सामान्यीकृत ईजेनवेक्टर: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 4: Line 4:
रेखीय बीजगणित में,  एक सामान्यीकृत ईजेनवेक्टर <math>n\times n</math> [[मैट्रिक्स (गणित)]] <math>A</math>  [[वेक्टर (गणित और भौतिकी)]] है जो कुछ मानदंडों को पूर्ण करता है जो एक (साधारण) [[आइजन्वेक्टर]] की समानता में अधिक आराम से हैं।<ref>{{harvtxt|Bronson|1970|p=189}}</ref>
रेखीय बीजगणित में,  एक सामान्यीकृत ईजेनवेक्टर <math>n\times n</math> [[मैट्रिक्स (गणित)]] <math>A</math>  [[वेक्टर (गणित और भौतिकी)]] है जो कुछ मानदंडों को पूर्ण करता है जो एक (साधारण) [[आइजन्वेक्टर]] की समानता में अधिक आराम से हैं।<ref>{{harvtxt|Bronson|1970|p=189}}</ref>


होने देना <math>V</math> सेम <math>n</math>-आयामी वेक्टर अंतरिक्ष और चलो <math>A</math> रेखीय मानचित्र बनें # एक रेखीय मानचित्र के उदाहरण <math>V</math> को <math>V</math> कुछ आदेशित [[आधार (रैखिक बीजगणित)]] के संबंध में।
होने देना <math>V</math> सेम <math>n</math>-आयामी वेक्टर अंतरिक्ष और चलो <math>A</math> रेखीय मानचित्र बनें एक रेखीय मानचित्र के उदाहरण <math>V</math> को <math>V</math> कुछ आदेशित [[आधार (रैखिक बीजगणित)]] के संबंध में।


सदैव का पूर्ण सेट उपस्थित नहीं हो सकता है <math>n</math> [[रैखिक स्वतंत्रता]] के ईजेनवेक्टर <math>A</math> के लिए पूर्ण आधार बनाता है <math>V</math>. अर्थात मैट्रिक्स <math>A</math> [[विकर्णीय मैट्रिक्स]] नहीं हो सकता है।<ref>{{harvtxt|Beauregard|Fraleigh|1973|p=310}}</ref><ref>{{harvtxt|Nering|1970|p=118}}</ref> यह तब होता है जब कम से कम एक [[eigenvalue]] की [[बीजगणितीय बहुलता]] <math>\lambda_i</math> इसकी [[ज्यामितीय बहुलता]] से अधिक है (कर्नेल (रैखिक बीजगणित) # मैट्रिक्स के मैट्रिक्स गुणन के रूप में प्रतिनिधित्व <math>(A-\lambda_i I)</math>, या इसके कर्नेल (रैखिक बीजगणित) का [[आयाम (वेक्टर स्थान)]]। इस स्थितिमें, <math>\lambda_i</math> एक दोषपूर्ण eigenvalue कहा जाता है और <math>A</math> [[दोषपूर्ण मैट्रिक्स]] कहा जाता है।<ref>{{harvtxt|Golub|Van Loan|1996|p=316}}</ref>
सदैव का पूर्ण सेट उपस्थित नहीं हो सकता है <math>n</math> [[रैखिक स्वतंत्रता]] के ईजेनवेक्टर <math>A</math> के लिए पूर्ण आधार बनाता है <math>V</math>. अर्थात मैट्रिक्स <math>A</math> [[विकर्णीय मैट्रिक्स]] नहीं हो सकता है।<ref>{{harvtxt|Beauregard|Fraleigh|1973|p=310}}</ref><ref>{{harvtxt|Nering|1970|p=118}}</ref> यह तब होता है जब कम से कम एक [[eigenvalue|आइगनमान]] की [[बीजगणितीय बहुलता]] <math>\lambda_i</math> इसकी [[ज्यामितीय बहुलता]] से अधिक है (कर्नेल (रैखिक बीजगणित) मैट्रिक्स के मैट्रिक्स गुणन के रूप में प्रतिनिधित्व <math>(A-\lambda_i I)</math>, या इसके कर्नेल (रैखिक बीजगणित) का [[आयाम (वेक्टर स्थान)]]। इस स्थितिमें, <math>\lambda_i</math> एक दोषपूर्ण सामान्यीकृत मोडल मैट्रिक्सकहा जाता है और <math>A</math> [[दोषपूर्ण मैट्रिक्स]] कहा जाता है।<ref>{{harvtxt|Golub|Van Loan|1996|p=316}}</ref>


एक सामान्यीकृत ईजेनवेक्टर <math>x_i</math> तदनुसार <math>\lambda_i</math>, मैट्रिक्स के साथ <math>(A-\lambda_i I)</math> रैखिक रूप से स्वतंत्र सामान्यीकृत ईजेनवेक्टरों की एक जॉर्डन श्रृंखला उत्पन्न करें जो एक [[अपरिवर्तनीय उप-स्थान]] के लिए आधार बनाती हैं <math>V</math>.<ref>{{harvtxt|Beauregard|Fraleigh|1973|p=319}}</ref><ref>{{harvtxt|Bronson|1970|pp=194–195}}</ref><ref>{{harvtxt|Golub|Van Loan|1996|p=311}}</ref>
एक सामान्यीकृत ईजेनवेक्टर <math>x_i</math> तदनुसार <math>\lambda_i</math>, मैट्रिक्स के साथ <math>(A-\lambda_i I)</math> रैखिक रूप से स्वतंत्र सामान्यीकृत ईजेनवेक्टरों की एक जॉर्डन श्रृंखला उत्पन्न करें जो एक [[अपरिवर्तनीय उप-स्थान]] के लिए आधार बनाती हैं <math>V</math>.<ref>{{harvtxt|Beauregard|Fraleigh|1973|p=319}}</ref><ref>{{harvtxt|Bronson|1970|pp=194–195}}</ref><ref>{{harvtxt|Golub|Van Loan|1996|p=311}}</ref>


सामान्यीकृत ईगेनवेक्टर्स  का उपयोग करना, के रैखिक रूप से स्वतंत्र eigenvectors का एक सेट <math>A</math> के लिए, यदि आवश्यक हो, पूर्ण आधार पर बढ़ाया जा सकता है <math>V</math>.<ref>{{harvtxt|Bronson|1970|p=196}}</ref> इस आधार का उपयोग अधिकतर विकर्ण मैट्रिक्स को निर्धारित करने के लिए किया जा सकता है <math>J</math> [[जॉर्डन सामान्य रूप]] में, करने के लिए [[मैट्रिक्स समानता]] <math>A</math>, जो कुछ मैट्रिक्स कार्यों की गणना करने में उपयोगी है <math>A</math>.<ref>{{harvtxt|Bronson|1970|p=189}}</ref> गणित का सवाल <math>J</math> साधारण अवकल समीकरण#ODE की प्रणाली को हल करने में भी उपयोगी है <math>\mathbf x' = A \mathbf x,</math> जहाँ <math>A</math> विकर्ण होने की आवश्यकता नहीं है।<ref>{{harvtxt|Beauregard|Fraleigh|1973|pp=316–318}}</ref><ref>{{harvtxt|Nering|1970|p=118}}</ref>
सामान्यीकृत ईगेनवेक्टर्स  का उपयोग करना, के रैखिक रूप से स्वतंत्र इगेनवेक्टर्स  का एक सेट <math>A</math> के लिए, यदि आवश्यक हो, पूर्ण आधार पर बढ़ाया जा सकता है <math>V</math>.<ref>{{harvtxt|Bronson|1970|p=196}}</ref> इस आधार का उपयोग अधिकतर विकर्ण मैट्रिक्स को निर्धारित करने के लिए किया जा सकता है <math>J</math> [[जॉर्डन सामान्य रूप]] में, करने के लिए [[मैट्रिक्स समानता]] <math>A</math>, जो कुछ मैट्रिक्स कार्यों की गणना करने में उपयोगी है <math>A</math>.<ref>{{harvtxt|Bronson|1970|p=189}}</ref> गणित का सवाल <math>J</math> साधारण अवकल समीकरण ODE की प्रणाली को हल करने में भी उपयोगी है <math>\mathbf x' = A \mathbf x,</math> जहाँ <math>A</math> विकर्ण होने की आवश्यकता नहीं है।<ref>{{harvtxt|Beauregard|Fraleigh|1973|pp=316–318}}</ref><ref>{{harvtxt|Nering|1970|p=118}}</ref>


