कंपन: Difference between revisions
(text) |
m (16 revisions imported from alpha:कंपन) |
||
| (13 intermediate revisions by 3 users not shown) | |||
| Line 3: | Line 3: | ||
{{Classical mechanics|core}} | {{Classical mechanics|core}} | ||
[[कंपन|'''कंपन''']] (लैटिन वाइब्रो से 'टू शेक') एक यांत्रिक घटना है जिसके | [[कंपन|'''कंपन''']] (लैटिन वाइब्रो से 'टू शेक') एक यांत्रिक घटना है जिसके अनुसार [[संतुलन बिंदु]] के आसपास दोलन होते हैं। दोलन आवधिक हो सकते हैं, जैसे पेंडुलम की गति, या यादृच्छिक, जैसे बजरी वाली सड़क पर टायर की गति होती है। | ||
कंपन वांछनीय हो सकता है: उदाहरण के लिए, [[ ट्यूनिंग कांटा |स्वरित्र द्विभुज]] की गति, सुषिर काष्ठ वाद्य या हारमोनिका में [[रीड (संगीत)]], [[ चल दूरभाष |मोबाइल फोन]], या [[ ध्वनि-विस्तारक यंत्र | ध्वनि-विस्तारक यंत्र]] का शंकु। | कंपन वांछनीय हो सकता है: उदाहरण के लिए, [[ ट्यूनिंग कांटा |स्वरित्र द्विभुज]] की गति, सुषिर काष्ठ वाद्य या हारमोनिका में [[रीड (संगीत)]], [[ चल दूरभाष |मोबाइल फोन]], या [[ ध्वनि-विस्तारक यंत्र | ध्वनि-विस्तारक यंत्र]] का शंकु। | ||
चूंकि, कई स्थितियों में, कंपन अवांछनीय है, जिससे [[ऊर्जा]] बर्बाद होती है और अवांछित ध्वनि उत्पन्न होती है। उदाहरण के लिए, [[इंजन]], [[ विद्युत मोटर |विद्युत मोटर]], या किसी भी [[मशीन]] के संचालन में कंपन संबंधी गति सामान्यतः अवांछित होती है। इस तरह के कंपन घूर्णन भागों में असंतुलन, असमान घर्षण, या [[गियर]] दांतों की जाली के कारण हो सकते हैं। सावधानीपूर्वक डिजाइन सामान्यतः अवांछित कंपन को निम्न करते हैं। | |||
ध्वनि और कंपन का अध्ययन आपस में निकट से संबंधित है (दोनों ध्वनिकी के अंतर्गत आते हैं) | ध्वनि और कंपन का अध्ययन आपस में निकट से संबंधित है (दोनों ध्वनिकी के अंतर्गत आते हैं)। ध्वनि, या दबाव तरंगें, कंपन संरचनाओं (जैसे स्वर रज्जु) द्वारा उत्पन्न होती हैं; ये दबाव तरंगें संरचनाओं के कंपन (जैसे [[ कान का पर्दा |कान का पर्दा]]) को भी प्रेरित कर सकती हैं। इसलिए, रव को निम्न करने के प्रयास अधिकांशतः कंपन के मुद्दों से संबंधित होते हैं।<ref name="Tustin06" /> | ||
[[File:Drum vibration mode21.gif|thumb|एक वृत्ताकार ड्रम के कंपन के संभावित तरीकों में से एक (देखें: कॉमन्स: श्रेणी: ड्रम कंपन एनिमेशन)।]] | [[File:Drum vibration mode21.gif|thumb|एक वृत्ताकार ड्रम के कंपन के संभावित तरीकों में से एक (देखें: कॉमन्स: श्रेणी: ड्रम कंपन एनिमेशन)।]] | ||
कार निलंबन: डिजाइन कंपन नियंत्रण [[ध्वनिक [[ अभियांत्रिकी ]]]], [[ऑटोमोटिव इंजीनियरिंग|स्वचालित इंजीनियरिंग]] या [[मैकेनिकल इंजीनियरिंग]] इंजीनियरिंग के भा[[Index.php?title=मशीनिंग कंपन]]ग के रूप में किया जाता है।]] [[घटिया निर्माण|व्यवकलक निर्माण]] की प्रक्रिया में मशीनिंग कंपन आम है। | |||
== प्रकार == | == प्रकार == | ||
'''मुक्त कंपन''' तब होता है जब यांत्रिक प्रणाली को प्रारंभिक इनपुट के साथ गति में सेट किया जाता है और स्वतंत्र रूप से कंपन करने की अनुमति दी जाती है। इस प्रकार के कंपन के उदाहरण है बच्चे को झूले पर पीछे खींचना और उसे छोड़ देना, या स्वरित्र द्विभुज प्रहार कर उसे बजने दे रहे हैं। यांत्रिक प्रणाली एक या एक से अधिक प्रतिध्वनि पर कंपन करती है और [[अवमंदन अनुपात]] गतिहीनता तक निम्न हो जाता है। | '''मुक्त कंपन''' तब होता है जब यांत्रिक प्रणाली को प्रारंभिक इनपुट के साथ गति में सेट किया जाता है और स्वतंत्र रूप से कंपन करने की अनुमति दी जाती है। इस प्रकार के कंपन के उदाहरण है बच्चे को झूले पर पीछे खींचना और उसे छोड़ देना, या स्वरित्र द्विभुज प्रहार कर उसे बजने दे रहे हैं। यांत्रिक प्रणाली एक या एक से अधिक प्रतिध्वनि पर कंपन करती है और [[अवमंदन अनुपात]] गतिहीनता तक निम्न हो जाता है। | ||
'''प्रणोदित कंपन''' तब होता है जब यांत्रिक प्रणाली पर समय-भिन्न विक्षोभ (भार, विस्थापन, वेग, या त्वरण) लागू होती है। विक्षोभ एक आवधिक और स्थिर-स्थिति इनपुट, क्षणिक इनपुट या यादृच्छिक इनपुट हो सकती है। आवधिक इनपुट एक अनुकंपी या गैर-अनुकंपी विक्षोभ हो सकती है। इस प्रकार के कंपन के उदाहरणों में असंतुलन के कारण वाशिंग मशीन का हिलना, इंजन या असमान सड़क के कारण परिवहन कंपन, या भूकंप के दौरान इमारत का कंपन | '''प्रणोदित कंपन''' तब होता है जब यांत्रिक प्रणाली पर समय-भिन्न विक्षोभ (भार, विस्थापन, वेग, या त्वरण) लागू होती है। विक्षोभ एक आवधिक और स्थिर-स्थिति इनपुट, क्षणिक इनपुट या यादृच्छिक इनपुट हो सकती है। आवधिक इनपुट एक अनुकंपी या गैर-अनुकंपी विक्षोभ हो सकती है। इस प्रकार के कंपन के उदाहरणों में असंतुलन के कारण वाशिंग मशीन का हिलना, इंजन या असमान सड़क के कारण परिवहन कंपन, या भूकंप के दौरान इमारत का कंपन सम्मिलित हैं। रैखिक प्रणालियों के लिए, आवधिक, अनुकंपी इनपुट के अनुप्रयोग से उत्पन्न स्थिर-अवस्था कंपन अनुक्रिया की आवृत्ति लागू बल या गति की आवृत्ति के बराबर होती है, अनुक्रिया परिमाण वास्तविक यांत्रिक प्रणाली पर निर्भर होता है। | ||
'''अवमंदित कंपन''': जब कंपन प्रणाली की ऊर्जा घर्षण और अन्य प्रतिरोधों द्वारा धीरे-धीरे नष्ट हो जाती है, तो कंपन को अवमंदित कहा जाता है। कंपन धीरे-धीरे निम्न हो जाते हैं या आवृत्ति या तीव्रता में बदल जाते हैं या बंद हो जाते हैं और प्रणाली अपनी संतुलन स्थिति में रहता है। इस प्रकार के कंपन का उदाहरण [[ आघात अवशोषक |प्रघात अवशोषक]] द्वारा | '''अवमंदित कंपन''': जब कंपन प्रणाली की ऊर्जा घर्षण और अन्य प्रतिरोधों द्वारा धीरे-धीरे नष्ट हो जाती है, तो कंपन को अवमंदित कहा जाता है। कंपन धीरे-धीरे निम्न हो जाते हैं या आवृत्ति या तीव्रता में बदल जाते हैं या बंद हो जाते हैं और प्रणाली अपनी संतुलन स्थिति में रहता है। इस प्रकार के कंपन का उदाहरण [[ आघात अवशोषक |प्रघात अवशोषक]] द्वारा अवमन्दित किया गया [[वाहन निलंबन]] है। | ||
== अलगाव == | == अलगाव == | ||
| Line 25: | Line 25: | ||
== परीक्षण == | == परीक्षण == | ||
कंपन परीक्षण | कंपन परीक्षण सामान्यतः किसी प्रकार के प्रकंपन के साथ संरचना में प्रणोदित कार्य प्रारंभ करके पूरा किया जाता है। वैकल्पिक रूप से, प्रकंपन की "मेज" से डीयूटी (परीक्षण के अनुसार उपकरण) जुड़ा हुआ है। कंपन परीक्षण परिभाषित कंपन वातावरण में परीक्षण (डीयूटी) के अनुसार उपकरण की अनुक्रिया की जांच करने के लिए किया जाता है। मापी गई अनुक्रिया कंपन वातावरण, श्रांति जीवन, गुंजयमान आवृत्तियों या चरमराना और तड़कन ध्वनि आउटपुट (रव, कंपन और कठोरता) में कार्य करने की क्षमता हो सकती है। चरमराना और तड़कन परीक्षण विशेष प्रकार के ''मन्द प्रकंपन'' के साथ किया जाता है जो ऑपरेशन के दौरान बहुत निम्न ध्वनि स्तर उत्पन्न करता है। | ||
अपेक्षाकृत निम्न आवृति प्रणोदन ( | अपेक्षाकृत निम्न आवृति प्रणोदन (सामान्यतः 100 हर्ट्ज से निम्न) के लिए, सर्वोहाइड्रॉलिक (वैद्युत द्रवचालित) शेकर्स का उपयोग किया जाता है। उच्च आवृत्तियों (सामान्यतः 5 हर्ट्ज से 2000 हर्ट्ज) के लिए, विद्युत् गतिकी शेकर्स का उपयोग किया जाता है। सामान्यतः, कंपन अनुबंध के डीयूटी-साइड पर स्थित एक या एक से अधिक "इनपुट" या "नियंत्रण" बिंदुओं को निर्दिष्ट त्वरण पर रखा जाता है।<ref name="Tustin06">Tustin, Wayne. ''[https://www.evaluationengineering.com/home/article/13003324/where-to-place-the-control-accelerometer Where to place the control accelerometer: one of the most critical decisions in developing random vibration tests also is the most neglected]'', EE-Evaluation Engineering, 2006</ref> अन्य "अनुक्रिया" बिंदुओं में नियंत्रण बिंदुओं की तुलना में उच्च कंपन स्तर (अनुनाद) या निम्न कंपन स्तर (प्रति अनुनाद या डंपिंग) का अनुभव हो सकता है। किसी प्रणाली को अत्यधिक रव होने से बचाने के लिए, या विशिष्ट कंपन आवृत्तियों के कारण होने वाले कंपन मोड के कारण कुछ हिस्सों पर विकृति को निम्न करने के लिए अधिकांशतः प्रति अनुनाद प्राप्त करना वांछनीय होता है।<ref>{{Cite web | title =Polytec InFocus 1/2007 | url =https://eletiofe.com/wp-content/uploads/2019/07/OM_InFocus_2007_01_US.pdf | access-date =2019-07-24 | archive-date =2019-07-24 | archive-url =https://web.archive.org/web/20190724194135/https://eletiofe.com/wp-content/uploads/2019/07/OM_InFocus_2007_01_US.pdf | url-status =dead }}</ref> | ||
कंपन परीक्षण प्रयोगशालाओं द्वारा संचालित सबसे सामान्य प्रकार की कंपन परीक्षण सेवाएँ ज्यावक्रीय और यादृच्छिक हैं। परीक्षण (डीयूटी) के | कंपन परीक्षण प्रयोगशालाओं द्वारा संचालित सबसे सामान्य प्रकार की कंपन परीक्षण सेवाएँ ज्यावक्रीय और यादृच्छिक हैं। परीक्षण (डीयूटी) के अनुसार उपकरण की संरचनात्मक अनुक्रिया का सर्वेक्षण करने के लिए साइन (वन-आवृति-एट-ए-टाइम) परीक्षण किए जाते हैं। कंपन परीक्षण के प्रारंभिक इतिहास के दौरान, कंपन मशीन नियंत्रक केवल साइन गति को नियंत्रित करने तक ही सीमित थे, इसलिए केवल साइन परीक्षण किया गया था। बाद में, अधिक परिष्कृत एनालॉग और फिर डिजिटल नियंत्रक यादृच्छिक नियंत्रण (एक बार में सभी आवृत्तियों) प्रदान करने में सक्षम थे। यादृच्छिक (एक बार में सभी आवृत्तियों) परीक्षण को सामान्यतः वास्तविक दुनिया के वातावरण को अधिक बारीकी से दोहराने के लिए माना जाता है, जैसे चलती ऑटोमोबाइल के लिए सड़क इनपुट है। | ||
अधिकांश कंपन परीक्षण एक समय में 'एकल डीयूटी अक्ष' में आयोजित किए जाते हैं, भले ही अधिकांश वास्तविक-विश्व कंपन एक साथ विभिन्न अक्षों में होते हैं। MIL-STD-810G, 2008 के अंत में जारी, टेस्ट मेथड 527, | अधिकांश कंपन परीक्षण एक समय में 'एकल डीयूटी अक्ष' में आयोजित किए जाते हैं, भले ही अधिकांश वास्तविक-विश्व कंपन एक साथ विभिन्न अक्षों में होते हैं। MIL-STD-810G, 2008 के अंत में जारी, टेस्ट मेथड 527, विविध उत्पादक परीक्षण की मांग करता है। ''कंपन परीक्षण अनुबंध''<ref name="TonyAraujo">Tony Araujo. ''[https://www.evaluationengineering.com/applications/automotive-test/article/21093894/october-automotive-article The evolution of automotive vibration fixturing]'', EE-Evaluation Engineering, 2019</ref>डीयूटी को प्रकंपन टेबल से जोड़ने के लिए उपयोग किया जाना चाहिए, इसे कंपन परीक्षण स्पेक्ट्रम की आवृत्ति सीमा के लिए डिज़ाइन किया जाना चाहिए। कंपन परीक्षण अनुबंध को डिजाइन करना मुश्किल है जो वास्तविक उपयोग में बढ़ते हुए गतिशील अनुक्रिया (यांत्रिक प्रतिबाधा) को दोहराता है<ref name="SVIC Notes">Blanks, H.S., "Equivalence Techniques for Vibration Testing," SVIC Notes, pp 17.</ref>। इस कारण से, कंपन परीक्षणों के बीच दोहराव सुनिश्चित करने के लिए, कंपन अनुबंध को परीक्षण आवृत्ति सीमा के भीतर अनुनाद मुक्त होने के लिए डिज़ाइन किए गए हैं<ref name="SVIC Notes" />। सामान्यतः छोटे जुड़नार और निम्न आवृत्ति सीमा के लिए, डिजाइनर अनुबंध डिजाइन को लक्षित कर सकता है जो परीक्षण आवृत्ति सीमा में प्रतिध्वनि से मुक्त होता है। जैसे-जैसे डीयूटी बड़ा होता जाता है और परीक्षण की आवृत्ति बढ़ती जाती है, यह और अधिक कठिन होता जाता है। इन स्थितियों में विविध-बिंदु नियंत्रण रणनीतियाँ<ref name="Araujo, T. and Yao, B.,">Araujo, T. and Yao, B., ''"Vibration Fixture Performance Qualification – A Review of Automotive Industry Best Practices," SAE Technical Paper 2020-01-1065, 2020, https://doi.org/10.4271/2020-01-1065<nowiki/>.''</ref> पूर्वकथन में सम्मिलित कुछ अनुनादों को निम्न कर सकते हैं। | ||
कुछ कंपन परीक्षण विधियाँ क्रॉसस्टॉक की मात्रा को सीमित करती हैं (परीक्षण के | कुछ कंपन परीक्षण विधियाँ क्रॉसस्टॉक की मात्रा को सीमित करती हैं (परीक्षण के अनुसार अक्ष के परस्पर लंबवत दिशा में एक अनुक्रिया बिंदु की गति) कंपन परीक्षण अनुबंध द्वारा प्रदर्शित होने की अनुमति है। विशेष रूप से कंपन का पता लगाने या रिकॉर्ड करने के लिए डिज़ाइन किए गए उपकरणों को [[ कंपन मापक यंत्र |कंपन मापक यंत्र]] कहा जाता है। | ||
विशेष रूप से कंपन का पता लगाने या रिकॉर्ड करने के लिए डिज़ाइन किए गए उपकरणों को [[ कंपन मापक यंत्र ]] कहा जाता है। | |||
== विश्लेषण == | == विश्लेषण == | ||
