अवरोही और आरोही भाज्य: Difference between revisions
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
{{Short description|Mathematical functions}} | {{Short description|Mathematical functions}} | ||
गणित में, अवरोही भाज्य (कभी-कभी अवरोही भाज्य भी कहा जाता है,<ref name=Steffensen/> अवरोही अनुक्रमिक उत्पाद, या निम्न भाज्य) को बहुपद के रूप में परिभाषित किया गया है | गणित में, अवरोही भाज्य (कभी-कभी अवरोही भाज्य भी कहा जाता है,<ref name=Steffensen/> अवरोही अनुक्रमिक उत्पाद, या निम्न भाज्य) को बहुपद के रूप में परिभाषित किया गया है | ||
'''उभरता हुआ भाज्य (कभी-कभी पोचाम्मर फलन, पोचामर बहुपद, आरोही भाज्य, कहा जाता है) <ref name="Steffensen" /> बढ़ते अनुक्रमिक उत्पाद, या ऊपरी भाज्य के रूप में परिभाषित किया गया है''' | |||
<math display="block"> | <math display="block"> | ||
\begin{align} | \begin{align} | ||
| Line 83: | Line 85: | ||
|mr=0201688 |at=Appendix I | |mr=0201688 |at=Appendix I | ||
}} — Gives a useful list of formulas for manipulating the rising factorial in {{math|(''x''){{sub|''n''}}}} notation. | }} — Gives a useful list of formulas for manipulating the rising factorial in {{math|(''x''){{sub|''n''}}}} notation. | ||
</ref> | </ref> | ||
जब {{mvar|x}} धनात्मक पूर्णांक है, {{math|(''x''){{sub|''n''}}}} k-क्रमपरिवर्तन की संख्या देता है | {{mvar|n}}-एक से क्रमपरिवर्तन (विभिन्न तत्वों का अनुक्रम) {{mvar|x}}-तत्व समुच्चय, या समकक्ष आकार के समुच्चय से इंजेक्शन कार्यों की संख्या {{mvar|n}} आकार के समुच्चय {{mvar|x}} के लिए. बढ़ती फैक्टोरियल {{math|''x''{{sup|(''n'')}}}} समुच्चय के विभाजन {{mvar|n}}-तत्व में समुच्चय {{mvar|x}} आदेशित अनुक्रम की संख्या देता है।{{efn|Here the parts are distinct; for example, when {{math|1=''x'' = ''n'' = 2}}, the {{math|1=(2){{sup|(2)}} = 6}} partitions are <math>(12, -)</math>, <math>(21, -)</math>, <math>(1, 2)</math>, <math>(2, 1)</math>, <math>(-, 12)</math>, and <math>(-, 21)</math>, where − denotes an empty part.}} | जब {{mvar|x}} धनात्मक पूर्णांक है, {{math|(''x''){{sub|''n''}}}} k-क्रमपरिवर्तन की संख्या देता है | {{mvar|n}}-एक से क्रमपरिवर्तन (विभिन्न तत्वों का अनुक्रम) {{mvar|x}}-तत्व समुच्चय, या समकक्ष आकार के समुच्चय से इंजेक्शन कार्यों की संख्या {{mvar|n}} आकार के समुच्चय {{mvar|x}} के लिए. बढ़ती फैक्टोरियल {{math|''x''{{sup|(''n'')}}}} समुच्चय के विभाजन {{mvar|n}}-तत्व में समुच्चय {{mvar|x}} आदेशित अनुक्रम की संख्या देता है।{{efn|Here the parts are distinct; for example, when {{math|1=''x'' = ''n'' = 2}}, the {{math|1=(2){{sup|(2)}} = 6}} partitions are <math>(12, -)</math>, <math>(21, -)</math>, <math>(1, 2)</math>, <math>(2, 1)</math>, <math>(-, 12)</math>, and <math>(-, 21)</math>, where − denotes an empty part.}} | ||
==उदाहरण और संयुक्त व्याख्या== | ==उदाहरण और संयुक्त व्याख्या == | ||
पहले कुछ अवरोही तथ्य इस प्रकार हैं: | पहले कुछ अवरोही तथ्य इस प्रकार हैं: | ||
<math display="block"> | <math display="block"> | ||
Revision as of 15:12, 8 July 2023
गणित में, अवरोही भाज्य (कभी-कभी अवरोही भाज्य भी कहा जाता है,[1] अवरोही अनुक्रमिक उत्पाद, या निम्न भाज्य) को बहुपद के रूप में परिभाषित किया गया है
उभरता हुआ भाज्य (कभी-कभी पोचाम्मर फलन, पोचामर बहुपद, आरोही भाज्य, कहा जाता है) [1] बढ़ते अनुक्रमिक उत्पाद, या ऊपरी भाज्य के रूप में परिभाषित किया गया है