किसी दिए गए ईगेनवैल्यू के अनुरूप सामान्यीकृत आइगेनस्पेस का आयाम <math>\lambda</math> की बीजगणितीय बहुलता है <math>\lambda</math>.<ref>{{harvtxt|Bronson|1970|p=196}}</ref>
किसी दिए गए ईगेनवैल्यू के अनुरूप सामान्यीकृत आइगेनस्पेस का आयाम <math>\lambda</math> की बीजगणितीय बहुलता है <math>\lambda</math>.<ref>{{harvtxt|Bronson|1970|p=196}}</ref>
Line 27: Line 27:
स्पष्ट रूप से, रैंक 1 का सामान्यीकृत ईजेनवेक्टर एक साधारण ईजेनवेक्टर है।<ref>{{harvtxt|Bronson|1970|pp=190,202}}</ref> प्रत्येक <math>n</math> × <math>n</math> आव्यूह <math>A</math> है <math>n</math> इसके साथ जुड़े रैखिक रूप से स्वतंत्र सामान्यीकृत ईजेनवेक्टर और इसे अधिकतर विकर्ण मैट्रिक्स के समान दिखाया जा सकता है <math>J</math> जॉर्डन में सामान्य रूप।<ref>{{harvtxt|Bronson|1970|pp=189,203}}</ref> अर्थात्, एक व्युत्क्रमणीय मैट्रिक्स उपस्थित है <math>M</math> ऐसा है कि <math>J = M^{-1}AM</math>.<ref>{{harvtxt|Bronson|1970|pp=206–207}}</ref> गणित का सवाल <math>M</math> इस स्थितिमें [[सामान्यीकृत मोडल मैट्रिक्स]] कहा जाता है <math>A</math>.<ref>{{harvtxt|Bronson|1970|p=205}}</ref> यदि <math>\lambda</math> बीजगणितीय बहुलता का आइगेनमान है <math>\mu</math>, तब <math>A</math> होगा <math>\mu</math> इसके अनुरूप रैखिक रूप से स्वतंत्र सामान्यीकृत ईजेनवेक्टर <math>\lambda</math>.<ref>{{harvtxt|Bronson|1970|p=196}}</ref> ये परिणाम, बदले में, के कुछ मैट्रिक्स कार्यों की गणना के लिए एक सीधी विधि प्रदान करते हैं <math>A</math>.<ref>{{harvtxt|Bronson|1970|pp=189,209–215}}</ref>
स्पष्ट रूप से, रैंक 1 का सामान्यीकृत ईजेनवेक्टर एक साधारण ईजेनवेक्टर है।<ref>{{harvtxt|Bronson|1970|pp=190,202}}</ref> प्रत्येक <math>n</math> × <math>n</math> आव्यूह <math>A</math> है <math>n</math> इसके साथ जुड़े रैखिक रूप से स्वतंत्र सामान्यीकृत ईजेनवेक्टर और इसे अधिकतर विकर्ण मैट्रिक्स के समान दिखाया जा सकता है <math>J</math> जॉर्डन में सामान्य रूप।<ref>{{harvtxt|Bronson|1970|pp=189,203}}</ref> अर्थात्, एक व्युत्क्रमणीय मैट्रिक्स उपस्थित है <math>M</math> ऐसा है कि <math>J = M^{-1}AM</math>.<ref>{{harvtxt|Bronson|1970|pp=206–207}}</ref> गणित का सवाल <math>M</math> इस स्थितिमें [[सामान्यीकृत मोडल मैट्रिक्स]] कहा जाता है <math>A</math>.<ref>{{harvtxt|Bronson|1970|p=205}}</ref> यदि <math>\lambda</math> बीजगणितीय बहुलता का आइगेनमान है <math>\mu</math>, तब <math>A</math> होगा <math>\mu</math> इसके अनुरूप रैखिक रूप से स्वतंत्र सामान्यीकृत ईजेनवेक्टर <math>\lambda</math>.<ref>{{harvtxt|Bronson|1970|p=196}}</ref> ये परिणाम, बदले में, के कुछ मैट्रिक्स कार्यों की गणना के लिए एक सीधी विधि प्रदान करते हैं <math>A</math>.<ref>{{harvtxt|Bronson|1970|pp=189,209–215}}</ref>


{{anchor|Note}}ध्यान दें: एक के लिए <math>n \times n</math> आव्यूह <math>A</math>  क्षेत्र पर (गणित) <math>F</math> जॉर्डन सामान्य रूप में अभिव्यक्त करने के लिए, के सभी ईगेनलैंड्स <math>A</math> में होना चाहिए <math>F</math>. अर्थात्, [[विशेषता बहुपद]] <math>f(x)</math> पूरी प्रकार से रैखिक कारकों में कारक होना चाहिए। उदाहरण के लिए, यदि <math>A</math> [[वास्तविक संख्या]] | वास्तविक-मूल्यवान तत्व हैं, तो यह आवश्यक हो सकता है कि ईगेनलैंड्स ​​​​और ईगेनवेक्टर्स के घटकों के पास [[जटिल संख्या]] हो।<ref>{{harvtxt|Golub|Van Loan|1996|p=316}}</ref><ref>{{harvtxt|Herstein|1964|p=259}}</ref><ref>{{harvtxt|Nering|1970|p=118}}</ref>
{{anchor|Note}}ध्यान दें: एक के लिए <math>n \times n</math> आव्यूह <math>A</math>  क्षेत्र पर (गणित) <math>F</math> जॉर्डन सामान्य रूप में अभिव्यक्त करने के लिए, के सभी ईगेनलैंड्स <math>A</math> में होना चाहिए <math>F</math>. अर्थात्, [[विशेषता बहुपद]] <math>f(x)</math> पूरी प्रकार से रैखिक कारकों में कारक होना चाहिए। उदाहरण के लिए, यदि <math>A</math> [[वास्तविक संख्या]] | वास्तविक-मूल्यवान तत्व हैं, तो यह आवश्यक हो सकता है कि ईगेनलैंड्स ​​​​और ईगेनवेक्टर्स के घटकों के पास [[जटिल संख्या]] हो।<ref>{{harvtxt|Golub|Van Loan|1996|p=316}}</ref><ref>{{harvtxt|Herstein|1964|p=259}}</ref><ref>{{harvtxt|Nering|1970|p=118}}</ref> किसी दिए गए के लिए सभी सामान्यीकृत ईगेनवेक्टर्स द्वारा सेट लीनियर स्पैन परिभाषा <math> \lambda </math> के लिए सामान्यीकृत आइगेनस्पेस बनाता है <math> \lambda </math>.<ref>{{harvtxt|Nering|1970|p=118}}</ref>
किसी दिए गए के लिए सभी सामान्यीकृत ईगेनवेक्टर्स द्वारा सेट लीनियर स्पैन # परिभाषा <math> \lambda </math> के लिए सामान्यीकृत आइगेनस्पेस बनाता है <math> \lambda </math>.<ref>{{harvtxt|Nering|1970|p=118}}</ref>