कंपन विश्लेषण (वी.ए), औद्योगिक या रखरखाव वातावरण में लागू किया जाता है, जिसका उद्देश्य उपकरण की खराबी का पता लगाकर रखरखाव लागत और उपकरण दुविधा को निम्न करना है।<ref>Crawford, Art; Simplified Handbook of Vibration Analysis</ref><ref>Eshleman, R 1999, Basic machinery vibrations: An introduction to machine testing, analysis, and monitoring</ref> वी.ए स्थिति निगरानी (सीएम) प्रोग्राम का प्रमुख घटक है, और इसे अधिकांशतः पूर्वकथन कहनेवाला रखरखाव (पीडीएम) कहा जाता है।<ref>Mobius Institute; Vibration Analyst Category 2 – Course Notes 2013</ref> सामान्यतः वीए का उपयोग घूर्णन उपकरण (पंखे, मोटर्स, पंप, और गियरबॉक्स इत्यादि) जैसे असंतुलन, गलत संरेखण, रोलिंग तत्व असर दोष और अनुनाद स्थितियों में दोषों का पता लगाने के लिए किया जाता है।<ref>{{Cite web|last=|first=|date=2021-01-05|title=रखरखाव में कंपन विश्लेषण का महत्व|url=https://rms-reliability.com/vibration/vibration-analysis-in-maintenance/|url-status=live|archive-url=|archive-date=|access-date=2021-01-08|website=|language=en-US}}</ref> | |||
कंपन विश्लेषण ( | |||
वीए [[तरंग|तरंगरूप]] (टीडब्ल्यूएफ) के रूप में प्रदर्शित विस्थापन, वेग और त्वरण की इकाइयों का उपयोग कर सकता है, लेकिन सामान्यतः स्पेक्ट्रम का उपयोग किया जाता है, जो टीडब्ल्यूएफ के तेज़ फूरियर रूपांतरण से प्राप्त होता है। कंपन स्पेक्ट्रम महत्वपूर्ण आवृत्ति जानकारी प्रदान करता है जो दोषपूर्ण घटक को इंगित कर सकता है। | |||
सरल [[ मास-वसंत-डैम्पर |मास-स्प्रिंग-डैम्पर मॉडल]] का अध्ययन करके कंपन विश्लेषण के मूल सिद्धांतों को समझा जा सकता है। वास्तव में, यहां तक कि सम्मिश्र संरचना जैसे कि ऑटोमोबाइल बॉडी को साधारण मास-स्प्रिंग-डैम्पर मॉडल के "योग" के रूप में तैयार किया जा सकता है। मास-स्प्रिंग-डैम्पर मॉडल सरल आवर्त दोलक का एक उदाहरण है। इसके व्यवहार का वर्णन करने के लिए प्रयुक्त गणित [[आरएलसी सर्किट|आरएलसी परिपथ]] जैसे अन्य [[सरल हार्मोनिक थरथरानवाला|सरल आवर्त दोलक]] के समान है। | |||
नोट: इस लेख में चरण-दर-चरण गणितीय व्युत्पत्ति सम्मिलित नहीं है, लेकिन प्रमुख कंपन विश्लेषण समीकरणों और अवधारणाओं पर केंद्रित है। कृपया विस्तृत व्युत्पत्तियों के लिए लेख के अंत में संदर्भ देखें। | |||
[[File:Mass spring.svg|thumb | === अवमंदन के बिना मुक्त कंपन === | ||
[[File:Mass spring.svg|thumb|सरल मास स्प्रिंग मॉडल|172x172px]]मास-स्प्रिंग-डैम्पर की जांच प्रारंभ करने के लिए मान लें कि अवमंदन नगण्य है और द्रव्यमान (अर्थात मुक्त कंपन) पर कोई बाहरी बल लागू नहीं होता है। स्प्रिंग द्वारा द्रव्यमान पर लगाया गया बल उस मात्रा के समानुपाती होता है, जिस पर स्प्रिंग "x" फैला होता है (यह मानते हुए कि द्रव्यमान के वजन के कारण स्प्रिंग पहले से ही संकुचित है)। आनुपातिकता स्थिरांक, k, स्प्रिंग की कठोरता है और इसमें बल/दूरी की इकाइयाँ होती हैं (जैसे lbf/in या N/m)। ऋणात्मक चिह्न यह दर्शाता है कि बल हमेशा इससे जुड़े द्रव्यमान की गति का विरोध करता है: | |||
:<math> | :<math> | ||
F_s=- k x. \! | F_s=- k x. \! | ||
| Line 57: | Line 55: | ||
</math> | </math> | ||
द्रव्यमान पर बलों का योग इस [[साधारण अंतर समीकरण]] को उत्पन्न करता है: <math> \ m \ddot{x} + k x = 0.</math> | द्रव्यमान पर बलों का योग इस [[साधारण अंतर समीकरण]] को उत्पन्न करता है: <math> \ m \ddot{x} + k x = 0.</math> | ||
[[File:Simple harmonic oscillator.gif|thumb | [[File:Simple harmonic oscillator.gif|thumb|द्रव्यमान-स्प्रिंग प्रणाली की सरल अनुकंपी गति|206x206px]]यह मानते हुए कि कंपन का प्रारंभ स्प्रिंग को ''A'' की दूरी से खींचकर और जारी करके प्रारंभ होती है, उपरोक्त समीकरण का समाधान जो द्रव्यमान की गति का वर्णन करता है: | ||
:<math> | :<math> | ||
x(t) = A \cos (2 \pi f_n t). \! | x(t) = A \cos (2 \pi f_n t). \! | ||
</math> | </math> | ||
यह समाधान कहता है कि यह सरल अनुकंपी गति के साथ दोलन करेगा जिसमें A का [[आयाम]] और f | यह समाधान कहता है कि यह सरल अनुकंपी गति के साथ दोलन करेगा जिसमें ''A'' का [[आयाम]] और ''f<sub>n</sub>'' की आवृत्ति है, संख्या ''f<sub>n</sub>'' '''अविभाजित प्राकृतिक आवृत्ति''' कहा जाता है। साधारण द्रव्यमान-स्प्रिंग प्रणाली के लिए, ''f<sub>n</sub>'' परिभाषित किया जाता है: | ||
:<math> | :<math> | ||
f_n = {1\over {2 \pi}} \sqrt{k \over m}. \! | f_n = {1\over {2 \pi}} \sqrt{k \over m}. \! | ||
</math> | </math> | ||
नोट: प्रति सेकंड रेडियन की इकाइयों के साथ [[कोणीय आवृत्ति]] ω (ω=2 π f) का उपयोग | नोट: प्रति सेकंड रेडियन की इकाइयों के साथ [[कोणीय आवृत्ति]] ω (ω=2 π f) का उपयोग अधिकांशतः समीकरणों में किया जाता है क्योंकि यह समीकरणों को सरल करता है, लेकिन [[सामान्य आवृत्ति]] ([[ हेटर्स |हर्ट्ज]] की इकाइयां या समकक्ष चक्र प्रति सेकंड) में परिवर्तित किया जाता है। यदि प्रणाली का द्रव्यमान और कठोरता ज्ञात है, तो ऊपर दिया गया सूत्र उस आवृत्ति को निर्धारित कर सकता है जिस पर प्रणाली प्रारंभिक विक्षोभ से गति में सेट होने पर कंपन करता है। प्रत्येक कंपन प्रणाली में एक या एक से अधिक प्राकृतिक आवृत्तियाँ होती हैं जो एक बार में कंपन करती हैं। इस सरल संबंध का उपयोग सामान्य रूप से यह समझने के लिए किया जा सकता है कि एक बार जब हम द्रव्यमान या कठोरता जोड़ते हैं तो अधिक सम्मिश्र प्रणाली का क्या होता है। उदाहरण के लिए, उपरोक्त सूत्र बताता है कि क्यों, जब एक कार या ट्रक पूरी तरह से लोड हो जाता है, तो निलंबन अनलोड की तुलना में "नरम" लगता है - द्रव्यमान बढ़ गया है, जिससे प्रणाली की प्राकृतिक आवृत्ति निम्न हो जाती है। | ||
==== तंत्र के कंपन का कारण क्या है: [[ऊर्जा संरक्षण]] की दृष्टि से ==== | ==== तंत्र के कंपन का कारण क्या है: [[ऊर्जा संरक्षण]] की दृष्टि से ==== | ||
कंपन गति को ऊर्जा संरक्षण के रूप में समझा जा सकता है। उपरोक्त उदाहरण में | कंपन गति को ऊर्जा संरक्षण के रूप में समझा जा सकता है। उपरोक्त उदाहरण में स्प्रिंग को x के मान से बढ़ाया गया है और इसलिए कुछ [[संभावित ऊर्जा|स्थितिज ऊर्जा]] (<math>\tfrac {1}{2} k x^2</math>) स्प्रिंग में संग्रहीत किया जाता है। एक बार छोड़े जाने के बाद, स्प्रिंग अपनी अविस्तारित स्थिति (जो न्यूनतम स्थितिज ऊर्जा अवस्था है) में वापस आ जाती है और इस प्रक्रिया में द्रव्यमान को गति देती है। उस बिंदु पर जहां स्प्रिंग अपनी अविरल अवस्था में पहुंच गया है, सभी स्थितिज ऊर्जा जो हमने इसे खींचकर आपूर्ति की है, [[गतिज ऊर्जा]] (<math>\tfrac {1}{2} m v^2</math>) में परिवर्तित हो गई है, द्रव्यमान तब घटने लगता है क्योंकि यह अब स्प्रिंग को संकुचित कर रहा है और इस प्रक्रिया में गतिज ऊर्जा को वापस अपनी क्षमता में स्थानांतरित कर रहा है। इस प्रकार स्प्रिंग का दोलन गतिज ऊर्जा के आगे और पीछे स्थितिज ऊर्जा में स्थानांतरित करने के बराबर है। इस सरल मॉडल में द्रव्यमान एक ही परिमाण में हमेशा के लिए दोलन करना जारी रखता है - लेकिन वास्तविक प्रणाली में, अवमंदन हमेशा ऊर्जा को नष्ट कर देता है, अंततः स्प्रिंग को आराम देता है। | ||
'''<big>अवमंदन के साथ मुक्त कंपन</big>''' | |||
[[File:Mass spring damper.svg|thumb | [[File:Mass spring damper.svg|thumb|मास-स्प्रिंग-डैम्पर मॉडल|133x133px]]जब "श्यान" अवमंदक को मॉडल में जोड़ा जाता है तो यह बल उत्पन्न करता है जो द्रव्यमान के वेग के समानुपाती होता है। अवमंदन श्यान कहा जाता है क्योंकि यह किसी वस्तु के भीतर तरल पदार्थ के प्रभाव को मॉडल करता है। आनुपातिकता स्थिरांक ''c'' को अवमंदन गुणांक कहा जाता है और इसमें वेग से अधिक बल की इकाइयाँ होती हैं (lbf⋅s/in या N⋅s/m)। | ||
:<math> F_\text{d} = - c v = - c \dot{x} = - c \frac{dx}{dt}. </math> | :<math> F_\text{d} = - c v = - c \dot{x} = - c \frac{dx}{dt}. </math> | ||
| Line 79: | Line 77: | ||
:<math>m \ddot{x} + c \dot{x} + kx = 0.</math> | :<math>m \ddot{x} + c \dot{x} + kx = 0.</math> | ||
इस समीकरण का हल अवमंदन की मात्रा पर निर्भर करता है। यदि | इस समीकरण का हल अवमंदन की मात्रा पर निर्भर करता है। यदि अवमंदन काफी छोटा है, तो प्रणाली अभी भी कंपन करता है - लेकिन अंततः, समय के साथ, कंपन बंद हो जाता है। इस स्थिति को न्यून अवमंदन कहा जाता है, जो कंपन विश्लेषण में महत्वपूर्ण है। यदि अवमंदन को केवल उस बिंदु तक बढ़ाया जाता है जहां प्रणाली अब दोलन नहीं करती है, तो प्रणाली महत्वपूर्ण अवमंदन के बिंदु पर पहुंच गई है। यदि महत्वपूर्ण अवमंदन से पहले अवमंदन बढ़ जाता है, तो प्रणाली अति अवमन्दित हो जाता है। [[मास-स्प्रिंग-डैम्पर मॉडल]] में [[ महत्वपूर्ण भिगोना |महत्वपूर्ण अवमंदन]] के लिए अवमंदन गुणांक का मान कितना होना चाहिए: | ||
:<math>c_\text{c} = 2 \sqrt{\text{km}}.</math> | :<math>c_\text{c} = 2 \sqrt{\text{km}}.</math> | ||
प्रणाली में अवमंदन की मात्रा को चिह्नित करने के लिए अनुपात जिसे अवमंदन अनुपात कहा जाता है (जिसे अवमंदन कारक और% महत्वपूर्ण अवमंदन भी कहा जाता है) का उपयोग किया जाता है। यह अवमंदन अनुपात केवल वास्तविक अवमंदन का अनुपात है जो महत्वपूर्ण अवमंदन तक पहुँचने के लिए आवश्यक अवमंदन की मात्रा से अधिक है। अवमंदन अनुपात के लिए सूत्र (<math>\zeta </math>) मास-स्प्रिंग-डैम्पर मॉडल का है: | |||
:<math>\zeta = { c \over 2 \sqrt{\text{km}} }.</math> | :<math>\zeta = { c \over 2 \sqrt{\text{km}} }.</math> | ||
उदाहरण के लिए, धातु संरचनाओं (जैसे, | उदाहरण के लिए, धातु संरचनाओं (जैसे, वायुयान का धड, इंजन अरालदंड) में 0.05 से निम्न अवमंदन कारक होते हैं, जबकि स्वचालित निलंबन 0.2–0.3 की सीमा में होते हैं। मास-स्प्रिंग-डैम्पर मॉडल के लिए [[अंडरडैम्प सिस्टम|न्यून अवमंद प्रणाली]] का समाधान निम्नलिखित है: | ||
:<math>x(t)=X e^{-\zeta \omega_n t} \cos\left( \sqrt{1-\zeta^2} \omega_n t - \phi \right) , \qquad \omega_n = 2\pi f_n. </math> | :<math>x(t)=X e^{-\zeta \omega_n t} \cos\left( \sqrt{1-\zeta^2} \omega_n t - \phi \right) , \qquad \omega_n = 2\pi f_n. </math> | ||
[[File:Damped Free Vibration.png|thumb | [[File:Damped Free Vibration.png|thumb|0.1 और 0.3 नमी अनुपात के साथ मुक्त कंपन|222x222px]]''X'' का मान, प्रारंभिक परिमाण और <math> \phi, </math> कला विस्थापन, स्प्रिंग के खिंचने की मात्रा से निर्धारित होता है। इन मान के सूत्र संदर्भों में पाए जा सकते हैं। | ||
==== अवमन्दित और अनवमंदित वाली प्राकृतिक आवृत्तियाँ ==== | |||
समाधान से ध्यान देने योग्य प्रमुख बिंदु घातीय शब्द और कोज्या फलन हैं। घातांकी शब्द परिभाषित करता है कि प्रणाली कितनी जल्दी "अवमन्द" डाउन करता है - अवमंदन अनुपात जितना बड़ा होता है, उतनी ही तेज़ी से यह शून्य हो जाता है। कोज्या फलन विलयन का दोलनशील भाग है, लेकिन दोलनों की आवृत्ति अवमंदित स्थिति से भिन्न होती है। | |||
समाधान से ध्यान देने योग्य प्रमुख बिंदु घातीय शब्द और कोज्या फलन हैं। | |||
इस | इस स्थिति में आवृत्ति को "अवमंदित प्राकृतिक आवृत्ति" <math> f_\text{d}, </math> कहा जाता है, और निम्न सूत्र द्वारा अपरिवर्तित प्राकृतिक आवृत्ति से संबंधित है: | ||
:<math>f_\text{d}= f_n\sqrt{1-\zeta^2}.</math> | :<math>f_\text{d}= f_n\sqrt{1-\zeta^2}.</math> | ||
अवमंदित प्राकृतिक आवृत्ति, अवमंदित प्राकृतिक आवृत्ति से निम्न होती है, लेकिन कई व्यावहारिक | अवमंदित प्राकृतिक आवृत्ति, अवमंदित प्राकृतिक आवृत्ति से निम्न होती है, लेकिन कई व्यावहारिक स्थितियों के लिए अवमंदन अनुपात अपेक्षाकृत छोटा होता है और इसलिए अंतर नगण्य होता है। इसलिए, प्राकृतिक आवृत्ति (उदाहरण के लिए 0.1 अवमंदन अनुपात के साथ, अवमंदित प्राकृतिक आवृत्ति केवल 1% निम्न होती है) को बताते हुए अवमंदित और अविभाजित विवरण अधिकांशतः गिरा दिया जाता है। | ||
पक्ष के भूखंड बताते हैं कि कैसे 0.1 और 0.3 | पक्ष के भूखंड बताते हैं कि कैसे 0.1 और 0.3 अवमंदन अनुपात प्रभावित करते हैं कि प्रणाली समय के साथ "रिंग" कैसे करता है। अभ्यास में अधिकांशतः जो किया जाता है वह प्रभाव (उदाहरण के लिए हथौड़ा द्वारा) के बाद मुक्त कंपन को प्रयोगात्मक रूप से मापना है और फिर दोलन की दर को मापकर प्रणाली की प्राकृतिक आवृत्ति का निर्धारण करना है, साथ ही गति क्षय की दर को मापकर अवमंदन अनुपात भी है। प्राकृतिक आवृत्ति और अवमंदन अनुपात न केवल मुक्त कंपन में महत्वपूर्ण हैं, बल्कि यह भी विशेषता है कि प्रणाली प्रणोदित कंपन के अनुसार कैसे व्यवहार करता है। | ||
{{multiple image | {{multiple image | ||
|align = left | |align = left | ||
| Line 120: | Line 118: | ||
}}<ref name="Simionescu 2014">{{cite book|last=Simionescu|first=P.A.|title=ऑटोकैड उपयोगकर्ताओं के लिए कंप्यूटर एडेड रेखांकन और सिमुलेशन उपकरण|year=2014|publisher=CRC Press|location=Boca Raton, FL|isbn=978-1-4822-5290-3|edition=1st}}</ref> | }}<ref name="Simionescu 2014">{{cite book|last=Simionescu|first=P.A.|title=ऑटोकैड उपयोगकर्ताओं के लिए कंप्यूटर एडेड रेखांकन और सिमुलेशन उपकरण|year=2014|publisher=CRC Press|location=Boca Raton, FL|isbn=978-1-4822-5290-3|edition=1st}}</ref> | ||
