भाजक: Difference between revisions

From Vigyanwiki
(Created page with "{{short description|Integer that is a factor of another integer}} {{more footnotes|date=June 2015}} {{about|an integer that is a factor of another integer|a number used to div...")
 
Line 92: Line 92:




==इस पेज में लापता आंतरिक लिंक की सूची==
*
 
*भोजन की छड़ें
*अंक शास्त्र
*संयुक्त संख्या
*यूनिट (रिंग थ्योरी)
*अत्यधिक मिश्रित संख्या
*एकाधिक (गणित)
*सेट (गणित)
*आंशिक रूप से आदेशित सेट
*हस्स आरेख
*मुख्य कारक है
*अंकगणित का मौलिक प्रमेय
*उत्तम संख्या
*प्रचुर संख्या
*गुणक फलन
*सापेक्षतः अभाज्य
*मुख्य गुणनखंड प्रक्रिया
*आम एकाधिक
*गैर नकारात्मक
*महत्तम सामान्य भाजक
*विभाजकों की तालिका
== संदर्भ ==
== संदर्भ ==
*{{cite book |last=Durbin |first=John R. |title=Modern Algebra: An Introduction |edition=6th |year=2009 |publisher=Wiley |location=New York |url=https://books.google.com/books?id=dnDJDwAAQBAJ | isbn=978-0470-38443-5}}
*{{cite book |last=Durbin |first=John R. |title=Modern Algebra: An Introduction |edition=6th |year=2009 |publisher=Wiley |location=New York |url=https://books.google.com/books?id=dnDJDwAAQBAJ | isbn=978-0470-38443-5}}

Revision as of 11:45, 17 November 2022

10 के भाजक Cuisenaire छड़ के साथ सचित्र: 1, 2, 5, और 10

गणित में, एक पूर्णांक का भाजक , जिसे का कारक भी कहा जाता है , एक पूर्णांक है जिसे उत्पन्न करने के लिए किसी पूर्णांक से गुणा किया जा सकता है . ऐसे में एक का यह भी कहना है का गुणज है पूर्णांक किसी अन्य पूर्णांक से विभाज्य या समान रूप से विभाज्य है यदि का भाजक है ; इसका अर्थ है विभाजित करना द्वारा शेष नहीं रहता।

परिभाषा

पूर्णांक n एक शून्येतर पूर्णांक से विभाज्य है m यदि कोई पूर्णांक मौजूद है k ऐसा है कि . यह इस प्रकार लिखा गया है

उसी बात को कहने के अन्य तरीके हैं m विभाजित n, m का भाजक है n, m का कारक है n, तथा n का गुणज है m. यदि m विभाजित नहीं करता n, तो अंकन है .[1][2] आमतौर पर, m अशून्य होना आवश्यक है, लेकिन n शून्य होने की अनुमति है। इस सम्मेलन के साथ, प्रत्येक शून्येतर पूर्णांक के लिए m.[1][2]कुछ परिभाषाएँ उस आवश्यकता को छोड़ देती हैं शून्य न हो।[3]


सामान्य

विभाजक ऋणात्मक संख्या के साथ-साथ धनात्मक भी हो सकते हैं, हालांकि कभी-कभी यह शब्द धनात्मक भाजक तक ही सीमित होता है। उदाहरण के लिए, 4 के छह विभाजक हैं; वे 1, 2, 4, -1, -2, और -4 हैं, लेकिन आमतौर पर केवल सकारात्मक (1, 2, और 4) का उल्लेख किया जाएगा।

1 और −1 प्रत्येक पूर्णांक को विभाजित (विभाजक) करते हैं। प्रत्येक पूर्णांक (और उसका निषेध) स्वयं का एक विभाजक है। 2 से विभाज्य पूर्णांक सम और विषम संख्या एँ कहलाती हैं, और 2 से विभाज्य पूर्णांक सम और विषम संख्याएँ कहलाती हैं।

1, −1, n और −n को n का 'तुच्छ विभाजक' कहा जाता है। n का एक भाजक जो तुच्छ भाजक नहीं है, उसे 'गैर-तुच्छ भाजक' (या सख्त भाजक) के रूप में जाना जाता है।[4]). कम से कम एक गैर-तुच्छ भाजक के साथ एक गैर-शून्य पूर्णांक को समग्र संख्या के रूप में जाना जाता है, जबकि इकाई (रिंग सिद्धांत) -1 और 1 और अभाज्य संख्या ओं में कोई गैर-तुच्छ भाजक नहीं होता है।

विभाज्यता नियम हैं जो किसी संख्या के अंकों से किसी संख्या के कुछ विभाजकों को पहचानने की अनुमति देते हैं।

उदाहरण

1 से 1000 तक पूर्णांकों के विभाजकों की संख्या का आलेख। अभाज्य संख्याओं में बिल्कुल 2 विभाजक होते हैं, और अत्यधिक संमिश्र संख्याएँ बोल्ड में होती हैं।