Line 43: Line 42:
ध्यान दें कि यह मैट्रिक्स जॉर्डन सामान्य रूप में है किन्तुविकर्ण मैट्रिक्स नहीं है। इसलिए, यह मैट्रिक्स विकर्णीय नहीं है। चूँकि  [[सुपरडायगोनल]] प्रविष्टि है, वहाँ 1 से अधिक रैंक का एक सामान्यीकृत ईजेनवेक्टर होगा (या कोई यह नोट कर सकता है कि वेक्टर स्पेस <math> V </math> आयाम 2 का है, इसलिए रैंक 1 से अधिक का एक सामान्यीकृत ईजेनवेक्टर हो सकता है)। वैकल्पिक रूप से, कोई रिक्त स्थान के आयाम की गणना कर सकता है <math> A - \lambda I </math> होना <math>p=1</math>, और इस प्रकार वहाँ हैं <math>m-p=1</math> 1 से अधिक रैंक के सामान्यीकृत ईजेनवेक्टर।
ध्यान दें कि यह मैट्रिक्स जॉर्डन सामान्य रूप में है किन्तुविकर्ण मैट्रिक्स नहीं है। इसलिए, यह मैट्रिक्स विकर्णीय नहीं है। चूँकि  [[सुपरडायगोनल]] प्रविष्टि है, वहाँ 1 से अधिक रैंक का एक सामान्यीकृत ईजेनवेक्टर होगा (या कोई यह नोट कर सकता है कि वेक्टर स्पेस <math> V </math> आयाम 2 का है, इसलिए रैंक 1 से अधिक का एक सामान्यीकृत ईजेनवेक्टर हो सकता है)। वैकल्पिक रूप से, कोई रिक्त स्थान के आयाम की गणना कर सकता है <math> A - \lambda I </math> होना <math>p=1</math>, और इस प्रकार वहाँ हैं <math>m-p=1</math> 1 से अधिक रैंक के सामान्यीकृत ईजेनवेक्टर।


साधारण ईजेनवेक्टर <math> \mathbf v_1=\begin{pmatrix}1 \\0 \end{pmatrix}</math> सदैव की प्रकार गणना की जाती है (उदाहरण के लिए आइगेनवैल्यूज़ और ईजेनवेक्टर#गणना पृष्ठ देखें)। इस ईगेनवेक्टर्स का उपयोग करके, हम सामान्यीकृत ईगेनवेक्टर्स की गणना करते हैं <math> \mathbf v_2 </math> हल करके
साधारण ईजेनवेक्टर <math> \mathbf v_1=\begin{pmatrix}1 \\0 \end{pmatrix}</math> सदैव की प्रकार गणना की जाती है (उदाहरण के लिए आइगेनवैल्यूज़ और ईजेनवेक्टर गणना पृष्ठ देखें)। इस ईगेनवेक्टर्स का उपयोग करके, हम सामान्यीकृत ईगेनवेक्टर्स की गणना करते हैं <math> \mathbf v_2 </math> हल करके


:<math> (A-\lambda I) \mathbf v_2 = \mathbf v_1. </math>
:<math> (A-\lambda I) \mathbf v_2 = \mathbf v_1. </math>
Line 65: Line 64:


=== उदाहरण 2 ===
=== उदाहरण 2 ===
यह उदाहरण सामान्यीकृत ईजेनवेक्टर # उदाहरण 1 की समानता में अधिक जटिल है। दुर्भाग्य से, निम्न क्रम का एक रोचक उदाहरण बनाना थोड़ा कठिन है।<ref>{{harvtxt|Nering|1970|pp=122,123}}</ref>
यह उदाहरण सामान्यीकृत ईजेनवेक्टर उदाहरण 1 की समानता में अधिक जटिल है। दुर्भाग्य से, निम्न क्रम का एक रोचक उदाहरण बनाना थोड़ा कठिन है।<ref>{{harvtxt|Nering|1970|pp=122,123}}</ref> गणित का सवाल
गणित का सवाल


:<math>A = \begin{pmatrix}  
:<math>A = \begin{pmatrix}  
Line 75: Line 73:
15 & 10 & 6 & 3 & 2
15 & 10 & 6 & 3 & 2
\end{pmatrix}</math>
\end{pmatrix}</math>
ईगेनवेल्यूज हैं <math> \lambda_1 = 1 </math> और <math> \lambda_2 = 2 </math> बीजगणितीय गुणकों के साथ <math> \mu_1 = 2 </math> और <math> \mu_2 = 3 </math>, किन्तुज्यामितीय गुणक <math> \gamma_1 = 1 </math> और <math> \gamma_2 = 1</math>.
ईगेनवेल्यूज हैं <math> \lambda_1 = 1 </math> और <math> \lambda_2 = 2 </math> बीजगणितीय गुणकों के साथ <math> \mu_1 = 2 </math> और <math> \mu_2 = 3 </math>, किन्तु ज्यामितीय गुणक <math> \gamma_1 = 1 </math> और <math> \gamma_2 = 1</math>.


के सामान्यीकृत ईगेंस्पेसेस <math>A</math> नीचे गणना की जाती है।
के सामान्यीकृत ईगेंस्पेसेस <math>A</math> नीचे गणना की जाती है।
Line 362: Line 360:
</math>
</math>
रैंक 3 के सामान्यीकृत ईजेनवेक्टर के अनुरूप <math> \lambda_1 = 5 </math>. ध्यान दें कि विभिन्न मानों को चुनकर रैंक 3 के असीम रूप से कई अन्य सामान्यीकृत ईजेनवेक्टर प्राप्त करना संभव है <math>x_{31}</math>, <math>x_{32}</math> और <math>x_{33}</math>, साथ <math>x_{33} \ne 0</math>. चूँकि, हमारी पहली पसंद सबसे सरल है।<ref>{{harvtxt|Bronson|1970|pp=190–191}}</ref>
रैंक 3 के सामान्यीकृत ईजेनवेक्टर के अनुरूप <math> \lambda_1 = 5 </math>. ध्यान दें कि विभिन्न मानों को चुनकर रैंक 3 के असीम रूप से कई अन्य सामान्यीकृत ईजेनवेक्टर प्राप्त करना संभव है <math>x_{31}</math>, <math>x_{32}</math> और <math>x_{33}</math>, साथ <math>x_{33} \ne 0</math>. चूँकि, हमारी पहली पसंद सबसे सरल है।<ref>{{harvtxt|Bronson|1970|pp=190–191}}</ref>
अब समीकरणों का प्रयोग ({{EquationNote|1}}), हमने प्राप्त <math> \mathbf x_2 </math> और <math> \mathbf x_1 </math> क्रमशः रैंक 2 और 1 के सामान्यीकृत ईजेनवेक्टर के रूप में, जहां
अब समीकरणों का प्रयोग ({{EquationNote|1}}), हमने प्राप्त <math> \mathbf x_2 </math> और <math> \mathbf x_1 </math> क्रमशः रैंक 2 और 1 के सामान्यीकृत ईजेनवेक्टर के रूप में, जहां


Line 384: Line 383:
\end{pmatrix}.
\end{pmatrix}.
</math>
</math>
सरल ईगेनवैल्यू <math>\lambda_2 = 4</math> ईगेनलैंड्स ​​​​और ईगेनवेक्टर्स #गणना का उपयोग करके निपटा जा सकता है और एक साधारण ईगेनवेक्टर्स है
सरल ईगेनवैल्यू <math>\lambda_2 = 4</math> ईगेनलैंड्स ​​​​और ईगेनवेक्टर्स गणना का उपयोग करके निपटा जा सकता है और एक साधारण ईगेनवेक्टर्स है


:<math>
:<math>
Line 413: Line 412:


== सामान्यीकृत मोडल मैट्रिक्स ==
== सामान्यीकृत मोडल मैट्रिक्स ==
{{Main|Generalized modal matrix}}
{{Main|सामान्यीकृत मोडल मैट्रिक्स}}
होने देना <math>A</math> एक n × n मैट्रिक्स बनें। एक 'सामान्यीकृत मोडल मैट्रिक्स' <math>M</math> के लिए <math>A</math> एक n × n मैट्रिक्स है जिसके स्तंभ, जिन्हें वैक्टर माना जाता है, के लिए एक विहित आधार बनाते हैं <math>A</math> और में दिखाई देते हैं <math>M</math> निम्नलिखित नियमों के अनुसार:
होने देना <math>A</math> एक n × n मैट्रिक्स बनें। एक 'सामान्यीकृत मोडल मैट्रिक्स' <math>M</math> के लिए <math>A</math> एक n × n मैट्रिक्स है जिसके स्तंभ, जिन्हें वैक्टर माना जाता है, के लिए एक विहित आधार बनाते हैं <math>A</math> और में दिखाई देते हैं <math>M</math> निम्नलिखित नियमों के अनुसार:


