घर्षण (Friction): Difference between revisions

From Vigyanwiki
Line 55: Line 55:
*'''आंतरिक घर्षण''' एक ठोस पदार्थ बनाने वाले तत्वों के बीच गति का प्रतिरोध करने वाला बल है, जबकि यह विरूपण (यांत्रिकी) से गुजरता है।<ref name="Meriam" />
*'''आंतरिक घर्षण''' एक ठोस पदार्थ बनाने वाले तत्वों के बीच गति का प्रतिरोध करने वाला बल है, जबकि यह विरूपण (यांत्रिकी) से गुजरता है।<ref name="Meriam" />


जब संपर्क में सतह एक -दूसरे के सापेक्ष गति करती हैं, तो दो सतहों के बीच घर्षण गतिज ऊर्जा को तापीय ऊर्जा में परिवर्तित करता है, अर्थात यह कार्य (भौतिकी) को ऊष्मा में परिवर्तित करता है। इस गुण के प्रभावशाली परिणाम हो सकते हैं, जैसा कि आग लगाने के लिए लकड़ी के टुकड़ों को आपस में रगड़ कर बनाए गए घर्षण के उपयोग से दिखाया गया है। जब भी घर्षण के साथ गति होती है, तो गतिज ऊर्जा को तापीय ऊर्जा में बदल दिया जाता है, उदाहरण के लिए जब एक श्यान प्रवाह द्रव गति करता है। कई प्रकार के घर्षण का एक अन्य महत्वपूर्ण परिणाम घर्षण कर सकता है, जिससे प्रदर्शन में कमी या घटकों को हानि हो सकती है। घर्षण  धातुश्रांतिकी के विज्ञान का एक घटक है।
जब संपर्क में सतह एक -दूसरे के सापेक्ष गति करती हैं, तो दो सतहों के बीच घर्षण गतिज ऊर्जा को तापीय ऊर्जा में परिवर्तित करता है, अर्थात यह कार्य (भौतिकी) को ऊष्मा में परिवर्तित करता है। इस गुण के प्रभावशाली परिणाम हो सकते हैं, जैसा कि आग लगाने के लिए लकड़ी के टुकड़ों को आपस में घर्षण कर बनाए गए घर्षण के उपयोग से दिखाया गया है। जब भी घर्षण के साथ गति होती है, तो गतिज ऊर्जा को तापीय ऊर्जा में बदल दिया जाता है, उदाहरण के लिए जब एक श्यान प्रवाह द्रव गति करता है। कई प्रकार के घर्षण का एक अन्य महत्वपूर्ण परिणाम घर्षण कर सकता है, जिससे प्रदर्शन में कमी या घटकों को हानि हो सकती है। घर्षण  धातुश्रांतिकी के विज्ञान का एक घटक है।


भूमि पर गति की सुविधा के लिए कर्षण (अभियांत्रिकी) की आपूर्ति में घर्षण वांछनीय और महत्वपूर्ण है। अधिकांश भूमि वाहन त्वरण, आसान और बदलती दिशा के लिए घर्षण पर निर्भर करते हैं। कर्षण में अचानक कमी से नियंत्रण और दुर्घटनाओं का हानि हो सकती है।
भूमि पर गति की सुविधा के लिए कर्षण (अभियांत्रिकी) की आपूर्ति में घर्षण वांछनीय और महत्वपूर्ण है। अधिकांश भूमि वाहन त्वरण, आसान और बदलती दिशा के लिए घर्षण पर निर्भर करते हैं। कर्षण में अचानक कमी से नियंत्रण और दुर्घटनाओं का हानि हो सकती है।
Line 112: Line 112:


=== घर्षण का गुणांक ===
=== घर्षण का गुणांक ===
घर्षण (COF) का गुणांक, जिसे अक्सर ग्रीक अक्षर MU (पत्र) का प्रतीक होता है। µ, एक आयामहीन मात्रा स्केलर (भौतिकी) मूल्य है जो दो निकायों के बीच घर्षण के बल के अनुपात के बराबर होता है और बल उन्हें एक साथ दबाते हैं, या तोविसर्पण के समय या उसके समय।घर्षण का गुणांक उपयोग की जाने वाली पदार्थों पर निर्भर करता है;उदाहरण के लिए, स्टील पर बर्फ में घर्षण का एक कम गुणांक होता है, जबकि फुटपाथ पर रबर में घर्षण का एक उच्च गुणांक होता है।घर्षण के गुणांक शून्य से एक से अधिक शून्य तक होते हैं।समान धातुओं की दो सतहों के बीच घर्षण का गुणांक विभिन्न धातुओं की दो सतहों के बीच से अधिक है;उदाहरण के लिए, पीतल में पीतल के विपरीत स्थानांतरित होने पर घर्षण का एक उच्च गुणांक होता है, लेकिन यदि स्टील या एल्यूमीनियम के विपरीत ले जाया जाता है।<ref name="Association1921">{{cite book|author=Air Brake Association|title=The Principles and Design of Foundation Brake Rigging|url=https://books.google.com/books?id=DoNBAQAAMAAJ&pg=PA5| year=1921 |publisher=Air brake association|page=5}}</ref>
घर्षण (COF) का गुणांक, जिसे अक्सर ग्रीक अक्षर MU (पत्र) का प्रतीक होता है। µ, एक आयामहीन मात्रा स्केलर (भौतिकी) मूल्य है जो दो निकायों के बीच घर्षण के बल के अनुपात के बराबर होता है और बल उन्हें एक साथ दबाते हैं, या तोविसर्पण के समय या उसके समय।घर्षण का गुणांक उपयोग की जाने वाली पदार्थों पर निर्भर करता है;उदाहरण के लिए, स्टील पर बर्फ में घर्षण का एक कम गुणांक होता है, जबकि रास्ते के फर्श पर रबर में घर्षण का एक उच्च गुणांक होता है।घर्षण के गुणांक शून्य से एक से अधिक शून्य तक होते हैं।समान धातुओं की दो सतहों के बीच घर्षण का गुणांक विभिन्न धातुओं की दो सतहों के बीच से अधिक है;उदाहरण के लिए, पीतल में पीतल के विपरीत स्थानांतरित होने पर घर्षण का एक उच्च गुणांक होता है, लेकिन यदि स्टील या एल्यूमीनियम के विपरीत ले जाया जाता है।<ref name="Association1921">{{cite book|author=Air Brake Association|title=The Principles and Design of Foundation Brake Rigging|url=https://books.google.com/books?id=DoNBAQAAMAAJ&pg=PA5| year=1921 |publisher=Air brake association|page=5}}</ref>
एक दूसरे के सापेक्ष विराम पर सतहों के लिए, <math>\mu = \mu_\mathrm{s}</math>, जहां पर <math>\mu_\mathrm{s}</math> स्थैतिक घर्षण का गुणांक है।यह सामान्य रूप से अपने गतिज समकक्ष से बड़ा होता है।संपर्क सतहों की एक जोड़ी द्वारा प्रदर्शित स्थैतिक घर्षण का गुणांक पदार्थ विरूपण विशेषताओं और सतह कर्कशता के संयुक्त प्रभावों पर निर्भर करता है, दोनों की उत्पत्ति प्रत्येक थोक पदार्थ में परमाणुओं के बीच रासायनिक संबंध में और पदार्थ सतहों और किसी भी के बीच हैसोखना।सतहों की फ्रैक्टेलिटी, सतह के एस्परिटी के स्केलिंग व्यवहार का वर्णन करने वाला एक पैरामीटर, स्थैतिक घर्षण के परिमाण को निर्धारित करने में एक महत्वपूर्ण भूमिका निभाने के लिए जाना जाता है।<ref name="statfric">{{cite journal|last1= Hanaor | first1= D. | last2=Gan |first2= Y. |last3=Einav | first3= I. | title= Static friction at fractal interfaces| journal= Tribology International | year=2016 | volume=93 | pages=229–238 |url= https://www.researchgate.net/publication/283675011| doi= 10.1016/j.triboint.2015.09.016 | arxiv= 2106.01473 | s2cid= 51900923 }}</ref>
एक दूसरे के सापेक्ष विराम पर सतहों के लिए, <math>\mu = \mu_\mathrm{s}</math>, जहां पर <math>\mu_\mathrm{s}</math> स्थैतिक घर्षण का गुणांक है।यह सामान्य रूप से अपने गतिज समकक्ष से बड़ा होता है।संपर्क सतहों की एक जोड़ी द्वारा प्रदर्शित स्थैतिक घर्षण का गुणांक पदार्थ विरूपण विशेषताओं और सतह कर्कशता के संयुक्त प्रभावों पर निर्भर करता है, दोनों की उत्पत्ति प्रत्येक थोक पदार्थ में परमाणुओं के बीच रासायनिक संबंध में और पदार्थ सतहों और किसी भी के बीच हैसोखना।सतहों की फ्रैक्टेलिटी, सतह के एस्परिटी के स्केलिंग व्यवहार का वर्णन करने वाला एक पैरामीटर, स्थैतिक घर्षण के परिमाण को निर्धारित करने में एक महत्वपूर्ण भूमिका निभाने के लिए जाना जाता है।<ref name="statfric">{{cite journal|last1= Hanaor | first1= D. | last2=Gan |first2= Y. |last3=Einav | first3= I. | title= Static friction at fractal interfaces| journal= Tribology International | year=2016 | volume=93 | pages=229–238 |url= https://www.researchgate.net/publication/283675011| doi= 10.1016/j.triboint.2015.09.016 | arxiv= 2106.01473 | s2cid= 51900923 }}</ref>
सापेक्ष गति में सतहों के लिए <math>\mu = \mu_\mathrm{k}</math>, जहां पर <math>\mu_\mathrm{k}</math> गतिज घर्षण का गुणांक है।कूलम्ब घर्षण के बराबर है <math>F_\mathrm{f}</math>, और प्रत्येक सतह पर घर्षण बल अन्य सतह के सापेक्ष इसकी गति के विपरीत दिशा में लगाया जाता है।
सापेक्ष गति में सतहों के लिए <math>\mu = \mu_\mathrm{k}</math>, जहां पर <math>\mu_\mathrm{k}</math> गतिज घर्षण का गुणांक है।कूलम्ब घर्षण के बराबर है <math>F_\mathrm{f}</math>, और प्रत्येक सतह पर घर्षण बल अन्य सतह के सापेक्ष इसकी गति के विपरीत दिशा में लगाया जाता है।
Line 120: Line 120:
संयोजन में अधिकांश शुष्क पदार्थों में 0.3 और 0.6 के बीच घर्षण गुणांक मान होते हैं। इस सीमा के बाहर के मान दुर्लभ हैं, लेकिन उदाहरण के लिए, पॉलीटेट्रैफ्लुओरोथिलीन, 0.04 के रूप में कम गुणांक हो सकता है। शून्य के मूल्य का मतलब यह होगा कि कोई घर्षण नहीं, एक मायावी गुण। अन्य सतहों के संपर्क में रबर 1 से 2 तक घर्षण गुणांक प्राप्त कर सकता है। कभी -कभी यह बनाए रखा जाता है कि μ सदैव <1 है, लेकिन यह सच नहीं है। जबकि अधिकांश प्रासंगिक अनुप्रयोगों में μ <1, 1 से ऊपर का मान केवल यह बताता है कि सतह के साथ किसी वस्तु को स्लाइड करने के लिए आवश्यक बल ऑब्जेक्ट पर सतह के सामान्य बल से अधिक है। उदाहरण के लिए, सिलिकॉन रबर या ऐक्रेलिक रबर-लेपित सतहों में घर्षण का एक गुणांक होता है जो 1 से काफी बड़ा हो सकता है।
संयोजन में अधिकांश शुष्क पदार्थों में 0.3 और 0.6 के बीच घर्षण गुणांक मान होते हैं। इस सीमा के बाहर के मान दुर्लभ हैं, लेकिन उदाहरण के लिए, पॉलीटेट्रैफ्लुओरोथिलीन, 0.04 के रूप में कम गुणांक हो सकता है। शून्य के मूल्य का मतलब यह होगा कि कोई घर्षण नहीं, एक मायावी गुण। अन्य सतहों के संपर्क में रबर 1 से 2 तक घर्षण गुणांक प्राप्त कर सकता है। कभी -कभी यह बनाए रखा जाता है कि μ सदैव <1 है, लेकिन यह सच नहीं है। जबकि अधिकांश प्रासंगिक अनुप्रयोगों में μ <1, 1 से ऊपर का मान केवल यह बताता है कि सतह के साथ किसी वस्तु को स्लाइड करने के लिए आवश्यक बल ऑब्जेक्ट पर सतह के सामान्य बल से अधिक है। उदाहरण के लिए, सिलिकॉन रबर या ऐक्रेलिक रबर-लेपित सतहों में घर्षण का एक गुणांक होता है जो 1 से काफी बड़ा हो सकता है।


जबकि यह अक्सर कहा जाता है कि COF एक भौतिक गुण है, यह एक सिस्टम गुण के रूप में बेहतर वर्गीकृत है। सच्चे भौतिक गुणों (जैसे चालकता, ढांकता हुआ स्थिरांक, उपज शक्ति) के विपरीत, किसी भी दो पदार्थों के लिए COF तापमान, वेग, वातावरण जैसे सिस्टम चर पर निर्भर करता है और जो अब लोकप्रिय रूप से उम्र बढ़ने और बहरी समय के रूप में वर्णित हैं; साथ ही पदार्थ के बीच इंटरफ़ेस के ज्यामितीय गुणों पर, अर्थात् सतह कर्कशता।<ref name="statfric" />उदाहरण के लिए, एक मोटी तांबे की प्लेट के विपरीत एक कॉपर पिन विसर्पण में एक सीओएफ हो सकता है जो 0.6 से कम गति से भिन्न होता है (धातु के विपरीत धातु विसर्पण) 0.2 से नीचे 0.2 से नीचे उच्च गति पर जब तांबे की सतह घर्षण हीटिंग के कारण पिघलने लगती है।बाद की गति, निश्चित रूप से, COF को विशिष्ट रूप से निर्धारित नहीं करती है;यदि पिन व्यास को बढ़ाया जाता है ताकि घर्षण ऊष्मा को तेजी से हटा दिया जाए, तो तापमान गिरता है, पिन ठोस रहता है और COF 'कम गति' परीक्षण से बढ़ जाता है।{{Cite web |url=https://www.sciencedirect.com/topics/engineering/coefficient-of-friction |title=Coefficient of Friction - an overview - ScienceDirect Topics|access-date=9 May 2022}}
जबकि यह अक्सर कहा जाता है कि COF एक भौतिक गुण है, यह एक प्रणाली गुण के रूप में अपेक्षाकृत अत्यधिक वर्गीकृत है। सच्चे भौतिक गुणों (जैसे चालकता, ढांकता हुआ स्थिरांक, उपज शक्ति) के विपरीत, किसी भी दो पदार्थों के लिए COF तापमान, वेग, वातावरण जैसे प्रणाली चर पर निर्भर करता है और जो अब लोकप्रिय रूप से उम्र बढ़ने और बहरी समय के रूप में वर्णित हैं; साथ ही पदार्थ के बीच अन्तराफलक के ज्यामितीय गुणों पर, अर्थात् सतह कर्कशता।<ref name="statfric" />उदाहरण के लिए, एक मोटी तांबे की प्लेट के विपरीत एक कॉपर पिन विसर्पण में एक सीओएफ हो सकता है जो 0.6 से कम गति से भिन्न होता है (धातु के विपरीत धातु विसर्पण) 0.2 से नीचे 0.2 से नीचे उच्च गति पर जब तांबे की सतह घर्षण हीटिंग के कारण पिघलने लगती है।बाद की गति, निश्चित रूप से, COF को विशिष्ट रूप से निर्धारित नहीं करती है;यदि पिन व्यास को बढ़ाया जाता है ताकि घर्षण ऊष्मा को तेजी से हटा दिया जाए, तो तापमान गिरता है, पिन ठोस रहता है और COF 'कम गति' परीक्षण से बढ़ जाता है।{{Cite web |url=https://www.sciencedirect.com/topics/engineering/coefficient-of-friction |title=Coefficient of Friction - an overview - ScienceDirect Topics|access-date=9 May 2022}}