'''<big>अवमंदन के साथ प्रणोदित कंपन</big>''' | |||
स्प्रिंग मास डैम्पर मॉडल का व्यवहार अनुकंपी बल के योग के साथ बदलता रहता है। उदाहरण के लिए, इस प्रकार का बल घूर्णन असंतुलन द्वारा उत्पन्न किया जा सकता है। | |||
स्प्रिंग मास डैम्पर मॉडल का व्यवहार अनुकंपी बल के योग के साथ बदलता रहता है। उदाहरण के लिए, इस प्रकार का | |||
:<math>F= F_0 \sin(2 \pi f t). \!</math> | :<math>F= F_0 \sin(2 \pi f t). \!</math> | ||
| Line 131: | Line 129: | ||
:<math>x(t)= X \sin(2 \pi f t +\phi). \!</math> | :<math>x(t)= X \sin(2 \pi f t +\phi). \!</math> | ||
परिणाम बताता है कि द्रव्यमान लागू बल की समान आवृत्ति, f पर दोलन करेगा, लेकिन एक | परिणाम बताता है कि द्रव्यमान लागू बल की समान आवृत्ति'', f'' पर दोलन करेगा, लेकिन एक कला विस्थापन <math> \phi. </math> के साथ, | ||
कंपन "X" के आयाम को निम्न सूत्र द्वारा परिभाषित किया गया है। | कंपन "X" के आयाम को निम्न सूत्र द्वारा परिभाषित किया गया है। | ||
:<math>X= {F_0 \over k} {1 \over \sqrt{(1-r^2)^2 + (2 \zeta r)^2}}.</math> | :<math>X= {F_0 \over k} {1 \over \sqrt{(1-r^2)^2 + (2 \zeta r)^2}}.</math> | ||
जहां " | जहां "r" को द्रव्यमान-स्प्रिंग-डैम्पर मॉडल की अपरिवर्तित प्राकृतिक आवृत्ति पर अनुकंपी बल आवृत्ति के अनुपात के रूप में परिभाषित किया गया है। | ||
:<math>r=\frac{f}{f_n}.</math> | :<math>r=\frac{f}{f_n}.</math> | ||
कला विस्थापन, <math>\phi,</math> निम्न सूत्र द्वारा परिभाषित किया गया है। | |||
:<math>\phi= \arctan\left (\frac{-2 \zeta r}{1-r^2} \right). </math> | :<math>\phi= \arctan\left (\frac{-2 \zeta r}{1-r^2} \right). </math> | ||
[[File:Forced Vibration Response.png| | [[File:Forced Vibration Response.png|450x450px|मजबूर कंपन प्रतिक्रिया]] | ||
*किसी दिए गए आवृत्ति अनुपात पर, कंपन का आयाम, ''X'', बल | इन फलन की रूप रेखा, जिसे "प्रणाली की आवृत्ति अनुक्रिया" कहा जाता है, प्रणोदित कंपन में सबसे महत्वपूर्ण विशेषताओं में से प्रस्तुत करता है। हल्के से अवमन्दित प्रणाली में जब बल आवृत्ति प्राकृतिक आवृत्ति के निकट होती है (<math>r \approx 1 </math>) कंपन का आयाम बहुत अधिक हो सकता है। इस घटना को यांत्रिक अनुनाद कहा जाता है (बाद में प्रणाली की प्राकृतिक आवृत्ति को अधिकांशतः गुंजयमान आवृत्ति के रूप में संदर्भित किया जाता है)। रोटर बेयरिंग प्रणाली में किसी भी घूर्णी गति जो गुंजयमान आवृत्ति को उत्तेजित करती है, को [[महत्वपूर्ण गति|क्रांतिक गति]] कहा जाता है। | ||
*बहुत निम्न या कोई अवमंदन नहीं होने पर, जब आवृत्ति अनुपात r < 1 और आवृत्ति अनुपात r > 1 होने पर आवृत्ति अनुपात r < 1 और 180 | |||
*जब r ≪ 1 आयाम स्थिर बल | यदि यांत्रिक प्रणाली में अनुनाद होता है तो यह बहुत हानिकारक हो सकता है - जिससे अंततः प्रणाली की विफलता हो सकती है। परिणाम स्वरुप, कंपन विश्लेषण के प्रमुख कारणों में से एक यह पूर्वानुमान करना है कि इस प्रकार की अनुनाद कब हो सकती है और फिर यह निर्धारित करने के लिए कि इसे होने से रोकने के लिए क्या कदम उठाए जाएं। जैसा कि आयाम आलेख दिखाता है, अवमंदन जोड़ने से कंपन की परिमाण काफी निम्न हो सकती है। साथ ही, परिमाण को निम्न किया जा सकता है यदि प्रणाली की कठोरता या द्रव्यमान को बदलकर प्राकृतिक आवृत्ति को बल आवृत्ति से दूर स्थानांतरित किया जा सकता है। यदि प्रणाली को बदला नहीं जा सकता है, तो शायद प्रणोदन आवृति को स्थानान्तरित किया जा सकता है (उदाहरण के लिए, बल उत्पन्न करने वाली मशीन की गति को बदलना)। | ||
*जब r≫ 1 कंपन का आयाम वास्तव में स्थैतिक विक्षेपण | |||
* जो भी | आवृत्ति अनुक्रिया भूखंडों में दिखाए गए प्रणोदित कंपन के संबंध में कुछ अन्य बिंदु निम्नलिखित हैं। | ||
* अवमंदन जो भी हो, जब r≫ 1, कंपन प्रणोदन आवृति के साथ 180 | |||
* अवमंदन चाहे जो भी हो, जब r ≪ 1, कंपन बल आवृत्ति के साथ चरण में होता | *किसी दिए गए आवृत्ति अनुपात पर, कंपन का आयाम, ''X'', बल <math>F_0 </math> के आयाम के सीधे आनुपातिक होता है (उदाहरण के लिए यदि आप बल को दुगुना करते हैं, तो कंपन दुगना हो जाता है)। | ||
*बहुत निम्न या कोई अवमंदन नहीं होने पर, जब आवृत्ति अनुपात r < 1 और आवृत्ति अनुपात r > 1 होने पर आवृत्ति अनुपात r < 1 और 180 कोटि चरण से बाहर हो जाता है, तो कंपन बल आवृत्ति के साथ चरण में होता है। | |||
*जब r ≪ 1 आयाम स्थिर बल <math>F_0. </math> के अनुसार स्प्रिंग का विक्षेपण है इस विक्षेपण को स्थिर विक्षेपण <math>\delta_{st}.</math> कहा जाता है, इसलिए, जब r≪ 1 अवमंदक और द्रव्यमान के प्रभाव न्यूनतम होते हैं। | |||
*जब r≫ 1 कंपन का आयाम वास्तव में स्थैतिक विक्षेपण <math>\delta_{st}.</math> से निम्न होता है, इस क्षेत्र में द्रव्यमान (''F = ma'') द्वारा उत्पन्न बल हावी होता है क्योंकि द्रव्यमान द्वारा देखा गया त्वरण आवृत्ति के साथ बढ़ता है। चूंकि इस क्षेत्र में स्प्रिंग, ''X'' में देखा गया विक्षेपण निम्न हो गया है, इसलिए स्प्रिंग (''F'' = ''kx)'' द्वारा आधार पर प्रेषित बल निम्न हो गया है। इसलिए, द्रव्यमान-स्प्रिंग-डैम्पर प्रणाली अनुकंपी बल को बढ़ते आधार से अलग कर रही है - जिसे [[कंपन अलगाव|कंपन विलगन]] कहा जाता है। अधिक अवमंदन वास्तव में r≫ 1 होने पर कंपन विलगन के प्रभाव को निम्न करता है क्योंकि अवमंदन बल (''F = cv'') भी आधार पर प्रेषित होता है। | |||
* जो भी अवमंदन है, कंपन 90 कोटि चरण से बाहर है, जब आवृत्ति अनुपात ''r = 1'' होता है, जो प्रणाली की प्राकृतिक आवृत्ति को निर्धारित करने के लिए बहुत सहायक होता है। | |||
* अवमंदन जो भी हो, जब r≫ 1, कंपन प्रणोदन आवृति के साथ 180 कोटि चरण से बाहर होता है। | |||
* अवमंदन चाहे जो भी हो, जब r ≪ 1, कंपन बल आवृत्ति के साथ चरण में होता है। | |||
==== अनुनाद कारण ==== | ==== अनुनाद कारण ==== | ||
अनुनाद को समझना आसान है | अनुनाद को समझना आसान है यदि स्प्रिंग और द्रव्यमान को ऊर्जा भंडारण तत्वों के रूप में - बड़े पैमाने पर गतिशील ऊर्जा और स्प्रिंग भंडारण स्थितिज ऊर्जा के साथ देखा जाता है। जैसा कि पहले चर्चा की गई है, जब द्रव्यमान और स्प्रिंग पर कोई बाहरी बल कार्य नहीं करता है तो वे ऊर्जा को प्राकृतिक आवृत्ति के बराबर दर पर स्थानांतरित करते हैं। दूसरे शब्दों में, ऊर्जा को द्रव्यमान और स्प्रिंग दोनों में कुशलतापूर्वक पंप करने के लिए आवश्यक है कि ऊर्जा स्रोत ऊर्जा को प्राकृतिक आवृत्ति के बराबर दर पर चलाए। द्रव्यमान और स्प्रिंग पर बल लगाना एक बच्चे को झूले पर धकेलने के समान है, झूले को ऊंचा और ऊंचा करने के लिए सही समय पर धक्का देने की जरूरत होती है। जैसा कि झूले के स्थिति में होता है, लागू बल को बड़ी गति प्राप्त करने के लिए अधिक नहीं होना चाहिए, लेकिन केवल प्रणाली में ऊर्जा को जोड़ना चाहिए। | ||
अवमंदक ऊर्जा संचय करने के अतिरिक्त ऊर्जा का क्षय करता है। चूँकि अवमंदन बल वेग के समानुपाती होता है, गति जितनी अधिक होती है, उतना ही अधिक अवमंदक ऊर्जा का प्रसार करता है। इसलिए, एक बिंदु है जब अवमंदक द्वारा छोड़ी गई ऊर्जा बल द्वारा जोड़ी गई ऊर्जा के बराबर होती है। इस बिंदु पर, प्रणाली अपने अधिकतम आयाम तक पहुंच गई है और इस स्तर पर तब तक कंपन करना जारी रखेगी जब तक लागू बल समान रहता है। यदि कोई अवमंदन सम्मिलित नहीं है, तो ऊर्जा को नष्ट करने के लिए कुछ भी नहीं है और, सैद्धांतिक रूप से, गति अनंत तक बढ़ती रहेगी। | |||
==== द्रव्यमान- | ==== द्रव्यमान-स्प्रिंग-डैम्पर मॉडल के लिए "सम्मिश्र" बलों को लागू करना ==== | ||
पिछले खंड में केवल | पिछले खंड में केवल सरल आवर्त बल को मॉडल पर लागू किया गया था, लेकिन इसे दो शक्तिशाली गणितीय उपकरणों का उपयोग करके काफी बढ़ाया जा सकता है। पहला [[फूरियर रूपांतरण]] है जो समय (समय प्रांत) के फलन के रूप में संकेत लेता है और आवृत्ति ([[आवृत्ति डोमेन|आवृत्ति प्रांत]]) के फलन के रूप में इसे अपने अनुकंपी घटकों में तोड़ देता है। उदाहरण के लिए, द्रव्यमान-स्प्रिंग-डैम्पर मॉडल पर बल लगाने से जो निम्न चक्र को दोहराता है - 0.5 सेकंड के लिए 1 [[ न्यूटन (इकाई) |न्यूटन (इकाई)]] के बराबर बल और फिर 0.5 सेकंड के लिए कोई बल नहीं है। इस प्रकार के बल का आकार 1 हर्ट्ज वर्ग तरंगरूप होता है। | ||
[[File:Square wave frequency spectrum animation.gif|thumb | [[File:Square wave frequency spectrum animation.gif|thumb|कैसे एक 1 हर्ट्ज वर्ग तरंगरूप को साइन तरंगों (गुणवृत्ति) और संबंधित आवृत्ति स्पेक्ट्रम के योग के रूप में दर्शाया जा सकता है। एनीमेशन के लिए क्लिक करें और पूर्ण रिज़ॉल्यूशन पर जाएं|171x171px]]वर्ग तरंगरूप का फूरियर रूपांतरण [[आवृत्ति स्पेक्ट्रम]] उत्पन्न करता है जो गुणवृत्ति के परिमाण को प्रस्तुत करता है जो वर्ग तरंगरूप बनाते हैं (चरण भी उत्पन्न होता है, लेकिन सामान्यतः निम्न संबंध का विषय होता है और इसलिए अधिकांशतः आलेख नहीं किया जाता है)। फूरियर रूपांतरित का उपयोग गैर-आवधिक फलन जैसे क्षणिक (जैसे आवेग) और यादृच्छिक फलन का विश्लेषण करने के लिए भी किया जा सकता है। फूरियर रूपांतरित की गणना लगभग हमेशा फास्ट फूरियर रूपांतरित (एफएफटी) कंप्यूटर एल्गोरिदम का उपयोग [[खिड़की समारोह|गवाक्ष फलन]] के संयोजन में की जाती है। | ||
हमारे वर्ग | हमारे वर्ग तरंगरूप बल के स्थिति में, पहला घटक वास्तव में 0.5 न्यूटन का स्थिर बल है और आवृत्ति स्पेक्ट्रम में 0 हर्ट्ज पर मान द्वारा दर्शाया गया है। अगला घटक 0.64 के आयाम के साथ 1 हर्ट्ज साइन तरंग है। इसे 1 हर्ट्ज पर रेखा द्वारा दिखाया गया है। शेष घटक विषम आवृत्तियों पर हैं और यह पूर्ण वर्ग तरंगरूप उत्पन्न करने के लिए साइन तरंगों की अनंत मात्रा लेता है। इसलिए, फूरियर रूपांतरण आपको अधिक सम्मिश्र बल (जैसे एक वर्ग तरंगरूप) के अतिरिक्त लगाए जा रहे ज्यावक्रीय बलों के योग के रूप में बल की व्याख्या करने की अनुमति देता है। | ||
पिछले खंड में, कंपन समाधान एकल अनुकंपी बल के लिए दिया गया था, लेकिन फूरियर रूपांतरण सामान्य रूप से कई अनुकंपी बल देता है। दूसरा गणितीय उपकरण, | पिछले खंड में, कंपन समाधान एकल अनुकंपी बल के लिए दिया गया था, लेकिन फूरियर रूपांतरण सामान्य रूप से कई अनुकंपी बल देता है। दूसरा गणितीय उपकरण, अध्यारोपण सिद्धान्त, कई बलों से समाधान के योग की अनुमति देता है यदि प्रणाली [[रैखिक प्रणाली]] है। स्प्रिंग-मास-डैम्पर मॉडल के स्थिति में, प्रणाली रैखिक है यदि स्प्रिंग बल विस्थापन के समानुपाती होता है और अवमंदन प्रेरित की गति की सीमा पर वेग के समानुपाती होता है। इसलिए, वर्ग तरंगरूप के साथ समस्या का समाधान वर्ग तरंगरूप के आवृत्ति स्पेक्ट्रम में पाए जाने वाले अनुकंपी बलों में से प्रत्येक से अनुमानित कंपन को जोड़ना है। | ||
==== आवृत्ति | ==== आवृत्ति अनुक्रिया मॉडल ==== | ||
कंपन समस्या के समाधान को इनपुट/आउटपुट संबंध के रूप में देखा जा सकता है - जहां बल इनपुट है और आउटपुट कंपन है। आवृत्ति | कंपन समस्या के समाधान को इनपुट/आउटपुट संबंध के रूप में देखा जा सकता है - जहां बल इनपुट है और आउटपुट कंपन है। आवृत्ति प्रांत (परिमाण और चरण) में बल और कंपन का प्रतिनिधित्व निम्नलिखित संबंध की अनुमति देता है: | ||
:<math>X(i\omega)=H(i\omega)\cdot F(i\omega) \text{ or } H(i\omega)= {X(i\omega) \over F(i\omega)}.</math> | :<math>X(i\omega)=H(i\omega)\cdot F(i\omega) \text{ or } H(i\omega)= {X(i\omega) \over F(i\omega)}.</math> | ||
<math>H(i\omega)</math> [[आवृत्ति प्रतिक्रिया]] | <math>H(i\omega)</math> [[आवृत्ति प्रतिक्रिया|आवृत्ति अनुक्रिया]] फलन कहा जाता है (जिसे [[स्थानांतरण प्रकार्य|अंतरण प्रकार्य]] के रूप में भी जाना जाता है, लेकिन तकनीकी रूप से सटीक नहीं है) और इसमें परिमाण और चरण घटक दोनों होते हैं (यदि [[जटिल संख्या|समिश्र संख्या]], वास्तविक और काल्पनिक घटक के रूप में प्रतिनिधित्व किया जाता है)। आवृत्ति अनुक्रिया फलन (एफआरएफ) का परिमाण पहले मास-स्प्रिंग-डैम्पर प्रणाली के लिए प्रस्तुत किया गया था। | ||
:<math>|H(i\omega)|=\left |{X(i\omega) \over F(i\omega)} \right|= {1 \over k} {1 \over \sqrt{(1-r^2)^2 + (2 \zeta r)^2}}, \text{ where } r=\frac{f}{f_n}=\frac{\omega}{\omega_n}.</math> | :<math>|H(i\omega)|=\left |{X(i\omega) \over F(i\omega)} \right|= {1 \over k} {1 \over \sqrt{(1-r^2)^2 + (2 \zeta r)^2}}, \text{ where } r=\frac{f}{f_n}=\frac{\omega}{\omega_n}.</math> | ||
