सूचक फलन: Difference between revisions

From Vigyanwiki
No edit summary
Line 4: Line 4:
{{Use American English|date = March 2019}}
{{Use American English|date = March 2019}}


[[Image:Indicator function illustration.png|right|thumb|एक सूचक फ़ंक्शन का त्रि-आयामी प्लॉट, एक वर्गाकार द्वि-आयामी डोमेन (सेट) पर दिखाया गया है {{mvar|X}}): उठा हुआ भाग उन द्वि-आयामी बिंदुओं को ओवरले करता है जो संकेतित उपसमुच्चय के सदस्य हैं ({{mvar|A}}).]]गणित में संकेतक [[सबसेट|उपसमुच्चय]] एक विशिष्ट समारोह होता है जो उपसमुच्चय के तत्वों को आलेखित करता है और अन्य सभी तत्वों को शून्य पर मानचित्र करता है अर्थात यदि {{mvar|A}} किसी समुच्चय का उपसमुच्चय है {{mvar|X}}तब <math>\mathbf{1}_{A}(x)=1</math> अगर <math>x\in A,</math> और <math>\mathbf{1}_{A}(x)=0</math>  जहॉं <math>\mathbf{1}_A</math> सूचक समारोह के लिए एक सामान्य संकेतन व अन्य सामान्य संकेतन <math>I_A,</math> और <math>\chi_A.</math>है
[[Image:Indicator function illustration.png|right|thumb|एक सूचक फ़ंक्शन का त्रि-आयामी प्लॉट, एक वर्गाकार द्वि-आयामी डोमेन (सेट) पर दिखाया गया है {{mvar|X}}): उठा हुआ भाग उन द्वि-आयामी बिंदुओं को ओवरले करता है जो संकेतित उपसमुच्चय के सदस्य हैं ({{mvar|A}}).]]गणित में एक संकेतन फलन या किसी समूह के [[सबसेट|उपसमुच्चय]] का एक ऐसा फलन होता है जो उपसमुच्चय के तत्वों को आलेखित करता है और अन्य सभी तत्वों को शून्य पर मानचित्र करता है अर्थात यदि {{mvar|A}} किसी समुच्चय का उपसमुच्चय है {{mvar|X}}तब <math>\mathbf{1}_{A}(x)=1</math> अगर <math>x\in A,</math> और <math>\mathbf{1}_{A}(x)=0</math>  जहॉं <math>\mathbf{1}_A</math> सूचक फलन के लिए एक सामान्य संकेतन व अन्य सामान्य संकेतन <math>I_A,</math> और <math>\chi_A.</math>है
इसका सूचक कार्य {{mvar|A}} से संबंधित संपत्ति का [[इवरसन ब्रैकेट|संकेतक]] {{mvar|A}} वह है जो इस प्रकार है-
इसका सूचक कार्य {{mvar|A}} से संबंधित संपत्ति का [[इवरसन ब्रैकेट|संकेतक]] {{mvar|A}} है जो इस प्रकार है-
:<math>\mathbf{1}_{A}(x)=[x\in A].</math>
:<math>\mathbf{1}_{A}(x)=[x\in A].</math>
उदाहरण के लिए [[डिरिचलेट फ़ंक्शन|डिरिचलेट]] समारोह [[वास्तविक संख्या]]ओं के उपसमुच्चय के रूप में [[तर्कसंगत संख्या]]ओं का संकेतक समारोह है।
उदाहरण के लिए [[डिरिचलेट फ़ंक्शन|डिरिचलेट]] फलन [[वास्तविक संख्या]]ओं के उपसमुच्चय के रूप में [[तर्कसंगत संख्या]]ओं का संकेतक फलन है।


==परिभाषा==
==परिभाषा==

Revision as of 07:03, 17 July 2023

एक सूचक फ़ंक्शन का त्रि-आयामी प्लॉट, एक वर्गाकार द्वि-आयामी डोमेन (सेट) पर दिखाया गया है X): उठा हुआ भाग उन द्वि-आयामी बिंदुओं को ओवरले करता है जो संकेतित उपसमुच्चय के सदस्य हैं (A).