Line 348: Line 348:
[[File:Static kinetic friction vs time.png|400px|right|thumb|जब द्रव्यमान नहीं चल रहा होता है, तो वस्तु स्थैतिक घर्षण का अनुभव करती है।घर्षण बढ़ जाता है क्योंकि प्रयुक्त बल तब तक बढ़ता है जब तक ब्लॉक चलता है।ब्लॉक के चलने के बाद, यह गतिज घर्षण का अनुभव करता है, जो अधिकतम स्थैतिक घर्षण से कम है।]]
[[File:Static kinetic friction vs time.png|400px|right|thumb|जब द्रव्यमान नहीं चल रहा होता है, तो वस्तु स्थैतिक घर्षण का अनुभव करती है।घर्षण बढ़ जाता है क्योंकि प्रयुक्त बल तब तक बढ़ता है जब तक ब्लॉक चलता है।ब्लॉक के चलने के बाद, यह गतिज घर्षण का अनुभव करता है, जो अधिकतम स्थैतिक घर्षण से कम है।]]
स्थिर घर्षण दो या अधिक ठोस वस्तुओं के बीच घर्षण है जो एक दूसरे के सापेक्ष नहीं चल रहे हैं।उदाहरण के लिए, स्थैतिक घर्षण एक वस्तु को एक समतल सतह को विसर्पण से रोक सकता है।स्थिर घर्षण का गुणांक, सामान्य रूप से μ के रूप में निरूपित किया गया<sub>s</sub>, सामान्य रूप से गतिज घर्षण के गुणांक से अधिक है।स्थैतिक घर्षण को ठोस सतहों पर कई लंबाई के तराजू में सतह कर्कशता सुविधाओं के परिणाम के रूप में उत्पन्न किया जाता है।ये विशेषताएं, जिन्हें एस्परिटी (पदार्थ विज्ञान) के रूप में जाना जाता है, नैनो-स्केल आयामों के लिए नीचे मौजूद हैं और परिणाम केवल स्पष्ट या नाममात्र संपर्क क्षेत्र के केवल एक अंश के लिए सीमित संख्या में बिंदुओं पर मौजूद ठोस संपर्क के लिए सही ठोस रूप से होते हैं।<ref>[https://www.researchgate.net/publication/283675011_Static_friction_at_fractal_interfaces multi-scale origins of static friction] 2016</ref> प्रयुक्त भार और सच्चे संपर्क क्षेत्र के बीच की रैखिकता, एस्परिटी विरूपण से उत्पन्न होती है, स्थिर घर्षण बल और सामान्य बल के बीच रैखिकता को जन्म देती है, जो विशिष्ट एमोनटन -कॉम्ब प्रकार के घर्षण के लिए पाया जाता है।<ref>{{cite journal | author= Greenwood J.A. and JB Williamson| title= Contact of nominally flat surfaces | journal= Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences | volume=295 | issue=1442 | year=1966}}</ref>
स्थिर घर्षण दो या अधिक ठोस वस्तुओं के बीच घर्षण है जो एक दूसरे के सापेक्ष नहीं चल रहे हैं।उदाहरण के लिए, स्थैतिक घर्षण एक वस्तु को एक समतल सतह को विसर्पण से रोक सकता है।स्थिर घर्षण का गुणांक, सामान्य रूप से μ के रूप में निरूपित किया गया<sub>s</sub>, सामान्य रूप से गतिज घर्षण के गुणांक से अधिक है।स्थैतिक घर्षण को ठोस सतहों पर कई लंबाई के तराजू में सतह कर्कशता सुविधाओं के परिणाम के रूप में उत्पन्न किया जाता है।ये विशेषताएं, जिन्हें एस्परिटी (पदार्थ विज्ञान) के रूप में जाना जाता है, नैनो-स्केल आयामों के लिए नीचे मौजूद हैं और परिणाम केवल स्पष्ट या नाममात्र संपर्क क्षेत्र के केवल एक अंश के लिए सीमित संख्या में बिंदुओं पर मौजूद ठोस संपर्क के लिए सही ठोस रूप से होते हैं।<ref>[https://www.researchgate.net/publication/283675011_Static_friction_at_fractal_interfaces multi-scale origins of static friction] 2016</ref> प्रयुक्त भार और सच्चे संपर्क क्षेत्र के बीच की रैखिकता, एस्परिटी विरूपण से उत्पन्न होती है, स्थिर घर्षण बल और सामान्य बल के बीच रैखिकता को जन्म देती है, जो विशिष्ट एमोनटन -कॉम्ब प्रकार के घर्षण के लिए पाया जाता है।<ref>{{cite journal | author= Greenwood J.A. and JB Williamson| title= Contact of nominally flat surfaces | journal= Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences | volume=295 | issue=1442 | year=1966}}</ref>
किसी वस्तु को स्थानांतरित करने से पहले स्थिर घर्षण बल को एक प्रयुक्त बल द्वारा दूर किया जाना चाहिए।विसर्पण से पहले दो सतहों के बीच अधिकतम संभव घर्षण बल स्थैतिक घर्षण और सामान्य बल के गुणांक का उत्पाद है: <math>F_\text{max} = \mu_\mathrm{s} F_\text{n}</math>।जब कोई विसर्पण नहीं होती है, तो घर्षण बल का शून्य से कोई मूल्य हो सकता है <math>F_\text{max}</math>।किसी भी बल से छोटा <math>F_\text{max}</math> एक सतह को दूसरे पर स्लाइड करने का प्रयास समान परिमाण और विपरीत दिशा के एक घर्षण बल द्वारा विरोध किया जाता है।किसी भी बल से बड़ा <math>F_\text{max}</math> स्थैतिक घर्षण के बल पर काबू पाता है और विसर्पण का कारण बनता है।तत्काल विसर्पण होती है, स्थिर घर्षण अब प्रयुक्त नहीं होता है - दो सतहों के बीच घर्षण को तब गतिज घर्षण कहा जाता है।हालांकि, एक स्पष्ट स्थैतिक घर्षण उस स्थितियों में भी देखा जा सकता है जब सच्चा स्थिर घर्षण शून्य होता है।<ref>{{Cite journal|last1=Nakano|first1=K.|last2=Popov|first2=V. L.|date=2020-12-10|title=Dynamic stiction without static friction: The role of friction vector rotation| url=https://link.aps.org/doi/10.1103/PhysRevE.102.063001| journal=Physical Review E|volume=102|issue=6|pages=063001| doi=10.1103/PhysRevE.102.063001|pmid=33466084 |bibcode=2020PhRvE.102f3001N |s2cid=230599544 }}</ref> स्थिर घर्षण का एक उदाहरण वह बल है जो एक कार के पहिये को विसर्पण से रोकता है क्योंकि यह जमीन पर रोल करता है।भले ही पहिया गति में है, जमीन के संपर्क में टायर का पैच जमीन के सापेक्ष स्थिर है, इसलिए यह गतिज घर्षण के अतिरिक्त स्थिर है।विसर्पण पर, पहिया घर्षण गतिज घर्षण में बदल जाता है।एक एंटी-लॉक ब्रेकिंग सिस्टम एक बंद पहिया को पुनः शुरू करने की अनुमति देने के सिद्धांत पर संचालित होता है ताकि कार स्थैतिक घर्षण बनाए रखे।
किसी वस्तु को स्थानांतरित करने से पहले स्थिर घर्षण बल को एक प्रयुक्त बल द्वारा दूर किया जाना चाहिए।विसर्पण से पहले दो सतहों के बीच अधिकतम संभव घर्षण बल स्थैतिक घर्षण और सामान्य बल के गुणांक का उत्पाद है: <math>F_\text{max} = \mu_\mathrm{s} F_\text{n}</math>।जब कोई विसर्पण नहीं होती है, तो घर्षण बल का शून्य से कोई मूल्य हो सकता है <math>F_\text{max}</math>।किसी भी बल से छोटा <math>F_\text{max}</math> एक सतह को दूसरे पर स्लाइड करने का प्रयास समान परिमाण और विपरीत दिशा के एक घर्षण बल द्वारा विरोध किया जाता है।किसी भी बल से बड़ा <math>F_\text{max}</math> स्थैतिक घर्षण के बल पर काबू पाता है और विसर्पण का कारण बनता है।तत्काल विसर्पण होती है, स्थिर घर्षण अब प्रयुक्त नहीं होता है - दो सतहों के बीच घर्षण को तब गतिज घर्षण कहा जाता है।हालांकि, एक स्पष्ट स्थैतिक घर्षण उस स्थितियों में भी देखा जा सकता है जब सच्चा स्थिर घर्षण शून्य होता है।<ref>{{Cite journal|last1=Nakano|first1=K.|last2=Popov|first2=V. L.|date=2020-12-10|title=Dynamic stiction without static friction: The role of friction vector rotation| url=https://link.aps.org/doi/10.1103/PhysRevE.102.063001| journal=Physical Review E|volume=102|issue=6|pages=063001| doi=10.1103/PhysRevE.102.063001|pmid=33466084 |bibcode=2020PhRvE.102f3001N |s2cid=230599544 }}</ref> स्थिर घर्षण का एक उदाहरण वह बल है जो एक कार के पहिये को विसर्पण से रोकता है क्योंकि यह जमीन पर रोल करता है।भले ही पहिया गति में है, जमीन के संपर्क में टायर का पैच जमीन के सापेक्ष स्थिर है, इसलिए यह गतिज घर्षण के अतिरिक्त स्थिर है।विसर्पण पर, पहिया घर्षण गतिज घर्षण में बदल जाता है।एक एंटी-लॉक ब्रेकिंग प्रणाली एक बंद पहिया को पुनः शुरू करने की अनुमति देने के सिद्धांत पर संचालित होता है ताकि कार स्थैतिक घर्षण बनाए रखे।
   
   
स्थैतिक घर्षण का अधिकतम मूल्य, जब गति आसन्न हो रही है, कभी -कभी घर्षण को सीमित करने के रूप में संदर्भित किया जाता है,<ref name="Bhavikatti">{{cite book
स्थैतिक घर्षण का अधिकतम मूल्य, जब गति आसन्न हो रही है, कभी -कभी घर्षण को सीमित करने के रूप में संदर्भित किया जाता है,<ref name="Bhavikatti">{{cite book
Line 365: Line 365:


=== गतिज घर्षण ===
=== गतिज घर्षण ===
गतिज घर्षण, जिसे गतिशील घर्षण या विसर्पण घर्षण के रूप में भी जाना जाता है, तब होता है जब दो ऑब्जेक्ट एक दूसरे के सापेक्ष चलते हैं और एक साथ रगड़ते हैं (जैसे जमीन पर एक स्लेज)।गतिज घर्षण के गुणांक को सामान्य रूप से '' μ '' के रूप में दर्शाया जाता है<sub>k</sub>, और सामान्य रूप से समान पदार्थ के लिए स्थिर घर्षण के गुणांक से कम है।<ref>{{cite book|title=Statics: Analysis and Design of Systems in Equilibrium |publisher=Wiley and Sons|year=2005 |isbn=978-0-471-37299-8|page=618 |quote=In general, for given contacting surfaces, ''μ''<sub>k</sub> < ''μ''<sub>s</sub> |author1=Sheppard, Sheri|author2=Tongue, Benson H.|author3=Anagnos, Thalia|author1-link=Sheri D. Sheppard}}
गतिज घर्षण, जिसे गतिशील घर्षण या विसर्पण घर्षण के रूप में भी जाना जाता है, तब होता है जब दो ऑब्जेक्ट एक दूसरे के सापेक्ष चलते हैं और एक साथ घर्षणते हैं (जैसे जमीन पर एक स्लेज)।गतिज घर्षण के गुणांक को सामान्य रूप से '' μ '' के रूप में दर्शाया जाता है<sub>k</sub>, और सामान्य रूप से समान पदार्थ के लिए स्थिर घर्षण के गुणांक से कम है।<ref>{{cite book|title=Statics: Analysis and Design of Systems in Equilibrium |publisher=Wiley and Sons|year=2005 |isbn=978-0-471-37299-8|page=618 |quote=In general, for given contacting surfaces, ''μ''<sub>k</sub> < ''μ''<sub>s</sub> |author1=Sheppard, Sheri|author2=Tongue, Benson H.|author3=Anagnos, Thalia|author1-link=Sheri D. Sheppard}}
</ref><ref>
</ref><ref>
{{cite book
{{cite book
Line 416: Line 416:


=== कूलम्ब मॉडल का संख्यात्मक सिमुलेशन ===
=== कूलम्ब मॉडल का संख्यात्मक सिमुलेशन ===
घर्षण का एक सरलीकृत मॉडल होने के बावजूद, कूलम्ब मॉडल कई कंप्यूटर सिमुलेशन अनुप्रयोगों जैसे कि मल्टीबॉडी सिस्टम और दानेदार पदार्थ में उपयोगी है।यहां तक कि इसकी सबसे सरल अभिव्यक्ति स्टिकिंग और विसर्पण के मौलिक प्रभावों को घेर लेती है जो कई प्रयुक्त मामलों में आवश्यक हैं, हालांकि विशिष्ट एल्गोरिदम को कुशलता से संख्यात्मक एकीकरण यांत्रिक प्रणालियों के लिए कूलम्ब घर्षण और द्विपक्षीय या एकतरफा संपर्क के साथ डिज़ाइन किया जाना है।<ref>{{cite journal |last1=Haslinger |first1=J. |title=Approximation of the Signorini problem with friction, obeying the Coulomb law |journal=Mathematical Methods in the Applied Sciences |volume=5 |issue=1 |pages=422–437 |year=1983 |bibcode=1983MMAS....5..422H |doi=10.1002/mma.1670050127 |last2=Nedlec |first2=J.C. |hdl=10338.dmlcz/104086 |url=http://dml.cz/bitstream/handle/10338.dmlcz/104086/AplMat_29-1984-3_6.pdf }}</ref><ref>{{cite journal |last1=Alart |first1=P. |last2=Curnier |first2=A. |title=A mixed formulation for frictional contact problems prone to Newton like solution method |journal=Computer Methods in Applied Mechanics and Engineering |volume=92 |pages=353–375 |year=1991 |bibcode=1991CMAME..92..353A |doi=10.1016/0045-7825(91)90022-X |issue=3 }}</ref><ref>{{cite journal |last1=Acary |first1=V. |last2=Cadoux |first2=F. |last3=Lemaréchal |first3=C. |last4=Malick |first4=J. |title=A formulation of the linear discrete Coulomb friction problem via convex optimization |journal=Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik |volume=91 |issue=2 |pages=155–175 |year=2011 |doi=10.1002/zamm.201000073 |bibcode=2011ZaMM...91..155A |s2cid=17280625 |url=https://hal.inria.fr/inria-00495734/document }}</ref><ref>{{cite journal |last1=De Saxcé |first1=G. |last2=Feng |first2=Z.-Q. |title=The bipotential method: A constructive approach to design the complete contact law with friction and improved numerical algorithms |journal=Mathematical and Computer Modelling |volume=28 |issue=4 |pages=225–245 |year=1998 |doi=10.1016/S0895-7177(98)00119-8|doi-access=free }}</ref><ref>{{cite journal |last1=Simo |first1=J.C. |last2=Laursen |first2=T.A. |title=An augmented lagrangian treatment of contact problems involving friction |journal=Computers and Structures |volume=42 |issue=2 |pages=97–116 |year=1992 |doi=10.1016/0045-7949(92)90540-G}}</ref> कुछ काफी nonlinear सिस्टम#प्रकार के nonlinear व्यवहार, जैसे कि तथाकथित दर्दलेव विरोधाभास, कूलम्ब घर्षण के साथ सामना किया जा सकता है।<ref>{{cite book |last1=Acary |first1=V. |last2=Brogliato |first2=B. |title=Numerical Methods for Nonsmooth Dynamical Systems. Applications in Mechanics and Electronics |publisher=[[Springer Science+Business Media|Springer Verlag Heidelberg]] |volume=35 |year=2008}}</ref>
घर्षण का एक सरलीकृत मॉडल होने के बावजूद, कूलम्ब मॉडल कई कंप्यूटर सिमुलेशन अनुप्रयोगों जैसे कि मल्टीबॉडी प्रणाली और दानेदार पदार्थ में उपयोगी है।यहां तक कि इसकी सबसे सरल अभिव्यक्ति स्टिकिंग और विसर्पण के मौलिक प्रभावों को घेर लेती है जो कई प्रयुक्त मामलों में आवश्यक हैं, हालांकि विशिष्ट एल्गोरिदम को कुशलता से संख्यात्मक एकीकरण यांत्रिक प्रणालियों के लिए कूलम्ब घर्षण और द्विपक्षीय या एकतरफा संपर्क के साथ डिज़ाइन किया जाना है।<ref>{{cite journal |last1=Haslinger |first1=J. |title=Approximation of the Signorini problem with friction, obeying the Coulomb law |journal=Mathematical Methods in the Applied Sciences |volume=5 |issue=1 |pages=422–437 |year=1983 |bibcode=1983MMAS....5..422H |doi=10.1002/mma.1670050127 |last2=Nedlec |first2=J.C. |hdl=10338.dmlcz/104086 |url=http://dml.cz/bitstream/handle/10338.dmlcz/104086/AplMat_29-1984-3_6.pdf }}</ref><ref>{{cite journal |last1=Alart |first1=P. |last2=Curnier |first2=A. |title=A mixed formulation for frictional contact problems prone to Newton like solution method |journal=Computer Methods in Applied Mechanics and Engineering |volume=92 |pages=353–375 |year=1991 |bibcode=1991CMAME..92..353A |doi=10.1016/0045-7825(91)90022-X |issue=3 }}</ref><ref>{{cite journal |last1=Acary |first1=V. |last2=Cadoux |first2=F. |last3=Lemaréchal |first3=C. |last4=Malick |first4=J. |title=A formulation of the linear discrete Coulomb friction problem via convex optimization |journal=Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik |volume=91 |issue=2 |pages=155–175 |year=2011 |doi=10.1002/zamm.201000073 |bibcode=2011ZaMM...91..155A |s2cid=17280625 |url=https://hal.inria.fr/inria-00495734/document }}</ref><ref>{{cite journal |last1=De Saxcé |first1=G. |last2=Feng |first2=Z.-Q. |title=The bipotential method: A constructive approach to design the complete contact law with friction and improved numerical algorithms |journal=Mathematical and Computer Modelling |volume=28 |issue=4 |pages=225–245 |year=1998 |doi=10.1016/S0895-7177(98)00119-8|doi-access=free }}</ref><ref>{{cite journal |last1=Simo |first1=J.C. |last2=Laursen |first2=T.A. |title=An augmented lagrangian treatment of contact problems involving friction |journal=Computers and Structures |volume=42 |issue=2 |pages=97–116 |year=1992 |doi=10.1016/0045-7949(92)90540-G}}</ref> कुछ काफी nonlinear प्रणाली#प्रकार के nonlinear व्यवहार, जैसे कि तथाकथित दर्दलेव विरोधाभास, कूलम्ब घर्षण के साथ सामना किया जा सकता है।<ref>{{cite book |last1=Acary |first1=V. |last2=Brogliato |first2=B. |title=Numerical Methods for Nonsmooth Dynamical Systems. Applications in Mechanics and Electronics |publisher=[[Springer Science+Business Media|Springer Verlag Heidelberg]] |volume=35 |year=2008}}</ref>