| Line 185: | Line 188: | ||
:<math>\angle H(i\omega)= -\arctan\left (\frac{2 \zeta r}{1-r^2} \right). </math> | :<math>\angle H(i\omega)= -\arctan\left (\frac{2 \zeta r}{1-r^2} \right). </math> | ||
[[File:Frequency response example.png|thumb | [[File:Frequency response example.png|thumb|आवृत्ति अनुक्रिया मॉडल|156x156px]]उदाहरण के लिए, 1 किग्रा के द्रव्यमान, 1.93 N/mm की स्प्रिंग कठोरता और 0.1 के अवमंदन अनुपात के साथ द्रव्यमान-स्प्रिंग-डैम्पर प्रणाली के लिए एफआरएफ की गणना करना हैं। इस विशिष्ट प्रणाली के लिए स्प्रिंग और द्रव्यमान के मान 7 हर्ट्ज की प्राकृतिक आवृत्ति देते हैं। पहले से 1 हर्ट्ज वर्ग तरंगरूप को लागू करने से द्रव्यमान के अनुमानित कंपन की गणना की जा सकती है। चित्र परिणामी कंपन को दर्शाता है। इस उदाहरण में ऐसा होता है कि वर्ग तरंगरूप का चौथा अनुकंपी 7 हर्ट्ज पर गिरता है। मास-स्प्रिंग-डैम्पर की आवृत्ति अनुक्रिया इसलिए उच्च 7 हर्ट्ज कंपन का उत्पादन करती है, भले ही इनपुट बल में अपेक्षाकृत निम्न 7 हर्ट्ज अनुकंपी था। यह उदाहरण इस बात पर प्रकाश डालता है कि परिणामी कंपन प्रणोदन फलन और उस प्रणाली पर निर्भर करता है जिस पर बल लगाया जाता है। | ||
आंकड़ा परिणामी कंपन के समय | आंकड़ा परिणामी कंपन के समय प्रांत प्रतिनिधित्व को भी दर्शाता है। यह व्युत्क्रम फूरियर रूपांतरण करके किया जाता है जो आवृत्ति प्रांत डेटा को समय प्रांत में परिवर्तित करता है। व्यवहार में, यह शायद ही कभी किया जाता है क्योंकि आवृत्ति स्पेक्ट्रम सभी आवश्यक जानकारी प्रदान करता है। | ||
आवृत्ति अनुक्रिया फलन (एफआरएफ) को आवश्यक रूप से प्रणाली के द्रव्यमान, अवमंदन और कठोरता के ज्ञान से गणना करने की आवश्यकता नहीं है - लेकिन इसे प्रयोगात्मक रूप से मापा जा सकता है। उदाहरण के लिए, यदि आवृत्तियों की एक सीमा पर ज्ञात बल लागू किया जाता है, और यदि संबंधित कंपन को मापा जाता है, तो आवृत्ति अनुक्रिया फलन की गणना की जा सकती है, जिससे प्रणाली को चिह्नित किया जा सके। संरचना की कंपन विशेषताओं को निर्धारित करने के लिए इस तकनीक का प्रयोग प्रयोगात्मक [[मोडल विश्लेषण]] के क्षेत्र में किया जाता है। | |||
'''<big>स्वतंत्रता प्रणाली और मोड आकार की एकाधिक कोटि</big>''' | |||
[[File:2dof model.gif|thumb | [[File:2dof model.gif|thumb|स्वतंत्रता मॉडल की दो कोटि|186x186px]]सरल मास-स्प्रिंग-डैम्पर मॉडल कंपन विश्लेषण की नींव है, लेकिन अधिक सम्मिश्र प्रणालियों के बारे में क्या? ऊपर वर्णित मास-स्प्रिंग-डैम्पर मॉडल को सिंगल स्वातंत्र्य कोटि (इंजीनियरिंग) (एसडीओएफ) मॉडल कहा जाता है क्योंकि द्रव्यमान को केवल ऊपर और नीचे जाने के लिए माना जाता है। अधिक सम्मिश्र प्रणालियों में, प्रणाली को अधिक लोगों में विभाजित किया जाना चाहिए जो एक से अधिक दिशाओं में चलते हैं, [[स्वतंत्रता की डिग्री (इंजीनियरिंग)|स्वातंत्र्य कोटि (इंजीनियरिंग)]] हैं। एकाधिक स्वातंत्र्य कोटि (एमडीओएफ) की प्रमुख अवधारणाओं को केवल 2 कोटि स्वतंत्रता मॉडल को देखकर समझा जा सकता है जैसा कि आंकड़े में दिखाया गया है। | ||
2 डीओएफ प्रणाली की गति के समीकरण इस प्रकार पाए जाते हैं: | |||
:<math> | :<math> | ||
| Line 202: | Line 205: | ||
m_2 \ddot{x_2} - c_2 \dot{x_1}+ (c_2+c_3) \dot{x_2} - k_2 x_1+ (k_2+k_3) x_2 = f_2. \! | m_2 \ddot{x_2} - c_2 \dot{x_1}+ (c_2+c_3) \dot{x_2} - k_2 x_1+ (k_2+k_3) x_2 = f_2. \! | ||
</math> | </math> | ||
इसे [[मैट्रिक्स (गणित)]] प्रारूप में फिर से लिखा जा सकता है: | इसे [[मैट्रिक्स (गणित)|आव्यूह (गणित)]] प्रारूप में फिर से लिखा जा सकता है: | ||
:<math> | :<math> | ||
\begin{bmatrix}m_1 & 0\\ 0 & m_2\end{bmatrix}\begin{Bmatrix}\ddot{x_1}\\ \ddot{x_2} \end{Bmatrix} + \begin{bmatrix} c_1+c_2 & -c_2\\ -c_2 & c_2+c_3\end{bmatrix}\begin{Bmatrix}\dot{x_1}\\ \dot{x_2}\end{Bmatrix}+\begin{bmatrix}k_1+k_2 & -k_2\\ -k_2 & k_2+k_3\end{bmatrix}\begin{Bmatrix} x_1\\ x_2\end{Bmatrix}=\begin{Bmatrix} f_1\\ f_2\end{Bmatrix}. | \begin{bmatrix}m_1 & 0\\ 0 & m_2\end{bmatrix}\begin{Bmatrix}\ddot{x_1}\\ \ddot{x_2} \end{Bmatrix} + \begin{bmatrix} c_1+c_2 & -c_2\\ -c_2 & c_2+c_3\end{bmatrix}\begin{Bmatrix}\dot{x_1}\\ \dot{x_2}\end{Bmatrix}+\begin{bmatrix}k_1+k_2 & -k_2\\ -k_2 & k_2+k_3\end{bmatrix}\begin{Bmatrix} x_1\\ x_2\end{Bmatrix}=\begin{Bmatrix} f_1\\ f_2\end{Bmatrix}. | ||
</math> | </math> | ||
इस | इस आव्यूह समीकरण का एक अधिक सघन रूप इस प्रकार लिखा जा सकता है: | ||
:<math> | :<math> | ||
\begin{bmatrix}M\end{bmatrix}\begin{Bmatrix}\ddot{x}\end{Bmatrix}+\begin{bmatrix}C\end{bmatrix}\begin{Bmatrix}\dot{x}\end{Bmatrix}+\begin{bmatrix}K\end{bmatrix}\begin{Bmatrix} x\end{Bmatrix}=\begin{Bmatrix} f \end{Bmatrix} | \begin{bmatrix}M\end{bmatrix}\begin{Bmatrix}\ddot{x}\end{Bmatrix}+\begin{bmatrix}C\end{bmatrix}\begin{Bmatrix}\dot{x}\end{Bmatrix}+\begin{bmatrix}K\end{bmatrix}\begin{Bmatrix} x\end{Bmatrix}=\begin{Bmatrix} f \end{Bmatrix} | ||
</math> | </math> | ||
जहाँ <math>\begin{bmatrix}M\end{bmatrix},</math> <math>\begin{bmatrix}C\end{bmatrix},</math> और <math>\begin{bmatrix}K\end{bmatrix}</math> सममित आव्यूह हैं जिन्हें क्रमशः द्रव्यमान, अवमंदन और कठोरता आव्यूह के रूप में संदर्भित किया जाता है। आव्यूह NxN वर्ग आव्यूह हैं जहां N प्रणाली की एकाधिक स्वातंत्र्य कोटि की संख्या है। | |||
निम्नलिखित विश्लेषण में वह | निम्नलिखित विश्लेषण में वह स्थिति सम्मिलित है जहां कोई अवमंदन नहीं है और कोई लागू बल नहीं है (अर्थात मुक्त कंपन)। श्यान अवमन्दित प्रणाली का समाधान कुछ अधिक सम्मिश्र है।<ref name="MaiaSilva97">Maia, Silva. ''Theoretical And Experimental Modal Analysis'', Research Studies Press Ltd., 1997, {{ISBN|0-471-97067-0}}</ref> | ||
:<math>\begin{bmatrix}M\end{bmatrix}\begin{Bmatrix}\ddot{x}\end{Bmatrix}+\begin{bmatrix}K\end{bmatrix}\begin{Bmatrix} x\end{Bmatrix}=0.</math> | :<math>\begin{bmatrix}M\end{bmatrix}\begin{Bmatrix}\ddot{x}\end{Bmatrix}+\begin{bmatrix}K\end{bmatrix}\begin{Bmatrix} x\end{Bmatrix}=0.</math> | ||
निम्न प्रकार के हल मानकर इस अवकल समीकरण को हल किया जा सकता है: | निम्न प्रकार के हल मानकर इस अवकल समीकरण को हल किया जा सकता है: | ||
| Line 221: | Line 224: | ||
\begin{Bmatrix} x\end{Bmatrix}=\begin{Bmatrix} X\end{Bmatrix}e^{i\omega t}. | \begin{Bmatrix} x\end{Bmatrix}=\begin{Bmatrix} X\end{Bmatrix}e^{i\omega t}. | ||
</math> | </math> | ||
नोट: | नोट: <math> \begin{Bmatrix} X\end{Bmatrix}e^{i\omega t}</math> के घातीय समाधान का उपयोग करना रैखिक अवकल समीकरणों को हल करने के लिए प्रयुक्त गणितीय युक्ति है। यूलर के सूत्र का उपयोग करना और समाधान का केवल वास्तविक भाग लेना यह 1 डीओएफ प्रणाली के लिए समान कोसाइन समाधान है। घातीय समाधान का उपयोग केवल इसलिए किया जाता है क्योंकि गणितीय रूप से हेरफेर करना आसान होता है। | ||
समीकरण तब बन जाता है: | समीकरण तब बन जाता है: | ||
| Line 229: | Line 232: | ||
:<math>\begin{bmatrix}\begin{bmatrix}K\end{bmatrix}-\omega^2 \begin{bmatrix} M \end{bmatrix} \end{bmatrix} \begin{Bmatrix} X \end{Bmatrix}=0.</math> | :<math>\begin{bmatrix}\begin{bmatrix}K\end{bmatrix}-\omega^2 \begin{bmatrix} M \end{bmatrix} \end{bmatrix} \begin{Bmatrix} X \end{Bmatrix}=0.</math> | ||
=== [[eigenvalue|अभिलक्षणिक मान]] समस्या === | |||
इसे गणित में एक अभिलक्षणिक मान समस्या के रूप में संदर्भित किया जाता है और समीकरण को पूर्व-गुणा करके मानक प्रारूप में रखा जा सकता है <math>\begin{bmatrix}M\end{bmatrix}^{-1}</math> | |||
इसे गणित में एक | |||
:<math>\begin{bmatrix}\begin{bmatrix}M\end{bmatrix}^{-1}\begin{bmatrix}K\end{bmatrix}-\omega^2 \begin{bmatrix} M \end{bmatrix}^{-1} \begin{bmatrix}M\end{bmatrix}\end{bmatrix}\begin{Bmatrix}X\end{Bmatrix}=0</math> | :<math>\begin{bmatrix}\begin{bmatrix}M\end{bmatrix}^{-1}\begin{bmatrix}K\end{bmatrix}-\omega^2 \begin{bmatrix} M \end{bmatrix}^{-1} \begin{bmatrix}M\end{bmatrix}\end{bmatrix}\begin{Bmatrix}X\end{Bmatrix}=0</math> | ||
और | और यदि: <math>\begin{bmatrix}M\end{bmatrix}^{-1}\begin{bmatrix}K\end{bmatrix}=\begin{bmatrix}A\end{bmatrix}</math> और <math>\lambda=\omega^2 \,</math> | ||
:<math>\begin{bmatrix}\begin{bmatrix}A\end{bmatrix}-\lambda\begin{bmatrix}I\end{bmatrix}\end{bmatrix}\begin{Bmatrix}X\end{Bmatrix}=0.</math> | :<math>\begin{bmatrix}\begin{bmatrix}A\end{bmatrix}-\lambda\begin{bmatrix}I\end{bmatrix}\end{bmatrix}\begin{Bmatrix}X\end{Bmatrix}=0.</math> | ||
समस्या का समाधान N | समस्या का समाधान N '''अभिलक्षणिक मान''' में होता है (अर्थात <math>\omega_1^2,\omega_2^2,\cdots\omega_N^2</math>), जहां N एकाधिक स्वातंत्र्य कोटि की संख्या से मेल खाती है। अभिलक्षणिक मान प्रणाली की प्राकृतिक आवृत्तियों प्रदान करते हैं। जब इन अभिलक्षणिक मान को वापस समीकरणों के मूल सेट में प्रतिस्थापित किया जाता है, <math>\begin{Bmatrix}X\end{Bmatrix}</math> के मान जो प्रत्येक अभिलक्षणिक मान के अनुरूप होते हैं उन्हें '''अभिलक्षणिक सदिश''' कहा जाता है। ये अभिलक्षणिक सदिश प्रणाली के [[मोड आकार]] का प्रतिनिधित्व करते हैं। अभिलक्षणिक मान समस्या का समाधान काफी बोझिल हो सकता है (विशेष रूप से स्वतंत्रता की कई कोटि वाली समस्याओं के लिए), लेकिन सौभाग्य से अधिकांश गणित विश्लेषण कार्यक्रमों में अभिलक्षणिक मान सामान्य होते हैं। | ||
अभिलक्षणिक मान और अभिलक्षणिक सदिश अधिकांशतः निम्नलिखित आव्यूह प्रारूप में लिखे जाते हैं और प्रणाली के मोडल मॉडल का वर्णन करते हैं: | |||
:<math>\begin{bmatrix}^\diagdown \omega_{r\diagdown}^2 \end{bmatrix}=\begin{bmatrix} \omega_1^2 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \omega_N^2 \end{bmatrix} \text{ and } \begin{bmatrix} \Psi \end{bmatrix}=\begin{bmatrix} \begin{Bmatrix} \psi_1 \end{Bmatrix} \begin{Bmatrix} \psi_2 \end{Bmatrix} \cdots \begin{Bmatrix} \psi_N \end{Bmatrix} \end{bmatrix}.</math> | :<math>\begin{bmatrix}^\diagdown \omega_{r\diagdown}^2 \end{bmatrix}=\begin{bmatrix} \omega_1^2 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \omega_N^2 \end{bmatrix} \text{ and } \begin{bmatrix} \Psi \end{bmatrix}=\begin{bmatrix} \begin{Bmatrix} \psi_1 \end{Bmatrix} \begin{Bmatrix} \psi_2 \end{Bmatrix} \cdots \begin{Bmatrix} \psi_N \end{Bmatrix} \end{bmatrix}.</math> | ||
2 डीओएफ मॉडल का उपयोग करने वाला | 2 डीओएफ मॉडल का उपयोग करने वाला सरल उदाहरण अवधारणाओं को स्पष्ट करने में मदद कर सकता है। मान लें कि दोनों द्रव्यमान का द्रव्यमान 1 किग्रा है और तीनों स्प्रिंग्स की कठोरता 1000 N/m के बराबर है। इस समस्या के लिए द्रव्यमान और कठोरता आव्यूह तब हैं: | ||
:<math>\begin{bmatrix}M\end{bmatrix}=\begin{bmatrix}1 & 0\\ 0 & 1\end{bmatrix}</math> और <math>\begin{bmatrix}K\end{bmatrix}=\begin{bmatrix}2000 & -1000\\ -1000 & 2000\end{bmatrix}.</math> | :<math>\begin{bmatrix}M\end{bmatrix}=\begin{bmatrix}1 & 0\\ 0 & 1\end{bmatrix}</math> और <math>\begin{bmatrix}K\end{bmatrix}=\begin{bmatrix}2000 & -1000\\ -1000 & 2000\end{bmatrix}.</math> | ||
तब <math>\begin{bmatrix}A\end{bmatrix}=\begin{bmatrix}2000 & -1000\\ -1000 & 2000\end{bmatrix}.</math> | तब <math>\begin{bmatrix}A\end{bmatrix}=\begin{bmatrix}2000 & -1000\\ -1000 & 2000\end{bmatrix}.</math> | ||
अभिलक्षणिक मान सामान्य द्वारा दी गई इस समस्या के लिए अभिलक्षणिक मान है: | |||
:<math>\begin{bmatrix} ^\diagdown \omega_{r\diagdown}^2 \end{bmatrix}=\begin{bmatrix} 1000 & 0 \\ 0 & 3000 \end{bmatrix}.</math> | :<math>\begin{bmatrix} ^\diagdown \omega_{r\diagdown}^2 \end{bmatrix}=\begin{bmatrix} 1000 & 0 \\ 0 & 3000 \end{bmatrix}.</math> | ||
हर्ट्ज़ की इकाइयों में प्राकृतिक आवृत्तियाँ तब होती हैं (याद रखना <math>\scriptstyle \omega=2 \pi f</math>) <math>\scriptstyle f_1=5.033 \mathrm {\ Hz}</math> और <math>\scriptstyle f_2=8.717 \text{ Hz}.</math> | हर्ट्ज़ की इकाइयों में प्राकृतिक आवृत्तियाँ तब होती हैं (याद रखना <math>\scriptstyle \omega=2 \pi f</math>) <math>\scriptstyle f_1=5.033 \mathrm {\ Hz}</math> और <math>\scriptstyle f_2=8.717 \text{ Hz}.</math> | ||
