क्लेन बोतल: Difference between revisions

From Vigyanwiki
No edit summary
 
(One intermediate revision by one other user not shown)
Line 158: Line 158:
{{Compact topological surfaces}}
{{Compact topological surfaces}}
{{Manifolds}}
{{Manifolds}}
[[Category: ज्यामितीय टोपोलॉजी]] [[Category: कई गुना]] [[Category: सतह]] [[Category: टोपोलॉजिकल रिक्त स्थान]] [[Category: 1882 परिचय]]


 
[[Category:1882 परिचय]]
 
[[Category:CS1 English-language sources (en)]]
[[Category: Machine Translated Page]]
[[Category:Collapse templates]]
[[Category:Commons category link is locally defined]]
[[Category:Created On 05/07/2023]]
[[Category:Created On 05/07/2023]]
[[Category:Vigyan Ready]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with script errors]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:Wikipedia articles incorporating text from PlanetMath|क्लेन बोतल]]
[[Category:Wikipedia metatemplates]]
[[Category:कई गुना]]
[[Category:ज्यामितीय टोपोलॉजी]]
[[Category:टोपोलॉजिकल रिक्त स्थान]]
[[Category:सतह]]

Latest revision as of 19:20, 21 July 2023

त्रि-आयामी समष्टि में क्लेन बोतल अंतर्वेशन (गणित) का द्वि-आयामी प्रतिनिधित्व

गणित में, क्लेन बोतल (/ˈkln/) गैर-अभिविन्यास (नॉन-ओरिएंटेबल) सतह (टोपोलॉजी) का एक उदाहरण है; यह अनौपचारिक रूप से, एक तरफा सतह है, जिस पर यदि पर्यटित की जाती है, तो पर्यटक को उल्टा घुमाते हुए मूल बिंदु तक वापस ले जाया जा सकता है। अधिक औपचारिक रूप से, क्लेन बोतल द्वि-आयामी विविध है जिस पर प्रत्येक बिंदु पर सामान्य सदिश को परिभाषित नहीं किया जा सकता है जो पूरे विविध पर निरंतर बदलता रहता है। अन्य संबंधित गैर-अभिविन्यास सतहों में मोबियस स्ट्रिप और वास्तविक प्रक्षेप्य सतह सम्मिलित हैं। जबकि मोबियस स्ट्रिप सीमा (टोपोलॉजी) वाली एक सतह है, क्लेन बोतल की कोई सीमा नहीं है। तुलना के लिए, एक गोला अभिविन्यास सतह है जिसकी कोई सीमा नहीं है।

क्लेन बोतल का वर्णन पहली बार 1882 में गणितज्ञ फ़ेलिक्स क्लेन द्वारा किया गया था।[1]

निर्माण

निम्नलिखित वर्ग क्लेन बोतल का मूल बहुभुज है। विचार अनुरूप वाले तीरों के साथ संबंधित लाल और नीले किनारों को एक साथ 'ग्लू ' करने का है, जैसा कि नीचे दिए गए चित्र में है। ध्यान दें कि यह इस अर्थ में अमूर्त ग्लूइंग है कि इसे तीन आयामों में साकार करने का प्रयास स्व-प्रतिच्छेदी क्लेन बोतल में परिणामित होता है।[2]

Klein Bottle Folding 1.svg
क्लेन बोतल का निर्माण करने के लिए, वर्ग के लाल तीरों को एक साथ (बाएँ और दाएँ) चिपकाएँ, जिसके परिणामस्वरूप एक सिलेंडर बनता है। सिलेंडर के सिरों को एक साथ चिपकाने के लिए जिससे कि वृत्तों पर तीर मेल खाएँ, एक छोर को सिलेंडर के किनारे से गुजारा जाता है। यह आत्म-प्रतिच्छेदन का वक्र बनाता है; इस प्रकार यह त्रि-आयामी समष्टि में क्लेन बोतल का अंतर्वेशन (गणित) है।