=== शुष्क घर्षण और अस्थिरता ===
=== शुष्क घर्षण और अस्थिरता ===
शुष्क घर्षण यांत्रिक प्रणालियों में कई प्रकार की अस्थिरताओं को प्रेरित कर सकता है जो घर्षण की अनुपस्थिति में एक स्थिर व्यवहार प्रदर्शित करते हैं।<ref>{{cite book |last=Bigoni |first=D. |title=Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability |publisher=Cambridge University Press, 2012 |isbn=9781107025417|date=2012-07-30 }}</ref> ये अस्थिरता घर्षण बल की बढ़ती वेग के साथ घर्षण बल की कमी के कारण हो सकती है, घर्षण (थर्मो-लोचदार अस्थिरता) के समय ऊष्मा उत्पादन के कारण पदार्थ विस्तार के द्वारा, या दो लोचदार पदार्थों के विसर्पण के शुद्ध गतिशील प्रभावों से (एडम्स (एडम्स)-मार्टिन अस्थिरता)।उत्तरार्द्ध को मूल रूप से 1995 में जॉर्ज जी। एडम्स (इंजीनियर) द्वारा खोजा गया था। जॉर्ज जी। एडम्स और जोआओ आर्मेनियो कोर्रेया मार्टिंस के लिए चिकनी सतहों के लिए<ref>{{cite journal |last=Adams |first=G. G. |title=Self-excited oscillations of two elastic half-spaces sliding with a constant coefficient of friction |doi=10.1115/1.2896013 |journal=Journal of Applied Mechanics |year=1995 |volume=62 |issue=4 |pages=867–872 |bibcode=1995JAM....62..867A }}</ref><ref>{{cite journal |last=Martins |first=J.A., Faria, L.O. & Guimarães, J. |title=Dynamic surface solutions in linear elasticity and viscoelasticity with frictional boundary conditions |doi=10.1115/1.2874477 |journal=Journal of Vibration and Acoustics |year=1995 |volume=117 |issue=4 |pages=445–451}}</ref> और बाद में आवधिक खुरदरी सतहों में पाया गया।<ref>{{cite journal |last1=M |first1=Nosonovsky |last2=G. |first2=Adams G. |title=Vibration and stability of frictional sliding of two elastic bodies with a wavy contact interface |doi=10.1115/1.1653684 |journal=Journal of Applied Mechanics |year=2004 |volume=71 |issue=2 |pages=154–161 |bibcode=2004JAM....71..154N }}</ref> विशेष रूप से, घर्षण-संबंधी गतिशील अस्थिरता को ब्रेक#शोर और एक ग्लास वीणा के 'गीत' के लिए जिम्मेदार माना जाता है,<ref>{{cite journal |last2=J. |first2=Hultén |last1=J. |first1=Flint |title=Lining-deformation-induced modal coupling as squeal generator in a distributed parameter disk brake model |doi=10.1006/jsvi.2001.4052 |bibcode=2002JSV...254....1F |journal= Journal of Sound and Vibration|year=2002 |volume=254 |issue=1 |pages=1–21}}</ref><ref>{{cite journal |last1=M. |first1=Kröger |last2=M. |first2=Neubauer |last3=K. |first3=Popp |s2cid=16395796 |title=Experimental investigation on the avoidance of self-excited vibrations |journal=Phil. Trans. R. Soc. A |doi=10.1098/rsta.2007.2127 |year=2008 |pages=785–810 |volume=366 |issue=1866 |pmid=17947204 |bibcode=2008RSPTA.366..785K }}</ref> घटना जिसमें छड़ी और पर्ची शामिल होती है, वेग के साथ घर्षण गुणांक की एक बूंद के रूप में मॉडलिंग की जाती है।<ref>{{cite journal |last2=L. |first2=Ruina, A. |last1=R. |first1=Rice, J. |title=Stability of Steady Frictional Slipping |journal=Journal of Applied Mechanics |volume=50 |year=1983 |pages=343–349 |url=http://ruina.tam.cornell.edu/research/topics/friction_and_fracture/stability_steady.pdf |doi=10.1115/1.3167042 |issue=2 |bibcode=1983JAM....50..343R |citeseerx=10.1.1.161.5207 }}</ref>
शुष्क घर्षण यांत्रिक प्रणालियों में कई प्रकार की अस्थिरताओं को प्रेरित कर सकता है जो घर्षण की अनुपस्थिति में एक स्थिर व्यवहार प्रदर्शित करते हैं।<ref>{{cite book |last=Bigoni |first=D. |title=Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability |publisher=Cambridge University Press, 2012 |isbn=9781107025417|date=2012-07-30 }}</ref> ये अस्थिरता घर्षण बल की बढ़ती वेग के साथ घर्षण बल की कमी के कारण हो सकती है, घर्षण (थर्मो-लोचदार अस्थिरता) के समय ऊष्मा उत्पादन के कारण पदार्थ विस्तार के द्वारा, या दो लोचदार पदार्थों के विसर्पण के शुद्ध गतिशील प्रभावों से (एडम्स (एडम्स)-मार्टिन अस्थिरता)।उत्तरार्द्ध को मूल रूप से 1995 में जॉर्ज जी। एडम्स (इंजीनियर) द्वारा खोजा गया था। जॉर्ज जी। एडम्स और जोआओ आर्मेनियो कोर्रेया मार्टिंस के लिए समतल सतहों के लिए<ref>{{cite journal |last=Adams |first=G. G. |title=Self-excited oscillations of two elastic half-spaces sliding with a constant coefficient of friction |doi=10.1115/1.2896013 |journal=Journal of Applied Mechanics |year=1995 |volume=62 |issue=4 |pages=867–872 |bibcode=1995JAM....62..867A }}</ref><ref>{{cite journal |last=Martins |first=J.A., Faria, L.O. & Guimarães, J. |title=Dynamic surface solutions in linear elasticity and viscoelasticity with frictional boundary conditions |doi=10.1115/1.2874477 |journal=Journal of Vibration and Acoustics |year=1995 |volume=117 |issue=4 |pages=445–451}}</ref> और बाद में आवधिक खुरदरी सतहों में पाया गया।<ref>{{cite journal |last1=M |first1=Nosonovsky |last2=G. |first2=Adams G. |title=Vibration and stability of frictional sliding of two elastic bodies with a wavy contact interface |doi=10.1115/1.1653684 |journal=Journal of Applied Mechanics |year=2004 |volume=71 |issue=2 |pages=154–161 |bibcode=2004JAM....71..154N }}</ref> विशेष रूप से, घर्षण-संबंधी गतिशील अस्थिरता को ब्रेक#शोर और एक ग्लास वीणा के 'गीत' के लिए जिम्मेदार माना जाता है,<ref>{{cite journal |last2=J. |first2=Hultén |last1=J. |first1=Flint |title=Lining-deformation-induced modal coupling as squeal generator in a distributed parameter disk brake model |doi=10.1006/jsvi.2001.4052 |bibcode=2002JSV...254....1F |journal= Journal of Sound and Vibration|year=2002 |volume=254 |issue=1 |pages=1–21}}</ref><ref>{{cite journal |last1=M. |first1=Kröger |last2=M. |first2=Neubauer |last3=K. |first3=Popp |s2cid=16395796 |title=Experimental investigation on the avoidance of self-excited vibrations |journal=Phil. Trans. R. Soc. A |doi=10.1098/rsta.2007.2127 |year=2008 |pages=785–810 |volume=366 |issue=1866 |pmid=17947204 |bibcode=2008RSPTA.366..785K }}</ref> घटना जिसमें छड़ी और पर्ची शामिल होती है, वेग के साथ घर्षण गुणांक की एक बूंद के रूप में मॉडलिंग की जाती है।<ref>{{cite journal |last2=L. |first2=Ruina, A. |last1=R. |first1=Rice, J. |title=Stability of Steady Frictional Slipping |journal=Journal of Applied Mechanics |volume=50 |year=1983 |pages=343–349 |url=http://ruina.tam.cornell.edu/research/topics/friction_and_fracture/stability_steady.pdf |doi=10.1115/1.3167042 |issue=2 |bibcode=1983JAM....50..343R |citeseerx=10.1.1.161.5207 }}</ref>
एक व्यावहारिक रूप से महत्वपूर्ण स्थिति वायलिन, सेलो, हर्डी-गर्डी, एरू, आदि जैसे धनुष उपकरणों के तार का आत्म-गठबंधन है।
एक व्यावहारिक रूप से महत्वपूर्ण स्थिति वायलिन, सेलो, हर्डी-गर्डी, एरू, आदि जैसे धनुष उपकरणों के तार का आत्म-गठबंधन है।


Line 434: Line 434:
| issue = 10|bibcode = 2011JMPSo..59.2208B |citeseerx=10.1.1.700.5291  }}</ref> अधिक जानकारी के लिए [http://www.ing.unitn.it/~bigoni/flutter.html मूवी] देखें।
| issue = 10|bibcode = 2011JMPSo..59.2208B |citeseerx=10.1.1.700.5291  }}</ref> अधिक जानकारी के लिए [http://www.ing.unitn.it/~bigoni/flutter.html मूवी] देखें।


घर्षण अस्थिरता विसर्पण इंटरफ़ेस में नए स्व-संगठित पैटर्न (या द्वितीयक संरचनाओं) के गठन को जन्म दे सकती है, जैसे कि इन-सीटू गठित ट्राइबोफिल्म्स जो कि तथाकथित स्व-सेवन पदार्थ में घर्षण और पहनने के लिए उपयोग किए जाते हैं।<ref>{{cite book
घर्षण अस्थिरता विसर्पण अन्तराफलक में नए स्व-संगठित पैटर्न (या द्वितीयक संरचनाओं) के गठन को जन्म दे सकती है, जैसे कि इन-सीटू गठित ट्राइबोफिल्म्स जो कि तथाकथित स्व-सेवन पदार्थ में घर्षण और पहनने के लिए उपयोग किए जाते हैं।<ref>{{cite book
| title = Friction-Induced Vibrations and Self-Organization: Mechanics and Non-Equilibrium Thermodynamics of Sliding Contact
| title = Friction-Induced Vibrations and Self-Organization: Mechanics and Non-Equilibrium Thermodynamics of Sliding Contact
| first = Michael
| first = Michael
Line 455: Line 455:
लुब्रिकेटेड घर्षण द्रव घर्षण का एक स्थिति है जहां एक द्रव दो ठोस सतहों को अलग करता है।स्नेहन एक तकनीक है जो एक या दोनों सतहों के पहनने को कम करने के लिए नियोजित है, जो सतहों के बीच एक स्नेहक नामक एक पदार्थ को हस्तक्षेप करके एक दूसरे के सापेक्ष निकट निकटता में निकटता में होती है।
लुब्रिकेटेड घर्षण द्रव घर्षण का एक स्थिति है जहां एक द्रव दो ठोस सतहों को अलग करता है।स्नेहन एक तकनीक है जो एक या दोनों सतहों के पहनने को कम करने के लिए नियोजित है, जो सतहों के बीच एक स्नेहक नामक एक पदार्थ को हस्तक्षेप करके एक दूसरे के सापेक्ष निकट निकटता में निकटता में होती है।


ज्यादातर मामलों में प्रयुक्त भार को तरल पदार्थ के भीतर उत्पन्न दबाव द्वारा किया जाता है, जो सतहों के बीच चिकनाई वाले द्रव की गति के लिए घर्षण श्यान प्रतिरोध के कारण होता है।पर्याप्त स्नेहन उपकरणों के सुचारू निरंतर संचालन की अनुमति देता है, केवल हल्के पहनने के साथ, और अत्यधिक तनाव या बीयरिंग पर बरामदगी के बिना।जब स्नेहन टूट जाता है, तो धातु या अन्य घटक एक दूसरे पर विनाशकारी रूप से रगड़ सकते हैं, जिससे ऊष्मा और संभवतः हानि या विफलता हो सकती है।
ज्यादातर मामलों में प्रयुक्त भार को तरल पदार्थ के भीतर उत्पन्न दबाव द्वारा किया जाता है, जो सतहों के बीच चिकनाई वाले द्रव की गति के लिए घर्षण श्यान प्रतिरोध के कारण होता है।पर्याप्त स्नेहन उपकरणों के सुचारू निरंतर संचालन की अनुमति देता है, केवल हल्के पहनने के साथ, और अत्यधिक तनाव या बीयरिंग पर बरामदगी के बिना।जब स्नेहन टूट जाता है, तो धातु या अन्य घटक एक दूसरे पर विनाशकारी रूप से घर्षण सकते हैं, जिससे ऊष्मा और संभवतः हानि या विफलता हो सकती है।


== सतही घर्षण ==
== सतही घर्षण ==
Line 461: Line 461:
सतही का घर्षण द्रव और निकाय की सतही के बीच बातचीत से उत्पन्न होता है, और सीधे निकाय की सतह के क्षेत्र से संबंधित होता है जो द्रव के संपर्क में होता है।सतही घर्षण ड्रैग समीकरण का अनुसरण करता है और वेग के वर्ग के साथ बढ़ता है।
सतही का घर्षण द्रव और निकाय की सतही के बीच बातचीत से उत्पन्न होता है, और सीधे निकाय की सतह के क्षेत्र से संबंधित होता है जो द्रव के संपर्क में होता है।सतही घर्षण ड्रैग समीकरण का अनुसरण करता है और वेग के वर्ग के साथ बढ़ता है।


सतही घर्षण वस्तु के चारों ओर सीमा परत में श्यान खींचने के कारण होता है।सतही के घर्षण को कम करने के दो तरीके हैं: पहला चलती निकाय को आकार देना है ताकि चिकनी प्रवाह संभव हो, जैसे कि एक एयरफॉइल।दूसरी विधि चलती वस्तु की लंबाई और क्रॉस-सेक्शन को कम करना है जितना कि व्यावहारिक है।
सतही घर्षण वस्तु के चारों ओर सीमा परत में श्यान खींचने के कारण होता है।सतही के घर्षण को कम करने के दो तरीके हैं: पहला चलती निकाय को आकार देना है ताकि समतल प्रवाह संभव हो, जैसे कि एक एयरफॉइल।दूसरी विधि चलती वस्तु की लंबाई और क्रॉस-सेक्शन को कम करना है जितना कि व्यावहारिक है।


== आंतरिक घर्षण ==
== आंतरिक घर्षण ==
Line 488: Line 488:
=== ट्राइबोइलेक्ट्रिक प्रभाव ===
=== ट्राइबोइलेक्ट्रिक प्रभाव ===
{{Main|Triboelectric effect}}
{{Main|Triboelectric effect}}
एक दूसरे के विपरीत असहमति पदार्थ को रगड़ने से इलेक्ट्रोस्टैटिक चार्ज का निर्माण हो सकता है, जो कि ज्वलनशील गैसों या वाष्प मौजूद होने पर खतरनाक हो सकता है।जब स्थिर बिल्ड-अप डिस्चार्ज होता है, तो विस्फोट ज्वलनशील मिश्रण के प्रज्वलन के कारण हो सकते हैं।
एक दूसरे के विपरीत असहमति पदार्थ को घर्षणने से इलेक्ट्रोस्टैटिक चार्ज का निर्माण हो सकता है, जो कि ज्वलनशील गैसों या वाष्प मौजूद होने पर जोखिमयुक्त हो सकता है।जब स्थिर बिल्ड-अप डिस्चार्ज होता है, तो विस्फोट ज्वलनशील मिश्रण के प्रज्वलन के कारण हो सकते हैं।


=== बेल्ट घर्षण ===
=== बेल्ट घर्षण ===
Line 502: Line 502:
पहियों, बॉल बेयरिंग, रोलर बीयरिंग, और एयर कुशन या अन्य प्रकार के द्रव बीयरिंग जैसे डिवाइस विसर्पण वाले घर्षण को बहुत छोटे प्रकार के रोलिंग घर्षण में बदल सकते हैं।
पहियों, बॉल बेयरिंग, रोलर बीयरिंग, और एयर कुशन या अन्य प्रकार के द्रव बीयरिंग जैसे डिवाइस विसर्पण वाले घर्षण को बहुत छोटे प्रकार के रोलिंग घर्षण में बदल सकते हैं।


कई थर्माप्लास्टिक पदार्थ जैसे कि नायलॉन, एचडीपीई और पीटीएफई सामान्य रूप से कम घर्षण असर (मैकेनिकल) में उपयोग की जाती हैं।वे विशेष रूप से उपयोगी हैं क्योंकि घर्षण का गुणांक बढ़ते भार के साथ गिरता है।<ref>{{Cite journal |author=Valentin L. Popov |author2=Lars Voll |author3=Stephan Kusche |author4=Qiang Li |author5=Svetlana V. Rozhkova |date=2018|title=Generalized master curve procedure for elastomer friction taking into account dependencies on velocity, temperature and normal force|journal=Tribology International|volume=120|pages=376–380|doi=10.1016/j.triboint.2017.12.047|arxiv=1604.03407|s2cid=119288819}}</ref> बेहतर पहनने के प्रतिरोध के लिए, बहुत अधिक आणविक भार ग्रेड सामान्य रूप से भारी शुल्क या महत्वपूर्ण बीयरिंग के लिए निर्दिष्ट होते हैं।
कई थर्माप्लास्टिक पदार्थ जैसे कि नायलॉन, एचडीपीई और पीटीएफई सामान्य रूप से कम घर्षण असर (मैकेनिकल) में उपयोग की जाती हैं।वे विशेष रूप से उपयोगी हैं क्योंकि घर्षण का गुणांक बढ़ते भार के साथ गिरता है।<ref>{{Cite journal |author=Valentin L. Popov |author2=Lars Voll |author3=Stephan Kusche |author4=Qiang Li |author5=Svetlana V. Rozhkova |date=2018|title=Generalized master curve procedure for elastomer friction taking into account dependencies on velocity, temperature and normal force|journal=Tribology International|volume=120|pages=376–380|doi=10.1016/j.triboint.2017.12.047|arxiv=1604.03407|s2cid=119288819}}</ref> अपेक्षाकृत अत्यधिक पहनने के प्रतिरोध के लिए, बहुत अधिक आणविक भार ग्रेड सामान्य रूप से भारी शुल्क या महत्वपूर्ण बीयरिंग के लिए निर्दिष्ट होते हैं।