गणित में एक संकेतन फलन या किसी समूह के उपसमुच्चय का एक ऐसा फलन होता है जो उपसमुच्चय के तत्वों को आलेखित करता है और अन्य सभी तत्वों को शून्य पर मानचित्र करता है अर्थात यदि A किसी समुच्चय का उपसमुच्चय है Xतब अगर और जहॉं सूचक फलन के लिए एक सामान्य संकेतन व अन्य सामान्य संकेतन और है

इसका सूचक कार्य A से संबंधित संपत्ति का संकेतक A है जो इस प्रकार है-

उदाहरण के लिए डिरिचलेट फलन वास्तविक संख्याओं के उपसमुच्चय के रूप में तर्कसंगत संख्याओं का संकेतक फलन है।

परिभाषा

किसी उपसमुच्चय का सूचक कार्य A एक समूह का X एक समारोह है

के रूप में परिभाषित

इवरसन समतुल्य अंकन प्रदान करता है तथा या xA, के समष्टि पर उपयोग किया जाता है कार्यक्रम कभी-कभी इस प्रकार निरूपित किया जाता है जैसे IA, χA, KA,

संकेतन में शब्दावली

संकेतन इसका उपयोग उत्तल विश्लेषण में विशेष समारोह उत्तल विश्लेषण को दर्शाने के लिए किया जाता है जिसे संकेतक समारोह की मानक परिभाषा के गुणक व्युत्क्रम का उपयोग करके परिभाषित किया जाता है।

सांख्यिकी में एक संबंधित अवधारणा एक वास्तविक परिवर्तन शील सांख्यिकी की है इसे वास्तविक परिवर्तन शील के साथ भ्रमित नहीं किया जाना चाहिए क्योंकि यह शब्द अधिकतर गणित में उपयोग किया जाता है जिसे मुक्त चर और बाध्य चर भी कहा जाता है

विशेषत फलन संभावना सिद्धांत शब्द का असंबंधित अर्थ है इस कारण से संभाव्यवादियों की सूची यहां परिभाषित है जो समारोह के लिए संकेतक समारोह शब्द का उपयोग करती है जबकि अन्य क्षेत्रों में गणितज्ञ विशेषता समारोह शब्द का उपयोग करने की अधिक संभावना रखते हैं [lower-alpha 1] उस समारोह का वर्णन करने के लिए जो किसी समूह में सदस्यता को इंगित करता है

धुंधला तर्क और अनेक-मूल्यवान तर्क आधुनिक मूल्यवान तर्क में विधेय संभाव्यता वितरण के विशिष्ट कार्य संभावना सिद्धांत हैं अर्थात् विधेय के सत्य/गलत मूल्यांकन को सत्य की घात के रूप में व्याख्या की गई मात्रा से बदल दिया जाता है।

बुनियादी गुण

किसी उपसमुच्चय का सूचक या चारित्रिक कार्य गणित A कुछ समूह का X मानचित्र गणित के तत्व X किसी समारोह की सीमा तक है

यह मानचित्रण केवल तभी आक्षेपात्मक होता है A का एक गैर-रिक्त उचित उपसमुच्चय हो तथा X. अगर तब इसी तरह के तर्क से यदि तब निम्नलिखित में बिंदु गुणन का प्रतिनिधित्व करता है तो आदि + और − जोड़ और घटाव का प्रतिनिधित्व करते हैं तथा इसमें औरक्रमशः प्रतिच्छेदन और मिलन बिन्दु हैं

अगर और के दो उपसमुच्चय हैं तब

और इसके पूरक समूह सिद्धांत का सूचक कार्य अर्थात है जो इस प्रकार है-
सामान्यतः मान लीजिए के उपसमुच्चय का संग्रह है X. किसी के लिए

स्पष्ट रूप से का एक उत्पाद है 0रेत 1एस इस उत्पाद का मान ठीक उन्हीं पर 1 है जो किसी भी समूह से संबंधित नहीं है और 0 है वह इस प्रकार है