Line 428: Line 427:


:<math> f(\lambda) = \pm (\lambda - \lambda_1)^{\mu_1}(\lambda - \lambda_2)^{\mu_2} \cdots (\lambda - \lambda_r)^{\mu_r} ,</math>
:<math> f(\lambda) = \pm (\lambda - \lambda_1)^{\mu_1}(\lambda - \lambda_2)^{\mu_2} \cdots (\lambda - \lambda_r)^{\mu_r} ,</math>
जहाँ <math> \lambda_1, \lambda_2, \ldots , \lambda_r </math> के विशिष्ट eigenvalues ​​हैं <math>A</math>, फिर प्रत्येक <math>\mu_i</math> इसके संगत आइगेनमान की बीजगणितीय बहुलता है <math>\lambda_i</math> और <math>A</math> मैट्रिक्स के समान है <math>J</math> जॉर्डन में सामान्य रूप, जहां प्रत्येक <math>\lambda_i</math> दिखाई पड़ना <math>\mu_i</math> विकर्ण पर लगातार बार, और सीधे प्रत्येक के ऊपर प्रवेश <math>\lambda_i</math> (अर्थात, सुपरडायगोनल पर) या तो 0 या 1 है। अन्य सभी प्रविष्टियाँ (अर्थात, विकर्ण और सुपरडायगोनल से दूर) 0 हैं। अधिक त्रुटिहीन रूप से, <math>J</math> एक [[जॉर्डन मैट्रिक्स]] है जिसका जॉर्डन ब्लॉक एक ही ईजेनवैल्यू के अनुरूप है, एक साथ समूहीकृत किया जाता है (किन्तुआइगेनवैल्यू के बीच कोई ऑर्डर नहीं लगाया जाता है, न ही किसी दिए गए ईजेनवेल्यू के लिए ब्लॉक के बीच)। गणित का सवाल <math>J</math> उतना ही निकट है जितना कोई एक विकर्णीकरण के लिए आ सकता है <math>A</math>. यदि <math>A</math> विकर्ण योग्य है, तो विकर्ण के ऊपर की सभी प्रविष्टियाँ शून्य हैं।<ref>{{harvtxt|Beauregard|Fraleigh|1973|p=311}}</ref> ध्यान दें कि कुछ पाठ्यपुस्तकों में वे [[सबडायगोनल]] होते हैं, जो सुपरडायगोनल के अतिरिक्त मुख्य विकर्ण के ठीक नीचे होते हैं। eigenvalues ​​अभी भी मुख्य विकर्ण पर हैं।<ref>{{harvtxt|Cullen|1966|p=114}}</ref><ref>{{harvtxt|Franklin|1968|p=122}}</ref>
जहाँ <math> \lambda_1, \lambda_2, \ldots , \lambda_r </math> के विशिष्ट इगनवैल्यूज़  ​​हैं <math>A</math>, फिर प्रत्येक <math>\mu_i</math> इसके संगत आइगेनमान की बीजगणितीय बहुलता है <math>\lambda_i</math> और <math>A</math> मैट्रिक्स के समान है <math>J</math> जॉर्डन में सामान्य रूप, जहां प्रत्येक <math>\lambda_i</math> दिखाई पड़ना <math>\mu_i</math> विकर्ण पर लगातार बार, और सीधे प्रत्येक के ऊपर प्रवेश <math>\lambda_i</math> (अर्थात, सुपरडायगोनल पर) या तो 0 या 1 है। अन्य सभी प्रविष्टियाँ (अर्थात, विकर्ण और सुपरडायगोनल से दूर) 0 हैं। अधिक त्रुटिहीन रूप से, <math>J</math> एक [[जॉर्डन मैट्रिक्स]] है जिसका जॉर्डन ब्लॉक एक ही ईजेनवैल्यू के अनुरूप है, एक साथ समूहीकृत किया जाता है (किन्तु आइगेनवैल्यू के बीच कोई ऑर्डर नहीं लगाया जाता है, न ही किसी दिए गए ईजेनवेल्यू के लिए ब्लॉक के बीच)। गणित का सवाल <math>J</math> उतना ही निकट है जितना कोई एक विकर्णीकरण के लिए आ सकता है <math>A</math>. यदि <math>A</math> विकर्ण योग्य है, तो विकर्ण के ऊपर की सभी प्रविष्टियाँ शून्य हैं।<ref>{{harvtxt|Beauregard|Fraleigh|1973|p=311}}</ref> ध्यान दें कि कुछ पाठ्यपुस्तकों में वे [[सबडायगोनल]] होते हैं, जो सुपरडायगोनल के अतिरिक्त मुख्य विकर्ण के ठीक नीचे होते हैं। इगनवैल्यूज़  ​​अभी भी मुख्य विकर्ण पर हैं।<ref>{{harvtxt|Cullen|1966|p=114}}</ref><ref>{{harvtxt|Franklin|1968|p=122}}</ref>
हर n × n मैट्रिक्स <math>A</math> मैट्रिक्स के समान है <math>J</math> जॉर्डन में सामान्य रूप, समानता परिवर्तन के माध्यम से प्राप्त किया <math> J = M^{-1}AM </math>, जहाँ <math>M</math> के लिए एक सामान्यीकृत मोडल मैट्रिक्स है <math>A</math>.<ref>{{harvtxt|Bronson|1970|p=207}}</ref> (ऊपर #नोट देखें।)
हर n × n मैट्रिक्स <math>A</math> मैट्रिक्स के समान है <math>J</math> जॉर्डन में सामान्य रूप, समानता परिवर्तन के माध्यम से प्राप्त किया <math> J = M^{-1}AM </math>, जहाँ <math>M</math> के लिए एक सामान्यीकृत मोडल मैट्रिक्स है <math>A</math>.<ref>{{harvtxt|Bronson|1970|p=207}}</ref> (ऊपर नोट देखें।)


=== उदाहरण 4 ===
=== उदाहरण 4 ===
Line 523: Line 522:
और यद्यपि <math>A</math> के फ़ंक्शनों के लिए मैकलॉरिन श्रृंखला का मूल्यांकन काफ़ी सरल हो जाता है।<ref>{{harvtxt|Bronson|1970|p=184}}</ref> उदाहरण के लिए,<math>A</math> की कोई घात k प्राप्त करने के लिए , हमें एकमात्र <math>D^k</math> की गणना करनी होगी, इसे <math>D^k</math> से पूर्व गुणन करें, और परिणाम को <math>M</math>, द्वारा पूर्व गुणित करें, और <math>M^{-1}</math> द्वारा पश्चात गुणित करें।<ref>{{harvtxt|Bronson|1970|p=185}}</ref>
और यद्यपि <math>A</math> के फ़ंक्शनों के लिए मैकलॉरिन श्रृंखला का मूल्यांकन काफ़ी सरल हो जाता है।<ref>{{harvtxt|Bronson|1970|p=184}}</ref> उदाहरण के लिए,<math>A</math> की कोई घात k प्राप्त करने के लिए , हमें एकमात्र <math>D^k</math> की गणना करनी होगी, इसे <math>D^k</math> से पूर्व गुणन करें, और परिणाम को <math>M</math>, द्वारा पूर्व गुणित करें, और <math>M^{-1}</math> द्वारा पश्चात गुणित करें।<ref>{{harvtxt|Bronson|1970|p=185}}</ref>


सामान्यीकृत ऐजेन्वेक्टर्स का उपयोग करके, हम जॉर्डन सामान्य रूप प्राप्त कर सकते हैं <math>A</math> और इन परिणामों को नॉनडायगोनलाइज़ेबल मेट्रिसेस के कार्यों की गणना के लिए एक सीधी विधि के लिए सामान्यीकृत किया जा सकता है।<ref>{{harvtxt|Bronson|1970|pp=209–218}}</ref> (मैट्रिक्स फ़ंक्शन # जॉर्डन अपघटन देखें।)
सामान्यीकृत ऐजेन्वेक्टर्स का उपयोग करके, हम जॉर्डन सामान्य रूप प्राप्त कर सकते हैं <math>A</math> और इन परिणामों को नॉनडायगोनलाइज़ेबल मेट्रिसेस के कार्यों की गणना के लिए एक सीधी विधि के लिए सामान्यीकृत किया जा सकता है।<ref>{{harvtxt|Bronson|1970|pp=209–218}}</ref> (मैट्रिक्स फ़ंक्शन जॉर्डन अपघटन देखें।)