=== स्नेहक ===
=== स्नेहक ===
Line 528: Line 528:


=== घर्षण का कार्य ===
=== घर्षण का कार्य ===
दो सतहों के बीच इंटरफ़ेस के संदर्भ फ्रेम में, स्थिर घर्षण कोई यांत्रिक कार्य नहीं करता है, क्योंकि सतहों के बीच कभी भी विस्थापन नहीं होता है।एक ही संदर्भ फ्रेम में, गतिज घर्षण सदैव गति के विपरीत दिशा में होता है, और नकारात्मक कार्य करता है।<ref>{{Cite book |last=Den Hartog |first=J. P. |title=Mechanics |publisher=Courier Dover Publications |page=142 |year=1961 |url=https://books.google.com/books?id=WRXrtu44W9UC |isbn=978-0-486-60754-2}}</ref> हालांकि, घर्षण संदर्भ के कुछ फ्रेम में सकारात्मक कार्य कर सकता है।एक गलीचा पर एक भारी बॉक्स रखकर इसे देख सकता है, फिर जल्दी से गलीचा पर खींच सकता है।इस स्थितियों में, बॉक्स गलीचा के सापेक्ष पीछे की ओर स्लाइड करता है, लेकिन संदर्भ के फ्रेम के सापेक्ष आगे बढ़ता है जिसमें फर्श स्थिर है।इस प्रकार, बॉक्स और गलीचा के बीच गतिज घर्षण बॉक्स को उसी दिशा में तेज करता है जो बॉक्स चलता है, सकारात्मक कार्य करता है।<ref>{{cite book
दो सतहों के बीच अन्तराफलक के संदर्भ फ्रेम में, स्थिर घर्षण कोई यांत्रिक कार्य नहीं करता है, क्योंकि सतहों के बीच कभी भी विस्थापन नहीं होता है।एक ही संदर्भ फ्रेम में, गतिज घर्षण सदैव गति के विपरीत दिशा में होता है, और नकारात्मक कार्य करता है।<ref>{{Cite book |last=Den Hartog |first=J. P. |title=Mechanics |publisher=Courier Dover Publications |page=142 |year=1961 |url=https://books.google.com/books?id=WRXrtu44W9UC |isbn=978-0-486-60754-2}}</ref> हालांकि, घर्षण संदर्भ के कुछ फ्रेम में सकारात्मक कार्य कर सकता है।एक गलीचा पर एक भारी बॉक्स रखकर इसे देख सकता है, फिर जल्दी से गलीचा पर खींच सकता है।इस स्थितियों में, बॉक्स गलीचा के सापेक्ष पीछे की ओर स्लाइड करता है, लेकिन संदर्भ के फ्रेम के सापेक्ष आगे बढ़ता है जिसमें फर्श स्थिर है।इस प्रकार, बॉक्स और गलीचा के बीच गतिज घर्षण बॉक्स को उसी दिशा में तेज करता है जो बॉक्स चलता है, सकारात्मक कार्य करता है।<ref>{{cite book
| title = Minds-on Physics  
| title = Minds-on Physics  
| first = William J
| first = William J
Line 543: Line 543:


=== परिवहन ===
=== परिवहन ===
*वाहन ब्रेक स्वाभाविक रूप से घर्षण पर निर्भर करते हैं, अपनी गतिज ऊर्जा को ऊष्मा में परिवर्तित करके एक वाहन को मंद कर देते हैं।संयोग से, इस बड़ी मात्रा में ऊष्मा को सुरक्षित रूप से फैलाने से ब्रेक सिस्टम डिजाइन करने में एक तकनीकी चुनौती है।डिस्क ब्रेक एक डिस्क और ब्रेक पैड के बीच घर्षण पर निर्भर करते हैं जो घूर्णन डिस्क के विपरीत ट्रांसवर्सली निचोड़ा जाता है।ड्रम ब्रेक में, ब्रेक शूज़ या पैड को घर्षण बनाने के लिए एक घूर्णन सिलेंडर (ब्रेक ड्रम) के विपरीत बाहर की ओर दबाया जाता है।चूंकि ब्रेकिंग डिस्क ड्रमों की तुलना में अधिक कुशलता से ठंडा हो सकता है, इसलिए डिस्क ब्रेक में प्रदर्शन बेहतर प्रदर्शन होता है।<ref>{{cite web|url=https://wonderopolis.org/wonder/how-do-car-brakes-work|title=How Do Car Brakes Work?|publisher=Wonderopolis|access-date=November 4, 2018}}</ref>
*वाहन ब्रेक स्वाभाविक रूप से घर्षण पर निर्भर करते हैं, अपनी गतिज ऊर्जा को ऊष्मा में परिवर्तित करके एक वाहन को मंद कर देते हैं। संयोग से, इस बड़ी मात्रा में ऊष्मा को सुरक्षित रूप से विस्तारित करने से ब्रेक प्रणाली डिजाइन करने में एक तकनीकी चुनौती है ।डिस्क ब्रेक एक डिस्क और ब्रेक पैड के बीच घर्षण पर निर्भर करते हैं जो घूर्णन डिस्क के विपरीत अनुप्रस्थ रूप से संकुचित किया जाता है। ड्रम ब्रेक में, ब्रेक शूज़ या पैड को घर्षण बनाने के लिए एक घूर्णन सिलेंडर (ब्रेक ड्रम) के विपरीत बाहर की ओर कर्षित किया जाता है। चूंकि गतिरोधक डिस्क ड्रमों की तुलना में अधिक कुशलता से ठंडा हो सकता है, इसलिए डिस्क ब्रेक में अपेक्षाकृत अत्यधिक प्रदर्शन होता है।<ref>{{cite web|url=https://wonderopolis.org/wonder/how-do-car-brakes-work|title=How Do Car Brakes Work?|publisher=Wonderopolis|access-date=November 4, 2018}}</ref>
*रेल आसंजन से तात्पर्य एक ट्रेन के ग्रिप व्हील्स को रेल पर होता है, घर्षण संपर्क यांत्रिकी देखें।
*रेल आसंजन से तात्पर्य एक ट्रेन के ग्रिप चक्र को रेल पर होता है, घर्षण संपर्क यांत्रिकी देखें।
*रोड स्लिपरिटी ऑटोमोबाइल के लिए एक महत्वपूर्ण डिजाइन और सुरक्षा कारक है<ref name="HighFrictionRoad">{{cite web |author=Iskander, R |author2=Stevens, A | url=http://saferroadsconference.com/wp-content/uploads/2016/05/R-Iskander-Effectiveness-of-the-Application-of-High-Friction-Surfacing-Crash-Reduction.pdf | title=Effectiveness of the Application of High Friction Surfacing-Crash-Reduction.pdf |access-date=2017-09-03 }}</ref>
*सड़क पर विसर्पण वाहन  के लिए एक महत्वपूर्ण डिजाइन और सुरक्षा कारक है।<ref name="HighFrictionRoad">{{cite web |author=Iskander, R |author2=Stevens, A | url=http://saferroadsconference.com/wp-content/uploads/2016/05/R-Iskander-Effectiveness-of-the-Application-of-High-Friction-Surfacing-Crash-Reduction.pdf | title=Effectiveness of the Application of High Friction Surfacing-Crash-Reduction.pdf |access-date=2017-09-03 }}</ref>
** स्प्लिट घर्षण एक कार के दोनों ओर अलग -अलग घर्षण के कारण उत्पन्न होने वाली एक विशेष रूप से खतरनाक स्थिति है।
** विभाजन घर्षण एक विशेष रूप से जोखिमयुक्त स्थिति है जो कार के दोनों ओर अलग-अलग घर्षण के कारण उत्पन्न होती है।
** बनावट (सड़कें) टायरों और ड्राइविंग सतह की बातचीत को प्रभावित करती है।
** सड़क की बनावट चक्रों और परिचालन सतह की परस्पर क्रिया को प्रभावित करती है।


=== माप ===
=== माप ===
*एक ट्राइबोमीटर एक ऐसा उपकरण है जो सतह पर घर्षण को मापता है।
*एक घर्षण-मापी एक ऐसा उपकरण है जो सतह पर घर्षण को मापता है।
*एक प्रोफाइलोग्राफ एक उपकरण है जिसका उपयोग फुटपाथ की सतह कर्कशता को मापने के लिए किया जाता है।
*एक प्रोफाइलोग्राफ एक उपकरण है जिसका उपयोग रास्ते के फर्श की सतह कर्कशता को मापने के लिए किया जाता है।


=== घरेलू उपयोग ===
=== घरेलू उपयोग ===
*घर्षण का उपयोग मैचस्टिक को गर्म करने और प्रज्वलित करने के लिए किया जाता है (एक मैचस्टिक के सिर के बीच घर्षण और मैच बॉक्स की रगड़ सतह)<ref>{{cite web |url=https://curiosity.com/topics/how-does-lighting-a-match-work-curiosity/ |title=How Does Lighting A Match Work? |author=<!--Not stated--> |date=November 11, 2015 |website=curiosity.com |publisher=Curiosity |access-date=November 4, 2018}}</ref>
*घर्षण का उपयोग माचिस की तीलियों को गर्म करने (माचिस की तीली के सिर के बीच घर्षण और मैच बॉक्स की घर्षण सतह) और प्रज्वलित करने के लिए किया जाता है।<ref>{{cite web |url=https://curiosity.com/topics/how-does-lighting-a-match-work-curiosity/ |title=How Does Lighting A Match Work? |author=<!--Not stated--> |date=November 11, 2015 |website=curiosity.com |publisher=Curiosity |access-date=November 4, 2018}}</ref>
*चिपचिपे पैड का उपयोग वस्तु और वस्तु के बीच घर्षण गुणांक को प्रभावी ढंग से बढ़ाकर चिकनी सतहों को विसर्पण से प्रतिबंधित करने के लिए किया जाता है।
*संलगक पैड का उपयोग वस्तु और वस्तु के बीच घर्षण गुणांक को प्रभावी रूप से बढ़ाकर समतल सतहों को विसर्पण से प्रतिबंधित करने के लिए किया जाता है।


== यह भी देखें ==
== यह भी देखें ==

Revision as of 15:06, 21 June 2023

अन्य प्रयोगों के लिए, घर्षण (बहुविकल्पी) देखें।

चित्रा 1: फ्रैक्टल रफ सतहों के साथ सिम्युलेटेड ब्लॉक, स्थैतिक घर्षण इंटरैक्शन का प्रदर्शन[1]

घर्षण वह बल है जो ठोस सतहों, तरल परतों, और भौतिक तत्वों के एक-दूसरे के विरुद्ध विसर्पण की सापेक्ष गति का विरोध करता है।[2] कई प्रकार के घर्षण होते हैं:

  • शुष्क घर्षण एक ऐसा बल है जो संपर्क में दो ठोस सतहों के सापेक्ष पार्श्व गति का विरोध करता है। शुष्क घर्षण को गैर-गतिशील सतहों के बीच स्थैतिक घर्षण और चलती सतहों के बीच गतिज घर्षण में विभाजित किया जाता है। परमाणु या आणविक घर्षण के अपवाद के साथ, शुष्क घर्षण सामान्य रूप से सतह की विशेषताओं के संपर्क से उत्पन्न होता है, जिसे विषमता (चित्र 1 देखें) के रूप में जाना जाता है।
  • द्रव घर्षण एक श्यान द्रव की परतों के बीच घर्षण का वर्णन करता है जो एक दूसरे के सापेक्ष गतिमान हैं।[3][4]
  • स्नेहक घर्षण द्रव घर्षण का स्थिति है जहां स्नेहक द्रव दो ठोस सतहों को अलग करता है।[5][6][7]
  • सतही घर्षण कर्षण (भौतिकी) का एक घटक है, बल एक निकाय की सतह पर तरल पदार्थ की गति का विरोध करता है।
  • आंतरिक घर्षण एक ठोस पदार्थ बनाने वाले तत्वों के बीच गति का प्रतिरोध करने वाला बल है, जबकि यह विरूपण (यांत्रिकी) से गुजरता है।[4]

जब संपर्क में सतह एक -दूसरे के सापेक्ष गति करती हैं, तो दो सतहों के बीच घर्षण गतिज ऊर्जा को तापीय ऊर्जा में परिवर्तित करता है, अर्थात यह कार्य (भौतिकी) को ऊष्मा में परिवर्तित करता है। इस गुण के प्रभावशाली परिणाम हो सकते हैं, जैसा कि आग लगाने के लिए लकड़ी के टुकड़ों को आपस में घर्षण कर बनाए गए घर्षण के उपयोग से दिखाया गया है। जब भी घर्षण के साथ गति होती है, तो गतिज ऊर्जा को तापीय ऊर्जा में बदल दिया जाता है, उदाहरण के लिए जब एक श्यान प्रवाह द्रव गति करता है। कई प्रकार के घर्षण का एक अन्य महत्वपूर्ण परिणाम घर्षण कर सकता है, जिससे प्रदर्शन में कमी या घटकों को हानि हो सकती है। घर्षण धातुश्रांतिकी के विज्ञान का एक घटक है।

भूमि पर गति की सुविधा के लिए कर्षण (अभियांत्रिकी) की आपूर्ति में घर्षण वांछनीय और महत्वपूर्ण है। अधिकांश भूमि वाहन त्वरण, आसान और बदलती दिशा के लिए घर्षण पर निर्भर करते हैं। कर्षण में अचानक कमी से नियंत्रण और दुर्घटनाओं का हानि हो सकती है।

घर्षण स्वयं एक मौलिक बल नहीं है। शुष्क घर्षण आंतरिक-सतह आसंजन, सतह कर्कशता, सतह विरूपण और सतह संदूषण के संयोजन से उत्पन्न होता है। इन अंतःक्रियाओं की जटिलता पहले सिद्धांतों से घर्षण की गणना को अव्यवहारिक बनाती है और विश्लेषण के लिए अनुभवजन्य तरीकों के उपयोग और सिद्धांत के विकास की आवश्यकता होती है।

दो वस्तुओं के बीच घर्षण। हरे रंग की तुलना में नीले रंग का समतल सतह के विपरीत अधिक घर्षण होता है।

घर्षण एक गैर-संरक्षी बल-घर्षण के विपरीत किया गया कार्य पथ पर निर्भर करता है। घर्षण की उपस्थिति में, कुछ गतिज ऊर्जा सदैव तापीय ऊर्जा में बदल जाती है, इसलिए यांत्रिक ऊर्जा का संरक्षण नहीं होता है।

इतिहास

अरस्तू, विट्रुवियस और प्लिनी द एल्डर सहित यूनानियों को घर्षण के कारण और शमन में रुचि थी।[8] वे स्थिर और गतिज घर्षण के बीच के अंतर से अवगत थे, थेमिस्टियस ने 350 ईस्वी में कहा था कि "किसी गतिमान पिंड की गति को आगे बढ़ाना विराम की स्थिति में पिंड को स्थानांतरित करने की तुलना में आसान है"।[8][9][10][11]

विसर्पण घर्षण के उत्कृष्ट नियमों की खोज 1493 में लियोनार्डो दा विंची द्वारा की गई थी, जो कि धातुश्रांतिकी में अग्रणी हैं, लेकिन उनकी नोटबुक में प्रलेखित नियम प्रकाशित नहीं हुए और अज्ञात बने रहे।[12][13][14][15][16][17] इन नियमों को 1699 में गुइल्यूम एमोनॉन द्वारा पुनः खोजा गया था[18] और उन्हें शुष्क घर्षण के एमोनॉन के तीन नियमों के रूप में जाना जाने लगा। एमोनॉन ने सतह की अनियमितताओं के संदर्भ में घर्षण की प्रकृति और सतहों को एक साथ दबाने वाले भार को बढ़ाने के लिए आवश्यक बल प्रस्तुत किया। इस विचार को बर्नार्ड फ़ॉरेस्ट डे बेलिडोर[19] और लियोनहार्ड यूलर (1750) द्वारा विस्तृत किया गया था, जिन्होंने एक आनत समतल पर भार के घर्षण-कोण को प्राप्त किया और सबसे पहले स्थैतिक और गतिज घर्षण के बीच अंतर किया।[20] जॉन थियोफिलस डेसगुलियर्स (1734) ने सबसे पहले घर्षण में आसंजक की भूमिका को पहचाना।[21] सूक्ष्म बल सतहों को आपस में आसंजन का कारण बनते हैं; उन्होंने प्रस्तावित किया कि घर्षण वह बल है जो संलग्न सतहों को अलग करने के लिए आवश्यक है।

घर्षण की समझ आगे चार्ल्स-अगस्तिन डी कूलम्ब (1785) द्वारा विकसित की गई थी।[22] कूलम्ब ने घर्षण पर चार मुख्य कारकों के प्रभाव की जांच की, संपर्क में पदार्थ की प्रकृति और उनकी बहिस्तल लेपन सतह क्षेत्र की सीमा सामान्य दबाव (या भार) और सतहों के संपर्क में रहने की अवधि (विराम का समय) होती है।[12] प्रस्तावित घर्षण की प्रकृति पर विभिन्न स्पष्टीकरणों के बीच निर्णय लेने के लिए कूलम्ब ने फिसलन वेग, तापमान और आर्द्रता के प्रभाव पर विचार किया।स्थैतिक और गतिशील घर्षण के बीच का अंतर कूलम्ब के घर्षण नियम (नीचे देखें) में किया गया है, हालांकि यह अंतर पहले से ही 1758 में जोहान एंड्रियास वॉन सेगनर द्वारा तैयार किया गया था।[12] के प्रभाव को रेशेदार पदार्थों की सतहों पर विचार करके पीटर वैन मुस्चेनब्रोक (1762) द्वारा समझाया गया था, जिसमें तन्तु एक साथ जुड़ते हैं, जिसमें एक सीमित समय लगता है जिसमें घर्षण बढ़ता है।