संबंधित प्राकृतिक आवृत्तियों के लिए दो मोड आकार इस प्रकार दिए गए हैं: | संबंधित प्राकृतिक आवृत्तियों के लिए दो मोड आकार इस प्रकार दिए गए हैं: | ||
:<math>\begin{bmatrix} \Psi \end{bmatrix}=\begin{bmatrix} \begin{Bmatrix} \psi_1 \end{Bmatrix} \begin{Bmatrix} \psi_2 \end{Bmatrix} \end{bmatrix}= \begin{bmatrix} \begin{Bmatrix} -0.707 \\ -0.707 \end{Bmatrix}_1 \begin{Bmatrix} 0.707 \\ -0.707 \end{Bmatrix}_2 \end{bmatrix}. </math> | :<math>\begin{bmatrix} \Psi \end{bmatrix}=\begin{bmatrix} \begin{Bmatrix} \psi_1 \end{Bmatrix} \begin{Bmatrix} \psi_2 \end{Bmatrix} \end{bmatrix}= \begin{bmatrix} \begin{Bmatrix} -0.707 \\ -0.707 \end{Bmatrix}_1 \begin{Bmatrix} 0.707 \\ -0.707 \end{Bmatrix}_2 \end{bmatrix}. </math> | ||
चूंकि प्रणाली | चूंकि प्रणाली 2 डीओएफ प्रणाली है, उनके संबंधित प्राकृतिक आवृत्तियों और आकार के साथ दो मोड हैं। मोड आकार सदिश पूर्ण गति नहीं हैं, लेकिन केवल एकाधिक स्वातंत्र्य कोटि के सापेक्ष गति का वर्णन करते हैं। हमारे स्थिति में पहला मोड आकार सदिश कह रहा है कि द्रव्यमान चरण में एक साथ चल रही है क्योंकि उनके पास समान मान और चिह्न हैं। दूसरे मोड आकार सदिश के स्थिति में, प्रत्येक द्रव्यमान समान दर से विपरीत दिशा में आगे बढ़ रहा है। | ||
=== | === विविध डीओएफ समस्या का चित्रण === | ||
जब स्वतंत्रता की कई | जब स्वतंत्रता की कई कोटि होती हैं, तो मोड आकृतियों की कल्पना करने का तरीका ईएसआई समूह द्वारा [[फेमैप]], [[एएनएसवाईएस]] या वीए वन जैसे संरचनात्मक विश्लेषण सॉफ़्टवेयर का उपयोग करके उन्हें जीवंत करना है। जीवंत मोड आकृतियों का उदाहरण नीचे दिए गए चित्र में [[ ब्रैकट |ब्रैकट]] {{ibeam}}-बीम के लिए दिखाया गया है जैसा कि एएनएसवाईएस पर मोडल विश्लेषण का उपयोग करके दिखाया गया है। इस स्थिति में, असतत आइगेनवेल्यू समस्या को हल करने के लिए रुचि की वस्तु को जोड़कर द्रव्यमान और कठोरता आव्यूह का अनुमान उत्पन्न करने के लिए किया गया था। ध्यान दें कि, इस स्थिति में, परिमित तत्व विधि जालीदार सतह का अनुमान प्रदान करती है (जिसके लिए कंपन मोड और आवृत्तियों की अनंत संख्या सम्मिलित है)। इसलिए, यह अपेक्षाकृत सरल मॉडल जिसमें 100 कोटि से अधिक स्वतंत्रता है और इसलिए कई प्राकृतिक आवृत्तियों और मोड आकार हैं, पहली प्राकृतिक आवृत्तियों और मोड{{ref|1|†}} के लिए अच्छा सन्निकटन प्रदान करता है। सामान्यतः, व्यावहारिक अनुप्रयोगों के लिए केवल पहले कुछ तरीके महत्वपूर्ण होते हैं। | ||
{| | {| class="wikitable" width="1000" style="margin:1em auto;" | ||
| colspan=3| | | colspan="3" |इस तालिका में आई-बीम के पहले और दूसरे (क्रमशः ऊपर और नीचे) क्षैतिज झुकने (बाएं), मरोड़ (मध्य), और ऊर्ध्वाधर झुकने (दाएं) कंपन मोड की कल्पना की गई है। अन्य प्रकार के कंपन मोड भी सम्मिलित हैं जिनमें किरण क्रमशः ऊंचाई, चौड़ाई और लंबाई दिशाओं में संपीड़ित/विस्तारित हो जाती है। | ||
|- | |- | ||
! colspan=3|The mode shapes of a cantilevered I-beam | ! colspan="3" |The mode shapes of a cantilevered I-beam | ||
|- | |- | ||
|align="center"|[[File:beam mode 1.gif|200px|center]] | | align="center" |[[File:beam mode 1.gif|200px|center]] | ||
|align="center"|[[File:beam mode 2.gif|200px|center]] | | align="center" |[[File:beam mode 2.gif|200px|center]] | ||
|align="center"|[[File:beam mode 3.gif|200px|center]] | | align="center" |[[File:beam mode 3.gif|200px|center]] | ||
|- | |- | ||
|align="center"|[[File:beam mode 4.gif|200px|center]] | | align="center" |[[File:beam mode 4.gif|200px|center]] | ||
|align="center"|[[File:beam mode 5.gif|200px|center]] | | align="center" |[[File:beam mode 5.gif|200px|center]] | ||
|align="center"|[[File:beam mode 6.gif|200px|center]] | | align="center" |[[File:beam mode 6.gif|200px|center]] | ||
|} | |} | ||
{{note|1}} ध्यान दें कि किसी भी गणितीय मॉडल का संख्यात्मक सन्निकटन करते समय, रुचि के मापदंडों का अभिसरण सुनिश्चित किया जाना चाहिए। | {{note|1}} ध्यान दें कि किसी भी गणितीय मॉडल का संख्यात्मक सन्निकटन करते समय, रुचि के मापदंडों का अभिसरण सुनिश्चित किया जाना चाहिए। | ||
=== एकाधिक डीओएफ समस्या | === एकाधिक डीओएफ समस्या डीओएफ समस्या में परिवर्तित === | ||
अभिलक्षणिक सदिश में बहुत महत्वपूर्ण गुण होते हैं जिन्हें लंबकोणीयता गुण कहा जाता है। इन गुणों का उपयोग विविध-कोटि स्वतंत्रता मॉडल के समाधान को बहुत सरल बनाने के लिए किया जा सकता है। यह दिखाया जा सकता है कि अभिलक्षणिक सदिश में निम्नलिखित गुण हैं: | |||
:<math>\begin{bmatrix}\Psi\end{bmatrix}^{T}\begin{bmatrix}M\end{bmatrix}\begin{bmatrix}\Psi\end{bmatrix}=\begin{bmatrix} ^\diagdown m_{r\diagdown} \end{bmatrix},</math> | :<math>\begin{bmatrix}\Psi\end{bmatrix}^{T}\begin{bmatrix}M\end{bmatrix}\begin{bmatrix}\Psi\end{bmatrix}=\begin{bmatrix} ^\diagdown m_{r\diagdown} \end{bmatrix},</math> | ||
:<math>\begin{bmatrix}\Psi\end{bmatrix}^{T}\begin{bmatrix}K\end{bmatrix}\begin{bmatrix}\Psi\end{bmatrix}=\begin{bmatrix} ^\diagdown k_{r\diagdown} \end{bmatrix}.</math> | :<math>\begin{bmatrix}\Psi\end{bmatrix}^{T}\begin{bmatrix}K\end{bmatrix}\begin{bmatrix}\Psi\end{bmatrix}=\begin{bmatrix} ^\diagdown k_{r\diagdown} \end{bmatrix}.</math> | ||
<math>\begin{bmatrix} ^\diagdown m_{r\diagdown} \end{bmatrix}</math> और <math>\begin{bmatrix} ^\diagdown k_{r\diagdown} \end{bmatrix}</math> [[विकर्ण मैट्रिक्स]] हैं जिनमें प्रत्येक मोड के लिए मोडल द्रव्यमान और कठोरता मान होते हैं। (नोट: चूंकि | <math>\begin{bmatrix} ^\diagdown m_{r\diagdown} \end{bmatrix}</math> और <math>\begin{bmatrix} ^\diagdown k_{r\diagdown} \end{bmatrix}</math>[[विकर्ण मैट्रिक्स|विकर्ण आव्यूह]] हैं जिनमें प्रत्येक मोड के लिए मोडल द्रव्यमान और कठोरता मान होते हैं। (नोट: चूंकि अभिलक्षणिक सदिश (मोड आकृतियों) को अक्रमतः से माप किया जा सकता है, लंबकोणीयता गुणों का उपयोग अधिकांशतः अभिलक्षणिक सदिश को माप करने के लिए किया जाता है, इसलिए प्रत्येक मोड के लिए मोडल मास मान 1 के बराबर होता है। मोडल मास आव्यूह इसलिए तत्समक आव्यूह है) | ||
निम्नलिखित समन्वय परिवर्तन करके इन गुणों का उपयोग | निम्नलिखित समन्वय परिवर्तन करके इन गुणों का उपयोग विविध-कोटि स्वतंत्रता मॉडल के समाधान को सरल बनाने के लिए किया जा सकता है। | ||
:<math>\begin{Bmatrix} x \end{Bmatrix}= \begin{bmatrix} \Psi \end{bmatrix} \begin{Bmatrix} q \end{Bmatrix}. </math> | :<math>\begin{Bmatrix} x \end{Bmatrix}= \begin{bmatrix} \Psi \end{bmatrix} \begin{Bmatrix} q \end{Bmatrix}. </math> | ||
| Line 289: | Line 292: | ||
: <math>\begin{bmatrix}M\end{bmatrix}\begin{bmatrix} \Psi \end{bmatrix} \begin{Bmatrix} \ddot{q} \end{Bmatrix} + \begin{bmatrix} K \end{bmatrix} \begin{bmatrix} \Psi \end{bmatrix} \begin{Bmatrix} q\end{Bmatrix}=0.</math> | : <math>\begin{bmatrix}M\end{bmatrix}\begin{bmatrix} \Psi \end{bmatrix} \begin{Bmatrix} \ddot{q} \end{Bmatrix} + \begin{bmatrix} K \end{bmatrix} \begin{bmatrix} \Psi \end{bmatrix} \begin{Bmatrix} q\end{Bmatrix}=0.</math> | ||
इस समीकरण को पूर्वगुणित करके लंबकोणीयता गुणों का लाभ उठाते हुए <math>\begin{bmatrix}\Psi\end{bmatrix}^{T}</math> द्वारा | |||
:<math>\begin{bmatrix}\Psi\end{bmatrix}^{T}\begin{bmatrix}M\end{bmatrix}\begin{bmatrix} \Psi \end{bmatrix}\begin{Bmatrix}\ddot{q}\end{Bmatrix}+\begin{bmatrix}\Psi\end{bmatrix}^{T}\begin{bmatrix}K\end{bmatrix} \begin{bmatrix} \Psi \end{bmatrix} \begin{Bmatrix} q\end{Bmatrix}=0.</math> | :<math>\begin{bmatrix}\Psi\end{bmatrix}^{T}\begin{bmatrix}M\end{bmatrix}\begin{bmatrix} \Psi \end{bmatrix}\begin{Bmatrix}\ddot{q}\end{Bmatrix}+\begin{bmatrix}\Psi\end{bmatrix}^{T}\begin{bmatrix}K\end{bmatrix} \begin{bmatrix} \Psi \end{bmatrix} \begin{Bmatrix} q\end{Bmatrix}=0.</math> | ||
लंबकोणीयता गुण तब इस समीकरण को सरल करते हैं: | |||
:<math>\begin{bmatrix} ^\diagdown m_{r\diagdown} \end{bmatrix} \begin{Bmatrix}\ddot{q}\end{Bmatrix}+\begin{bmatrix}^\diagdown k_{r\diagdown}\end{bmatrix} \begin{Bmatrix} q\end{Bmatrix}=0.</math> | :<math>\begin{bmatrix} ^\diagdown m_{r\diagdown} \end{bmatrix} \begin{Bmatrix}\ddot{q}\end{Bmatrix}+\begin{bmatrix}^\diagdown k_{r\diagdown}\end{bmatrix} \begin{Bmatrix} q\end{Bmatrix}=0.</math> | ||
यह समीकरण कई | यह समीकरण कई कोटि स्वतंत्रता प्रणालियों के लिए कंपन विश्लेषण की नींव है। अवमन्दित प्रणाली के लिए समान प्रकार का परिणाम प्राप्त किया जा सकता है।<ref name="MaiaSilva97" />कुंजी यह है कि मोडल द्रव्यमान और कठोरता आव्यूह विकर्ण आव्यूह हैं और इसलिए समीकरणों को अलग कर दिया गया है। दूसरे शब्दों में, समस्या को स्वतंत्रता की समस्या की बड़ी बोझिल बहुस्तरीय समस्या से कई एकल स्तर की स्वतंत्रता समस्याओं में बदल दिया गया है, जिन्हें ऊपर बताए गए समान तरीकों का उपयोग करके हल किया जा सकता है। | ||
x के लिए हल करने को q के लिए हल करने से प्रतिस्थापित किया जाता है, जिसे मोडल निर्देशांक या मोडल भागीदारी कारक कहा जाता है। | ''x'' के लिए हल करने को ''q'' के लिए हल करने से प्रतिस्थापित किया जाता है, जिसे मोडल निर्देशांक या मोडल भागीदारी कारक कहा जाता है। | ||
यदि यह समझना अधिक स्पष्ट हो सकता है <math>\begin{Bmatrix} x \end{Bmatrix}= \begin{bmatrix} \Psi \end{bmatrix} \begin{Bmatrix} q \end{Bmatrix} </math> के रूप में लिखा है: | यदि यह समझना अधिक स्पष्ट हो सकता है <math>\begin{Bmatrix} x \end{Bmatrix}= \begin{bmatrix} \Psi \end{bmatrix} \begin{Bmatrix} q \end{Bmatrix} </math> के रूप में लिखा है: | ||
:<math>\begin{Bmatrix} x_n \end{Bmatrix}= q_1\begin{Bmatrix} \psi \end{Bmatrix}_1 +q_2\begin{Bmatrix} \psi \end{Bmatrix}_2 +q_3\begin{Bmatrix} \psi \end{Bmatrix}_3 +\cdots + q_N\begin{Bmatrix} \psi \end{Bmatrix}_N.</math> | :<math>\begin{Bmatrix} x_n \end{Bmatrix}= q_1\begin{Bmatrix} \psi \end{Bmatrix}_1 +q_2\begin{Bmatrix} \psi \end{Bmatrix}_2 +q_3\begin{Bmatrix} \psi \end{Bmatrix}_3 +\cdots + q_N\begin{Bmatrix} \psi \end{Bmatrix}_N.</math> | ||
इस रूप में लिखा यह देखा जा सकता है कि स्वतंत्रता की प्रत्येक | इस रूप में लिखा यह देखा जा सकता है कि स्वतंत्रता की प्रत्येक कोटि पर कंपन केवल मोड आकृतियों का रैखिक योग है। इसके अतिरिक्त, अंतिम कंपन में प्रत्येक मोड कितना "भाग" लेता है, q द्वारा परिभाषित किया जाता है, इसका मोडल भागीदारी कारक है। | ||
=== | === दृढ़ पिंड मोड === | ||
स्वतंत्र प्रणाली की अनियंत्रित विविध-कोटि दृढ़ पिंड अंतरण और/या घूर्णन और कंपन दोनों का अनुभव करती है। दृढ़ पिंड मोड के अस्तित्व के परिणामस्वरूप शून्य प्राकृतिक आवृत्ति होती है। इसी मोड आकार को दृढ़ पिंड मोड कहा जाता है। | |||
== यह भी देखें == | == यह भी देखें == | ||
| Line 351: | Line 354: | ||
== संदर्भ == | == संदर्भ == | ||
{{reflist}} | {{reflist}} | ||
== अग्रिम पठन == | == अग्रिम पठन == | ||
{{refbegin}} | {{refbegin}} | ||
| Line 365: | Line 366: | ||
{{refend}} | {{refend}} | ||
== बाहरी संबंध == | == बाहरी संबंध == | ||
*[http://www.noisestructure.com/products/MPE_SDOF.php Free Excel sheets to estimate modal parameters] | *[http://www.noisestructure.com/products/MPE_SDOF.php Free Excel sheets to estimate modal parameters] | ||
*[https://www.mobiusinstitute.com/site2/detail.asp?LinkID=55 Vibration Analysis Reference – Mobius Institute] | *[https://www.mobiusinstitute.com/site2/detail.asp?LinkID=55 Vibration Analysis Reference – Mobius Institute] | ||
| Line 379: | Line 376: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 28/03/2023]] | [[Category:Created On 28/03/2023]] | ||
[[Category:Vigyan Ready]] | |||
Latest revision as of 07:08, 23 September 2023
| Part of a series on |
| चिरसम्मत यांत्रिकी |
|---|