=== विभेदक समीकरण ===
=== विभेदक समीकरण ===

Revision as of 23:57, 22 May 2023

रेखीय बीजगणित में, एक सामान्यीकृत ईजेनवेक्टर मैट्रिक्स (गणित) वेक्टर (गणित और भौतिकी) है जो कुछ मानदंडों को पूर्ण करता है जो एक (साधारण) आइजन्वेक्टर की समानता में अधिक आराम से हैं।[1]

होने देना सेम -आयामी वेक्टर अंतरिक्ष और चलो रेखीय मानचित्र बनें एक रेखीय मानचित्र के उदाहरण को कुछ आदेशित आधार (रैखिक बीजगणित) के संबंध में।

सदैव का पूर्ण सेट उपस्थित नहीं हो सकता है रैखिक स्वतंत्रता के ईजेनवेक्टर के लिए पूर्ण आधार बनाता है . अर्थात मैट्रिक्स विकर्णीय मैट्रिक्स नहीं हो सकता है।[2][3] यह तब होता है जब कम से कम एक आइगनमान की बीजगणितीय बहुलता इसकी ज्यामितीय बहुलता से अधिक है (कर्नेल (रैखिक बीजगणित) मैट्रिक्स के मैट्रिक्स गुणन के रूप में प्रतिनिधित्व , या इसके कर्नेल (रैखिक बीजगणित) का आयाम (वेक्टर स्थान)। इस स्थितिमें, एक दोषपूर्ण सामान्यीकृत मोडल मैट्रिक्सकहा जाता है और दोषपूर्ण मैट्रिक्स कहा जाता है।[4]

एक सामान्यीकृत ईजेनवेक्टर तदनुसार , मैट्रिक्स के साथ रैखिक रूप से स्वतंत्र सामान्यीकृत ईजेनवेक्टरों की एक जॉर्डन श्रृंखला उत्पन्न करें जो एक अपरिवर्तनीय उप-स्थान के लिए आधार बनाती हैं .[5][6][7]

सामान्यीकृत ईगेनवेक्टर्स का उपयोग करना, के रैखिक रूप से स्वतंत्र इगेनवेक्टर्स का एक सेट के लिए, यदि आवश्यक हो, पूर्ण आधार पर बढ़ाया जा सकता है .[8] इस आधार का उपयोग अधिकतर विकर्ण मैट्रिक्स को निर्धारित करने के लिए किया जा सकता है जॉर्डन सामान्य रूप में, करने के लिए मैट्रिक्स समानता , जो कुछ मैट्रिक्स कार्यों की गणना करने में उपयोगी है .[9] गणित का सवाल साधारण अवकल समीकरण ODE की प्रणाली को हल करने में भी उपयोगी है जहाँ विकर्ण होने की आवश्यकता नहीं है।[10][11]

किसी दिए गए ईगेनवैल्यू के अनुरूप सामान्यीकृत आइगेनस्पेस का आयाम की बीजगणितीय बहुलता है .[12]


अवलोकन और परिभाषा

एक साधारण ईजेनवेक्टर को परिभाषित करने के कई समतुल्य विधि हैं।[13][14][15][16][17][18][19][20] हमारे उद्देश्यों के लिए, एक ईजेनवेक्टर एक eigenvalue से जुड़ा हुआ है की एक × आव्यूह जिसके लिए अशून्य सदिश है , जहाँ है × पहचान मैट्रिक्स और लंबाई का शून्य वेक्टर है .[21] वह है, रैखिक परिवर्तन के कर्नेल (रैखिक बीजगणित) में है . यदि है रैखिक रूप से स्वतंत्र ईजेनवेक्टर, फिर विकर्ण मैट्रिक्स के समान है . अर्थात्, एक व्युत्क्रमणीय मैट्रिक्स उपस्थित है ऐसा है कि समानता परिवर्तन के माध्यम से विकर्ण है .[22][23] गणित का सवाल के लिए वर्णक्रमीय मैट्रिक्स कहा जाता है . गणित का सवाल के लिए एक मोडल मैट्रिक्स कहा जाता है .[24] विकर्णीय मेट्रिसेस विशेष रुचि रखते हैं क्योंकि उनके मैट्रिक्स फ़ंक्शंस की आसानी से गणना की जा सकती है।[25] वहीं दूसरी ओर यदि नहीं है इसके साथ जुड़े रैखिक रूप से स्वतंत्र ईगेनवेक्टर्स विकर्णीय नहीं है।[26][27] परिभाषा: एक वेक्टर मैट्रिक्स के रैंक m का सामान्यीकृत ईजेनवेक्टर है और ईगेनलैंड्स के अनुरूप यदि

किन्तु

[28]

स्पष्ट रूप से, रैंक 1 का सामान्यीकृत ईजेनवेक्टर एक साधारण ईजेनवेक्टर है।[29] प्रत्येक × आव्यूह है इसके साथ जुड़े रैखिक रूप से स्वतंत्र सामान्यीकृत ईजेनवेक्टर और इसे अधिकतर विकर्ण मैट्रिक्स के समान दिखाया जा सकता है जॉर्डन में सामान्य रूप।[30] अर्थात्, एक व्युत्क्रमणीय मैट्रिक्स उपस्थित है ऐसा है कि .[31] गणित का सवाल इस स्थितिमें सामान्यीकृत मोडल मैट्रिक्स कहा जाता है .[32] यदि बीजगणितीय बहुलता का आइगेनमान है , तब होगा इसके अनुरूप रैखिक रूप से स्वतंत्र सामान्यीकृत ईजेनवेक्टर .[33] ये परिणाम, बदले में, के कुछ मैट्रिक्स कार्यों की गणना के लिए एक सीधी विधि प्रदान करते हैं .[34]

ध्यान दें: एक के लिए आव्यूह क्षेत्र पर (गणित) जॉर्डन सामान्य रूप में अभिव्यक्त करने के लिए, के सभी ईगेनलैंड्स में होना चाहिए . अर्थात्, विशेषता बहुपद पूरी प्रकार से रैखिक कारकों में कारक होना चाहिए। उदाहरण के लिए, यदि वास्तविक संख्या | वास्तविक-मूल्यवान तत्व हैं, तो यह आवश्यक हो सकता है कि ईगेनलैंड्स ​​​​और ईगेनवेक्टर्स के घटकों के पास जटिल संख्या हो।[35][36][37] किसी दिए गए के लिए सभी सामान्यीकृत ईगेनवेक्टर्स द्वारा सेट लीनियर स्पैन परिभाषा के लिए सामान्यीकृत आइगेनस्पेस बनाता है .[38]


उदाहरण

सामान्यीकृत ईजेनवेक्टरों की अवधारणा को स्पष्ट करने के लिए यहां कुछ उदाहरण दिए गए हैं। कुछ विवरणों का वर्णन बाद में किया जाएगा।

उदाहरण 1

यह उदाहरण सरल है किन्तुस्पष्ट रूप से बात को दर्शाता है। पाठ्यपुस्तकों में इस प्रकार के मैट्रिक्स का प्रयोग अधिकांशतः किया जाता है।[39][40][41]

कल्पना करना

तब एकमात्र एक आइगेनवैल्यू होता है, , और इसकी बीजगणितीय बहुलता है .

