकता है:

संचालिको के इस समूह का एक अलघुकरणीय प्रतिनिधित्व विग्नर डी-मैट्रिक्स द्वारा प्रस्तुत किया गया है:

जहां पर

विग्नर का छोटा डी-आव्यूह है ध्यान दें कि के लिए γ = 2π और α = β = 0; अर्थात, के बारे में एक पूर्ण घूर्णन z अक्ष, विग्नेर डी-आव्यूह तत्व बन जाते हैं

यह स्मरण करते हुए कि एक सामान्य स्पिन स्थिति को निश्चित m वाले अवस्थाओ के अध्यारोपण के रूप में लिखा जा सकता है , हम देखते हैं कि यदि s एक पूर्णांक है, तो m के मान सभी पूर्णांक हैं, और यह आव्यूह पहचान संचालिका से अनुरूप होती है। हालांकि, यदि s एक आधा पूर्णांक है, तो m के मान सभी अर्ध-पूर्णांक हैं, जिसमे सभी m के लिए (−1)2m = −1 मिलता है , और इसलिए 2π द्वारा घुमाने पर स्थिति एक ऋण चिह्न चयन करती है। यह तथ्य स्पिन-सांख्यिकी प्रमेय के प्रमाण का एक महत्वपूर्ण तत्व है।

लोरेंत्ज़ परिवर्तन

हम सामान्य लोरेन्ट्ज़ परिवर्तनों के अंतर्गत स्पिन के व्यवहार को निर्धारित करने के लिए एक ही दृष्टिकोण का प्रयास कर सकते हैं, लेकिन हम तुरंत एक बड़ी बाधा खोज लेंगे। SO(3) के विपरीत, लोरेंत्ज़ परिवर्तनो का समूह SO (3,1) असंहत है और इसलिए इसमें कोई विश्वसनीय, एकात्मक, परिमित-आयामी प्रतिनिधित्व नहीं है।

स्पिन के स्थिति में-1/2 कण, एक निर्माण को खोजना संभव है जिसमें परिमित-आयामी प्रतिनिधित्व और एक अदिश उत्पाद सम्मिलित है जो इस प्रतिनिधित्व द्वारा संरक्षित है। हम प्रत्येक कण के साथ एक 4-घटक डायराक स्पिनर ψ को संबद्ध करते हैं । ये स्पिनर सिद्धांत के अनुसार लोरेंत्ज़ परिवर्तनों के अंतर्गत रूपांतरित होते हैं

जहां पर γν गामा आव्यूह हैं, और ωμν एक प्रतिसममित 4 × 4 आव्यूह है जो परिवर्तन को प्राचलीकरण कर रहा है। यह दिखाया जा सकता है कि अदिश उत्पाद

संरक्षित है। हालाँकि, यह सकारात्मक-निश्चित नहीं है, इसलिए प्रतिनिधित्व एकात्मक नहीं है।

x, y, या z अक्षों के साथ स्पिन का मापन

स्पिन के प्रत्येक ( हर्मिटियन आव्यूह ) पाउली आव्यूह-1/2 कणों के दो इगन-मूल्य ​​​​ +1 और -1 हैं, संबंधित सामान्यीकृत आइजन्वेक्टर हैं

(चूँकि किसी स्थिरांक से गुणा किया गया कोई भी आइजन्वेक्टर अभी भी एक आइजन्वेक्टर है, मिश्रित संकेत के बारे में अस्पष्टता है। इस लेख में, संकेत अस्पष्टता होने पर पहले तत्व को काल्पनिक और नकारात्मक बनाने के लिए संकेत को चुना गया है। वर्तमान संकेत द्वारा उपयोग किया जाता है। SymPy जैसे सॉफ्टवेयर; जबकि कई भौतिकी पाठ्यपुस्तकें, जैसे सकुराई और ग्रिफिथ्स, इसे वास्तविक और सकारात्मक बनाना अपेक्षाकृत अधिक पसंद करती हैं।)

क्वांटम यांत्रिकी के अभिधारणाओं द्वारा x, y, या zअक्ष केवल संबंधित स्पिन संचालिका का एक आइगेनमान उत्पन्न कर सकता (Sx, Sy या Sz) है उस धुरी पर, अर्थात ħ/2 या ħ/2. एक कण की क्वांटम स्थिति (स्पिन के संबंध में), दो-घटक स्पिनर द्वारा प्रदर्शित की जा सकती है:

जब इस कण के स्पिन को किसी दिए गए अक्ष के संबंध में मापा जाता है (इस उदाहरण में, xअक्ष), संभावना है कि इसके स्पिन को मापा जाएगा ħ/2 पूर्णतः है तदनुसार, संभावना है कि इसके स्पिन को मापा जाएगा ħ/2 पूर्णतः माप के बाद, कण की स्पिन स्थिति संबंधित ईजेनअवस्था में समाप्त हो जाती है। परिणामस्वरूप, यदि किसी दिए गए अक्ष के साथ कण के स्पिन को एक दिए गए ईजेनमान के लिए मापा गया है, तो सभी मापों से एक ही आइगेनमान निकलेगा (चूंकि , आदि), बशर्ते कि स्पिन का कोई माप अन्य अक्षों के साथ न किया जाए।