इस लेख में प्रतीक (x)n का उपयोग अवरोही फैक्टोरियल और प्रतीक को दर्शाने के लिए किया जाता है x(n) का उपयोग बढ़ते फैक्टोरियल के लिए किया जाता है। इन सम्मेलनों का उपयोग साहचर्य में किया जाता है,[4] चूँकि डोनाल्ड नुथ की अंडरलाइन और ओवरलाइन नोटेशन और तेजी से लोकप्रिय हो रहे हैं.[2][5]
विशेष कार्य के सिद्धांत में (विशेष रूप से हाइपरजियोमेट्रिक फलन) और मानक संदर्भ कार्य अब्रामोविट्ज़ और स्टेगन में, पोचहैमर प्रतीक (x)n का उपयोग बढ़ते फैक्टोरियल को दर्शाने के लिए किया जाता है।[6][7]
जब x धनात्मक पूर्णांक है, (x)n k-क्रमपरिवर्तन की संख्या देता है | n-एक से क्रमपरिवर्तन (विभिन्न तत्वों का अनुक्रम) x-तत्व समुच्चय, या समकक्ष आकार के समुच्चय से इंजेक्शन कार्यों की संख्या n आकार के समुच्चय x के लिए. बढ़ती फैक्टोरियल x(n) समुच्चय के विभाजन n-तत्व में समुच्चय x आदेशित अनुक्रम की संख्या देता है।[lower-alpha 1]
उदाहरण और संयुक्त व्याख्या
पहले कुछ अवरोही तथ्य इस प्रकार हैं:
जब चर x धनात्मक पूर्णांक, संख्या है (x)n k-क्रमपरिवर्तन की संख्या के सामान्य है |n-के समुच्चय से क्रमपरिवर्तन x आइटम, अर्थात, लंबाई की क्रमबद्ध सूची चुनने के विधियों की संख्या n आकार के संग्रह से निकाले गए अलग-अलग तत्वों x से मिलकर बना है . उदाहरण के लिए, (8)3 = 8 × 7 × 6 = 336 आठ व्यक्तियों की दौड़ में संभव विभिन्न पोडियमों की संख्या - स्वर्ण, रजत और कांस्य पदक संभव है। इस सन्दर्भ में अन्य नोटेशन जैसे xPn, xPn, Pnx, या P(x, n) का प्रयोग भी कभी-कभी किया जाता है। वहीं दूसरी ओर, x(n) व्यवस्था करने के विधियों की संख्या है n झंडे चालू x ध्वजदंड ,[8] जहां सभी झंडों का उपयोग किया जाना चाहिए और प्रत्येक ध्वजस्तंभ में किसी भी संख्या में झंडे हो सकते हैं। समान रूप से, यह आकार के समुच्चय को विभाजित करने के विधियों की संख्या है n (झंडे) में x अलग-अलग भाग (ध्रुव), प्रत्येक भाग को निर्दिष्ट तत्वों पर रैखिक क्रम (किसी दिए गए ध्रुव पर झंडे का क्रम) के साथ किया जाता है।
गुण
बढ़ते और अवरोही फैक्टोरियल बस दूसरे से संबंधित हैं:
बढ़ते और अवरोही फैक्टोरियल को किसी भी यूनिटल रिंग रिंग (गणित) में अच्छी तरह से परिभाषित किया गया है, और इसलिए x को, उदाहरण के लिए, ऋणात्मक पूर्णांकों सहित जटिल संख्या, या जटिल गुणांकों वाला बहुपद, या कोई जटिल-मूल्यवान फलन माना जा सकता है।
अवरोही फैक्टोरियल को वास्तविक संख्या मानों तक बढ़ाया जा सकता है x प्रदान किए गए गामा फलन का उपयोग करना x और x + n वास्तविक संख्याएँ हैं जो ऋणात्मक पूर्णांक नहीं हैं:
अंब्रल कैलकुलस से संबंध
अवरोही फैक्टोरियल सूत्र में होता है जो फॉरवर्ड अंतर ऑपरेटर का उपयोग करके बहुपदों का प्रतिनिधित्व करता है और जो औपचारिक रूप से टेलर के प्रमेय के समान है:
एक समान परिणाम बढ़ते फैक्टोरियल और पिछड़े अंतर ऑपरेटर के लिए है।
इस प्रकार की उपमाओं के अध्ययन को अम्ब्रल कैलकुलस के रूप में जाना जाता है। ऐसे संबंधों को कवर करने वाला सामान्य सिद्धांत, जिसमें घटते और बढ़ते तथ्यात्मक कार्य सम्मिलित हैं, द्विपद प्रकार और शेफ़र अनुक्रम के सिद्धांत द्वारा दिया गया है। अवरोही और बढ़ते फैक्टोरियल द्विपद प्रकार के शेफ़र अनुक्रम हैं, जैसा कि संबंधों द्वारा दिखाया गया है:
इसी प्रकार, पोचहैमर बहुपदों का जनक फलन तब अम्ब्रल घातांक के सामान्य होता है,
संबंध गुणांक और पहचान
अवरोही और बढ़ते फैक्टोरियल लाह संख्याओं के माध्यम से दूसरे से संबंधित हैं:[9]
k} द्वारा अंकित है :[9]