ध्यान दें कि यह मैट्रिक्स जॉर्डन सामान्य रूप में है किन्तुविकर्ण मैट्रिक्स नहीं है। इसलिए, यह मैट्रिक्स विकर्णीय नहीं है। चूँकि सुपरडायगोनल प्रविष्टि है, वहाँ 1 से अधिक रैंक का एक सामान्यीकृत ईजेनवेक्टर होगा (या कोई यह नोट कर सकता है कि वेक्टर स्पेस आयाम 2 का है, इसलिए रैंक 1 से अधिक का एक सामान्यीकृत ईजेनवेक्टर हो सकता है)। वैकल्पिक रूप से, कोई रिक्त स्थान के आयाम की गणना कर सकता है होना , और इस प्रकार वहाँ हैं 1 से अधिक रैंक के सामान्यीकृत ईजेनवेक्टर।

साधारण ईजेनवेक्टर सदैव की प्रकार गणना की जाती है (उदाहरण के लिए आइगेनवैल्यूज़ और ईजेनवेक्टर गणना पृष्ठ देखें)। इस ईगेनवेक्टर्स का उपयोग करके, हम सामान्यीकृत ईगेनवेक्टर्स की गणना करते हैं हल करके

मान लिखना:

यह करने के लिए सरल करता है

तत्व कोई प्रतिबंध नहीं है। रैंक 2 का सामान्यीकृत ईजेनवेक्टर तब है , जहाँ a का कोई भी अदिश मान हो सकता है। a = 0 का चुनाव सामान्यतः सबसे सरल होता है।

ध्यान दें कि

जिससे एक सामान्यीकृत ईजेनवेक्टर है,

जिससे एक साधारण ईजेनवेक्टर है, और वह और रैखिक रूप से स्वतंत्र हैं और इसलिए सदिश समष्टि के लिए एक आधार का निर्माण करते हैं .

उदाहरण 2

यह उदाहरण सामान्यीकृत ईजेनवेक्टर उदाहरण 1 की समानता में अधिक जटिल है। दुर्भाग्य से, निम्न क्रम का एक रोचक उदाहरण बनाना थोड़ा कठिन है।[42] गणित का सवाल

ईगेनवेल्यूज हैं और बीजगणितीय गुणकों के साथ और , किन्तु ज्यामितीय गुणक और .

के सामान्यीकृत ईगेंस्पेसेस नीचे गणना की जाती है। से जुड़ा साधारण ईजेनवेक्टर है . से जुड़ा एक सामान्यीकृत ईजेनवेक्टर है . से जुड़ा साधारण ईजेनवेक्टर है .

और से जुड़े सामान्यीकृत ईजेनवेक्टर हैं .

इसका परिणाम प्रत्येक के सामान्यीकृत ईजेनस्पेस के लिए एक आधार के रूप में होता है . साथ में सामान्यीकृत ईजेनवेक्टरों की दो श्रृंखलाएं सभी 5-आयामी स्तंभ वैक्टरों के स्थान को फैलाती हैं।

एक अधिकतर विकर्ण मैट्रिक्स जॉर्डन में सामान्य रूप, के समान निम्नानुसार प्राप्त किया जाता है:

जहाँ के लिए एक सामान्यीकृत मोडल मैट्रिक्स है , के स्तंभ एक कैननिकल आधार हैं#रैखिक बीजगणित के लिए , और .[43]

जॉर्डन चेन

परिभाषा: चलो मैट्रिक्स के अनुरूप रैंक m का सामान्यीकृत ईजेनवेक्टर बनें और eigenvalue . द्वारा उत्पन्न श्रृंखला वैक्टर का एक सेट है द्वारा दिए गए




 

 

 

 

(1)

इस प्रकार, सामान्यतः,

 

 

 

 

(2)

सदिश , द्वारा दिए गए (2), ईगेंस्पेस के अनुरूप रैंक j का एक सामान्यीकृत ईजेनवेक्टर है . एक श्रृंखला वैक्टर का एक रैखिक रूप से स्वतंत्र सेट है।[44]


विहित आधार

परिभाषा: 'एन' का एक सेट रैखिक रूप से स्वतंत्र सामान्यीकृत ईजेनवेक्टर एक विहित आधार है यदि यह पूरी प्रकार से जॉर्डन श्रृंखलाओं से बना है।

इस प्रकार, एक बार जब हम यह निर्धारित कर लेते हैं कि m रैंक का एक सामान्यीकृत ईजेनवेक्टर एक विहित आधार पर है, तो यह अनुसरण करता है कि m - 1 वैक्टर जो कि जॉर्डन श्रृंखला द्वारा उत्पन्न हैं विहित आधार पर भी हैं।[45] होने देना का आइगेनवैल्यू हो बीजगणितीय बहुलता का . सबसे पहले, मैट्रिसेस की रैंक (रैखिक बीजगणित) (मैट्रिक्स रैंक) खोजें . पूर्णांक जिसके लिए पहला पूर्णांक निर्धारित किया जाता है रैंक है (n पंक्तियों या स्तंभों की संख्या होने के नाते , वह है, एन × एन है)।

अब परिभाषित करें

चर ईगेनलैंड् के अनुरूप रैंक k के रैखिक रूप से स्वतंत्र सामान्यीकृत ईगेनवेक्टर्सकी संख्या को निर्दिष्ट करता है के लिए एक विहित आधार में दिखाई देगा . ध्यान दें कि

.[46]


सामान्यीकृत ईजेनवेक्टरों की गणना

पूर्व अनुभागों में हमने प्राप्त करने की तकनीकों को देखा है सदिश स्थान के लिए एक विहित आधार के रैखिक रूप से स्वतंत्र सामान्यीकृत ईजेनवेक्टर एक के साथ जुड़ा हुआ है आव्यूह . इन तकनीकों को एक प्रक्रिया में जोड़ा जा सकता है:

के अभिलाक्षणिक बहुपद को हल कीजिए आइगेनवैल्यू के लिए और उनकी बीजगणितीय बहुलताएं ;
प्रत्येक के लिए
ठानना ;
ठानना ;
ठानना के लिए ;
प्रत्येक जॉर्डन श्रृंखला के लिए निर्धारित करें ;

उदाहरण 3

गणित का सवाल

एक आइगेनवैल्यू है बीजगणितीय बहुलता का और एक ईगेनलैंड् बीजगणितीय बहुलता का . हमारे पास भी है . के लिए अपने पास .

पहला पूर्णांक जिसके लिए रैंक है है .

अब हम परिभाषित करते हैं

परिणाम स्वरुप , तीन रैखिक रूप से स्वतंत्र सामान्यीकृत ईजेनवेक्टर होंगे; प्रत्येक रैंक 3, 2 और 1 में से एक। चूंकि तीन रैखिक रूप से स्वतंत्र सामान्यीकृत ईगेनलैंड्स की एक श्रृंखला से मेल खाती है, हम जानते हैं कि एक सामान्यीकृत ईगेनवेक्टर्स है रैंक 3 के अनुरूप ऐसा है कि

 

 

 

 

(3)

किन्तु

 

 

 

 

(4)

समीकरण (3) और (4) रैखिक समीकरणों की प्रणाली का प्रतिनिधित्व करता है जिसे हल किया जा सकता है . होने देना

तब

और

इस प्रकार, शर्तों को पूर्ण करने के लिए (3) और (4), हमारे पास यह होना चाहिए और . पर कोई प्रतिबंध नहीं लगाया गया है और . चुनने के द्वारा , हमने प्राप्त

रैंक 3 के सामान्यीकृत ईजेनवेक्टर के अनुरूप . ध्यान दें कि विभिन्न मानों को चुनकर रैंक 3 के असीम रूप से कई अन्य सामान्यीकृत ईजेनवेक्टर प्राप्त करना संभव है , और , साथ . चूँकि, हमारी पहली पसंद सबसे सरल है।[47]

अब समीकरणों का प्रयोग (1), हमने प्राप्त और क्रमशः रैंक 2 और 1 के सामान्यीकृत ईजेनवेक्टर के रूप में, जहां

और

सरल ईगेनवैल्यू ईगेनलैंड्स ​​​​और ईगेनवेक्टर्स गणना का उपयोग करके निपटा जा सकता है और एक साधारण ईगेनवेक्टर्स है

के लिए एक विहित आधार है

और से जुड़े सामान्यीकृत ईजेनवेक्टर हैं , चूँकि से जुड़ा साधारण ईजेनवेक्टर है .