<गैलरी |= संरेखित=केंद्र >Image:Klein Bottle Folding 1.svg Image:Klein Bottle Folding 2.svg Image:Klein Bottle Folding 3.svg Image:Klein Bottle Folding 4.svg Image:Klein Bottle Folding 5.svg Image:Klein Bottle Folding 6.svg</गैलरी>

यह अंतर्वेशन क्लेन बोतल के कई गुणों को देखने के लिए उपयोगी है। उदाहरण के लिए, क्लेन बोतल की कोई सीमा नहीं है, जहां सतह अचानक रुक जाती है, और यह गैर-अभिविन्यास है, जैसा कि अंतर्वेशन की एकतरफाता में परिलक्षित होता है।

विज्ञान संग्रहालय (लंदन) में विसर्जित क्लेन बोतलें
हाथ से उड़ायी गयी क्लेन बोतल

क्लेन बोतल का सामान्य भौतिक मॉडल समान निर्माण है। विज्ञान संग्रहालय (लंदन) में हैंड- ब्लोन कांच की क्लेन बोतलों का संग्रह है, जो इस सांस्थितिक विषय पर कई विविधताएं प्रदर्शित करता है। बोतलें 1995 की हैं और इन्हें एलन बेनेट द्वारा संग्रहालय के लिए बनाया गया था।[3]

क्लेन बोतल, उचित, स्वयं-प्रतिच्छेद नहीं करती है। बहरहाल, क्लेन बोतल को चार आयामों में समाहित करने की कल्पना करने का तरीका है। त्रि-आयामी समष्टि में चौथा आयाम जोड़कर, आत्म-प्रतिच्छेदन को समाप्त किया जा सकता है। चौथे आयाम के साथ प्रतिच्छेदन ट्यूब के एक टुकड़े को धीरे से मूल त्रि-आयामी समष्टि से बाहर धकेलें जा सकता है। एक उपयोगी सादृश्य समतल पर स्व-प्रतिच्छेदी वक्र पर विचार करना है; समतल से स्ट्रैंड को उठाकर स्व-प्रतिच्छेदन को समाप्त किया जा सकता है।[4]

Xyzt-समष्टि में क्लेन आकृति का समय विकास

मान लीजिए कि स्पष्टीकरण के लिए हम समय को उस चौथे आयाम के रूप में अपनाते हैं। विचार करें कि xyzt-समष्टि में आकृति का निर्माण कैसे किया जा सकता है। संलग्न चित्रण ("समय विकास..") आकृति का एक उपयोगी विकास दर्शाता है। t = 0 पर प्राचीर "प्रतिच्छेदन" बिंदु के पास कहीं एक कलिका से उत्पन्न है। आकृति के कुछ समय तक बढ़ने के बाद, प्राचीर का सबसे प्रारंभिक भाग पीछे हटना प्रारंभ हो जाता है, चेशायर कैट की तरह गायब हो जाता है लेकिन अपनी लगातार बढ़ती मुस्कान को पीछे छोड़ देता है। जब तक विकास का मोर्चा उस समष्टि पर पहुँच जाता है जहाँ कलिका थी, वहाँ प्रतिच्छेदन के लिए कुछ भी नहीं होता है और विकास उपस्थित संरचना में प्रतिच्छेद किए बिना पूरा हो जाता है। परिभाषित 4-आकृति 3-समष्टि में सम्मिलित नहीं हो सकती है लेकिन 4-समष्टि में आसानी से समझी जा सकती है।[4]

अधिक औपचारिक रूप से, क्लेन बोतल भागफल समष्टि (टोपोलॉजी) है जिसे वर्ग (ज्यामिति) [0,1] × [0,1] के रूप में वर्णित किया गया है, जिसकी भुजाओं को संबंधों (0, y) ~ (1, y) के लिए 0 ≤ y ≤ 1 और (x, 0) ~ (1 − x, 1) के लिए 0 ≤ x ≤ 1 द्वारा पहचाना जाता है।