जॉन लेस्ली (भौतिक विज्ञानी) (1766-1832) ने अमोनॉन्स और कूलम्ब के विचारों में एक दुर्बलता का उल्लेख किया:यदि घर्षण उत्तरोत्तर विषमताओं के आनत समतल के भार से उत्पन्न होता है, तो यह विपरीत समतल के नीचे उतरते हुए संतुलित क्यों नहीं होता है? डेसगुलियर्स द्वारा प्रस्तावित आसंजन की भूमिका के बारे में लेस्ली समान रूप से संदेहजनक था, जिसमें समग्र रूप से गति को मंद करने के लिए गति बढ़ाने की समान प्रवृत्ति होनी चाहिए।[12] लेस्ली के विचार में, घर्षण को समतल होने की एक कालाश्रित प्रक्रिया के रूप में देखा जाना चाहिए, नीचे की ओर दबाव डाला जाता है, जो पहले गुहाओं में नई बाधाएं उत्पन्न करता है।

आर्थर जूल्स मोरिन (1833) ने विसर्पण बनाम रोलिंग घर्षण की अवधारणा को विकसित किया। ओसबोर्न रेनॉल्ड्स (1866) ने श्यान प्रवाह के समीकरण को प्राप्त किया। इसने सामान्य रूप से आज अभियांत्रिकी में आज उपयोग किए जाने वाले घर्षण (स्थैतिक, गतिज और द्रव) के क्लासिक अनुभवजन्य मॉडल को पूरा किया।[13]1877 में, फ्लेमिंग जेनकिन और जेम्स अल्फ्रेड इविंग इविंग ने स्थैतिक और गतिज घर्षण के बीच निरंतरता की जांच की।[23]

20 वीं शताब्दी के समय अनुसंधान का ध्यान घर्षण के पीछे भौतिक तंत्र को समझना है। फ्रैंक फिलिप बोडेन और डेविड टैबोर (1950) ने दिखाया कि, एक सूक्ष्म पैमाने पर, सतहों के बीच संपर्क का वास्तविक क्षेत्र स्पष्ट क्षेत्र का एक बहुत छोटा अंश है।[14] संपर्क का यह वास्तविक क्षेत्र, दबाव के साथ बढ़ता है। परमाणु बल सूक्ष्मदर्शी (सीए 1986) के विकास ने वैज्ञानिकों को परमाणु इकाइयों में घर्षण का अध्ययन करने में सक्षम बनाया,[13] यह दिखाते हुए कि, उस पैमाने पर, शुष्क घर्षण आंतरिक-सतह अपरूपण प्रतिबल और संपर्क क्षेत्र का उत्पाद है। इन दो खोजों ने सामान्य बल और शुष्क सतहों के बीच स्थैतिक घर्षण बल के बीच स्थूल आनुपातिकता के बारे में एमोंटॉन के पहले नियम (नीचे) की व्याख्या की है।

शुष्क घर्षण के नियम

विसर्पण (गतिज) घर्षण की प्राथमिक गुण को 15 वीं से 18 वीं शताब्दी में प्रयोग द्वारा खोजा गया था और इसे तीन अनुभवजन्य नियमों के रूप में व्यक्त किया गया था:

  • एमोन्टन्स का पहला नियम: घर्षण का बल प्रयुक्त भार के प्रत्यक्ष आनुपातिक होता है।
  • एमोन्टन्स का दूसरा नियम: घर्षण बल संपर्क के आभासी क्षेत्र से स्वतंत्र होता है।
  • कूलम्ब का घर्षण का नियम: गतिज घर्षण विसर्पण वेग से स्वतंत्र होता है।

शुष्क घर्षण

शुष्क घर्षण संपर्क में दो ठोस सतहों के सापेक्ष पार्श्व गति का विरोध करता है। शुष्क घर्षण के दो शासन गैर-गतिमान सतहों के बीच 'स्थिर घर्षण' (स्थिर) हैं, और गतिशील सतहों के बीच गतिज घर्षण (कभी-कभी विसर्पण वाले घर्षण या गतिशील घर्षण) कहा जाता है।

कूलम्ब घर्षण, जिसका नाम चार्ल्स-अगस्टिन डी कूलम्ब के नाम पर रखा गया है, एक अनुमानित मॉडल है जिसका उपयोग शुष्क घर्षण के बल की गणना करने के लिए किया जाता है।यह मॉडल द्वारा नियंत्रित है:

जहां पर

  • प्रत्येक सतह द्वारा दूसरे पर लगाया गया घर्षण बल है। यह शुद्ध लागू बल के विपरीत दिशा में, सतह के समानांतर है।
  • घर्षण का गुणांक है, जो संपर्क पदार्थ का एक अनुभवजन्य गुण है,
  • सतह पर प्रत्येक सतह, निर्देशित लंबवत (सामान्य) पर प्रत्येक सतह द्वारा सामान्य बल है।

कूलम्ब घर्षण शून्य से तक कोई भी मान ले सकता है, और एक सतह के विपरीत घर्षण बल की दिशा उस गति के विपरीत है जो सतह घर्षण की अनुपस्थिति में अनुभव करेगी। इस प्रकार, स्थैतिक स्थितियों में, घर्षण बल वास्तव में वही है जो सतहों के बीच गति को प्रतिबंधित करने के लिए होना चाहिए; यह इस तरह की गति का कारण बनने के लिए शुद्ध बल को संतुलित करता है। इस स्थितियों में, वास्तविक घर्षण बल का एक अनुमान प्रदान करने के अतिरिक्त, कूलम्ब सन्निकटन इस बल के लिए एक सीमा मूल्य प्रदान करता है, जिसके ऊपर गति प्रारंभ होगी। इस अधिकतम बल को कर्षण (अभियांत्रिकी) के रूप में जाना जाता है।

घर्षण का बल सदैव एक दिशा में लगाया जाता है जो दो सतहों के बीच संचलन (गतिज घर्षण के लिए) या विभव संचलन (स्थैतिक घर्षण के लिए) का विरोध करता है। उदाहरण के लिए, बर्फ के साथ विसर्पण वाला एक कुंचन पत्थर एक गतिज बल का अनुभव करता है जो इसे मंद कर देता है। विभव संचलन के एक उदाहरण के लिए, एक तेजी से कार के परिचालन पहियों को आगे की ओर संकेत करते हुए एक घर्षण बल का अनुभव होता है; यदि वे नहीं करते है, तो पहिए घूम जाते, और रबर पथ के साथ पीछे की ओर विसर्पण हो जाता है। ध्यान दें कि यह उस वाहन के संचलन की दिशा नहीं है जो वे विरोध करते हैं, यह पहिया और सड़क के बीच विसर्पण (विभव) की दिशा है।

सामान्य बल edit

एक रैंप पर एक ब्लॉक के लिए फ्री-बॉडी आरेख।तीर यूक्लिडियन वेक्टर हैं जो बलों की दिशाओं और परिमाण का संकेत देते हैं।N सामान्य बल है, मिलीग्राम गुरुत्वाकर्षण का बल है, और एफfघर्षण का बल है।

सामान्य बल को एक साथ दो समानांतर सतहों को संपीड़ित करने वाले शुद्ध बल के रूप में परिभाषित किया गया है, और इसकी दिशा सतहों के लंबवत है।एक क्षैतिज सतह पर विराम करने वाले द्रव्यमान के साधारण स्थितियों में, सामान्य बल का एकमात्र घटक गुरुत्वाकर्षण के कारण बल है, जहां ।इस स्थितियों में, संतुलन की शर्तें हमें बताती हैं कि घर्षण बल की भयावहता शून्य है, ।वास्तव में, घर्षण बल सदैव संतुष्ट करता है , समानता के साथ केवल एक महत्वपूर्ण रैंप कोण पर पहुंच गया (द्वारा दिया गया) ) यह विसर्पण शुरू करने के लिए पर्याप्त है।

घर्षण गुणांक एक अनुभवजन्य (प्रयोगात्मक रूप से मापा गया) संरचनात्मक गुण है जो केवल संपर्क पदार्थ के विभिन्न पहलुओं पर निर्भर करता है, जैसे कि सतह कर्कशता।घर्षण का गुणांक द्रव्यमान या मात्रा का कार्य नहीं है।उदाहरण के लिए, एक बड़े एल्यूमीनियम ब्लॉक में एक छोटे एल्यूमीनियम ब्लॉक के रूप में घर्षण का एक ही गुणांक होता है।हालांकि, घर्षण बल का परिमाण ही सामान्य बल पर निर्भर करता है, और इसलिए ब्लॉक के द्रव्यमान पर।

स्थिति के आधार पर, सामान्य बल की गणना गुरुत्वाकर्षण के अलावा अन्य बलों को शामिल कर सकते हैं।यदि कोई वस्तु एक स्तर की सतह पर है और बाहरी बल के अधीन है इसे स्लाइड करने का कारण बनता है, फिर वस्तु और सतह के बीच सामान्य बल बस है , जहां पर ब्लॉक का भार है और बाहरी बल का नीचे की ओर घटक है।विसर्पण से पहले, यह घर्षण बल है , जहां पर बाहरी बल का क्षैतिज घटक है।इस प्रकार, सामान्य रूप में।इस घर्षण बल के मूल्य तक पहुंचने के बाद ही विसर्पण शुरू होती है ।तब तक, घर्षण जो कुछ भी है, उसे संतुलन प्रदान करने की आवश्यकता है, इसलिए इसे केवल एक प्रतिक्रिया के रूप में माना जा सकता है।

यदि वस्तु झुकी हुई सतह पर है जैसे कि एक झुका हुआ विमान, गुरुत्वाकर्षण से सामान्य बल से छोटा है , क्योंकि गुरुत्वाकर्षण बल का कम विमान के चेहरे के लिए लंबवत है।सामान्य बल और घर्षण बल अंततः वेक्टर (ज्यामितीय) विश्लेषण का उपयोग करके निर्धारित किए जाते हैं, सामान्य रूप से एक मुक्त निकाय आरेख के माध्यम से।

सामान्य तौर पर, घर्षण के साथ किसी भी स्टैटिक्स समस्या को हल करने के लिए प्रक्रिया से संपर्क करने वाली सतहों को अस्थायी रूप से अचल के रूप में व्यवहार करना है ताकि उनके बीच इसी स्पर्शरेखा प्रतिक्रिया बल की गणना की जा सके।यदि यह घर्षण प्रतिक्रिया बल संतुष्ट करता है , तब अस्थायी धारणा सही थी, और यह वास्तविक घर्षण बल है।अन्यथा, घर्षण बल के बराबर सेट किया जाना चाहिए , और फिर परिणामी बल असंतुलन तब विसर्पण से जुड़े त्वरण को निर्धारित करेगा।

घर्षण का गुणांक

घर्षण (COF) का गुणांक, जिसे अक्सर ग्रीक अक्षर MU (पत्र) का प्रतीक होता है। µ, एक आयामहीन मात्रा स्केलर (भौतिकी) मूल्य है जो दो निकायों के बीच घर्षण के बल के अनुपात के बराबर होता है और बल उन्हें एक साथ दबाते हैं, या तोविसर्पण के समय या उसके समय।घर्षण का गुणांक उपयोग की जाने वाली पदार्थों पर निर्भर करता है;उदाहरण के लिए, स्टील पर बर्फ में घर्षण का एक कम गुणांक होता है, जबकि रास्ते के फर्श पर रबर में घर्षण का एक उच्च गुणांक होता है।घर्षण के गुणांक शून्य से एक से अधिक शून्य तक होते हैं।समान धातुओं की दो सतहों के बीच घर्षण का गुणांक विभिन्न धातुओं की दो सतहों के बीच से अधिक है;उदाहरण के लिए, पीतल में पीतल के विपरीत स्थानांतरित होने पर घर्षण का एक उच्च गुणांक होता है, लेकिन यदि स्टील या एल्यूमीनियम के विपरीत ले जाया जाता है।[24] एक दूसरे के सापेक्ष विराम पर सतहों के लिए, , जहां पर स्थैतिक घर्षण का गुणांक है।यह सामान्य रूप से अपने गतिज समकक्ष से बड़ा होता है।संपर्क सतहों की एक जोड़ी द्वारा प्रदर्शित स्थैतिक घर्षण का गुणांक पदार्थ विरूपण विशेषताओं और सतह कर्कशता के संयुक्त प्रभावों पर निर्भर करता है, दोनों की उत्पत्ति प्रत्येक थोक पदार्थ में परमाणुओं के बीच रासायनिक संबंध में और पदार्थ सतहों और किसी भी के बीच हैसोखना।सतहों की फ्रैक्टेलिटी, सतह के एस्परिटी के स्केलिंग व्यवहार का वर्णन करने वाला एक पैरामीटर, स्थैतिक घर्षण के परिमाण को निर्धारित करने में एक महत्वपूर्ण भूमिका निभाने के लिए जाना जाता है।[1] सापेक्ष गति में सतहों के लिए , जहां पर गतिज घर्षण का गुणांक है।कूलम्ब घर्षण के बराबर है , और प्रत्येक सतह पर घर्षण बल अन्य सतह के सापेक्ष इसकी गति के विपरीत दिशा में लगाया जाता है।

आर्थर मोरिन ने शब्द की शुरुआत की और घर्षण के गुणांक की उपयोगिता का प्रदर्शन किया।[12]घर्षण का गुणांक एक अनुभवजन्य माप हैइसे प्रयोगात्मक रूप से मापा जाना चाहिए, और गणना के माध्यम से नहीं पाया जा सकता है।[25] किसी न किसी सतहों में उच्च प्रभावी मूल्य होते हैं। घर्षण के स्थिर और गतिज दोनों गुणांक संपर्क में सतहों की जोड़ी पर निर्भर करते हैं; सतहों की एक जोड़ी के लिए, स्थिर घर्षण का गुणांक सामान्य रूप से गतिज घर्षण की तुलना में बड़ा होता है; कुछ सेटों में दो गुणांक समान होते हैं, जैसे कि टेफ्लॉन-ऑन-टेफ्लॉन।

संयोजन में अधिकांश शुष्क पदार्थों में 0.3 और 0.6 के बीच घर्षण गुणांक मान होते हैं। इस सीमा के बाहर के मान दुर्लभ हैं, लेकिन उदाहरण के लिए, पॉलीटेट्रैफ्लुओरोथिलीन, 0.04 के रूप में कम गुणांक हो सकता है। शून्य के मूल्य का मतलब यह होगा कि कोई घर्षण नहीं, एक मायावी गुण। अन्य सतहों के संपर्क में रबर 1 से 2 तक घर्षण गुणांक प्राप्त कर सकता है। कभी -कभी यह बनाए रखा जाता है कि μ सदैव <1 है, लेकिन यह सच नहीं है। जबकि अधिकांश प्रासंगिक अनुप्रयोगों में μ <1, 1 से ऊपर का मान केवल यह बताता है कि सतह के साथ किसी वस्तु को स्लाइड करने के लिए आवश्यक बल ऑब्जेक्ट पर सतह के सामान्य बल से अधिक है। उदाहरण के लिए, सिलिकॉन रबर या ऐक्रेलिक रबर-लेपित सतहों में घर्षण का एक गुणांक होता है जो 1 से काफी बड़ा हो सकता है।

जबकि यह अक्सर कहा जाता है कि COF एक भौतिक गुण है, यह एक प्रणाली गुण के रूप में अपेक्षाकृत अत्यधिक वर्गीकृत है। सच्चे भौतिक गुणों (जैसे चालकता, ढांकता हुआ स्थिरांक, उपज शक्ति) के विपरीत, किसी भी दो पदार्थों के लिए COF तापमान, वेग, वातावरण जैसे प्रणाली चर पर निर्भर करता है और जो अब लोकप्रिय रूप से उम्र बढ़ने और बहरी समय के रूप में वर्णित हैं; साथ ही पदार्थ के बीच अन्तराफलक के ज्यामितीय गुणों पर, अर्थात् सतह कर्कशता।[1]उदाहरण के लिए, एक मोटी तांबे की प्लेट के विपरीत एक कॉपर पिन विसर्पण में एक सीओएफ हो सकता है जो 0.6 से कम गति से भिन्न होता है (धातु के विपरीत धातु विसर्पण) 0.2 से नीचे 0.2 से नीचे उच्च गति पर जब तांबे की सतह घर्षण हीटिंग के कारण पिघलने लगती है।बाद की गति, निश्चित रूप से, COF को विशिष्ट रूप से निर्धारित नहीं करती है;यदि पिन व्यास को बढ़ाया जाता है ताकि घर्षण ऊष्मा को तेजी से हटा दिया जाए, तो तापमान गिरता है, पिन ठोस रहता है और COF 'कम गति' परीक्षण से बढ़ जाता है।"Coefficient of Friction - an overview - ScienceDirect Topics". Retrieved 9 May 2022.