यह अधिक सरल उदाहरण है। सामान्यतः, संख्याएँ रैंक के रैखिक रूप से स्वतंत्र सामान्यीकृत ईजेनवेक्टरों की सदैव समान नहीं रहेगा। अर्थात्, एक विशेष ईजेनवेल्यू के अनुरूप विभिन्न लंबाई की कई श्रृंखलाएं हो सकती हैं।[48]


सामान्यीकृत मोडल मैट्रिक्स

होने देना एक n × n मैट्रिक्स बनें। एक 'सामान्यीकृत मोडल मैट्रिक्स' के लिए एक n × n मैट्रिक्स है जिसके स्तंभ, जिन्हें वैक्टर माना जाता है, के लिए एक विहित आधार बनाते हैं और में दिखाई देते हैं निम्नलिखित नियमों के अनुसार:

  • एक सदिश (अर्थात् लंबाई में एक सदिश) से बनी सभी जॉर्डन शृंखलाएं के पहले कॉलम में दिखाई देती हैं .
  • एक श्रृंखला के सभी सदिश एक साथ के आसन्न स्तंभों में दिखाई देते हैं .
  • प्रत्येक श्रृंखला में प्रकट होता है रैंक बढ़ाने के क्रम में (अर्थात, रैंक 1 का सामान्यीकृत ईजेनवेक्टर उसी श्रृंखला के रैंक 2 के सामान्यीकृत ईजेनवेक्टर से पहले प्रकट होता है, जो उसी श्रृंखला के रैंक 3 के सामान्यीकृत ईजेनवेक्टर से पहले प्रकट होता है, आदि)।[49]


जॉर्डन सामान्य रूप

जॉर्डन सामान्य रूप में मैट्रिक्स का एक उदाहरण। ग्रे ब्लॉक को जॉर्डन ब्लॉक कहा जाता है।

एक n-डायमेंशनल वेक्टर स्पेस बनें; में एक रेखीय नक्शा हो L(V), से सभी रैखिक मानचित्रों का सेट अपने आप में; और जाने का मैट्रिक्स प्रतिनिधित्व हो कुछ आदेशित आधार के संबंध में। यह दिखाया जा सकता है कि यदि विशेषता बहुपद का रैखिक कारकों में कारक, जिससे रूप है

जहाँ के विशिष्ट इगनवैल्यूज़ ​​हैं , फिर प्रत्येक इसके संगत आइगेनमान की बीजगणितीय बहुलता है और मैट्रिक्स के समान है जॉर्डन में सामान्य रूप, जहां प्रत्येक दिखाई पड़ना विकर्ण पर लगातार बार, और सीधे प्रत्येक के ऊपर प्रवेश (अर्थात, सुपरडायगोनल पर) या तो 0 या 1 है। अन्य सभी प्रविष्टियाँ (अर्थात, विकर्ण और सुपरडायगोनल से दूर) 0 हैं। अधिक त्रुटिहीन रूप से, एक जॉर्डन मैट्रिक्स है जिसका जॉर्डन ब्लॉक एक ही ईजेनवैल्यू के अनुरूप है, एक साथ समूहीकृत किया जाता है (किन्तु आइगेनवैल्यू के बीच कोई ऑर्डर नहीं लगाया जाता है, न ही किसी दिए गए ईजेनवेल्यू के लिए ब्लॉक के बीच)। गणित का सवाल उतना ही निकट है जितना कोई एक विकर्णीकरण के लिए आ सकता है . यदि विकर्ण योग्य है, तो विकर्ण के ऊपर की सभी प्रविष्टियाँ शून्य हैं।[50] ध्यान दें कि कुछ पाठ्यपुस्तकों में वे सबडायगोनल होते हैं, जो सुपरडायगोनल के अतिरिक्त मुख्य विकर्ण के ठीक नीचे होते हैं। इगनवैल्यूज़ ​​अभी भी मुख्य विकर्ण पर हैं।[51][52] हर n × n मैट्रिक्स मैट्रिक्स के समान है जॉर्डन में सामान्य रूप, समानता परिवर्तन के माध्यम से प्राप्त किया , जहाँ के लिए एक सामान्यीकृत मोडल मैट्रिक्स है .[53] (ऊपर नोट देखें।)

उदाहरण 4

जॉर्डन सामान्य रूप में एक मैट्रिक्स खोजें जो समान हो

समाधान: का अभिलाक्षणिक समीकरण है , इसलिए , एक बीजगणित समत्वता त्रिविधता घातांक है। पूर्व खंडों के प्रक्रियाओं का पालन करते हुए, हम पाते हैं कि

और

इस प्रकार, और , होता है, जिससे यह स्पष्ट होता है कि के लिए एक कैननिकल आधार श्रेणी 2 की एक असंख्यात विशिष्ट एजेंवेक्टर और श्रेणी 1 की दो असंख्यात विशिष्ट एजेंवेक्टरों का योग होगा, या समकक्ष रूप में, दो वेक्टरों की एक श्रेणी और वेक्टर की एक श्रेणी . होगी। , नामित करके, हम पाते हैं कि:

और

जहाँ के लिए एक सामान्यीकृत मोडल मैट्रिक्स है, की स्तंभ मात्राएँ के लिए एक कैननिकल आधार हैं, और होता है।[54] ध्यान दें कि क्योंकि साधारित एजेंवेक्टर स्वयं में अद्वितीय नहीं होते हैं, और क्योंकि और की कुछ स्तंभ मात्राएँ परस्पर बदला जा सकता हैं, इसलिए यह अनुसरण होता है कि और दोनों अद्वितीय नहीं होते हैं।[55]

उदाहरण 5

उदाहरण 3 में, हमने एक मैट्रिक्स के लिए रैखिक रूप से स्वतंत्र सामान्यीकृत ईजेनवेक्टरों का एक विहित आधार पाया . के लिए एक सामान्यीकृत मोडल मैट्रिक्स है

जॉर्डन सामान्य रूप में एक मैट्रिक्स, के समान है

जिससे .

अनुप्रयोग

मैट्रिक्स फ़ंक्शंस

स्क्वायर मैट्रिक्स पर किए जा सकने वाले तीन महत्वपूर्ण परिचालन हैं मात्रिका जोड़ना, एक स्केलर द्वारा गुणा करना, और मात्रिका गुणा हैं।[56] ये वास्तव में वे संक्रियाएँ हैं जो एक n × n आव्यूह के बहुपद फलन को परिभाषित करने के लिए आवश्यक हैं।[57] यदि हम प्राथमिक कलन से समझते हैं कि कई फ़ंक्शनों को मैकलॉरिन श्रृंखला के रूप में लिखा जा सकता है, तो हम आसानी से मात्रिकाओं के अधिक सामान्य फ़ंक्शनों की परिभाषा कर सकते हैं।[58] यदि विकर्णीय है, अर्थात्

साथ

तब

और यद्यपि के फ़ंक्शनों के लिए मैकलॉरिन श्रृंखला का मूल्यांकन काफ़ी सरल हो जाता है।[59] उदाहरण के लिए, की कोई घात k प्राप्त करने के लिए , हमें एकमात्र की गणना करनी होगी, इसे से पूर्व गुणन करें, और परिणाम को , द्वारा पूर्व गुणित करें, और द्वारा पश्चात गुणित करें।[60]

सामान्यीकृत ऐजेन्वेक्टर्स का उपयोग करके, हम जॉर्डन सामान्य रूप प्राप्त कर सकते हैं और इन परिणामों को नॉनडायगोनलाइज़ेबल मेट्रिसेस के कार्यों की गणना के लिए एक सीधी विधि के लिए सामान्यीकृत किया जा सकता है।[61] (मैट्रिक्स फ़ंक्शन जॉर्डन अपघटन देखें।)

विभेदक समीकरण

रैखिक साधारण अंतर समीकरणों की प्रणाली को हल करने की समस्या पर विचार करें

 

 

 

 

(5)

जहाँ

     और     

यदि मैट्रिक्स एक विकर्ण मैट्रिक्स है जिसके लिए होता है जब , तो प्रणाली (5) को n समीकरणों की प्रणाली में संक्षेपित किया जा सकता है जो इस प्रारूप में होती हैं:



 

 