गुण

मोबियस स्ट्रिप की तरह, क्लेन बोतल द्वि-आयामी विविध है जो नहीं है। मोबियस स्ट्रिप के विपरीत, यह सवृत विविध है, जिसका अर्थ है कि यह बिना सीमा के सघन समष्टि विविध है। जबकि मोबियस स्ट्रिप को त्रि-आयामी यूक्लिडियन समष्टि R3 में अंतः स्थापित किया जा सकता है, क्लेन बोतल नहीं कर सकती है। हालाँकि, इसे R4 में अंतः स्थापित किया जा सकता है।[4]

इस क्रम को जारी रखते हुए, उदाहरण के लिए एक ऐसी सतह बनाना जिसे R4 में अंतः स्थापित नहीं किया जा सके लेकिन R5 में हो सकता है, संभव है; इस स्थिति में, गोलाकार के दो सिरों को एक दूसरे से उसी तरह संयोजक से, जैसे कि क्लेन बोतल के सिलेंडर के दो सिरों से, आकृति बनती है, जिसे "गोलाकार क्लेन बोतल" कहा जाता है, जिसे R4 में पूरी तरह से अंतः स्थापित नहीं किया जा सकता है।[5]

क्लेन बोतल को वृत्त S1 के ऊपर फाइबर S1 के साथ फाइबर बंडल के रूप में देखा जा सकता है, इस प्रकार है: कोई ऊपर से वर्ग (किनारे को समतुल्य संबंध की पहचान करने वाले मॉड्यूलो) को कुल समष्टि E के रूप में लेता है, जबकि आधार समष्टि B को y में इकाई अंतराल द्वारा दिया जाता है, मॉड्यूल 1 ~ 0 प्रक्षेपण π:E→B तब π([x, y]) = [y] दिया जाता है।

क्लेन बोतल का निर्माण दो मोबियस स्ट्रिप्स के किनारों को जोड़कर (चार आयामी समष्टि में, क्योंकि तीन आयामी समष्टि में सतह को खुद को प्रतिच्छेदन की अनुमति के बिना नहीं किया जा सकता है) किया जा सकता है, जैसा कि लियो द्वारा निम्नलिखित लिमरिक (कविता) में वर्णित है। मोजर:[6]

एक गणितज्ञ नामक क्लेन
सोचा कि मोबियस बैंड दिव्य था।
     उसने कहा: "यदि आप गोंद लगाते हैं
       दो के किनारे,,
तुम्हें मेरी तरह एक अजीब बोतल मिलेगी।"

एक वर्ग के विपरीत किनारों की पहचान करके क्लेन बोतल का प्रारंभिक निर्माण दर्शाता है कि क्लेन बोतल को 0-सेल P, दो 1-सेल C1, C2 और 2-सेल D के साथ सीडब्ल्यू जटिल संरचना दी जा सकती है। इसलिए इसकी यूलर विशेषता 1 − 2 + 1 = 0 है, सीमा समरूपता D = 2C1 और C1 = ∂C2 = 0 द्वारा दी गई है, क्लेन बोतल K की सेलुलर समरूपता H0(K, Z) = Z, H1(K, Z) = Z×(Z/2Z) और Hn(K, Z) = 0 के लिए n > 1 उत्पन्न करती है।

टॉरस से क्लेन बोतल तक 2-1 आच्छादन समष्टि है, क्योंकि क्लेन बोतल के मूल क्षेत्र की दो प्रतियां, एक को दूसरे की दर्पण छवि के बगल में रखा जाता है, टोरस का मूल क्षेत्र प्राप्त होता है। टोरस और क्लेन बोतल दोनों का सार्वभौमिक आवरण समतल R2 है।

क्लेन बोतल के मूल समूह को डेक परिवर्तन समूह के रूप में निर्धारित किया जा सकता है, सार्वभौमिक आच्छादित के सममित आच्छादित और समूह की प्रस्तुति है a, b | ab = b−1a