घर्षण के अनुमानित गुणांक

पदार्थ स्थैतिक घर्षण गतिज/विसर्पण घर्षण
शुष्क और स्वच्छ स्नेहित शुष्क और स्वच्छ स्नेहित
एल्यूमीनियम इस्पात 0.61[26] 0.47[26]
एल्यूमीनियम एल्यूमीनियम 1.05–1.35[26] 0.3[26] 1.4[26]–1.5[27]
सोना सोना 2.5[27]
प्लैटिनम प्लैटिनम 1.2[26] 0.25[26] 3.0[27]
सिल्वर सिल्वर 1.4[26] 0.55[26] 1.5[27]
एल्यूमिना सिरेमिक सिलिकॉन नाइट्राइड सिरेमिक 0.004 (wet)[28]
बीएएम (सिरेमिक मिश्र धातु AlMgB14) टाइटेनियम बोराइड (TiB2) 0.04–0.05[29] 0.02[30][31]
कांसा इस्पात 0.35–0.51[26] 0.19[26] 0.44[26]
संचकित लोहा ताँबा 1.05[26] 0.29[26]
संचकित लोहा जिंक 0.85[26] 0.21[26]
कंक्रीट रबर 1.0 0.30 (wet) 0.6–0.85[26] 0.45–0.75 (wet)[26]
कंक्रीट लकड़ी 0.62[26][32]
ताँबा कांच 0.68[33] 0.53[33]
ताँबा इस्पात 0.53[33] 0.36[26][33] 0.18[33]
कांच कांच 0.9–1.0[26][33] 0.005–0.01[33] 0.4[26][33] 0.09–0.116[33]
मानव श्लेष द्रव मानव उपास्थि 0.01[34] 0.003[34]
बर्फ़ बर्फ़ 0.02–0.09[35]
पॉलीथीन इस्पात 0.2[26][35] 0.2[26][35]
पीटीएफई (टेफ्लॉन) पीटीएफई (टेफ्लॉन) 0.04[26][35] 0.04[26][35] 0.04[26]
इस्पात बर्फ़ 0.03[35]
इस्पात पीटीएफई (टेफ्लॉन) 0.04[26]−0.2[35] 0.04[26] 0.04[26]
इस्पात इस्पात 0.74[26]−0.80[35] 0.005–0.23[33][35] 0.42–0.62[26][33] 0.029–0.19[33]
लकड़ी धातु 0.2–0.6[26][32] 0.2 (wet)[26][32] 0.49[33] 0.075[33]
लकड़ी लकड़ी 0.25–0.62[26][32][33] 0.2 (wet)[26][32] 0.32–0.48[33] 0.067–0.167[33]

कुछ शर्तों के तहत कुछ पदार्थों में बहुत कम घर्षण गुणांक होते हैं।एक उदाहरण है (अत्यधिक क्रमबद्ध पायरोलाइटिक) ग्रेफाइट जिसमें 0.01 से नीचे एक घर्षण गुणांक हो सकता है।[36] इस अल्ट्रालो-फ्रिक्शन शासन को सुपरलुब्रिटी कहा जाता है।

स्थैतिक घर्षण

जब द्रव्यमान नहीं चल रहा होता है, तो वस्तु स्थैतिक घर्षण का अनुभव करती है।घर्षण बढ़ जाता है क्योंकि प्रयुक्त बल तब तक बढ़ता है जब तक ब्लॉक चलता है।ब्लॉक के चलने के बाद, यह गतिज घर्षण का अनुभव करता है, जो अधिकतम स्थैतिक घर्षण से कम है।

स्थिर घर्षण दो या अधिक ठोस वस्तुओं के बीच घर्षण है जो एक दूसरे के सापेक्ष नहीं चल रहे हैं।उदाहरण के लिए, स्थैतिक घर्षण एक वस्तु को एक समतल सतह को विसर्पण से रोक सकता है।स्थिर घर्षण का गुणांक, सामान्य रूप से μ के रूप में निरूपित किया गयाs, सामान्य रूप से गतिज घर्षण के गुणांक से अधिक है।स्थैतिक घर्षण को ठोस सतहों पर कई लंबाई के तराजू में सतह कर्कशता सुविधाओं के परिणाम के रूप में उत्पन्न किया जाता है।ये विशेषताएं, जिन्हें एस्परिटी (पदार्थ विज्ञान) के रूप में जाना जाता है, नैनो-स्केल आयामों के लिए नीचे मौजूद हैं और परिणाम केवल स्पष्ट या नाममात्र संपर्क क्षेत्र के केवल एक अंश के लिए सीमित संख्या में बिंदुओं पर मौजूद ठोस संपर्क के लिए सही ठोस रूप से होते हैं।[37] प्रयुक्त भार और सच्चे संपर्क क्षेत्र के बीच की रैखिकता, एस्परिटी विरूपण से उत्पन्न होती है, स्थिर घर्षण बल और सामान्य बल के बीच रैखिकता को जन्म देती है, जो विशिष्ट एमोनटन -कॉम्ब प्रकार के घर्षण के लिए पाया जाता है।[38] किसी वस्तु को स्थानांतरित करने से पहले स्थिर घर्षण बल को एक प्रयुक्त बल द्वारा दूर किया जाना चाहिए।विसर्पण से पहले दो सतहों के बीच अधिकतम संभव घर्षण बल स्थैतिक घर्षण और सामान्य बल के गुणांक का उत्पाद है: ।जब कोई विसर्पण नहीं होती है, तो घर्षण बल का शून्य से कोई मूल्य हो सकता है ।किसी भी बल से छोटा एक सतह को दूसरे पर स्लाइड करने का प्रयास समान परिमाण और विपरीत दिशा के एक घर्षण बल द्वारा विरोध किया जाता है।किसी भी बल से बड़ा स्थैतिक घर्षण के बल पर काबू पाता है और विसर्पण का कारण बनता है।तत्काल विसर्पण होती है, स्थिर घर्षण अब प्रयुक्त नहीं होता है - दो सतहों के बीच घर्षण को तब गतिज घर्षण कहा जाता है।हालांकि, एक स्पष्ट स्थैतिक घर्षण उस स्थितियों में भी देखा जा सकता है जब सच्चा स्थिर घर्षण शून्य होता है।[39] स्थिर घर्षण का एक उदाहरण वह बल है जो एक कार के पहिये को विसर्पण से रोकता है क्योंकि यह जमीन पर रोल करता है।भले ही पहिया गति में है, जमीन के संपर्क में टायर का पैच जमीन के सापेक्ष स्थिर है, इसलिए यह गतिज घर्षण के अतिरिक्त स्थिर है।विसर्पण पर, पहिया घर्षण गतिज घर्षण में बदल जाता है।एक एंटी-लॉक ब्रेकिंग प्रणाली एक बंद पहिया को पुनः शुरू करने की अनुमति देने के सिद्धांत पर संचालित होता है ताकि कार स्थैतिक घर्षण बनाए रखे।

स्थैतिक घर्षण का अधिकतम मूल्य, जब गति आसन्न हो रही है, कभी -कभी घर्षण को सीमित करने के रूप में संदर्भित किया जाता है,[40] हालांकि इस शब्द का उपयोग सार्वभौमिक रूप से नहीं किया जाता है।[3]


गतिज घर्षण

गतिज घर्षण, जिसे गतिशील घर्षण या विसर्पण घर्षण के रूप में भी जाना जाता है, तब होता है जब दो ऑब्जेक्ट एक दूसरे के सापेक्ष चलते हैं और एक साथ घर्षणते हैं (जैसे जमीन पर एक स्लेज)।गतिज घर्षण के गुणांक को सामान्य रूप से μ के रूप में दर्शाया जाता हैk, और सामान्य रूप से समान पदार्थ के लिए स्थिर घर्षण के गुणांक से कम है।[41][42] हालांकि, रिचर्ड फेनमैन टिप्पणी करते हैं कि सूखी धातुओं के साथ कोई भी अंतर दिखाना बहुत कठिन है।[43] विसर्पण के बाद दो सतहों के बीच घर्षण बल गतिज घर्षण और सामान्य बल के गुणांक का उत्पाद है: ।यह एक दोलन#नम और संचालित दोलनों या कंपन#प्रकार के कंपन प्रणाली के कूलम्ब भिगोना के लिए जिम्मेदार है।

नए मॉडल यह दिखाने के लिए शुरू कर रहे हैं कि कैसे गतिज घर्षण स्थैतिक घर्षण से अधिक हो सकता है।[44] गतिज घर्षण को अब कई मामलों में समझा जाता है, मुख्य रूप से सतहों के बीच रासायनिक बंधन के कारण होने के अतिरिक्त, इंटरलॉकिंग एस्परिटीज के अतिरिक्त;[45] हालांकि, कई अन्य मामलों में कर्कशता प्रभाव प्रमुख हैं, उदाहरण के लिए रबर से सड़क घर्षण।[44]सतह कर्कशता और संपर्क क्षेत्र सूक्ष्म और नैनो-स्केल वस्तुओं के लिए गतिज घर्षण को प्रभावित करते हैं जहां सतह क्षेत्र बलों में जड़त्वीय बलों पर हावी होता है।[46] नैनोस्केल में गतिज घर्षण की उत्पत्ति को थर्मोडायनामिक्स द्वारा समझाया जा सकता है।[47] विसर्पण पर, एक विसर्पण सच्चे संपर्क के पीछे नई सतह बनती है, और मौजूदा सतह इसके सामने गायब हो जाती है।चूंकि सभी सतहों में थर्मोडायनामिक सतह ऊर्जा शामिल होती है, इसलिए नई सतह बनाने में कार्य किया जाना चाहिए, और सतह को हटाने में ऊर्जा को ऊष्मा के रूप में जारी किया जाता है।इस प्रकार, संपर्क के पीछे ले जाने के लिए एक बल की आवश्यकता होती है, और सामने की तरफ घर्षण ऊष्मा जारी की जाती है।

घर्षण का कोण, θ, जब ब्लॉक बस स्लाइड करना शुरू कर देता है।


घर्षण का कोण

कुछ अनुप्रयोगों के लिए, अधिकतम कोण के संदर्भ में स्थैतिक घर्षण को परिभाषित करना अधिक उपयोगी है, जिससे पहले में से एक आइटम विसर्पण लगेगा।इसे घर्षण या घर्षण कोण का कोण कहा जाता है।यह इस के रूप में परिभाषित किया गया है:

और इस तरह:
जहां पर क्षैतिज और μ से कोण हैsवस्तुओं के बीच घर्षण का स्थिर गुणांक है।[48] इस सूत्र का उपयोग μ की गणना के लिए भी किया जा सकता हैsघर्षण कोण के अनुभवजन्य माप से।

परमाणु स्तर पर घर्षण

एक दूसरे के पिछले परमाणुओं को स्थानांतरित करने के लिए आवश्यक बलों का निर्धारण नैनोमैचिन को डिजाइन करने में एक चुनौती है।2008 में वैज्ञानिक पहली बार एक सतह पर एक परमाणु को स्थानांतरित करने में सक्षम थे, और आवश्यक बलों को मापते थे।अल्ट्राहिघ वैक्यूम और लगभग शून्य तापमान (5 K) का उपयोग करते हुए, एक संशोधित परमाणु बल सूक्ष्मदर्शी का उपयोग कोबाल्ट परमाणु, और एक कार्बन मोनोऑक्साइड अणु को तांबे और प्लैटिनम की सतहों पर खींचने के लिए किया गया था।[49]


कूलम्ब मॉडल की सीमाएँ

कूलम्ब सन्निकटन उन मान्यताओं से अनुसरण करता है जो: सतहों पर परमाणु रूप से घनिष्ठ संपर्क में केवल उनके समग्र क्षेत्र के एक छोटे से अंश पर होता है; यह संपर्क क्षेत्र सामान्य बल के लिए आनुपातिक है (संतृप्ति तक, जो तब होता है जब सभी क्षेत्र परमाणु संपर्क में होता है); और यह कि घर्षण बल प्रयुक्त सामान्य बल के लिए आनुपातिक है, स्वतंत्र रूप से संपर्क क्षेत्र से। कूलम्ब सन्निकटन मौलिक रूप से एक अनुभवजन्य निर्माण है। यह एक नियम का वर्णन है जो एक अत्यंत जटिल शारीरिक बातचीत के अनुमानित परिणाम का वर्णन करता है। सन्निकटन की ताकत इसकी सादगी और बहुमुखी प्रतिभा है। यद्यपि सामान्य बल और घर्षण बल के बीच संबंध बिल्कुल रैखिक नहीं है (और इसलिए घर्षण बल पूरी तरह से सतहों के संपर्क क्षेत्र से स्वतंत्र नहीं है), कूलम्ब सन्निकटन कई भौतिक प्रणालियों के विश्लेषण के लिए घर्षण का एक पर्याप्त प्रतिनिधित्व है।

जब सतहों को संयोजित किया जाता है, तो कूलम्ब घर्षण एक बहुत खराब सन्निकटन बन जाता है (उदाहरण के लिए, आसंजक वाला टेप सामान्य बल, या नकारात्मक सामान्य बल होने पर भी विसर्पण का विरोध करता है)। इस स्थितियों में, घर्षण बल संपर्क के क्षेत्र पर दृढ़ता से निर्भर हो सकता है। कुछ ड्रैग रेसिंग टायर इस कारण से आसंजक वाले हैं। हालांकि, घर्षण के पीछे मौलिक भौतिकी की जटिलता के बावजूद, रिश्ते कई अनुप्रयोगों में उपयोगी होने के लिए पर्याप्त सटीक हैं।

घर्षण का नकारात्मक गुणांक

As of 2012, एक एकल अध्ययन ने कम-भार शासन में घर्षण के प्रभावी रूप से नकारात्मक गुणांक के लिए क्षमता का प्रदर्शन किया है, जिसका अर्थ है कि सामान्य बल में कमी से घर्षण में वृद्धि होती है।यह रोजमर्रा के अनुभव का विरोध करता है जिसमें सामान्य बल में वृद्धि से घर्षण में वृद्धि होती है।[50] यह अक्टूबर 2012 में जर्नल नेचर में रिपोर्ट किया गया था और इसमें एक परमाणु बल सूक्ष्मदर्शी स्टाइलस द्वारा सामना किए गए घर्षण को शामिल किया गया था जब ग्राफीन-एडसॉर्ब ऑक्सीजन की उपस्थिति में एक ग्राफीन शीट में घसीटा गया था।[50]


कूलम्ब मॉडल का संख्यात्मक सिमुलेशन

घर्षण का एक सरलीकृत मॉडल होने के बावजूद, कूलम्ब मॉडल कई कंप्यूटर सिमुलेशन अनुप्रयोगों जैसे कि मल्टीबॉडी प्रणाली और दानेदार पदार्थ में उपयोगी है।यहां तक कि इसकी सबसे सरल अभिव्यक्ति स्टिकिंग और विसर्पण के मौलिक प्रभावों को घेर लेती है जो कई प्रयुक्त मामलों में आवश्यक हैं, हालांकि विशिष्ट एल्गोरिदम को कुशलता से संख्यात्मक एकीकरण यांत्रिक प्रणालियों के लिए कूलम्ब घर्षण और द्विपक्षीय या एकतरफा संपर्क के साथ डिज़ाइन किया जाना है।[51][52][53][54][55] कुछ काफी nonlinear प्रणाली#प्रकार के nonlinear व्यवहार, जैसे कि तथाकथित दर्दलेव विरोधाभास, कूलम्ब घर्षण के साथ सामना किया जा सकता है।[56]


शुष्क घर्षण और अस्थिरता

शुष्क घर्षण यांत्रिक प्रणालियों में कई प्रकार की अस्थिरताओं को प्रेरित कर सकता है जो घर्षण की अनुपस्थिति में एक स्थिर व्यवहार प्रदर्शित करते हैं।[57] ये अस्थिरता घर्षण बल की बढ़ती वेग के साथ घर्षण बल की कमी के कारण हो सकती है, घर्षण (थर्मो-लोचदार अस्थिरता) के समय ऊष्मा उत्पादन के कारण पदार्थ विस्तार के द्वारा, या दो लोचदार पदार्थों के विसर्पण के शुद्ध गतिशील प्रभावों से (एडम्स (एडम्स)-मार्टिन अस्थिरता)।उत्तरार्द्ध को मूल रूप से 1995 में जॉर्ज जी। एडम्स (इंजीनियर) द्वारा खोजा गया था। जॉर्ज जी। एडम्स और जोआओ आर्मेनियो कोर्रेया मार्टिंस के लिए समतल सतहों के लिए[58][59] और बाद में आवधिक खुरदरी सतहों में पाया गया।[60] विशेष रूप से, घर्षण-संबंधी गतिशील अस्थिरता को ब्रेक#शोर और एक ग्लास वीणा के 'गीत' के लिए जिम्मेदार माना जाता है,[61][62] घटना जिसमें छड़ी और पर्ची शामिल होती है, वेग के साथ घर्षण गुणांक की एक बूंद के रूप में मॉडलिंग की जाती है।[63] एक व्यावहारिक रूप से महत्वपूर्ण स्थिति वायलिन, सेलो, हर्डी-गर्डी, एरू, आदि जैसे धनुष उपकरणों के तार का आत्म-गठबंधन है।

एक साधारण यांत्रिक प्रणाली में शुष्क घर्षण और एरोलेस्टिक फ्लटर#स्पंदन अस्थिरता के बीच एक संबंध खोजा गया है,[64] अधिक जानकारी के लिए मूवी देखें।

घर्षण अस्थिरता विसर्पण अन्तराफलक में नए स्व-संगठित पैटर्न (या द्वितीयक संरचनाओं) के गठन को जन्म दे सकती है, जैसे कि इन-सीटू गठित ट्राइबोफिल्म्स जो कि तथाकथित स्व-सेवन पदार्थ में घर्षण और पहनने के लिए उपयोग किए जाते हैं।[65]


द्रव घर्षण

द्रव घर्षण द्रव परतों के बीच होता है जो एक दूसरे के सापेक्ष चलते हैं।प्रवाह के लिए इस आंतरिक प्रतिरोध को श्यानहट का नाम दिया गया है।रोजमर्रा की दृष्टि से, एक तरल पदार्थ की श्यानहट को इसकी मोटाई के रूप में वर्णित किया जाता है।इस प्रकार, पानी पतला होता है, जिसमें कम श्यानहट होती है, जबकि शहद मोटा होता है, जिसमें एक उच्च श्यानहट होती है।कम श्यान तरल पदार्थ, विरूपण या संचलन की आसानी से अधिक।