एक यादृच्छिक अक्ष के साथ स्पिन का माप

एक अनियंत्रित अक्ष दिशा के साथ स्पिन को मापने के लिए संचालिका पाउली स्पिन आव्यूह से आसानी से प्राप्त किया जाता है। माना u = (ux, uy, uz) एक यादृच्छिक इकाई वेक्टर हो। फिर इस दिशा में घुमाने के लिए संचालिका सरल है

संचालिका Su के आइगेनमान ±ħ/2 हैं, सामान्य स्पिन आव्यूह की तरह एक यादृच्छिक दिशा में स्पिन के लिए संचालिका खोजने का यह तरीका उच्च स्पिन अवस्थाओ को सामान्यीकृत करता है, तीन x-, y-, z-अक्ष दिशाएँ के लिए तीन संचालिको के वेक्टर के साथ दिशा का डॉट उत्पाद लेता है।

स्पिन के लिए एक सामान्यीकृत स्पिनर-1/2 में (ux, uy, uz) दिशा (जो स्पिन नीचे को छोड़कर सभी स्पिन स्थिति के लिए काम करती है, जहां यह देगी 0/0) है

उपरोक्त स्पिनर को सामान्य तरीके से विकर्ण करके प्राप्त किया जाता है σu आव्यूह और आइगेनमान ​​​​के अनुरूप आइगेनस्थिति का पता लगाकर प्राप्त किया जाता है। क्वांटम यांत्रिकी में, वैक्टर को सामान्यीकृत कारक से गुणा करने पर सामान्यीकृत कहा जाता है, जिसके परिणामस्वरूप वेक्टर में एकता की लंबाई होती है।

स्पिन माप की संगतता

चूंकि पाउली आव्यूह क्रमविनिमेयता नहीं करते हैं, विभिन्न अक्षों के साथ स्पिन के माप असंगत हैं। इसका तात्पर्य है कि यदि, उदाहरण के लिए, हम x अक्ष के साथ स्पिन को जानते हैं, और फिर हम y अक्ष स्पिन को मापते हैं, हमने x अक्ष स्पिन के अपने पिछले ज्ञान को अमान्य कर दिया है। इसे पाउली आव्यूह के आइजन्वेक्टर (अर्थात् आइगेनस्थिति) के गुण से देखा जा सकता है कि

तो जब भौतिक विज्ञानी x अक्ष के रूप में एक कण के स्पिन को मापते हैं , उदाहरण के लिए, ħ/2, कण की स्पिन अवस्था तरंग क्रिया आइगेनस्थिति में समाप्त हो जाती है जब हम बाद में y अक्ष कण के स्पिन को मापते हैं, स्पिन स्थिति अब या तो या नष्ट हो जाएगी, प्रत्येक प्रायिकता के साथ 1/2 आइए हम अपने उदाहरण में कहें कि हम मापते ħ/2 हैं अब जब हम कण x अक्ष के स्पिन को नापने के लिए निर्वाचित हैं फिर से, प्रायिकता जो हम मापेंगे ħ/2 या ħ/2 प्रत्येक 1/2 (अर्थात वे क्रमश और )है। इसका तात्पर्य है कि स्पिन के साथ मूल माप xअक्ष अब मान्य नहीं है, क्योंकि xअक्ष के साथ स्पिन को अब समान प्रायिकता के साथ या तो आइगेनमान के रूप में मापा जाएगा।

उच्च स्पिन

स्पिन-1/2 संचालिका S = ħ/2σ SU(2) के प्रतिनिधित्व सिद्धांत का मौलिक प्रतिनिधित्व करता है। इस प्रतिनिधित्व के क्रोनेकर उत्पादों को बार-बार अपने साथ ले कर, कोई भी सभी उच्च अप्रासंगिक प्रतिनिधित्वों का निर्माण कर सकता है। यही , तीन स्थानिक आयामों में उच्च-स्पिन प्रणाली के लिए परिणामी स्पिन परिचालको की गणना अव्यवस्थित रूप से बड़े s आकार के लिए की जा सकती है। उदाहरण के लिए, दो स्पिन का क्रोनकर उत्पाद लेना-1/2 एक चार-आयामी प्रतिनिधित्व उत्पन्न करता है जो एक 3-आयामी स्पिन-1 (त्रिक अवस्था ) और 1-आयामी स्पिन-0 प्रतिनिधित्व (एकल अवस्था ) में वियोज्य है।

परिणामी अलघुकरणीय प्रतिनिधित्व z-आधार में निम्नलिखित स्पिन आव्यूह और आइगेनमान उत्पन्न करते हैं:

  1. For spin 1 they are