6-रंग की क्लेन बोतल, हेवुड अनुमान का एकमात्र अपवाद

क्लेन बोतल की सतह पर किसी भी मानचित्र को रंगने के लिए छह रंग पर्याप्त हैं; यह हेवुड अनुमान का एकमात्र अपवाद है, जो चार रंग प्रमेय का सामान्यीकरण है, जिसके लिए सात की आवश्यकता होती है।

क्लेन बोतल दो प्रक्षेप्य तल के जुड़े योग के समरूप है।[7] यह गोले और दो क्रॉस-कैप के समरूप भी है।

यूक्लिडियन समष्टि में अंतः स्थापित होने पर, क्लेन बोतल एक तरफा होती है। हालाँकि, अन्य सांस्थितिक 3-समष्टि हैं, और कुछ गैर-अभिविन्यास उदाहरणों में एक क्लेन बोतल को ऐसे अंतः स्थापित किया जा सकता है कि यह दो-तरफा हो, चूंकि समष्टि की प्रकृति के कारण यह गैर-अभिविन्यास रहता है।[2]

विच्छेदन

क्लेन बोतल को विच्छेदित करने से मोबियस स्ट्रिप्स प्राप्त होती हैं।

क्लेन बोतल को समरूपता के सतह के साथ आधे भागों में विच्छेदित करने पर दो दर्पण छवि मोबियस स्ट्रिप्स प्राप्त होती हैं, अर्थात एक बाएं हाथ के आधे-मोड़ के साथ और दूसरा दाएं हाथ के आधे-मोड़ के साथ (इनमें से एक दाईं ओर चित्रित है), याद रखें कि चित्रित प्रतिच्छेद वास्तव में वहां नहीं है।[8]

सरल-सवृत वक्र

क्लेन बोतल की सतह पर दिखाई देने वाले सरल-सवृत वक्रों के प्रकारों का विवरण पूर्णांक गुणांक के साथ गणना की गई क्लेन बोतल के पहले सजातीय समूह के उपयोग द्वारा दिया गया है। यह समूह Z×Z2 का समरूपी है। अभिविन्यास के परिवर्तन होने तक, एकमात्र सजातीय वर्ग जिनमें सरल-सवृत वक्र होते हैं वे इस प्रकार हैं: (0,0), (1,0), (1,1), (2,0), (0,1)। एक साधारण सवृत वक्र के अभिविन्यास के परिवर्तन होने तक, यदि यह क्लेन बोतल बनाने वाले दो क्रॉस-कैप्स में से एक के भीतर स्थित है, तो यह सजातीय वर्ग (1,0) या (1,1) में है; यदि यह क्लेन बोतल को दो मोबियस स्ट्रिप्स में काटता है, तो यह सजातीय वर्ग (2,0) में है; यदि यह क्लेन बोतल को वलय में काटता है, तो यह समरूपता वर्ग (0,1) में है; और यदि किसी डिस्क को बाध्य करता है, तो यह सजातीय वर्ग (0,0) में है।[4]

प्राचलीकरण

क्लेन बोतल का आकृति-8 अंतर्वेशन ।
क्लेन बैगेल अनुप्रस्थ परिच्छेद, एक आकृति आठ वक्र (गेरोनो का लेम्निस्केट) दिखा रहा है।

आकृति-8 अंतर्वेशन

क्लेन बोतल का "आकृति-8" या "बैगेल" अंतर्वेशन (गणित) बनाने के लिए, कोई मोबियस स्ट्रिप से प्रारंभ कर सकता है और किनारे को मध्य रेखा पर लाने के लिए इसे कुंचित कर सकता है; चूँकि केवल एक ही किनारा है, यह मध्य रेखा से गुजरते हुए वहीं मिलता है। इसमें अर्ध-मोड़ के साथ "आकृति-8" टॉरस के रूप में विशेष रूप से सरल प्राचलीकरण है:[4]