कंपन (लैटिन वाइब्रो से 'टू शेक') एक यांत्रिक घटना है जिसके अनुसार संतुलन बिंदु के आसपास दोलन होते हैं। दोलन आवधिक हो सकते हैं, जैसे पेंडुलम की गति, या यादृच्छिक, जैसे बजरी वाली सड़क पर टायर की गति होती है।
कंपन वांछनीय हो सकता है: उदाहरण के लिए, स्वरित्र द्विभुज की गति, सुषिर काष्ठ वाद्य या हारमोनिका में रीड (संगीत), मोबाइल फोन, या ध्वनि-विस्तारक यंत्र का शंकु।
चूंकि, कई स्थितियों में, कंपन अवांछनीय है, जिससे ऊर्जा बर्बाद होती है और अवांछित ध्वनि उत्पन्न होती है। उदाहरण के लिए, इंजन, विद्युत मोटर, या किसी भी मशीन के संचालन में कंपन संबंधी गति सामान्यतः अवांछित होती है। इस तरह के कंपन घूर्णन भागों में असंतुलन, असमान घर्षण, या गियर दांतों की जाली के कारण हो सकते हैं। सावधानीपूर्वक डिजाइन सामान्यतः अवांछित कंपन को निम्न करते हैं।
ध्वनि और कंपन का अध्ययन आपस में निकट से संबंधित है (दोनों ध्वनिकी के अंतर्गत आते हैं)। ध्वनि, या दबाव तरंगें, कंपन संरचनाओं (जैसे स्वर रज्जु) द्वारा उत्पन्न होती हैं; ये दबाव तरंगें संरचनाओं के कंपन (जैसे कान का पर्दा) को भी प्रेरित कर सकती हैं। इसलिए, रव को निम्न करने के प्रयास अधिकांशतः कंपन के मुद्दों से संबंधित होते हैं।[1]
कार निलंबन: डिजाइन कंपन नियंत्रण [[ध्वनिक अभियांत्रिकी ]], स्वचालित इंजीनियरिंग या मैकेनिकल इंजीनियरिंग इंजीनियरिंग के भाIndex.php?title=मशीनिंग कंपनग के रूप में किया जाता है।]] व्यवकलक निर्माण की प्रक्रिया में मशीनिंग कंपन आम है।
प्रकार
मुक्त कंपन तब होता है जब यांत्रिक प्रणाली को प्रारंभिक इनपुट के साथ गति में सेट किया जाता है और स्वतंत्र रूप से कंपन करने की अनुमति दी जाती है। इस प्रकार के कंपन के उदाहरण है बच्चे को झूले पर पीछे खींचना और उसे छोड़ देना, या स्वरित्र द्विभुज प्रहार कर उसे बजने दे रहे हैं। यांत्रिक प्रणाली एक या एक से अधिक प्रतिध्वनि पर कंपन करती है और अवमंदन अनुपात गतिहीनता तक निम्न हो जाता है।
प्रणोदित कंपन तब होता है जब यांत्रिक प्रणाली पर समय-भिन्न विक्षोभ (भार, विस्थापन, वेग, या त्वरण) लागू होती है। विक्षोभ एक आवधिक और स्थिर-स्थिति इनपुट, क्षणिक इनपुट या यादृच्छिक इनपुट हो सकती है। आवधिक इनपुट एक अनुकंपी या गैर-अनुकंपी विक्षोभ हो सकती है। इस प्रकार के कंपन के उदाहरणों में असंतुलन के कारण वाशिंग मशीन का हिलना, इंजन या असमान सड़क के कारण परिवहन कंपन, या भूकंप के दौरान इमारत का कंपन सम्मिलित हैं। रैखिक प्रणालियों के लिए, आवधिक, अनुकंपी इनपुट के अनुप्रयोग से उत्पन्न स्थिर-अवस्था कंपन अनुक्रिया की आवृत्ति लागू बल या गति की आवृत्ति के बराबर होती है, अनुक्रिया परिमाण वास्तविक यांत्रिक प्रणाली पर निर्भर होता है।
अवमंदित कंपन: जब कंपन प्रणाली की ऊर्जा घर्षण और अन्य प्रतिरोधों द्वारा धीरे-धीरे नष्ट हो जाती है, तो कंपन को अवमंदित कहा जाता है। कंपन धीरे-धीरे निम्न हो जाते हैं या आवृत्ति या तीव्रता में बदल जाते हैं या बंद हो जाते हैं और प्रणाली अपनी संतुलन स्थिति में रहता है। इस प्रकार के कंपन का उदाहरण प्रघात अवशोषक द्वारा अवमन्दित किया गया वाहन निलंबन है।
अलगाव
परीक्षण
कंपन परीक्षण सामान्यतः किसी प्रकार के प्रकंपन के साथ संरचना में प्रणोदित कार्य प्रारंभ करके पूरा किया जाता है। वैकल्पिक रूप से, प्रकंपन की "मेज" से डीयूटी (परीक्षण के अनुसार उपकरण) जुड़ा हुआ है। कंपन परीक्षण परिभाषित कंपन वातावरण में परीक्षण (डीयूटी) के अनुसार उपकरण की अनुक्रिया की जांच करने के लिए किया जाता है। मापी गई अनुक्रिया कंपन वातावरण, श्रांति जीवन, गुंजयमान आवृत्तियों या चरमराना और तड़कन ध्वनि आउटपुट (रव, कंपन और कठोरता) में कार्य करने की क्षमता हो सकती है। चरमराना और तड़कन परीक्षण विशेष प्रकार के मन्द प्रकंपन के साथ किया जाता है जो ऑपरेशन के दौरान बहुत निम्न ध्वनि स्तर उत्पन्न करता है।
अपेक्षाकृत निम्न आवृति प्रणोदन (सामान्यतः 100 हर्ट्ज से निम्न) के लिए, सर्वोहाइड्रॉलिक (वैद्युत द्रवचालित) शेकर्स का उपयोग किया जाता है। उच्च आवृत्तियों (सामान्यतः 5 हर्ट्ज से 2000 हर्ट्ज) के लिए, विद्युत् गतिकी शेकर्स का उपयोग किया जाता है। सामान्यतः, कंपन अनुबंध के डीयूटी-साइड पर स्थित एक या एक से अधिक "इनपुट" या "नियंत्रण" बिंदुओं को निर्दिष्ट त्वरण पर रखा जाता है।[1] अन्य "अनुक्रिया" बिंदुओं में नियंत्रण बिंदुओं की तुलना में उच्च कंपन स्तर (अनुनाद) या निम्न कंपन स्तर (प्रति अनुनाद या डंपिंग) का अनुभव हो सकता है। किसी प्रणाली को अत्यधिक रव होने से बचाने के लिए, या विशिष्ट कंपन आवृत्तियों के कारण होने वाले कंपन मोड के कारण कुछ हिस्सों पर विकृति को निम्न करने के लिए अधिकांशतः प्रति अनुनाद प्राप्त करना वांछनीय होता है।[2]
कंपन परीक्षण प्रयोगशालाओं द्वारा संचालित सबसे सामान्य प्रकार की कंपन परीक्षण सेवाएँ ज्यावक्रीय और यादृच्छिक हैं। परीक्षण (डीयूटी) के अनुसार उपकरण की संरचनात्मक अनुक्रिया का सर्वेक्षण करने के लिए साइन (वन-आवृति-एट-ए-टाइम) परीक्षण किए जाते हैं। कंपन परीक्षण के प्रारंभिक इतिहास के दौरान, कंपन मशीन नियंत्रक केवल साइन गति को नियंत्रित करने तक ही सीमित थे, इसलिए केवल साइन परीक्षण किया गया था। बाद में, अधिक परिष्कृत एनालॉग और फिर डिजिटल नियंत्रक यादृच्छिक नियंत्रण (एक बार में सभी आवृत्तियों) प्रदान करने में सक्षम थे। यादृच्छिक (एक बार में सभी आवृत्तियों) परीक्षण को सामान्यतः वास्तविक दुनिया के वातावरण को अधिक बारीकी से दोहराने के लिए माना जाता है, जैसे चलती ऑटोमोबाइल के लिए सड़क इनपुट है।
अधिकांश कंपन परीक्षण एक समय में 'एकल डीयूटी अक्ष' में आयोजित किए जाते हैं, भले ही अधिकांश वास्तविक-विश्व कंपन एक साथ विभिन्न अक्षों में होते हैं। MIL-STD-810G, 2008 के अंत में जारी, टेस्ट मेथड 527, विविध उत्पादक परीक्षण की मांग करता है। कंपन परीक्षण अनुबंध[3]डीयूटी को प्रकंपन टेबल से जोड़ने के लिए उपयोग किया जाना चाहिए, इसे कंपन परीक्षण स्पेक्ट्रम की आवृत्ति सीमा के लिए डिज़ाइन किया जाना चाहिए। कंपन परीक्षण अनुबंध को डिजाइन करना मुश्किल है जो वास्तविक उपयोग में बढ़ते हुए गतिशील अनुक्रिया (यांत्रिक प्रतिबाधा) को दोहराता है[4]। इस कारण से, कंपन परीक्षणों के बीच दोहराव सुनिश्चित करने के लिए, कंपन अनुबंध को परीक्षण आवृत्ति सीमा के भीतर अनुनाद मुक्त होने के लिए डिज़ाइन किए गए हैं[4]। सामान्यतः छोटे जुड़नार और निम्न आवृत्ति सीमा के लिए, डिजाइनर अनुबंध डिजाइन को लक्षित कर सकता है जो परीक्षण आवृत्ति सीमा में प्रतिध्वनि से मुक्त होता है। जैसे-जैसे डीयूटी बड़ा होता जाता है और परीक्षण की आवृत्ति बढ़ती जाती है, यह और अधिक कठिन होता जाता है। इन स्थितियों में विविध-बिंदु नियंत्रण रणनीतियाँ[5] पूर्वकथन में सम्मिलित कुछ अनुनादों को निम्न कर सकते हैं।
कुछ कंपन परीक्षण विधियाँ क्रॉसस्टॉक की मात्रा को सीमित करती हैं (परीक्षण के अनुसार अक्ष के परस्पर लंबवत दिशा में एक अनुक्रिया बिंदु की गति) कंपन परीक्षण अनुबंध द्वारा प्रदर्शित होने की अनुमति है। विशेष रूप से कंपन का पता लगाने या रिकॉर्ड करने के लिए डिज़ाइन किए गए उपकरणों को कंपन मापक यंत्र कहा जाता है।
विश्लेषण
कंपन विश्लेषण (वी.ए), औद्योगिक या रखरखाव वातावरण में लागू किया जाता है, जिसका उद्देश्य उपकरण की खराबी का पता लगाकर रखरखाव लागत और उपकरण दुविधा को निम्न करना है।[6][7] वी.ए स्थिति निगरानी (सीएम) प्रोग्राम का प्रमुख घटक है, और इसे अधिकांशतः पूर्वकथन कहनेवाला रखरखाव (पीडीएम) कहा जाता है।[8] सामान्यतः वीए का उपयोग घूर्णन उपकरण (पंखे, मोटर्स, पंप, और गियरबॉक्स इत्यादि) जैसे असंतुलन, गलत संरेखण, रोलिंग तत्व असर दोष और अनुनाद स्थितियों में दोषों का पता लगाने के लिए किया जाता है।[9]
वीए तरंगरूप (टीडब्ल्यूएफ) के रूप में प्रदर्शित विस्थापन, वेग और त्वरण की इकाइयों का उपयोग कर सकता है, लेकिन सामान्यतः स्पेक्ट्रम का उपयोग किया जाता है, जो टीडब्ल्यूएफ के तेज़ फूरियर रूपांतरण से प्राप्त होता है। कंपन स्पेक्ट्रम महत्वपूर्ण आवृत्ति जानकारी प्रदान करता है जो दोषपूर्ण घटक को इंगित कर सकता है।
सरल मास-स्प्रिंग-डैम्पर मॉडल का अध्ययन करके कंपन विश्लेषण के मूल सिद्धांतों को समझा जा सकता है। वास्तव में, यहां तक कि सम्मिश्र संरचना जैसे कि ऑटोमोबाइल बॉडी को साधारण मास-स्प्रिंग-डैम्पर मॉडल के "योग" के रूप में तैयार किया जा सकता है। मास-स्प्रिंग-डैम्पर मॉडल सरल आवर्त दोलक का एक उदाहरण है। इसके व्यवहार का वर्णन करने के लिए प्रयुक्त गणित आरएलसी परिपथ जैसे अन्य सरल आवर्त दोलक के समान है।
नोट: इस लेख में चरण-दर-चरण गणितीय व्युत्पत्ति सम्मिलित नहीं है, लेकिन प्रमुख कंपन विश्लेषण समीकरणों और अवधारणाओं पर केंद्रित है। कृपया विस्तृत व्युत्पत्तियों के लिए लेख के अंत में संदर्भ देखें।
अवमंदन के बिना मुक्त कंपन
मास-स्प्रिंग-डैम्पर की जांच प्रारंभ करने के लिए मान लें कि अवमंदन नगण्य है और द्रव्यमान (अर्थात मुक्त कंपन) पर कोई बाहरी बल लागू नहीं होता है। स्प्रिंग द्वारा द्रव्यमान पर लगाया गया बल उस मात्रा के समानुपाती होता है, जिस पर स्प्रिंग "x" फैला होता है (यह मानते हुए कि द्रव्यमान के वजन के कारण स्प्रिंग पहले से ही संकुचित है)। आनुपातिकता स्थिरांक, k, स्प्रिंग की कठोरता है और इसमें बल/दूरी की इकाइयाँ होती हैं (जैसे lbf/in या N/m)। ऋणात्मक चिह्न यह दर्शाता है कि बल हमेशा इससे जुड़े द्रव्यमान की गति का विरोध करता है:
द्रव्यमान द्वारा उत्पन्न बल द्रव्यमान के त्वरण के समानुपाती होता है जैसा कि न्यूटन के गति के नियमों द्वारा दिया गया है। न्यूटन की गति का दूसरा नियम:
द्रव्यमान पर बलों का योग इस साधारण अंतर समीकरण को उत्पन्न करता है:
यह मानते हुए कि कंपन का प्रारंभ स्प्रिंग को A की दूरी से खींचकर और जारी करके प्रारंभ होती है, उपरोक्त समीकरण का समाधान जो द्रव्यमान की गति का वर्णन करता है:
यह समाधान कहता है कि यह सरल अनुकंपी गति के साथ दोलन करेगा जिसमें A का आयाम और fn की आवृत्ति है, संख्या fn अविभाजित प्राकृतिक आवृत्ति कहा जाता है। साधारण द्रव्यमान-स्प्रिंग प्रणाली के लिए, fn परिभाषित किया जाता है:
नोट: प्रति सेकंड रेडियन की इकाइयों के साथ कोणीय आवृत्ति ω (ω=2 π f) का उपयोग अधिकांशतः समीकरणों में किया जाता है क्योंकि यह समीकरणों को सरल करता है, लेकिन सामान्य आवृत्ति (हर्ट्ज की इकाइयां या समकक्ष चक्र प्रति सेकंड) में परिवर्तित किया जाता है। यदि प्रणाली का द्रव्यमान और कठोरता ज्ञात है, तो ऊपर दिया गया सूत्र उस आवृत्ति को निर्धारित कर सकता है जिस पर प्रणाली प्रारंभिक विक्षोभ से गति में सेट होने पर कंपन करता है। प्रत्येक कंपन प्रणाली में एक या एक से अधिक प्राकृतिक आवृत्तियाँ होती हैं जो एक बार में कंपन करती हैं। इस सरल संबंध का उपयोग सामान्य रूप से यह समझने के लिए किया जा सकता है कि एक बार जब हम द्रव्यमान या कठोरता जोड़ते हैं तो अधिक सम्मिश्र प्रणाली का क्या होता है। उदाहरण के लिए, उपरोक्त सूत्र बताता है कि क्यों, जब एक कार या ट्रक पूरी तरह से लोड हो जाता है, तो निलंबन अनलोड की तुलना में "नरम" लगता है - द्रव्यमान बढ़ गया है, जिससे प्रणाली की प्राकृतिक आवृत्ति निम्न हो जाती है।
तंत्र के कंपन का कारण क्या है: ऊर्जा संरक्षण की दृष्टि से
कंपन गति को ऊर्जा संरक्षण के रूप में समझा जा सकता है। उपरोक्त उदाहरण में स्प्रिंग को x के मान से बढ़ाया गया है और इसलिए कुछ स्थितिज ऊर्जा () स्प्रिंग में संग्रहीत किया जाता है। एक बार छोड़े जाने के बाद, स्प्रिंग अपनी अविस्तारित स्थिति (जो न्यूनतम स्थितिज ऊर्जा अवस्था है) में वापस आ जाती है और इस प्रक्रिया में द्रव्यमान को गति देती है। उस बिंदु पर जहां स्प्रिंग अपनी अविरल अवस्था में पहुंच गया है, सभी स्थितिज ऊर्जा जो हमने इसे खींचकर आपूर्ति की है, गतिज ऊर्जा () में परिवर्तित हो गई है, द्रव्यमान तब घटने लगता है क्योंकि यह अब स्प्रिंग को संकुचित कर रहा है और इस प्रक्रिया में गतिज ऊर्जा को वापस अपनी क्षमता में स्थानांतरित कर रहा है। इस प्रकार स्प्रिंग का दोलन गतिज ऊर्जा के आगे और पीछे स्थितिज ऊर्जा में स्थानांतरित करने के बराबर है। इस सरल मॉडल में द्रव्यमान एक ही परिमाण में हमेशा के लिए दोलन करना जारी रखता है - लेकिन वास्तविक प्रणाली में, अवमंदन हमेशा ऊर्जा को नष्ट कर देता है, अंततः स्प्रिंग को आराम देता है।
अवमंदन के साथ मुक्त कंपन
जब "श्यान" अवमंदक को मॉडल में जोड़ा जाता है तो यह बल उत्पन्न करता है जो द्रव्यमान के वेग के समानुपाती होता है। अवमंदन श्यान कहा जाता है क्योंकि यह किसी वस्तु के भीतर तरल पदार्थ के प्रभाव को मॉडल करता है। आनुपातिकता स्थिरांक c को अवमंदन गुणांक कहा जाता है और इसमें वेग से अधिक बल की इकाइयाँ होती हैं (lbf⋅s/in या N⋅s/m)।