बायीं ओर उत्पाद का विस्तार करते हुए

कहाँ की प्रमुखता है F यह समावेश-बहिष्करण के सिद्धांत का एक रूप है।

जैसा कि पिछले उदाहरण से सुझाया गया है संकेतक समारोह साहचर्य में एक उपयोगी संकेतक डिवाइस है इसमें अंकन का उपयोग अन्य स्थानों पर भी किया जाता है उदाहरण के लिए संभाव्यता सिद्धांत में यदि X संभाव्यता माप के साथ एक संभाव्यता स्थान है और A तो फिर एक माप गणित है एक यादृच्छिक चर बन जाता है जिसका अपेक्षित मान संभावना के बराबर होता है A:

इस पहचान का उपयोग मार्कोव की असमानता के सरल प्रमाण में किया जाता है

कई जगहों में जैसे कि आदेशित सिद्धांत, संकेतक समारोह के व्युत्क्रम को परिभाषित किया जा सकता है इसे अधिकतर सामान्यीकृत समारोह कहा जाता है प्राथमिक संख्या सिद्धांत मोबियस समारोह में संकेतक व्युत्क्रम के सामान्यीकरण के रूप में शास्त्रीय पुनरावर्तन सिद्धांत में व्युत्क्रम के उपयोग के बारे में नीचे पैराग्राफ दिया गया है।

माध्य, प्रसरण और सहप्रसरण

एक संभाव्यता स्थान दिया गया है साथ सूचक यादृच्छिक चर द्वारा परिभाषित किया गया है अगर अन्यथा

अर्थ
मौलिक पुल भी कहा जाता है
विचरण
सहप्रसरण


पुनरावर्तन सिद्धांत में अभिलक्षणिक कार्य, गोडेल और क्लेन का प्रतिनिधित्व कार्य

कर्ट गोडेल ने अपने 1934 के पेपर में औपचारिक गणितीय प्रणालियों के अनिर्णीत प्रस्तावों पर प्रतिनिधित्व समारोह का वर्णन किया जिसमें तार्किक उलटा इंगित करता है [1]: 42 

Error: No text given for quotation (or equals sign used in the actual argument to an unnamed parameter)

प्रत्येक वर्ग या संबंध आर के अनुरूप एक प्रतिनिधित्व करने वाला कार्य होगा।

स्टीफन क्लेन एक समारोह के रूप में आदिम पुनरावर्ती कार्य के संदर्भ में समान परिभाषा प्रस्तुत करते हैं φ एक विधेय का P मान ग्रहण करता है 0 यदि विधेय सत्य है और 1 यदि विधेय गलत है तो [2]उदाहरण के लिए विशिष्ट कार्यों का उत्पाद जब भी कोई एक समारोह बराबर होता है तो 0 यह तार्किक OR: IF की भूमिका निभाता है या या या फिर उनका उत्पाद है 0. आधुनिक पाठक को जो प्रतिनिधित्व करने वाले समारोह के तार्किक व्युत्क्रम के रूप में दिखाई देता है जबकि प्रतिनिधित्व करने वाला समारोह है 0 जब समारोह R सत्य या संतुष्ट है कुल के तार्किक कार्यों OR, AND, और IMPLY की परिभाषा में उपयोगी भूमिका निभाता है [2]: 228  परिबद्ध-[2]: 228  और असीमित-[2]: 279 ff  चालक में और CASE समारोह है।[2]: 229 

उपसमुच्चय समूह सिद्धांत में समारोह

शास्त्रीय गणित में समूह के विशिष्ट कार्य मान लेते हैं इसमें 1 सदस्य या 0 गैर-सदस्य उपसमुच्चय समूह सिद्धांत में वास्तविक इकाई अंतराल में मान लेने के लिए विशिष्ट कार्यों को सामान्यीकृत किया जाता है तथा [0, 1]या अधिक सामान्यतः कुछ सार्वभौमिक बीजगणित या संरचना गणितीय तर्क में अधिकतर कम से कम आंशिक रूप से आदेशित किया गया समूह या जाली आदेशित होना आवश्यक है ऐसे सामान्यीकृत विशिष्ट कार्यों को अधिकतर सदस्यता समारोह गणित कहा जाता है और संबंधित समूहों को उपसमुच्चय समूह कहा जाता है उपसमुच्चय समूह कई वास्तविक दुनिया विधेय गणित जैसे लंबा, गर्म आदि में देखी गई सदस्यता की घात में क्रमिक परिवर्तन का प्राप्त बनाते हैं।