0 ≤ θ < 2π, 0 ≤ v < 2π और r > 2 के लिए।

इस अंतर्वेशन में, स्व-प्रतिच्छेदन वृत्त (जहां sin(v) शून्य है) xy सतह में ज्यामितीय वृत्त है। धनात्मक स्थिरांक r इस वृत्त की त्रिज्या है। मापदण्ड θ, xy समतल में कोण के साथ-साथ आकृति 8 का घूर्णन भी देता है, और v, 8-आकार वाले अनुप्रस्थ परिच्छेद के आसपास की स्थिति निर्दिष्ट करता है। उपरोक्त प्राचलीकरण के साथ अनुप्रस्थ परिच्छेद 2:1 लिसाजस वक्र है।

4-डी अप्रतिच्छेदन

अप्रतिच्छेदन 4-डी प्राचलीकरण को फ़्लैट टोरस के आधार पर तैयार किया जा सकता है:

जहां R और P स्थिरांक हैं जो पहलू अनुपात निर्धारित करते हैं, θ और v ऊपर परिभाषित के समान हैं। v आकृति-8 के आसपास की स्थिति के साथ-साथ x-y सतह में स्थिति भी निर्धारित करता है। θ आकृति-8 के घूर्णन कोण और z-w सतह के चारों ओर की स्थिति को भी निर्धारित करता है। ε sinv कोई छोटा स्थिरांक है और स्वयं प्रतिच्छेदन से बचने के लिए z-w समष्टि में छोटा v निर्भर उभार है। v उभार स्वयं प्रतिच्छेद करने वाली 2-डी/तलीय आकृति-8 को किनारे पर देखे गए x-y-w और x-y-z समष्टि में 3-डी अनुरूप वाले "आलू चिप" या पलान आकार में फैलाने का कारण बनता है। जब ε=0 स्व-प्रतिच्छेदन z-w समतल <0, 0, cosθ, synθ> में वृत्त होता है।[4]

3डी संकुचित टोरस / 4डी मोबियस ट्यूब

क्लेन बोतल का संकुचित टोरस अंतर्वेशन ।

संकुचित टोरस शायद तीन और चार दोनों आयामों में क्लेन बोतल का सबसे सरल प्राचलीकरण है। यह एक टोरस है, जो तीन आयामों में सपाट होता है और एक तरफ से होकर गुजरता है। दुर्भाग्य से, तीन आयामों में इस प्राचलीकरण में दो संकुचित बिंदु (गणित) हैं, जो इसे कुछ अनुप्रयोगों के लिए अवांछनीय बनाता है। चार आयामों में z आयाम w आयाम में घूमता है और कोई स्व-प्रतिच्छेदन या संकुचित बिंदु नहीं हैं।[4]

कोई इसे ट्यूब या सिलेंडर के रूप में देख सकता है जो टोरस की तरह चारों ओर आच्छादित है, लेकिन इसका गोलाकार अनुप्रस्थ परिच्छेद चार आयामों में प्रतिवर्न करता है, जैसे ही यह फिर से जुड़ता है, इसके "पीछे का भाग" प्रस्तुत होता है, जैसे मोबियस स्ट्रिप अनुप्रस्थ परिच्छेद फिर से जुड़ने से पहले घूमता है। इसका 3डी आयतीय प्रक्षेपण ऊपर दिखाया गया संकुचित किया हुआ टोरस है। जिस प्रकार मोबियस स्ट्रिप ठोस टोरस का उपसमूह है, उसी प्रकार मोबियस ट्यूब टोरॉयडली सवृत गोलाकार (ठोस स्फेरिटोरस) का उपसमूह है।

बोतल का आकार

बोतल के 3-आयामी अंतर्वेशन का प्राचलीकरण स्वयं बहुत अधिक जटिल है।

थोड़ी पारदर्शिता के साथ क्लेन बोतल

:

0 ≤ u < π और 0 ≤ v < 2π के लिए।[4]

होमोटोपी वर्ग

क्लेन बोतल का सममित 3डी अंतर्वेशन तीन सममित समस्थेयता वर्गों में आता है।[9] तीनों का प्रतिनिधित्व निम्न द्वारा किया जाता है:

  • "रूढिगत" क्लेन बोतल;
  • बाएं हाथ की आकृति-8 क्लेन बोतल;
  • दाएँ हाथ की आकृति-8 क्लेन बोतल।

रूढिगत क्लेन बोतल अंतर्वेशन अकिरेल है। आकृति-8 अंतर्वेशन चिरल है। (उपरोक्त संकुचित टोरस अंतर्वेशन सममित नहीं है, क्योंकि इसमें संकुचित बिन्दु हैं, इसलिए यह इस अनुभाग के लिए प्रासंगिक नहीं है।)

यदि रूढिगत क्लेन बोतल को उसके समरूपता के सतह में काटा जाता है तो यह विपरीत चिरलिटी की दो मोबियस स्ट्रिप्स में टूट जाती है। आकृति-8 क्लेन बोतल को एक ही चिरलिटी के दो मोबियस स्ट्रिप्स में काटा जा सकता है, और इसे सममित रूप से इसकी दर्पण छवि में विकृत नहीं किया जा सकता है।[4]

रूढिगत क्लेन बोतल को दो रंगों में रंगने से उस पर चिरायता उत्पन्न हो सकती है, जिससे उसका समस्थेयता वर्ग दो भागों में विभाजित हो जाता है।

सामान्यीकरण

उच्च जीनस (गणित) के लिए क्लेन बोतल का सामान्यीकरण मौलिक बहुभुज पर लेख में दिया गया है।[10]

विचारों के अन्य क्रम में, 3-विविध का निर्माण करते हुए, यह ज्ञात है कि ठोस क्लेन बोतल मोबियस स्ट्रिप और सवृत अंतराल के कार्तीय गुणन के लिए समरूप है। ठोस क्लेन बोतल 'ठोस टोरस' का गैर-अभिविन्यास संस्करण है, जो समकक्ष है

क्लेन सतह

क्लेन सतह, रीमैन सतह के लिए, एटलस वाली सतह जो जटिल संयुग्मन का उपयोग करके संक्रमण मानचित्र को बनाने की अनुमति देती है। कोई समष्टि की तथाकथित डायनेलिटिक संरचना प्राप्त कर सकता है और इसका केवल एक ही पक्ष है।[11]

यह भी देखें

संदर्भ

उद्धरण

  1. Stillwell 1993, p. 65, 1.2.3 The Klein Bottle.
  2. 2.0 2.1 Weeks, Jeffrey (2020). The Shape of Space, 3rd Edn. CRC Press. ISBN 978-1138061217.
  3. "Strange Surfaces: New Ideas". Science Museum London. Archived from the original on 2006-11-28.
  4. 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 Alling & Greenleaf 1969.
  5. Marc ten Bosch - https://marctenbosch.com/news/2021/12/4d-toys-version-1-7-klein-bottles/
  6. David Darling (11 August 2004). The Universal Book of Mathematics: From Abracadabra to Zeno's Paradoxes. John Wiley & Sons. p. 176. ISBN 978-0-471-27047-8.
  7. Shick, Paul (2007). Topology: Point-Set and Geometric. Wiley-Interscience. pp. 191–192. ISBN 9780470096055.
  8. Cutting a Klein Bottle in Half – Numberphile on YouTube
  9. Séquin, Carlo H (1 June 2013). "क्लेन बोतल प्रकारों की संख्या पर". Journal of Mathematics and the Arts. 7 (2): 51–63. CiteSeerX 10.1.1.637.4811. doi:10.1080/17513472.2013.795883. S2CID 16444067.
  10. Day, Adam (17 February 2014). "क्लेन बोतल पर क्वांटम गुरुत्वाकर्षण". CQG+. {{cite web}}: |archive-date= requires |archive-url= (help)
  11. Bitetto, Dr Marco (2020-02-14). हाइपरस्पैशियल डायनेमिक्स (in English). Dr. Marco A. V. Bitetto.


स्रोत

बाहरी संबंध