द्रव्यमान पर बलों का योग करने से निम्नलिखित साधारण अंतर समीकरण प्राप्त होते हैं:
इस समीकरण का हल अवमंदन की मात्रा पर निर्भर करता है। यदि अवमंदन काफी छोटा है, तो प्रणाली अभी भी कंपन करता है - लेकिन अंततः, समय के साथ, कंपन बंद हो जाता है। इस स्थिति को न्यून अवमंदन कहा जाता है, जो कंपन विश्लेषण में महत्वपूर्ण है। यदि अवमंदन को केवल उस बिंदु तक बढ़ाया जाता है जहां प्रणाली अब दोलन नहीं करती है, तो प्रणाली महत्वपूर्ण अवमंदन के बिंदु पर पहुंच गई है। यदि महत्वपूर्ण अवमंदन से पहले अवमंदन बढ़ जाता है, तो प्रणाली अति अवमन्दित हो जाता है। मास-स्प्रिंग-डैम्पर मॉडल में महत्वपूर्ण अवमंदन के लिए अवमंदन गुणांक का मान कितना होना चाहिए:
प्रणाली में अवमंदन की मात्रा को चिह्नित करने के लिए अनुपात जिसे अवमंदन अनुपात कहा जाता है (जिसे अवमंदन कारक और% महत्वपूर्ण अवमंदन भी कहा जाता है) का उपयोग किया जाता है। यह अवमंदन अनुपात केवल वास्तविक अवमंदन का अनुपात है जो महत्वपूर्ण अवमंदन तक पहुँचने के लिए आवश्यक अवमंदन की मात्रा से अधिक है। अवमंदन अनुपात के लिए सूत्र () मास-स्प्रिंग-डैम्पर मॉडल का है:
उदाहरण के लिए, धातु संरचनाओं (जैसे, वायुयान का धड, इंजन अरालदंड) में 0.05 से निम्न अवमंदन कारक होते हैं, जबकि स्वचालित निलंबन 0.2–0.3 की सीमा में होते हैं। मास-स्प्रिंग-डैम्पर मॉडल के लिए न्यून अवमंद प्रणाली का समाधान निम्नलिखित है:
X का मान, प्रारंभिक परिमाण और कला विस्थापन, स्प्रिंग के खिंचने की मात्रा से निर्धारित होता है। इन मान के सूत्र संदर्भों में पाए जा सकते हैं।
अवमन्दित और अनवमंदित वाली प्राकृतिक आवृत्तियाँ
समाधान से ध्यान देने योग्य प्रमुख बिंदु घातीय शब्द और कोज्या फलन हैं। घातांकी शब्द परिभाषित करता है कि प्रणाली कितनी जल्दी "अवमन्द" डाउन करता है - अवमंदन अनुपात जितना बड़ा होता है, उतनी ही तेज़ी से यह शून्य हो जाता है। कोज्या फलन विलयन का दोलनशील भाग है, लेकिन दोलनों की आवृत्ति अवमंदित स्थिति से भिन्न होती है।
इस स्थिति में आवृत्ति को "अवमंदित प्राकृतिक आवृत्ति" कहा जाता है, और निम्न सूत्र द्वारा अपरिवर्तित प्राकृतिक आवृत्ति से संबंधित है:
अवमंदित प्राकृतिक आवृत्ति, अवमंदित प्राकृतिक आवृत्ति से निम्न होती है, लेकिन कई व्यावहारिक स्थितियों के लिए अवमंदन अनुपात अपेक्षाकृत छोटा होता है और इसलिए अंतर नगण्य होता है। इसलिए, प्राकृतिक आवृत्ति (उदाहरण के लिए 0.1 अवमंदन अनुपात के साथ, अवमंदित प्राकृतिक आवृत्ति केवल 1% निम्न होती है) को बताते हुए अवमंदित और अविभाजित विवरण अधिकांशतः गिरा दिया जाता है।
पक्ष के भूखंड बताते हैं कि कैसे 0.1 और 0.3 अवमंदन अनुपात प्रभावित करते हैं कि प्रणाली समय के साथ "रिंग" कैसे करता है। अभ्यास में अधिकांशतः जो किया जाता है वह प्रभाव (उदाहरण के लिए हथौड़ा द्वारा) के बाद मुक्त कंपन को प्रयोगात्मक रूप से मापना है और फिर दोलन की दर को मापकर प्रणाली की प्राकृतिक आवृत्ति का निर्धारण करना है, साथ ही गति क्षय की दर को मापकर अवमंदन अनुपात भी है। प्राकृतिक आवृत्ति और अवमंदन अनुपात न केवल मुक्त कंपन में महत्वपूर्ण हैं, बल्कि यह भी विशेषता है कि प्रणाली प्रणोदित कंपन के अनुसार कैसे व्यवहार करता है।
अवमंदन के साथ प्रणोदित कंपन
स्प्रिंग मास डैम्पर मॉडल का व्यवहार अनुकंपी बल के योग के साथ बदलता रहता है। उदाहरण के लिए, इस प्रकार का बल घूर्णन असंतुलन द्वारा उत्पन्न किया जा सकता है।
द्रव्यमान पर बलों का योग करने से निम्नलिखित साधारण अंतर समीकरण प्राप्त होते हैं:
इस समस्या का स्थिर अवस्था समाधान इस प्रकार लिखा जा सकता है:
परिणाम बताता है कि द्रव्यमान लागू बल की समान आवृत्ति, f पर दोलन करेगा, लेकिन एक कला विस्थापन के साथ,
कंपन "X" के आयाम को निम्न सूत्र द्वारा परिभाषित किया गया है।
जहां "r" को द्रव्यमान-स्प्रिंग-डैम्पर मॉडल की अपरिवर्तित प्राकृतिक आवृत्ति पर अनुकंपी बल आवृत्ति के अनुपात के रूप में परिभाषित किया गया है।
कला विस्थापन, निम्न सूत्र द्वारा परिभाषित किया गया है।
इन फलन की रूप रेखा, जिसे "प्रणाली की आवृत्ति अनुक्रिया" कहा जाता है, प्रणोदित कंपन में सबसे महत्वपूर्ण विशेषताओं में से प्रस्तुत करता है। हल्के से अवमन्दित प्रणाली में जब बल आवृत्ति प्राकृतिक आवृत्ति के निकट होती है () कंपन का आयाम बहुत अधिक हो सकता है। इस घटना को यांत्रिक अनुनाद कहा जाता है (बाद में प्रणाली की प्राकृतिक आवृत्ति को अधिकांशतः गुंजयमान आवृत्ति के रूप में संदर्भित किया जाता है)। रोटर बेयरिंग प्रणाली में किसी भी घूर्णी गति जो गुंजयमान आवृत्ति को उत्तेजित करती है, को क्रांतिक गति कहा जाता है।
यदि यांत्रिक प्रणाली में अनुनाद होता है तो यह बहुत हानिकारक हो सकता है - जिससे अंततः प्रणाली की विफलता हो सकती है। परिणाम स्वरुप, कंपन विश्लेषण के प्रमुख कारणों में से एक यह पूर्वानुमान करना है कि इस प्रकार की अनुनाद कब हो सकती है और फिर यह निर्धारित करने के लिए कि इसे होने से रोकने के लिए क्या कदम उठाए जाएं। जैसा कि आयाम आलेख दिखाता है, अवमंदन जोड़ने से कंपन की परिमाण काफी निम्न हो सकती है। साथ ही, परिमाण को निम्न किया जा सकता है यदि प्रणाली की कठोरता या द्रव्यमान को बदलकर प्राकृतिक आवृत्ति को बल आवृत्ति से दूर स्थानांतरित किया जा सकता है। यदि प्रणाली को बदला नहीं जा सकता है, तो शायद प्रणोदन आवृति को स्थानान्तरित किया जा सकता है (उदाहरण के लिए, बल उत्पन्न करने वाली मशीन की गति को बदलना)।
आवृत्ति अनुक्रिया भूखंडों में दिखाए गए प्रणोदित कंपन के संबंध में कुछ अन्य बिंदु निम्नलिखित हैं।
- किसी दिए गए आवृत्ति अनुपात पर, कंपन का आयाम, X, बल के आयाम के सीधे आनुपातिक होता है (उदाहरण के लिए यदि आप बल को दुगुना करते हैं, तो कंपन दुगना हो जाता है)।
- बहुत निम्न या कोई अवमंदन नहीं होने पर, जब आवृत्ति अनुपात r < 1 और आवृत्ति अनुपात r > 1 होने पर आवृत्ति अनुपात r < 1 और 180 कोटि चरण से बाहर हो जाता है, तो कंपन बल आवृत्ति के साथ चरण में होता है।
- जब r ≪ 1 आयाम स्थिर बल के अनुसार स्प्रिंग का विक्षेपण है इस विक्षेपण को स्थिर विक्षेपण कहा जाता है, इसलिए, जब r≪ 1 अवमंदक और द्रव्यमान के प्रभाव न्यूनतम होते हैं।
- जब r≫ 1 कंपन का आयाम वास्तव में स्थैतिक विक्षेपण से निम्न होता है, इस क्षेत्र में द्रव्यमान (F = ma) द्वारा उत्पन्न बल हावी होता है क्योंकि द्रव्यमान द्वारा देखा गया त्वरण आवृत्ति के साथ बढ़ता है। चूंकि इस क्षेत्र में स्प्रिंग, X में देखा गया विक्षेपण निम्न हो गया है, इसलिए स्प्रिंग (F = kx) द्वारा आधार पर प्रेषित बल निम्न हो गया है। इसलिए, द्रव्यमान-स्प्रिंग-डैम्पर प्रणाली अनुकंपी बल को बढ़ते आधार से अलग कर रही है - जिसे कंपन विलगन कहा जाता है। अधिक अवमंदन वास्तव में r≫ 1 होने पर कंपन विलगन के प्रभाव को निम्न करता है क्योंकि अवमंदन बल (F = cv) भी आधार पर प्रेषित होता है।
- जो भी अवमंदन है, कंपन 90 कोटि चरण से बाहर है, जब आवृत्ति अनुपात r = 1 होता है, जो प्रणाली की प्राकृतिक आवृत्ति को निर्धारित करने के लिए बहुत सहायक होता है।
- अवमंदन जो भी हो, जब r≫ 1, कंपन प्रणोदन आवृति के साथ 180 कोटि चरण से बाहर होता है।
- अवमंदन चाहे जो भी हो, जब r ≪ 1, कंपन बल आवृत्ति के साथ चरण में होता है।
अनुनाद कारण
अनुनाद को समझना आसान है यदि स्प्रिंग और द्रव्यमान को ऊर्जा भंडारण तत्वों के रूप में - बड़े पैमाने पर गतिशील ऊर्जा और स्प्रिंग भंडारण स्थितिज ऊर्जा के साथ देखा जाता है। जैसा कि पहले चर्चा की गई है, जब द्रव्यमान और स्प्रिंग पर कोई बाहरी बल कार्य नहीं करता है तो वे ऊर्जा को प्राकृतिक आवृत्ति के बराबर दर पर स्थानांतरित करते हैं। दूसरे शब्दों में, ऊर्जा को द्रव्यमान और स्प्रिंग दोनों में कुशलतापूर्वक पंप करने के लिए आवश्यक है कि ऊर्जा स्रोत ऊर्जा को प्राकृतिक आवृत्ति के बराबर दर पर चलाए। द्रव्यमान और स्प्रिंग पर बल लगाना एक बच्चे को झूले पर धकेलने के समान है, झूले को ऊंचा और ऊंचा करने के लिए सही समय पर धक्का देने की जरूरत होती है। जैसा कि झूले के स्थिति में होता है, लागू बल को बड़ी गति प्राप्त करने के लिए अधिक नहीं होना चाहिए, लेकिन केवल प्रणाली में ऊर्जा को जोड़ना चाहिए।
अवमंदक ऊर्जा संचय करने के अतिरिक्त ऊर्जा का क्षय करता है। चूँकि अवमंदन बल वेग के समानुपाती होता है, गति जितनी अधिक होती है, उतना ही अधिक अवमंदक ऊर्जा का प्रसार करता है। इसलिए, एक बिंदु है जब अवमंदक द्वारा छोड़ी गई ऊर्जा बल द्वारा जोड़ी गई ऊर्जा के बराबर होती है। इस बिंदु पर, प्रणाली अपने अधिकतम आयाम तक पहुंच गई है और इस स्तर पर तब तक कंपन करना जारी रखेगी जब तक लागू बल समान रहता है। यदि कोई अवमंदन सम्मिलित नहीं है, तो ऊर्जा को नष्ट करने के लिए कुछ भी नहीं है और, सैद्धांतिक रूप से, गति अनंत तक बढ़ती रहेगी।
द्रव्यमान-स्प्रिंग-डैम्पर मॉडल के लिए "सम्मिश्र" बलों को लागू करना
पिछले खंड में केवल सरल आवर्त बल को मॉडल पर लागू किया गया था, लेकिन इसे दो शक्तिशाली गणितीय उपकरणों का उपयोग करके काफी बढ़ाया जा सकता है। पहला फूरियर रूपांतरण है जो समय (समय प्रांत) के फलन के रूप में संकेत लेता है और आवृत्ति (आवृत्ति प्रांत) के फलन के रूप में इसे अपने अनुकंपी घटकों में तोड़ देता है। उदाहरण के लिए, द्रव्यमान-स्प्रिंग-डैम्पर मॉडल पर बल लगाने से जो निम्न चक्र को दोहराता है - 0.5 सेकंड के लिए 1 न्यूटन (इकाई) के बराबर बल और फिर 0.5 सेकंड के लिए कोई बल नहीं है। इस प्रकार के बल का आकार 1 हर्ट्ज वर्ग तरंगरूप होता है।
वर्ग तरंगरूप का फूरियर रूपांतरण आवृत्ति स्पेक्ट्रम उत्पन्न करता है जो गुणवृत्ति के परिमाण को प्रस्तुत करता है जो वर्ग तरंगरूप बनाते हैं (चरण भी उत्पन्न होता है, लेकिन सामान्यतः निम्न संबंध का विषय होता है और इसलिए अधिकांशतः आलेख नहीं किया जाता है)। फूरियर रूपांतरित का उपयोग गैर-आवधिक फलन जैसे क्षणिक (जैसे आवेग) और यादृच्छिक फलन का विश्लेषण करने के लिए भी किया जा सकता है। फूरियर रूपांतरित की गणना लगभग हमेशा फास्ट फूरियर रूपांतरित (एफएफटी) कंप्यूटर एल्गोरिदम का उपयोग गवाक्ष फलन के संयोजन में की जाती है।
हमारे वर्ग तरंगरूप बल के स्थिति में, पहला घटक वास्तव में 0.5 न्यूटन का स्थिर बल है और आवृत्ति स्पेक्ट्रम में 0 हर्ट्ज पर मान द्वारा दर्शाया गया है। अगला घटक 0.64 के आयाम के साथ 1 हर्ट्ज साइन तरंग है। इसे 1 हर्ट्ज पर रेखा द्वारा दिखाया गया है। शेष घटक विषम आवृत्तियों पर हैं और यह पूर्ण वर्ग तरंगरूप उत्पन्न करने के लिए साइन तरंगों की अनंत मात्रा लेता है। इसलिए, फूरियर रूपांतरण आपको अधिक सम्मिश्र बल (जैसे एक वर्ग तरंगरूप) के अतिरिक्त लगाए जा रहे ज्यावक्रीय बलों के योग के रूप में बल की व्याख्या करने की अनुमति देता है।
पिछले खंड में, कंपन समाधान एकल अनुकंपी बल के लिए दिया गया था, लेकिन फूरियर रूपांतरण सामान्य रूप से कई अनुकंपी बल देता है। दूसरा गणितीय उपकरण, अध्यारोपण सिद्धान्त, कई बलों से समाधान के योग की अनुमति देता है यदि प्रणाली रैखिक प्रणाली है। स्प्रिंग-मास-डैम्पर मॉडल के स्थिति में, प्रणाली रैखिक है यदि स्प्रिंग बल विस्थापन के समानुपाती होता है और अवमंदन प्रेरित की गति की सीमा पर वेग के समानुपाती होता है। इसलिए, वर्ग तरंगरूप के साथ समस्या का समाधान वर्ग तरंगरूप के आवृत्ति स्पेक्ट्रम में पाए जाने वाले अनुकंपी बलों में से प्रत्येक से अनुमानित कंपन को जोड़ना है।
आवृत्ति अनुक्रिया मॉडल
कंपन समस्या के समाधान को इनपुट/आउटपुट संबंध के रूप में देखा जा सकता है - जहां बल इनपुट है और आउटपुट कंपन है। आवृत्ति प्रांत (परिमाण और चरण) में बल और कंपन का प्रतिनिधित्व निम्नलिखित संबंध की अनुमति देता है:
आवृत्ति अनुक्रिया फलन कहा जाता है (जिसे अंतरण प्रकार्य के रूप में भी जाना जाता है, लेकिन तकनीकी रूप से सटीक नहीं है) और इसमें परिमाण और चरण घटक दोनों होते हैं (यदि समिश्र संख्या, वास्तविक और काल्पनिक घटक के रूप में प्रतिनिधित्व किया जाता है)। आवृत्ति अनुक्रिया फलन (एफआरएफ) का परिमाण पहले मास-स्प्रिंग-डैम्पर प्रणाली के लिए प्रस्तुत किया गया था।
एफआरएफ के चरण को पहले भी प्रस्तुत किया गया था:
उदाहरण के लिए, 1 किग्रा के द्रव्यमान, 1.93 N/mm की स्प्रिंग कठोरता और 0.1 के अवमंदन अनुपात के साथ द्रव्यमान-स्प्रिंग-डैम्पर प्रणाली के लिए एफआरएफ की गणना करना हैं। इस विशिष्ट प्रणाली के लिए स्प्रिंग और द्रव्यमान के मान 7 हर्ट्ज की प्राकृतिक आवृत्ति देते हैं। पहले से 1 हर्ट्ज वर्ग तरंगरूप को लागू करने से द्रव्यमान के अनुमानित कंपन की गणना की जा सकती है। चित्र परिणामी कंपन को दर्शाता है। इस उदाहरण में ऐसा होता है कि वर्ग तरंगरूप का चौथा अनुकंपी 7 हर्ट्ज पर गिरता है। मास-स्प्रिंग-डैम्पर की आवृत्ति अनुक्रिया इसलिए उच्च 7 हर्ट्ज कंपन का उत्पादन करती है, भले ही इनपुट बल में अपेक्षाकृत निम्न 7 हर्ट्ज अनुकंपी था। यह उदाहरण इस बात पर प्रकाश डालता है कि परिणामी कंपन प्रणोदन फलन और उस प्रणाली पर निर्भर करता है जिस पर बल लगाया जाता है।