 

 

(6)

इस स्थिति में, सामान्य समाधान द्वारा दिया गया है

सामान्य स्थिति में, हम विकर्ण को विस्तारयुक्त करने और प्रणाली (5) को (6) जैसी एक प्रणाली में संक्षेपित करने की कोशिश करते हैं। यदि विकर्णीय होता है, तो हमें के लिए जैसा होगा, जहाँ के लिए एक मॉडल मैट्रिक्स है। इसके प्रयोग से, समीकरण(5) का प्रारूप इस प्रकार होगा , या

 

 

 

 

(7)

जहाँ

 

 

 

 

(8)

का समाधान (7) है

(5) की समाधान उपयोग करके प्राप्त किया जाता है जिसमें सम्बंध (8) का उपयोग होता है।[62]

वहीं दूसरी ओर यदि विस्तारयुक्त नहीं है, तो हम के लिए एक साधारित मोडल मात्रिका चुनते हैं, जिसके लिए जॉर्डन साधारित प्रारूप होता है। प्रणाली का प्रारूप होता है।

 

 

 

 

(9)

जहां के मुख्य विकर्ण से आइगेनमान हैं और के सुपरडाइगोनल से से 0 और 1 हैं। . प्रणाली (9) सामान्यतः (5) से आसानी से हल होती है। (9) में अंतिम समीकरण को , प्राप्त करना . इसके बाद हम इस समाधान को प्रतिस्थापित करते हैं । फिर हम इस समाधान को के लिए (9) में पूर्व से दूसरे समीकरण में उपयोग करते हैं और उसे हल करते हैं। इस प्रक्रिया को जारी रखते हुए हम (9) में अंत से पहले समीकरण तक काम करते हैं, जिससे हम पूरी प्रणाली को के लिए हल करते हैं। अंतिम उत्तर का प्राप्त होता है जिसका सम्बंध (8) से होता है।[63]

लेम्मा: लंबाई r के सामान्यीकृत ईजेनवेक्टर की निम्नलिखित श्रृंखला को देखते हुए:

ये कार्य समीकरणों की प्रणाली को हल करते हैं:

प्रमाण: निम्नलिखित योग को परिभाषित करते हैं:

तब:

दूसरी ओर हमारे पास यह होता है:

जैसा की आवश्यक है।

टिप्पणियाँ

  1. Bronson (1970, p. 189)
  2. Beauregard & Fraleigh (1973, p. 310)
  3. Nering (1970, p. 118)
  4. Golub & Van Loan (1996, p. 316)
  5. Beauregard & Fraleigh (1973, p. 319)
  6. Bronson (1970, pp. 194–195)
  7. Golub & Van Loan (1996, p. 311)
  8. Bronson (1970, p. 196)
  9. Bronson (1970, p. 189)
  10. Beauregard & Fraleigh (1973, pp. 316–318)
  11. Nering (1970, p. 118)
  12. Bronson (1970, p. 196)
  13. Anton (1987, pp. 301–302)
  14. Beauregard & Fraleigh (1973, p. 266)
  15. Burden & Faires (1993, p. 401)
  16. Golub & Van Loan (1996, pp. 310–311)
  17. Harper (1976, p. 58)
  18. Herstein (1964, p. 225)
  19. Kreyszig (1972, pp. 273, 684)
  20. Nering (1970, p. 104)
  21. Burden & Faires (1993, p. 401)
  22. Beauregard & Fraleigh (1973, pp. 270–274)
  23. Bronson (1970, pp. 179–183)
  24. Bronson (1970, p. 181)
  25. Bronson (1970, p. 179)
  26. Beauregard & Fraleigh (1973, pp. 270–274)
  27. Bronson (1970, pp. 179–183)
  28. Bronson (1970, p. 189)
  29. Bronson (1970, pp. 190, 202)
  30. Bronson (1970, pp. 189, 203)
  31. Bronson (1970, pp. 206–207)
  32. Bronson (1970, p. 205)
  33. Bronson (1970, p. 196)
  34. Bronson (1970, pp. 189, 209–215)
  35. Golub & Van Loan (1996, p. 316)
  36. Herstein (1964, p. 259)
  37. Nering (1970, p. 118)
  38. Nering (1970, p. 118)
  39. Nering (1970, p. 118)
  40. Herstein (1964, p. 261)
  41. Beauregard & Fraleigh (1973, p. 310)
  42. Nering (1970, pp. 122, 123)
  43. Bronson (1970, pp. 189–209)
  44. Bronson (1970, pp. 194–195)
  45. Bronson (1970, pp. 196, 197)
  46. Bronson (1970, pp. 197, 198)
  47. Bronson (1970, pp. 190–191)
  48. Bronson (1970, pp. 197–198)
  49. Bronson (1970, p. 205)
  50. Beauregard & Fraleigh (1973, p. 311)
  51. Cullen (1966, p. 114)
  52. Franklin (1968, p. 122)
  53. Bronson (1970, p. 207)
  54. Bronson (1970, pp. 208)
  55. Bronson (1970, p. 206)
  56. Beauregard & Fraleigh (1973, pp. 57–61)
  57. Bronson (1970, p. 104)
  58. Bronson (1970, p. 105)
  59. Bronson (1970, p. 184)
  60. Bronson (1970, p. 185)
  61. Bronson (1970, pp. 209–218)
  62. Beauregard & Fraleigh (1973, pp. 274–275)
  63. Beauregard & Fraleigh (1973, p. 317)


संदर्भ

  • Anton, Howard (1987), Elementary Linear Algebra (5th ed.), New York: Wiley, ISBN 0-471-84819-0
  • Axler, Sheldon (1997). Linear Algebra Done Right (2nd ed.). Springer. ISBN 978-0-387-98258-8.
  • Beauregard, Raymond A.; Fraleigh, John B. (1973), A First Course In Linear Algebra: with Optional Introduction to Groups, Rings, and Fields, Boston: Houghton Mifflin Co., ISBN 0-395-14017-X
  • Bronson, Richard (1970), Matrix Methods: An Introduction, New York: Academic Press, LCCN 70097490
  • Burden, Richard L.; Faires, J. Douglas (1993), Numerical Analysis (5th ed.), Boston: Prindle, Weber and Schmidt, ISBN 0-534-93219-3
  • Cullen, Charles G. (1966), Matrices and Linear Transformations, Reading: Addison-Wesley, LCCN 66021267
  • Franklin, Joel N. (1968), Matrix Theory, Englewood Cliffs: Prentice-Hall, LCCN 68016345
  • Golub, Gene H.; Van Loan, Charles F. (1996), Matrix Computations (3rd ed.), Baltimore: Johns Hopkins University Press, ISBN 0-8018-5414-8
  • Harper, Charlie (1976), Introduction to Mathematical Physics, New Jersey: Prentice-Hall, ISBN 0-13-487538-9
  • Herstein, I. N. (1964), Topics In Algebra, Waltham: Blaisdell Publishing Company, ISBN 978-1114541016
  • Kreyszig, Erwin (1972), Advanced Engineering Mathematics (3rd ed.), New York: Wiley, ISBN 0-471-50728-8
  • Nering, Evar D. (1970), Linear Algebra and Matrix Theory (2nd ed.), New York: Wiley, LCCN 76091646

{{Navbox

| name =गणित के क्षेत्र

|state = autocollapse


| title =अंक शास्त्र | bodyclass = hlist

|above =


| group1 = नींव | list1 =* श्रेणी सिद्धांत

| group2 =बीजगणित | list2 =* सार

| group3 = विश्लेषण | list3 =* पथरी

| group4 = असतत | list4 =* कॉम्बीनेटरिक्स

| group5 =ज्यामिति | list5 =* बीजगणितीय

| group6 =संख्या सिद्धांत | list6 =* अंकगणित

| group7 =टोपोलॉजी | list7 =* सामान्य

| group8 = लागू | list8 =* इंजीनियरिंग गणित

| group9 = कम्प्यूटेशनल | list9 =* कंप्यूटर विज्ञान

| group10 = संबंधित विषय | list10 =* अनौपचारिक गणित

| below =* '

}}