सूचक समारोह के व्युत्पन्न

एक विशेष संकेतक समारोह हेविसाइड कदम समारोह है

हेविसाइड कदम समारोह का वितरणात्मक व्युत्पन्न डिराक डेल्टा समारोह के बराबर है
और इसी तरह का वितरणात्मक व्युत्पन्न
है
इस प्रकार हेविसाइड समारोह के व्युत्पन्न को धनात्मक अर्ध-रेखा द्वारा दिए गए डोमेन की सीमा पर आवश्यक सामान्य व्युत्पन्न के रूप में देखा जा सकता है उच्च आयामों में व्युत्पन्न स्वाभाविक रूप से आंतरिक सामान्य व्युत्पन्न के लिए सामान्यीकृत होता है जबकि हेविसाइड चरण समारोह स्वाभाविक रूप से कुछ डोमेन के संकेतक समारोह के लिए समान्यीकृत होता है D की सतह को D द्वारा निरूपित किया जाता है तथा S में आगे बढ़ते हुए यह निष्कर्ष निकाला जाता है कि सूचक डिराक सतह डेल्टा समारोह का एक सतह डेल्टा कार्यक्रम को जन्म देता है या नहीं जिसे इस चिन्ह द्वारा दर्शाया जाता है :
कहाँ n सतह का बाहरी सामान्य ज्यामिति है S इस सतह डेल्टा समारोह में निम्नलिखित गुण हैं [3]
समारोह समूह f के बराबर है यह इस प्रकार है कि सूचक डिराक सतह डेल्टा कार्यक्रम का लाप्लासियन सतह क्षेत्र के संख्यात्मक मान से एकीकृत होता है।

यह भी देखें

Template:समारोह

  • डिराक माप।
  • सूचक का रंग।
  • डिराक डेल्टा।
  • विस्तार विधेय तर्क।
  • मुक्त चर और बाध्य चर।
  • हेविसाइड कदम समारोह।
  • पहचान समारोह।
  • इवरसन कोष्ठक।
  • डेल्टा एक समारोह पहचान के लिए एक संकेतक के रूप में देखा जा सकता है।
  • मैकाले कोष्ठक।
  • बहुरंग समूह।
  • स। दस्यता समारोह
  • सरल कार्य।
  • वास्तविक परिवर्तन सांख्यिकी।
  • सांख्यिकीय वर्गीकरण।
  • शून्य-एक हानि समारोह।




टिप्पणियाँ

  1. Cite error: Invalid <ref> tag; no text was provided for refs named χαρακτήρ


संदर्भ

  1. Davis, Martin, ed. (1965). अनिर्णीत. New York, NY: Raven Press Books. pp. 41–74.
  2. 2.0 2.1 2.2 2.3 2.4 Kleene, Stephen (1971) [1952]. मेटामैथेमेटिक्स का परिचय (Sixth reprint, with corrections ed.). Netherlands: Wolters-Noordhoff Publishing and North Holland Publishing Company. p. 227.
  3. Lange, Rutger-Jan (2012). "संभावित सिद्धांत, पथ इंटीग्रल और संकेतक का लाप्लासियन". Journal of High Energy Physics. 2012 (11): 29–30. arXiv:1302.0864. Bibcode:2012JHEP...11..032L. doi:10.1007/JHEP11(2012)032. S2CID 56188533.


स्रोत

श्रेणी:माप सिद्धांत श्रेणी:अभिन्न कलन श्रेणी:वास्तविक विश्लेषण श्रेणी:गणितीय तर्क श्रेणी:सेट सिद्धांत में बुनियादी अवधारणाएँ श्रेणी:संभावना सिद्धांत श्रेणी:कार्यों के प्रकार