*7 42 का भाजक है क्योंकि , तो हम कह सकते हैं . यह भी कहा जा सकता है कि 42, 7 से विभाज्य है, 42, 7 का गुणज (गणित) है, 7, 42 को विभाजित करता है, या 7, 42 का एक गुणनखंड है।

  • 6 के गैर-तुच्छ भाजक 2, -2, 3, -3 हैं।
  • 42 के धनात्मक भाजक 1, 2, 3, 6, 7, 14, 21, 42 हैं।
  • 60 के सभी धनात्मक भाजक का समुच्चय (गणित), , आंशिक रूप से विभाज्यता द्वारा निर्धारित आदेश दिया गया है, हस आरेख है:
Lattice of the divisibility of 60; factors.svg

आगे की धारणाएं और तथ्य

कुछ प्राथमिक नियम हैं:

  • यदि तथा , फिर , अर्थात विभाज्यता एक सकर्मक संबंध है।
  • यदि तथा , फिर या .
  • यदि तथा , फिर धारण करता है, के रूप में करता है .[5] हालांकि, यदि तथा , फिर हमेशा धारण नहीं करता (उदा। तथा लेकिन 5, 6 को विभाजित नहीं करता है)।

यदि , तथा , फिर .[note 1] इसे यूक्लिड की लेम्मा कहा जाता है।

यदि एक अभाज्य संख्या है और फिर या .

का धनात्मक भाजक जो इससे अलग है ए कहा जाता हैproper divisorया एकaliquot partका . एक संख्या जो समान रूप से विभाजित नहीं होती लेकिन एक शेष छोड़ देता है जिसे कभी-कभी एक कहा जाता हैaliquant partका .

पूर्णांक जिसका एकमात्र उचित भाजक 1 है, अभाज्य संख्या कहलाती है। समतुल्य रूप से, एक अभाज्य संख्या एक सकारात्मक पूर्णांक है जिसके दो सकारात्मक कारक हैं: 1 और स्वयं।

का कोई सकारात्मक विभाजक के प्रमुख कारक का उत्पाद है कुछ शक्ति के लिए उठाया। यह अंकगणित के मौलिक प्रमेय का परिणाम है।

एक संख्या पूर्ण संख्या कहलाती है यदि यह अपने उचित भाजक के योग के बराबर है, कमी संख्या यदि इसके उचित भाजक का योग इससे कम है , और प्रचुर मात्रा में संख्या यदि यह योग अधिक हो .

के सकारात्मक विभाजकों की कुल संख्या एक गुणक कार्य है , जिसका अर्थ है कि जब दो नंबर तथा अपेक्षाकृत प्रमुख हैं, तो . उदाहरण के लिए, ; 42 के आठ विभाजक 1, 2, 3, 6, 7, 14, 21 और 42 हैं। तथा एक सामान्य विभाजक साझा करें, तो यह सच नहीं हो सकता है . के सकारात्मक भाजक का योग एक अन्य गुणक कार्य है (उदा ). ये दोनों फलन भाजक फलन के उदाहरण हैं।

यदि . का अभाज्य गुणनखंडन द्वारा दिया गया है

फिर के धनात्मक विभाजकों की संख्या है

और प्रत्येक भाजक का रूप है

कहाँ पे प्रत्येक के लिए प्रत्येक प्राकृतिक के लिए , .

भी,[6]

कहाँ पे यूलर-मास्चेरोनी स्थिरांक है। इस परिणाम की एक व्याख्या यह है कि यादृच्छिक रूप से चुने गए धनात्मक पूर्णांक n का औसत होता है के विभाजकों की संख्या . हालांकि, यह असामान्य रूप से कई भाजक के साथ अत्यधिक समग्र संख्या | संख्याओं के योगदान का परिणाम है।

अमूर्त बीजगणित में

वलय सिद्धांत


डिवीजन जाली

जिन परिभाषाओं में 0 शामिल है, विभाज्यता का संबंध सेट को बदल देता है आंशिक रूप से आदेशित सेट में गैर-ऋणात्मक पूर्णांकों का: एक जाली (आदेश) । इस जाली का सबसे बड़ा अवयव 0 है और सबसे छोटा 1 है। मिलन संक्रिया ∧ सबसे बड़े उभयनिष्ठ भाजक द्वारा दी जाती है और जोड़ संक्रिया अल्पतम उभयनिष्ठ गुणज द्वारा दी जाती है। यह जाली अनंत चक्रीय समूह पूर्णांक के उपसमूहों की जाली के द्वैत (क्रम सिद्धांत) के समरूप है|.

यह भी देखें

टिप्पणियाँ

  1. refers to the greatest common divisor.
  1. 1.0 1.1 Hardy & Wright 1960, p. 1
  2. 2.0 2.1 Niven, Zuckerman & Montgomery 1991, p. 4
  3. Durbin 2009, p. 57, Chapter III Section 10
  4. "राफेल कॉडरलियर और कैथरीन डुबोइस द्वारा प्रूफ इंटरऑपरेबिलिटी के लिए बचाव के लिए FoCaLiZe और Dedukti" (PDF).
  5. . Similarly,
  6. Hardy & Wright 1960, p. 264, Theorem 320


संदर्भ