आंकड़ा परिणामी कंपन के समय प्रांत प्रतिनिधित्व को भी दर्शाता है। यह व्युत्क्रम फूरियर रूपांतरण करके किया जाता है जो आवृत्ति प्रांत डेटा को समय प्रांत में परिवर्तित करता है। व्यवहार में, यह शायद ही कभी किया जाता है क्योंकि आवृत्ति स्पेक्ट्रम सभी आवश्यक जानकारी प्रदान करता है।
आवृत्ति अनुक्रिया फलन (एफआरएफ) को आवश्यक रूप से प्रणाली के द्रव्यमान, अवमंदन और कठोरता के ज्ञान से गणना करने की आवश्यकता नहीं है - लेकिन इसे प्रयोगात्मक रूप से मापा जा सकता है। उदाहरण के लिए, यदि आवृत्तियों की एक सीमा पर ज्ञात बल लागू किया जाता है, और यदि संबंधित कंपन को मापा जाता है, तो आवृत्ति अनुक्रिया फलन की गणना की जा सकती है, जिससे प्रणाली को चिह्नित किया जा सके। संरचना की कंपन विशेषताओं को निर्धारित करने के लिए इस तकनीक का प्रयोग प्रयोगात्मक मोडल विश्लेषण के क्षेत्र में किया जाता है।
स्वतंत्रता प्रणाली और मोड आकार की एकाधिक कोटि
सरल मास-स्प्रिंग-डैम्पर मॉडल कंपन विश्लेषण की नींव है, लेकिन अधिक सम्मिश्र प्रणालियों के बारे में क्या? ऊपर वर्णित मास-स्प्रिंग-डैम्पर मॉडल को सिंगल स्वातंत्र्य कोटि (इंजीनियरिंग) (एसडीओएफ) मॉडल कहा जाता है क्योंकि द्रव्यमान को केवल ऊपर और नीचे जाने के लिए माना जाता है। अधिक सम्मिश्र प्रणालियों में, प्रणाली को अधिक लोगों में विभाजित किया जाना चाहिए जो एक से अधिक दिशाओं में चलते हैं, स्वातंत्र्य कोटि (इंजीनियरिंग) हैं। एकाधिक स्वातंत्र्य कोटि (एमडीओएफ) की प्रमुख अवधारणाओं को केवल 2 कोटि स्वतंत्रता मॉडल को देखकर समझा जा सकता है जैसा कि आंकड़े में दिखाया गया है।
2 डीओएफ प्रणाली की गति के समीकरण इस प्रकार पाए जाते हैं:
इसे आव्यूह (गणित) प्रारूप में फिर से लिखा जा सकता है:
इस आव्यूह समीकरण का एक अधिक सघन रूप इस प्रकार लिखा जा सकता है:
जहाँ और सममित आव्यूह हैं जिन्हें क्रमशः द्रव्यमान, अवमंदन और कठोरता आव्यूह के रूप में संदर्भित किया जाता है। आव्यूह NxN वर्ग आव्यूह हैं जहां N प्रणाली की एकाधिक स्वातंत्र्य कोटि की संख्या है।
निम्नलिखित विश्लेषण में वह स्थिति सम्मिलित है जहां कोई अवमंदन नहीं है और कोई लागू बल नहीं है (अर्थात मुक्त कंपन)। श्यान अवमन्दित प्रणाली का समाधान कुछ अधिक सम्मिश्र है।[11]
निम्न प्रकार के हल मानकर इस अवकल समीकरण को हल किया जा सकता है:
नोट: के घातीय समाधान का उपयोग करना रैखिक अवकल समीकरणों को हल करने के लिए प्रयुक्त गणितीय युक्ति है। यूलर के सूत्र का उपयोग करना और समाधान का केवल वास्तविक भाग लेना यह 1 डीओएफ प्रणाली के लिए समान कोसाइन समाधान है। घातीय समाधान का उपयोग केवल इसलिए किया जाता है क्योंकि गणितीय रूप से हेरफेर करना आसान होता है।
समीकरण तब बन जाता है:
तब से शून्य के बराबर नहीं हो सकता समीकरण निम्नलिखित को निम्न करता है।
अभिलक्षणिक मान समस्या
इसे गणित में एक अभिलक्षणिक मान समस्या के रूप में संदर्भित किया जाता है और समीकरण को पूर्व-गुणा करके मानक प्रारूप में रखा जा सकता है
और यदि: और
समस्या का समाधान N अभिलक्षणिक मान में होता है (अर्थात ), जहां N एकाधिक स्वातंत्र्य कोटि की संख्या से मेल खाती है। अभिलक्षणिक मान प्रणाली की प्राकृतिक आवृत्तियों प्रदान करते हैं। जब इन अभिलक्षणिक मान को वापस समीकरणों के मूल सेट में प्रतिस्थापित किया जाता है, के मान जो प्रत्येक अभिलक्षणिक मान के अनुरूप होते हैं उन्हें अभिलक्षणिक सदिश कहा जाता है। ये अभिलक्षणिक सदिश प्रणाली के मोड आकार का प्रतिनिधित्व करते हैं। अभिलक्षणिक मान समस्या का समाधान काफी बोझिल हो सकता है (विशेष रूप से स्वतंत्रता की कई कोटि वाली समस्याओं के लिए), लेकिन सौभाग्य से अधिकांश गणित विश्लेषण कार्यक्रमों में अभिलक्षणिक मान सामान्य होते हैं।
अभिलक्षणिक मान और अभिलक्षणिक सदिश अधिकांशतः निम्नलिखित आव्यूह प्रारूप में लिखे जाते हैं और प्रणाली के मोडल मॉडल का वर्णन करते हैं:
2 डीओएफ मॉडल का उपयोग करने वाला सरल उदाहरण अवधारणाओं को स्पष्ट करने में मदद कर सकता है। मान लें कि दोनों द्रव्यमान का द्रव्यमान 1 किग्रा है और तीनों स्प्रिंग्स की कठोरता 1000 N/m के बराबर है। इस समस्या के लिए द्रव्यमान और कठोरता आव्यूह तब हैं:
- और
तब
अभिलक्षणिक मान सामान्य द्वारा दी गई इस समस्या के लिए अभिलक्षणिक मान है:
हर्ट्ज़ की इकाइयों में प्राकृतिक आवृत्तियाँ तब होती हैं (याद रखना ) और
संबंधित प्राकृतिक आवृत्तियों के लिए दो मोड आकार इस प्रकार दिए गए हैं:
चूंकि प्रणाली 2 डीओएफ प्रणाली है, उनके संबंधित प्राकृतिक आवृत्तियों और आकार के साथ दो मोड हैं। मोड आकार सदिश पूर्ण गति नहीं हैं, लेकिन केवल एकाधिक स्वातंत्र्य कोटि के सापेक्ष गति का वर्णन करते हैं। हमारे स्थिति में पहला मोड आकार सदिश कह रहा है कि द्रव्यमान चरण में एक साथ चल रही है क्योंकि उनके पास समान मान और चिह्न हैं। दूसरे मोड आकार सदिश के स्थिति में, प्रत्येक द्रव्यमान समान दर से विपरीत दिशा में आगे बढ़ रहा है।
विविध डीओएफ समस्या का चित्रण
जब स्वतंत्रता की कई कोटि होती हैं, तो मोड आकृतियों की कल्पना करने का तरीका ईएसआई समूह द्वारा फेमैप, एएनएसवाईएस या वीए वन जैसे संरचनात्मक विश्लेषण सॉफ़्टवेयर का उपयोग करके उन्हें जीवंत करना है। जीवंत मोड आकृतियों का उदाहरण नीचे दिए गए चित्र में ब्रैकट I-बीम के लिए दिखाया गया है जैसा कि एएनएसवाईएस पर मोडल विश्लेषण का उपयोग करके दिखाया गया है। इस स्थिति में, असतत आइगेनवेल्यू समस्या को हल करने के लिए रुचि की वस्तु को जोड़कर द्रव्यमान और कठोरता आव्यूह का अनुमान उत्पन्न करने के लिए किया गया था। ध्यान दें कि, इस स्थिति में, परिमित तत्व विधि जालीदार सतह का अनुमान प्रदान करती है (जिसके लिए कंपन मोड और आवृत्तियों की अनंत संख्या सम्मिलित है)। इसलिए, यह अपेक्षाकृत सरल मॉडल जिसमें 100 कोटि से अधिक स्वतंत्रता है और इसलिए कई प्राकृतिक आवृत्तियों और मोड आकार हैं, पहली प्राकृतिक आवृत्तियों और मोड† के लिए अच्छा सन्निकटन प्रदान करता है। सामान्यतः, व्यावहारिक अनुप्रयोगों के लिए केवल पहले कुछ तरीके महत्वपूर्ण होते हैं।
| इस तालिका में आई-बीम के पहले और दूसरे (क्रमशः ऊपर और नीचे) क्षैतिज झुकने (बाएं), मरोड़ (मध्य), और ऊर्ध्वाधर झुकने (दाएं) कंपन मोड की कल्पना की गई है। अन्य प्रकार के कंपन मोड भी सम्मिलित हैं जिनमें किरण क्रमशः ऊंचाई, चौड़ाई और लंबाई दिशाओं में संपीड़ित/विस्तारित हो जाती है। | ||
| The mode shapes of a cantilevered I-beam | ||
|---|---|---|
^ ध्यान दें कि किसी भी गणितीय मॉडल का संख्यात्मक सन्निकटन करते समय, रुचि के मापदंडों का अभिसरण सुनिश्चित किया जाना चाहिए।
एकाधिक डीओएफ समस्या डीओएफ समस्या में परिवर्तित
अभिलक्षणिक सदिश में बहुत महत्वपूर्ण गुण होते हैं जिन्हें लंबकोणीयता गुण कहा जाता है। इन गुणों का उपयोग विविध-कोटि स्वतंत्रता मॉडल के समाधान को बहुत सरल बनाने के लिए किया जा सकता है। यह दिखाया जा सकता है कि अभिलक्षणिक सदिश में निम्नलिखित गुण हैं:
और विकर्ण आव्यूह हैं जिनमें प्रत्येक मोड के लिए मोडल द्रव्यमान और कठोरता मान होते हैं। (नोट: चूंकि अभिलक्षणिक सदिश (मोड आकृतियों) को अक्रमतः से माप किया जा सकता है, लंबकोणीयता गुणों का उपयोग अधिकांशतः अभिलक्षणिक सदिश को माप करने के लिए किया जाता है, इसलिए प्रत्येक मोड के लिए मोडल मास मान 1 के बराबर होता है। मोडल मास आव्यूह इसलिए तत्समक आव्यूह है)
निम्नलिखित समन्वय परिवर्तन करके इन गुणों का उपयोग विविध-कोटि स्वतंत्रता मॉडल के समाधान को सरल बनाने के लिए किया जा सकता है।
मूल मुक्त कंपन अंतर समीकरण में इस समन्वय परिवर्तन का उपयोग करने से निम्न समीकरण प्राप्त होता है।
इस समीकरण को पूर्वगुणित करके लंबकोणीयता गुणों का लाभ उठाते हुए द्वारा
लंबकोणीयता गुण तब इस समीकरण को सरल करते हैं:
यह समीकरण कई कोटि स्वतंत्रता प्रणालियों के लिए कंपन विश्लेषण की नींव है। अवमन्दित प्रणाली के लिए समान प्रकार का परिणाम प्राप्त किया जा सकता है।[11]कुंजी यह है कि मोडल द्रव्यमान और कठोरता आव्यूह विकर्ण आव्यूह हैं और इसलिए समीकरणों को अलग कर दिया गया है। दूसरे शब्दों में, समस्या को स्वतंत्रता की समस्या की बड़ी बोझिल बहुस्तरीय समस्या से कई एकल स्तर की स्वतंत्रता समस्याओं में बदल दिया गया है, जिन्हें ऊपर बताए गए समान तरीकों का उपयोग करके हल किया जा सकता है।
x के लिए हल करने को q के लिए हल करने से प्रतिस्थापित किया जाता है, जिसे मोडल निर्देशांक या मोडल भागीदारी कारक कहा जाता है।
यदि यह समझना अधिक स्पष्ट हो सकता है के रूप में लिखा है:
इस रूप में लिखा यह देखा जा सकता है कि स्वतंत्रता की प्रत्येक कोटि पर कंपन केवल मोड आकृतियों का रैखिक योग है। इसके अतिरिक्त, अंतिम कंपन में प्रत्येक मोड कितना "भाग" लेता है, q द्वारा परिभाषित किया जाता है, इसका मोडल भागीदारी कारक है।
दृढ़ पिंड मोड
स्वतंत्र प्रणाली की अनियंत्रित विविध-कोटि दृढ़ पिंड अंतरण और/या घूर्णन और कंपन दोनों का अनुभव करती है। दृढ़ पिंड मोड के अस्तित्व के परिणामस्वरूप शून्य प्राकृतिक आवृत्ति होती है। इसी मोड आकार को दृढ़ पिंड मोड कहा जाता है।
यह भी देखें
- ध्वनिक इंजीनियरिंग
- विरोधी कंपन यौगिक
- बैलेंसिंग मशीन
- बेस अलगाव
- गद्दी
- गंभीर गति
- अवमंदन अनुपात
- डंकरले की विधि
- भूकम्प वास्तुविद्या
- [[लोचदार लंगर ]]
- फास्ट फूरियर ट्रांसफॉर्म
- मैकेनिकल इंजीनियरिंग
- यांत्रिक प्रतिध्वनि
- मोडल विश्लेषण
- मोड आकार
- समुद्री जहाजों पर शोर और कंपन
- शोर, कंपन और कठोरता
- पलेस्थेसिया
- पैसिव हीव मुआवजा
- पेंडुलम
- क्वांटम कंपन
- यादृच्छिक कंपन
- सवारी की गुणवत्ता
- रेले का भागफल कंपन विश्लेषण में
- शेखर (परीक्षण उपकरण)
- सदमा (यांत्रिकी)
- सदमा और कंपन डेटा लकड़हारा
- सरल हार्मोनिक थरथरानवाला
- आवाज़
- संरचनात्मक ध्वनिकी
- संरचनात्मक गतिशीलता
- टायर संतुलन
- मरोड़ कंपन
- ट्यून्ड मास डैम्पर
- कंपन अंशशोधक
- कंपन नियंत्रण
- कंपन अलगाव
- लहर
- पूरे शरीर में कंपन
संदर्भ
- ↑ 1.0 1.1 Tustin, Wayne. Where to place the control accelerometer: one of the most critical decisions in developing random vibration tests also is the most neglected, EE-Evaluation Engineering, 2006
- ↑ "Polytec InFocus 1/2007" (PDF). Archived from the original (PDF) on 2019-07-24. Retrieved 2019-07-24.
- ↑ Tony Araujo. The evolution of automotive vibration fixturing, EE-Evaluation Engineering, 2019
- ↑ 4.0 4.1 Blanks, H.S., "Equivalence Techniques for Vibration Testing," SVIC Notes, pp 17.
- ↑ Araujo, T. and Yao, B., "Vibration Fixture Performance Qualification – A Review of Automotive Industry Best Practices," SAE Technical Paper 2020-01-1065, 2020, https://doi.org/10.4271/2020-01-1065.
- ↑ Crawford, Art; Simplified Handbook of Vibration Analysis
- ↑ Eshleman, R 1999, Basic machinery vibrations: An introduction to machine testing, analysis, and monitoring
- ↑ Mobius Institute; Vibration Analyst Category 2 – Course Notes 2013
- ↑ "रखरखाव में कंपन विश्लेषण का महत्व" (in English). 2021-01-05. Retrieved 2021-01-08.
{{cite web}}: CS1 maint: url-status (link) - ↑ Simionescu, P.A. (2014). ऑटोकैड उपयोगकर्ताओं के लिए कंप्यूटर एडेड रेखांकन और सिमुलेशन उपकरण (1st ed.). Boca Raton, FL: CRC Press. ISBN 978-1-4822-5290-3.
- ↑ 11.0 11.1 Maia, Silva. Theoretical And Experimental Modal Analysis, Research Studies Press Ltd., 1997, ISBN 0-471-97067-0
अग्रिम पठन
- Tongue, Benson, Principles of Vibration, Oxford University Press, 2001, ISBN 0-19-514246-2
- Inman, Daniel J., Engineering Vibration, Prentice Hall, 2001, ISBN 0-13-726142-X
- Thompson, W.T., Theory of Vibrations, Nelson Thornes Ltd, 1996, ISBN 0-412-78390-8
- Hartog, Den, Mechanical Vibrations, Dover Publications, 1985, ISBN 0-486-64785-4
- Reynolds, Douglas D. (2016). Engineering Principles of Mechanical Vibration (in English) (4th ed.). Bloomington, Indiana, USA: Trafford On Demand Publishing. p. 485. ISBN 978-1-4907-1437-0.
- [1]
- Institute for Occupational Safety and Health of the German Social Accident Insurance: Whole-body and hand-arm vibration
- Manarikkal, I., Elsaha, F., Mba, D. and Laila, D. Dynamic Modelling of Planetary Gearboxes with Cracked Tooth Using Vibrational Analysis, (2019) Advances in Condition Monitoring of Machinery in Non-Stationary Operations, p 240–250, Springer, Switzerland; [2]