सभी वास्तविक तरल पदार्थ (सुपरफ्लुइड्स को छोड़कर) कतरनी के लिए कुछ प्रतिरोध प्रदान करते हैं और इसलिए श्यान होते हैं।शिक्षण और व्याख्यात्मक उद्देश्यों के लिए यह एक आक्रामक द्रव या एक आदर्श तरल पदार्थ की अवधारणा का उपयोग करना सहायक है जो कतरनी के लिए कोई प्रतिरोध नहीं करता है और इसलिए श्यान नहीं है।

चिकनाई घर्षण

लुब्रिकेटेड घर्षण द्रव घर्षण का एक स्थिति है जहां एक द्रव दो ठोस सतहों को अलग करता है।स्नेहन एक तकनीक है जो एक या दोनों सतहों के पहनने को कम करने के लिए नियोजित है, जो सतहों के बीच एक स्नेहक नामक एक पदार्थ को हस्तक्षेप करके एक दूसरे के सापेक्ष निकट निकटता में निकटता में होती है।

ज्यादातर मामलों में प्रयुक्त भार को तरल पदार्थ के भीतर उत्पन्न दबाव द्वारा किया जाता है, जो सतहों के बीच चिकनाई वाले द्रव की गति के लिए घर्षण श्यान प्रतिरोध के कारण होता है।पर्याप्त स्नेहन उपकरणों के सुचारू निरंतर संचालन की अनुमति देता है, केवल हल्के पहनने के साथ, और अत्यधिक तनाव या बीयरिंग पर बरामदगी के बिना।जब स्नेहन टूट जाता है, तो धातु या अन्य घटक एक दूसरे पर विनाशकारी रूप से घर्षण सकते हैं, जिससे ऊष्मा और संभवतः हानि या विफलता हो सकती है।

सतही घर्षण

सतही का घर्षण द्रव और निकाय की सतही के बीच बातचीत से उत्पन्न होता है, और सीधे निकाय की सतह के क्षेत्र से संबंधित होता है जो द्रव के संपर्क में होता है।सतही घर्षण ड्रैग समीकरण का अनुसरण करता है और वेग के वर्ग के साथ बढ़ता है।

सतही घर्षण वस्तु के चारों ओर सीमा परत में श्यान खींचने के कारण होता है।सतही के घर्षण को कम करने के दो तरीके हैं: पहला चलती निकाय को आकार देना है ताकि समतल प्रवाह संभव हो, जैसे कि एक एयरफॉइल।दूसरी विधि चलती वस्तु की लंबाई और क्रॉस-सेक्शन को कम करना है जितना कि व्यावहारिक है।

आंतरिक घर्षण

आंतरिक घर्षण एक ठोस पदार्थ बनाने वाले तत्वों के बीच एक बल का विरोध करने वाली गति है, जबकि यह विरूपण (अभियांत्रिकी) से गुजरता है।

विरूपण (अभियांत्रिकी) ठोस पदार्थों में #plastic विरूपण एक वस्तु की आंतरिक आणविक संरचना में एक अपरिवर्तनीय परिवर्तन है।यह परिवर्तन या तो (या दोनों) एक प्रयुक्त बल या तापमान में परिवर्तन के कारण हो सकता है।किसी वस्तु के आकार के परिवर्तन को तनाव कहा जाता है।बल के कारण इसे तनाव (यांत्रिकी) कहा जाता है।

ठोस पदार्थों में लोचदार विरूपण एक वस्तु के आंतरिक आणविक संरचना में प्रतिवर्ती परिवर्तन है।तनाव जरूरी नहीं कि स्थायी परिवर्तन हो।जैसे -जैसे विरूपण होता है, आंतरिक बल प्रयुक्त बल का विरोध करते हैं।यदि प्रयुक्त तनाव बहुत बड़ा नहीं है, तो ये विरोधी बल पूरी तरह से प्रयुक्त बल का विरोध कर सकते हैं, जिससे ऑब्जेक्ट को एक नया संतुलन राज्य ग्रहण करने और बल हटाने पर अपने मूल आकार में लौटने की अनुमति मिलती है।इसे लोचदार विरूपण या लोच के रूप में जाना जाता है।

विकिरण घर्षण

हल्के दबाव के परिणामस्वरूप, अल्बर्ट आइंस्टीन[66] 1909 में विकिरण घर्षण के अस्तित्व की भविष्यवाणी की जो पदार्थ के संचलन का विरोध करेगा।उन्होंने लिखा, विकिरण प्लेट के दोनों किनारों पर दबाव डालेगा।यदि प्लेट विराम पर है तो दोनों पक्षों पर दबाव की ताकतें समान हैं।हालांकि, यदि यह गति में है, तो अधिक विकिरण उस सतह पर परिलक्षित होगा जो पीछे की सतह की तुलना में गति (सामने की सतह) के समय आगे है।सामने की सतह पर लगाए गए दबाव का पिछड़ा-अभिनय बल इस प्रकार पीठ पर कार्य करने वाले दबाव के बल से बड़ा है।इसलिए, दो बलों के परिणामी के रूप में, एक बल बनी हुई है जो प्लेट की गति का मुकाबला करती है और जो प्लेट के वेग के साथ बढ़ती है।हम इस परिणामी 'विकिरण घर्षण' को संक्षिप्त रूप से कहेंगे।

अन्य प्रकार के घर्षण

रोलिंग प्रतिरोध

रोलिंग प्रतिरोध वह बल है जो वस्तु या सतह में विकृति के कारण सतह के साथ एक पहिया या अन्य परिपत्र वस्तु के रोलिंग का विरोध करता है।सामान्य रूप से रोलिंग प्रतिरोध का बल गतिज घर्षण से जुड़े होने से कम होता है।[67] रोलिंग प्रतिरोध के गुणांक के लिए विशिष्ट मान 0.001 हैं।[68] रोलिंग प्रतिरोध के सबसे आम उदाहरणों में से एक एक सड़क पर मोटर वाहन टायर की आवाजाही है, एक प्रक्रिया जो उप-उत्पादों के रूप में ऊष्मा और सड़क के शोर को उत्पन्न करती है।[69]


ब्रेकिंग घर्षण

ब्रेक से सुसज्जित कोई भी पहिया एक बड़े मंद बल उत्पन्न करने में सक्षम है, सामान्य रूप से एक वाहन या घूर्णन मशीनरी के टुकड़े को मंद करने और प्रतिबंधित करने के उद्देश्य से।ब्रेकिंग घर्षण रोलिंग घर्षण से भिन्न होता है क्योंकि रोलिंग घर्षण के लिए घर्षण का गुणांक छोटा होता है जबकि ब्रेकिंग घर्षण के लिए घर्षण का गुणांक ब्रेक पैड के लिए पदार्थ की पसंद से बड़ा होने के लिए डिज़ाइन किया गया है।

ट्राइबोइलेक्ट्रिक प्रभाव

एक दूसरे के विपरीत असहमति पदार्थ को घर्षणने से इलेक्ट्रोस्टैटिक चार्ज का निर्माण हो सकता है, जो कि ज्वलनशील गैसों या वाष्प मौजूद होने पर जोखिमयुक्त हो सकता है।जब स्थिर बिल्ड-अप डिस्चार्ज होता है, तो विस्फोट ज्वलनशील मिश्रण के प्रज्वलन के कारण हो सकते हैं।

बेल्ट घर्षण

बेल्ट घर्षण एक भौतिक गुण है जो एक चरखी के चारों ओर लिपटे बेल्ट पर अभिनय करने वाली ताकतों से देखी गई है, जब एक छोर को खींचा जा रहा है।परिणामी तनाव, जो बेल्ट के दोनों सिरों पर कार्य करता है, को बेल्ट घर्षण समीकरण द्वारा मॉडलिंग किया जा सकता है।

व्यवहार में, बेल्ट घर्षण समीकरण द्वारा गणना की गई बेल्ट या रस्सी पर कार्य करने वाले सैद्धांतिक तनाव की तुलना अधिकतम तनाव से की जा सकती है जो बेल्ट का समर्थन कर सकता है।यह इस तरह की रिग के एक डिजाइनर को यह जानने में मदद करता है कि इसे विसर्पण से प्रतिबंधित करने के लिए कितनी बार बेल्ट या रस्सी को चरखी के चारों ओर लपेटा जाना चाहिए।माउंटेन पर्वतारोही और नौकायन दल बुनियादी कार्यों को पूरा करते समय बेल्ट घर्षण के एक मानक ज्ञान का प्रदर्शन करते हैं।

घर्षण को कम करना

डिवाइस

पहियों, बॉल बेयरिंग, रोलर बीयरिंग, और एयर कुशन या अन्य प्रकार के द्रव बीयरिंग जैसे डिवाइस विसर्पण वाले घर्षण को बहुत छोटे प्रकार के रोलिंग घर्षण में बदल सकते हैं।

कई थर्माप्लास्टिक पदार्थ जैसे कि नायलॉन, एचडीपीई और पीटीएफई सामान्य रूप से कम घर्षण असर (मैकेनिकल) में उपयोग की जाती हैं।वे विशेष रूप से उपयोगी हैं क्योंकि घर्षण का गुणांक बढ़ते भार के साथ गिरता है।[70] अपेक्षाकृत अत्यधिक पहनने के प्रतिरोध के लिए, बहुत अधिक आणविक भार ग्रेड सामान्य रूप से भारी शुल्क या महत्वपूर्ण बीयरिंग के लिए निर्दिष्ट होते हैं।

स्नेहक

घर्षण को कम करने का एक सामान्य तरीका एक स्नेहक का उपयोग करना है, जैसे कि तेल, पानी, या ग्रीस, जिसे दो सतहों के बीच रखा जाता है, अक्सर प्रभावशाली रूप से घर्षण के गुणांक को कम करता है। घर्षण और स्नेहन के विज्ञान को धातुश्रांतिकी कहा जाता है। स्नेहक तकनीक तब होती है जब स्नेहक विज्ञान के आवेदन के साथ मिश्रित होते हैं, विशेष रूप से औद्योगिक या वाणिज्यिक उद्देश्यों के लिए।

Superlubricity, हाल ही में खोजा गया प्रभाव, ग्रेफाइट में देखा गया है: यह दो विसर्पण वस्तुओं के बीच घर्षण की पर्याप्त कमी है, जो शून्य स्तरों के करीब पहुंचती है। घर्षण ऊर्जा की एक बहुत कम मात्रा में अभी भी विघटित हो जाएगा।

घर्षण को दूर करने के लिए स्नेहक को सदैव पतले, अशांत तरल पदार्थ या ख़ुशी वाले ठोस जैसे ग्रेफाइट और तालक की आवश्यकता नहीं होती है; ध्वनिक स्नेहन वास्तव में एक स्नेहक के रूप में ध्वनि का उपयोग करता है।

दो भागों के बीच घर्षण को कम करने का एक और तरीका है कि एक भागों में से एक के लिए सूक्ष्म पैमाने पर कंपन को सुपरिम्पोज करना। यह साइनसोइडल कंपन हो सकता है जैसा कि अल्ट्रासाउंड-असिस्टेड कटिंग या कंपन शोर में उपयोग किया जाता है, जिसे डेंट के रूप में जाना जाता है।

घर्षण की ऊर्जा

ऊर्जा के संरक्षण के नियम के अनुसार, घर्षण के कारण कोई ऊर्जा नष्ट नहीं होती है, हालांकि यह चिंता की प्रणाली के लिए खो सकता है।ऊर्जा अन्य रूपों से तापीय ऊर्जा में बदल जाती है।एक विसर्पण हॉकी पक विराम करने के लिए आता है क्योंकि घर्षण अपनी गतिज ऊर्जा को ऊष्मा में परिवर्तित करता है जो पक और बर्फ की सतह की तापीय ऊर्जा को बढ़ाता है।चूंकि ऊष्मा जल्दी से फैल जाती है, इसलिए अरस्तू सहित कई शुरुआती दार्शनिकों ने गलत तरीके से निष्कर्ष निकाला कि चलती वस्तुएं बिना किसी ड्राइविंग बल के ऊर्जा खो देती हैं।

जब किसी वस्तु को एक पथ C के साथ एक सतह के साथ धकेल दिया जाता है, तो ऊष्मा में परिवर्तित ऊर्जा एक लाइन अभिन्न द्वारा दी जाती है, कार्य की परिभाषा के अनुसार

जहां पर

  • घर्षण बल है,
  • ऑब्जेक्ट की गति के विपरीत इंगित एक इकाई वेक्टर द्वारा सामान्य बल के परिमाण को गुणा करके प्राप्त किया गया वेक्टर है,
  • गतिज घर्षण का गुणांक है, जो अभिन्न के अंदर है क्योंकि यह स्थान से स्थान तक भिन्न हो सकता है (जैसे कि यदि पदार्थ के साथ पदार्थ बदलती है),
  • वस्तु की स्थिति है।

घर्षण के परिणामस्वरूप एक प्रणाली में खोई हुई ऊर्जा थर्मोडायनामिक अपरिवर्तनीयता का एक क्लासिक उदाहरण है।

घर्षण का कार्य

दो सतहों के बीच अन्तराफलक के संदर्भ फ्रेम में, स्थिर घर्षण कोई यांत्रिक कार्य नहीं करता है, क्योंकि सतहों के बीच कभी भी विस्थापन नहीं होता है।एक ही संदर्भ फ्रेम में, गतिज घर्षण सदैव गति के विपरीत दिशा में होता है, और नकारात्मक कार्य करता है।[71] हालांकि, घर्षण संदर्भ के कुछ फ्रेम में सकारात्मक कार्य कर सकता है।एक गलीचा पर एक भारी बॉक्स रखकर इसे देख सकता है, फिर जल्दी से गलीचा पर खींच सकता है।इस स्थितियों में, बॉक्स गलीचा के सापेक्ष पीछे की ओर स्लाइड करता है, लेकिन संदर्भ के फ्रेम के सापेक्ष आगे बढ़ता है जिसमें फर्श स्थिर है।इस प्रकार, बॉक्स और गलीचा के बीच गतिज घर्षण बॉक्स को उसी दिशा में तेज करता है जो बॉक्स चलता है, सकारात्मक कार्य करता है।[72] घर्षण द्वारा किया गया कार्य विरूपण, पहनने और ऊष्मा में अनुवाद कर सकता है जो संपर्क सतह के गुणों (यहां तक कि सतहों के बीच घर्षण का गुणांक) को प्रभावित कर सकता है।यह पॉलिशिंग के रूप में फायदेमंद हो सकता है।घर्षण के कार्य का उपयोग घर्षण वेल्डिंग की प्रक्रिया में पदार्थों को मिलाने और शामिल करने के लिए किया जाता है।अत्यधिक कटाव या संभोग विसर्पण सतहों का पहनना तब होता है जब घर्षण बलों के कारण कार्य अस्वीकार्य स्तर तक बढ़ जाता है।सापेक्ष गति (झल्लाहट) में संभोग सतहों के बीच पकड़े गए कठोरता संक्षारण कण घर्षण बलों के पहनने को बढ़ाते हैं।चूंकि सतहों को घर्षण के कारण कार्य द्वारा पहना जाता है, सहिष्णुता (अभियांत्रिकी) और किसी वस्तु की सतह कर्कशता तब तक नीचा हो सकता है जब तक कि यह ठीक से कार्य नहीं करता है।[73] उदाहरण के लिए, जब्ती या असफलता असर घर्षण के कार्य के कारण अत्यधिक पहनने के परिणामस्वरूप हो सकती है।

अनुप्रयोग

कई अभियांत्रिकी विषयों में घर्षण एक महत्वपूर्ण कारक है।

परिवहन

  • वाहन ब्रेक स्वाभाविक रूप से घर्षण पर निर्भर करते हैं, अपनी गतिज ऊर्जा को ऊष्मा में परिवर्तित करके एक वाहन को मंद कर देते हैं। संयोग से, इस बड़ी मात्रा में ऊष्मा को सुरक्षित रूप से विस्तारित करने से ब्रेक प्रणाली डिजाइन करने में एक तकनीकी चुनौती है ।डिस्क ब्रेक एक डिस्क और ब्रेक पैड के बीच घर्षण पर निर्भर करते हैं जो घूर्णन डिस्क के विपरीत अनुप्रस्थ रूप से संकुचित किया जाता है। ड्रम ब्रेक में, ब्रेक शूज़ या पैड को घर्षण बनाने के लिए एक घूर्णन सिलेंडर (ब्रेक ड्रम) के विपरीत बाहर की ओर कर्षित किया जाता है। चूंकि गतिरोधक डिस्क ड्रमों की तुलना में अधिक कुशलता से ठंडा हो सकता है, इसलिए डिस्क ब्रेक में अपेक्षाकृत अत्यधिक प्रदर्शन होता है।[74]
  • रेल आसंजन से तात्पर्य एक ट्रेन के ग्रिप चक्र को रेल पर होता है, घर्षण संपर्क यांत्रिकी देखें।
  • सड़क पर विसर्पण वाहन के लिए एक महत्वपूर्ण डिजाइन और सुरक्षा कारक है।[75]
    • विभाजन घर्षण एक विशेष रूप से जोखिमयुक्त स्थिति है जो कार के दोनों ओर अलग-अलग घर्षण के कारण उत्पन्न होती है।
    • सड़क की बनावट चक्रों और परिचालन सतह की परस्पर क्रिया को प्रभावित करती है।

माप

  • एक घर्षण-मापी एक ऐसा उपकरण है जो सतह पर घर्षण को मापता है।
  • एक प्रोफाइलोग्राफ एक उपकरण है जिसका उपयोग रास्ते के फर्श की सतह कर्कशता को मापने के लिए किया जाता है।