दो बढ़ते फैक्टोरियल के अनुपात के लिए संबंध सूत्र भी दिया गया है
वैकल्पिक संकेतन
बढ़ते फैक्टोरियल के लिए वैकल्पिक संकेतन
अवरोही फैक्टोरियल के लिए अन्य संकेतन में P(x,n), xPn, Px,n, Pnx, या xPn सम्मिलित हैं (क्रमपरिवर्तन और संयोजन देखें।)
बढ़ते फैक्टोरियल के लिए वैकल्पिक संकेतन x(n) कम समानीय (x)+
n है . जब (x)+
n का उपयोग बढ़ते फैक्टोरियल, (x)−
n अंकन को दर्शाने के लिए किया जाता है सामान्यतः सामान्य अवरोही वाले फैक्टोरियल के लिए उपयोग किया जाता है।[3]
सामान्यीकरण
पोचहैमर प्रतीक का सामान्यीकृत संस्करण है जिसे सामान्यीकृत पोचहैमर प्रतीक कहा जाता है, जिसका उपयोग बहुभिन्नरूपी गणितीय विश्लेषण में किया जाता है।
अवरोही फैक्टोरियल का सामान्यीकरण जिसमें पूर्णांकों के अवरोही अंकगणितीय अनुक्रम पर फलन का मूल्यांकन किया जाता है और मानों को गुणा किया जाता है:
किसी भी निश्चित अंकगणितीय फलन के लिए और प्रतीकात्मक मापदंड x, t, प्रपत्र के संबंधित सामान्यीकृत तथ्यात्मक उत्पाद है
यह भी देखें
- पोन्चाम्मर k-प्रतीक
- वैंडरमोंडे की पहचान
संदर्भ
- ↑ Here the parts are distinct; for example, when x = n = 2, the (2)(2) = 6 partitions are , , , , , and , where − denotes an empty part.
- ↑ 1.0 1.1 1.2 Steffensen, J.F. (17 March 2006). Interpolation (2nd ed.). Dover Publications. p. 8. ISBN 0-486-45009-0. — A reprint of the 1950 edition by Chelsea Publishing.
- ↑ 2.0 2.1 2.2 Knuth, D.E. The Art of Computer Programming. Vol. 1 (3rd ed.). p. 50.
- ↑ 3.0 3.1 Knuth, D.E. (1992). "Two notes on notation". American Mathematical Monthly. 99 (5): 403–422. arXiv:math/9205211. doi:10.2307/2325085. JSTOR 2325085. S2CID 119584305. The remark about the Pochhammer symbol is on page 414.
- ↑ Olver, P.J. (1999). Classical Invariant Theory. Cambridge University Press. p. 101. ISBN 0-521-55821-2. MR 1694364.
- ↑ Harris; Hirst; Mossinghoff (2008). Combinatorics and Graph Theory. Springer. ch. 2. ISBN 978-0-387-79710-6.
- ↑ Abramowitz, Milton; Stegun, Irene A., eds. (December 1972) [June 1964]. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematics Series. Vol. 55. Washington, DC: United States Department of Commerce. p. 256 eqn. 6.1.22. LCCN 64-60036.
- ↑ Slater, Lucy J. (1966). Generalized Hypergeometric Functions. Cambridge University Press. Appendix I. MR 0201688. — Gives a useful list of formulas for manipulating the rising factorial in (x)n notation.
- ↑ Feller, William. An Introduction to Probability Theory and Its Applications. Vol. 1. Ch. 2.
- ↑ 9.0 9.1 "भाज्य और द्विपद का परिचय". Wolfram Functions Site.
- ↑ Rosas, Mercedes H. (2002). "मैकमोहन सममित कार्यों और बहुपद बीजगणित की विशेषज्ञता". Disc. Math. 246 (1–3): 285–293. doi:10.1016/S0012-365X(01)00263-1.
- ↑ 11.0 11.1 Graham, Ronald L.; Knuth, Donald E. & Patashnik, Oren (1988). Concrete Mathematics. Reading, MA: Addison-Wesley. pp. 47, 48, 52. ISBN 0-201-14236-8.
- ↑ Schmidt, Maxie D. (29 March 2017). "Combinatorial identities for generalized Stirling numbers expanding f-factorial functions and the f-harmonic numbers". arXiv:1611.04708v2 [math.CO].
बाहरी संबंध
- Weisstein, Eric W. "Pochhammer Symbol". MathWorld.
- "A Compilation of mathematical demonstrations". scribd.com. Archived from the original on 2016-02-14. — Elementary proofs