घरेलू उपयोग

  • घर्षण का उपयोग माचिस की तीलियों को गर्म करने (माचिस की तीली के सिर के बीच घर्षण और मैच बॉक्स की घर्षण सतह) और प्रज्वलित करने के लिए किया जाता है।[76]
  • संलगक पैड का उपयोग वस्तु और वस्तु के बीच घर्षण गुणांक को प्रभावी रूप से बढ़ाकर समतल सतहों को विसर्पण से प्रतिबंधित करने के लिए किया जाता है।

यह भी देखें

  • संपर्क गतिशीलता
  • संपर्क यांत्रिकी
  • आसंजन का कारक
  • घर्षण ध्वनिकी
  • घर्षण रहित तल
  • गैलिंग ( कण पाटन)
  • गैर-समतल यांत्रिकी
  • सामान्य संपर्क कठोरता
  • स्टिक-स्लिप घटना
  • क्षणिक घर्षण भार
  • घर्षण विद्युत् प्रभाव
  • एकपक्षीय संपर्क
  • घर्षण आघूर्ण


संदर्भ

  1. 1.0 1.1 1.2 Hanaor, D.; Gan, Y.; Einav, I. (2016). "Static friction at fractal interfaces". Tribology International. 93: 229–238. arXiv:2106.01473. doi:10.1016/j.triboint.2015.09.016. S2CID 51900923.
  2. "friction". Merriam-Webster Dictionary.
  3. 3.0 3.1 Beer, Ferdinand P.; Johnston, E. Russel, Jr. (1996). Vector Mechanics for Engineers (Sixth ed.). McGraw-Hill. p. 397. ISBN 978-0-07-297688-5.{{cite book}}: CS1 maint: multiple names: authors list (link)
  4. 4.0 4.1 Meriam, J. L.; Kraige, L. G. (2002). Engineering Mechanics (fifth ed.). John Wiley & Sons. p. 328. ISBN 978-0-471-60293-4.
  5. Ruina, Andy; Pratap, Rudra (2002). Introduction to Statics and Dynamics (PDF). Oxford University Press. p. 713.
  6. Hibbeler, R. C. (2007). Engineering Mechanics (Eleventh ed.). Pearson, Prentice Hall. p. 393. ISBN 978-0-13-127146-3.
  7. Soutas-Little, Robert W.; Inman, Balint (2008). Engineering Mechanics. Thomson. p. 329. ISBN 978-0-495-29610-2.
  8. 8.0 8.1 Chatterjee, Sudipta (2008). Tribological Properties of Pseudo-elastic Nickel-titanium (Thesis). University of California. pp. 11–12. ISBN 9780549844372 – via ProQuest. Classical Greek philosophers like Aristotle, Pliny the Elder and Vitruvius wrote about the existence of friction, the effect of lubricants and the advantages of metal bearings around 350 B.C.
  9. Fishbane, Paul M.; Gasiorowicz, Stephen; Thornton, Stephen T. (1993). Physics for Scientists and Engineers. Vol. I (Extended ed.). Englewood Cliffs, New Jersey: Prentice Hall. p. 135. ISBN 978-0-13-663246-7. Themistius first stated around 350 B.C. [sic] that kinetic friction is weaker than the maximum value of static friction.
  10. Hecht, Eugene (2003). Physics: Algebra/Trig (3rd ed.). Cengage Learning. ISBN 9780534377298.
  11. Sambursky, Samuel (2014). The Physical World of Late Antiquity. Princeton University Press. pp. 65–66. ISBN 9781400858989.
  12. 12.0 12.1 12.2 12.3 12.4 Dowson, Duncan (1997). History of Tribology (2nd ed.). Professional Engineering Publishing. ISBN 978-1-86058-070-3.
  13. 13.0 13.1 13.2 Armstrong-Hélouvry, Brian (1991). Control of machines with friction. USA: Springer. p. 10. ISBN 978-0-7923-9133-3.
  14. 14.0 14.1 van Beek, Anton. "History of Science Friction". tribology-abc.com. Retrieved 2011-03-24.
  15. Hutchings, Ian M. (2016). "Leonardo da Vinci's studies of friction" (PDF). Wear. 360–361: 51–66. doi:10.1016/j.wear.2016.04.019.
  16. Hutchings, Ian M. (2016-08-15). "Leonardo da Vinci's studies of friction". Wear. 360–361: 51–66. doi:10.1016/j.wear.2016.04.019.
  17. Kirk, Tom (July 22, 2016). "Study reveals Leonardo da Vinci's 'irrelevant' scribbles mark the spot where he first recorded the laws of friction". phys.org. Retrieved 2016-07-26.
  18. Popova, Elena; Popov, Valentin L. (2015-06-01). "The research works of Coulomb and Amontons and generalized laws of friction". Friction. 3 (2): 183–190. doi:10.1007/s40544-015-0074-6.
  19. Forest de Bélidor, Bernard. "Richtige Grund-Sätze der Friction-Berechnung" ("Correct Basics of Friction Calculation"), 1737, (in German)
  20. "Leonhard Euler". Friction Module. Nano World. 2002. Archived from the original on 2011-05-07. Retrieved 2011-03-25.
  21. Goedecke, Andreas (2014). Transient Effects in Friction: Fractal Asperity Creep. Springer Science and Business Media. p. 3. ISBN 978-3709115060
  22. Popova, Elena; Popov, Valentin L. (2015-06-01). "The research works of Coulomb and Amontons and generalized laws of friction". Friction. 3 (2): 183–190. doi:10.1007/s40544-015-0074-6.
  23. Fleeming Jenkin & James Alfred Ewing (1877) "On Friction between Surfaces moving at Low Speeds", Philosophical Magazine Series 5, volume 4, pp 308–10; link from Biodiversity Heritage Library
  24. Air Brake Association (1921). The Principles and Design of Foundation Brake Rigging. Air brake association. p. 5.
  25. Valentin L. Popov (17 Jan 2014). "Generalized law of friction between elastomers and differently shaped rough bodies". Sci. Rep. 4: 3750. Bibcode:2014NatSR...4E3750P. doi:10.1038/srep03750. PMC 3894559. PMID 24435002.
  26. 26.00 26.01 26.02 26.03 26.04 26.05 26.06 26.07 26.08 26.09 26.10 26.11 26.12 26.13 26.14 26.15 26.16 26.17 26.18 26.19 26.20 26.21 26.22 26.23 26.24 26.25 26.26 26.27 26.28 26.29 26.30 26.31 26.32 26.33 26.34 26.35 "Friction Factors – Coefficients of Friction". Archived from the original on 2019-02-01. Retrieved 2015-04-27.
  27. 27.0 27.1 27.2 27.3 "Mechanical Engineering Department: Tribology Introduction". 2016-03-11.
  28. Ferreira, Vanderlei; Yoshimura, Humberto Naoyuki; Sinatora, Amilton (2012-08-30). "Ultra-low friction coefficient in alumina–silicon nitride pair lubricated with water". Wear. 296 (1–2): 656–659. doi:10.1016/j.wear.2012.07.030.
  29. Tian, Y.; Bastawros, A. F.; Lo, C. C. H.; Constant, A. P.; Russell, A.M.; Cook, B. A. (2003). "Superhard self-lubricating AlMgB[sub 14] films for microelectromechanical devices". Applied Physics Letters. 83 (14): 2781. Bibcode:2003ApPhL..83.2781T. doi:10.1063/1.1615677.
  30. Kleiner, Kurt (2008-11-21). "Material slicker than Teflon discovered by accident". Retrieved 2008-12-25.
  31. Higdon, C.; Cook, B.; Harringa, J.; Russell, A.; Goldsmith, J.; Qu, J.; Blau, P. (2011). "Friction and wear mechanisms in AlMgB14-TiB2 nanocoatings". Wear. 271 (9–10): 2111–2115. doi:10.1016/j.wear.2010.11.044.
  32. 32.0 32.1 32.2 32.3 32.4 Coefficient of Friction Archived March 8, 2009, at the Wayback Machine. EngineersHandbook.com
  33. 33.00 33.01 33.02 33.03 33.04 33.05 33.06 33.07 33.08 33.09 33.10 33.11 33.12 33.13 33.14 33.15 33.16 Barrett, Richard T. (1 March 1990). "(NASA-RP-1228) Fastener Design Manual". NASA Technical Reports Server. NASA Lewis Research Center: 16. hdl:2060/19900009424. Retrieved 3 August 2020.
  34. 34.0 34.1 "Coefficients of Friction of Human Joints". Retrieved 2015-04-27.
  35. 35.0 35.1 35.2 35.3 35.4 35.5 35.6 35.7 35.8 "The Engineering Toolbox: Friction and Coefficients of Friction". Retrieved 2008-11-23.
  36. Dienwiebel, Martin; et al. (2004). "Superlubricity of Graphite" (PDF). Phys. Rev. Lett. 92 (12): 126101. Bibcode:2004PhRvL..92l6101D. doi:10.1103/PhysRevLett.92.126101. PMID 15089689.
  37. multi-scale origins of static friction 2016
  38. Greenwood J.A. and JB Williamson (1966). "Contact of nominally flat surfaces". Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 295 (1442).
  39. Nakano, K.; Popov, V. L. (2020-12-10). "Dynamic stiction without static friction: The role of friction vector rotation". Physical Review E. 102 (6): 063001. Bibcode:2020PhRvE.102f3001N. doi:10.1103/PhysRevE.102.063001. PMID 33466084. S2CID 230599544.
  40. Bhavikatti, S. S.; K. G. Rajashekarappa (1994). Engineering Mechanics. New Age International. p. 112. ISBN 978-81-224-0617-7. Retrieved 2007-10-21.
  41. Sheppard, Sheri; Tongue, Benson H.; Anagnos, Thalia (2005). Statics: Analysis and Design of Systems in Equilibrium. Wiley and Sons. p. 618. ISBN 978-0-471-37299-8. In general, for given contacting surfaces, μk < μs
  42. Meriam, James L.; Kraige, L. Glenn; Palm, William John (2002). Engineering Mechanics: Statics. Wiley and Sons. p. 330. ISBN 978-0-471-40646-4. Kinetic friction force is usually somewhat less than the maximum static friction force.
  43. Feynman, Richard P.; Leighton, Robert B.; Sands, Matthew (1964). "The Feynman Lectures on Physics, Vol. I, p. 12–5". Addison-Wesley. Retrieved 2009-10-16.
  44. 44.0 44.1 Persson, B. N.; Volokitin, A. I (2002). "Theory of rubber friction: Nonstationary sliding" (PDF). Physical Review B. 65 (13): 134106. Bibcode:2002PhRvB..65m4106P. doi:10.1103/PhysRevB.65.134106.
  45. Beatty, William J. "Recurring science misconceptions in K-6 textbooks". Retrieved 2007-06-08.
  46. Persson, B. N. J. (2000). Sliding friction: physical principles and applications. Springer. ISBN 978-3-540-67192-3. Retrieved 2016-01-23.
  47. Makkonen, L (2012). "A thermodynamic model of sliding friction". AIP Advances. 2 (1): 012179. Bibcode:2012AIPA....2a2179M. doi:10.1063/1.3699027.
  48. Nichols, Edward Leamington; Franklin, William Suddards (1898). The Elements of Physics. Vol. 1. Macmillan. p. 101.
  49. Ternes, Markus; Lutz, Christopher P.; Hirjibehedin, Cyrus F.; Giessibl, Franz J.; Heinrich, Andreas J. (2008-02-22). "The Force Needed to Move an Atom on a Surface" (PDF). Science. 319 (5866): 1066–1069. Bibcode:2008Sci...319.1066T. doi:10.1126/science.1150288. PMID 18292336. S2CID 451375.
  50. 50.0 50.1 Deng, Zhao; et al. (October 14, 2012). "Adhesion-dependent negative friction coefficient on chemically modified graphite at the nanoscale". Nature. 11 (12): 1032–7. Bibcode:2012NatMa..11.1032D. doi:10.1038/nmat3452. PMID 23064494.
  51. Haslinger, J.; Nedlec, J.C. (1983). "Approximation of the Signorini problem with friction, obeying the Coulomb law" (PDF). Mathematical Methods in the Applied Sciences. 5 (1): 422–437. Bibcode:1983MMAS....5..422H. doi:10.1002/mma.1670050127. hdl:10338.dmlcz/104086.
  52. Alart, P.; Curnier, A. (1991). "A mixed formulation for frictional contact problems prone to Newton like solution method". Computer Methods in Applied Mechanics and Engineering. 92 (3): 353–375. Bibcode:1991CMAME..92..353A. doi:10.1016/0045-7825(91)90022-X.
  53. Acary, V.; Cadoux, F.; Lemaréchal, C.; Malick, J. (2011). "A formulation of the linear discrete Coulomb friction problem via convex optimization". Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik. 91 (2): 155–175. Bibcode:2011ZaMM...91..155A. doi:10.1002/zamm.201000073. S2CID 17280625.
  54. De Saxcé, G.; Feng, Z.-Q. (1998). "The bipotential method: A constructive approach to design the complete contact law with friction and improved numerical algorithms". Mathematical and Computer Modelling. 28 (4): 225–245. doi:10.1016/S0895-7177(98)00119-8.
  55. Simo, J.C.; Laursen, T.A. (1992). "An augmented lagrangian treatment of contact problems involving friction". Computers and Structures. 42 (2): 97–116. doi:10.1016/0045-7949(92)90540-G.
  56. Acary, V.; Brogliato, B. (2008). Numerical Methods for Nonsmooth Dynamical Systems. Applications in Mechanics and Electronics. Vol. 35. Springer Verlag Heidelberg.
  57. Bigoni, D. (2012-07-30). Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, 2012. ISBN 9781107025417.
  58. Adams, G. G. (1995). "Self-excited oscillations of two elastic half-spaces sliding with a constant coefficient of friction". Journal of Applied Mechanics. 62 (4): 867–872. Bibcode:1995JAM....62..867A. doi:10.1115/1.2896013.
  59. Martins, J.A., Faria, L.O. & Guimarães, J. (1995). "Dynamic surface solutions in linear elasticity and viscoelasticity with frictional boundary conditions". Journal of Vibration and Acoustics. 117 (4): 445–451. doi:10.1115/1.2874477.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  60. M, Nosonovsky; G., Adams G. (2004). "Vibration and stability of frictional sliding of two elastic bodies with a wavy contact interface". Journal of Applied Mechanics. 71 (2): 154–161. Bibcode:2004JAM....71..154N. doi:10.1115/1.1653684.
  61. J., Flint; J., Hultén (2002). "Lining-deformation-induced modal coupling as squeal generator in a distributed parameter disk brake model". Journal of Sound and Vibration. 254 (1): 1–21. Bibcode:2002JSV...254....1F. doi:10.1006/jsvi.2001.4052.
  62. M., Kröger; M., Neubauer; K., Popp (2008). "Experimental investigation on the avoidance of self-excited vibrations". Phil. Trans. R. Soc. A. 366 (1866): 785–810. Bibcode:2008RSPTA.366..785K. doi:10.1098/rsta.2007.2127. PMID 17947204. S2CID 16395796.
  63. R., Rice, J.; L., Ruina, A. (1983). "Stability of Steady Frictional Slipping" (PDF). Journal of Applied Mechanics. 50 (2): 343–349. Bibcode:1983JAM....50..343R. CiteSeerX 10.1.1.161.5207. doi:10.1115/1.3167042.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  64. Bigoni, D.; Noselli, G. (2011). "Experimental evidence of flutter and divergence instabilities induced by dry friction". Journal of the Mechanics and Physics of Solids. 59 (10): 2208–2226. Bibcode:2011JMPSo..59.2208B. CiteSeerX 10.1.1.700.5291. doi:10.1016/j.jmps.2011.05.007.
  65. Nosonovsky, Michael (2013). Friction-Induced Vibrations and Self-Organization: Mechanics and Non-Equilibrium Thermodynamics of Sliding Contact. CRC Press. p. 333. ISBN 978-1466504011.
  66. Einstein, A. (1909). On the development of our views concerning the nature and constitution of radiation. Translated in: The Collected Papers of Albert Einstein, vol. 2 (Princeton University Press, Princeton, 1989). Princeton, NJ: Princeton University Press. p. 391.
  67. Silliman, Benjamin (1871) Principles of Physics, Or Natural Philosophy, Ivison, Blakeman, Taylor & company publishers
  68. Butt, Hans-Jürgen; Graf, Karlheinz and Kappl, Michael (2006) Physics and Chemistry of Interfaces, Wiley, ISBN 3-527-40413-9
  69. Hogan, C. Michael (1973). "Analysis of highway noise". Water, Air, & Soil Pollution. 2 (3): 387–392. Bibcode:1973WASP....2..387H. doi:10.1007/BF00159677. S2CID 109914430.
  70. Valentin L. Popov; Lars Voll; Stephan Kusche; Qiang Li; Svetlana V. Rozhkova (2018). "Generalized master curve procedure for elastomer friction taking into account dependencies on velocity, temperature and normal force". Tribology International. 120: 376–380. arXiv:1604.03407. doi:10.1016/j.triboint.2017.12.047. S2CID 119288819.
  71. Den Hartog, J. P. (1961). Mechanics. Courier Dover Publications. p. 142. ISBN 978-0-486-60754-2.
  72. Leonard, William J (2000). Minds-on Physics. Kendall/Hunt. p. 603. ISBN 978-0-7872-3932-9.
  73. Bayer, Raymond George (2004). Mechanical wear. CRC Press. pp. 1, 2. ISBN 978-0-8247-4620-9. Retrieved 2008-07-07.
  74. "How Do Car Brakes Work?". Wonderopolis. Retrieved November 4, 2018.
  75. Iskander, R; Stevens, A. "Effectiveness of the Application of High Friction Surfacing-Crash-Reduction.pdf" (PDF). Retrieved 2017-09-03.
  76. "How Does Lighting A Match Work?". curiosity.com. Curiosity. November 11, 2015. Retrieved November 4, 2018.


इस पृष्ठ में गुम आंतरिक लिंक की सूची

बाहरी संबंध