मैकडोनाल्ड बहुपद: Difference between revisions
| Line 77: | Line 77: | ||
जिसका आयाम 6 = 3<nowiki>!</nowiki> है। | जिसका आयाम 6 = 3<nowiki>!</nowiki> है। | ||
मैकडोनाल्ड सकारात्मकता अनुमान और n का हैमन का प्रमाण! अनुमान में शामिल है कि एक विमान में n बिंदुओं की [[आइसोस्पेक्ट्रल हिल्बर्ट योजना]] कोहेन-मैकाले (और यहां तक कि [[गोरेंस्टीन की अंगूठी]]) थी। हैमन और गार्सिया के पहले के परिणाम पहले ही दिखा चुके थे कि इसका मतलब n! | मैकडोनाल्ड सकारात्मकता अनुमान और n का हैमन का प्रमाण! अनुमान में शामिल है कि एक विमान में n बिंदुओं की [[आइसोस्पेक्ट्रल हिल्बर्ट योजना]] कोहेन-मैकाले (और यहां तक कि [[गोरेंस्टीन की अंगूठी]]) थी। हैमन और गार्सिया के पहले के परिणाम पहले ही दिखा चुके थे कि इसका मतलब n! है ।अनुमान, और वह n! अनुमान का तात्पर्य है कि कोस्तका-मैकडोनाल्ड गुणांक मॉड्यूल डी के लिए चरित्र बहुगुणों को वर्गीकृत किया गया था<sub>μ</sub>. के लिए वर्ण बहुगुणों को वर्गीकृत किया गया था। यह तुरंत मैकडोनाल्ड सकारात्मकता अनुमान का तात्पर्य है क्योंकि वर्ण गुणकों को गैर-नकारात्मक पूर्णांक होना चाहिए। | ||
इयान ग्रोजनोव्स्की और मार्क हैमन ने [[एलएलटी बहुपद]]ों के लिए सकारात्मकता अनुमान को साबित करके मैकडोनाल्ड सकारात्मकता अनुमान का एक और प्रमाण पाया। | इयान ग्रोजनोव्स्की और मार्क हैमन ने [[एलएलटी बहुपद]]ों के लिए सकारात्मकता अनुमान को साबित करके मैकडोनाल्ड सकारात्मकता अनुमान का एक और प्रमाण पाया। | ||
Revision as of 16:00, 21 March 2023
गणित में, मैकडोनाल्ड बहुपद पीλ(x; t,q) कई चरों में ऑर्थोगोनल बहुपद सममित बहुपद बहुपदों का एक परिवार है, जिसे 1987 में मैकडोनाल्ड द्वारा पेश किया गया था। बाद में उन्होंने 1995 में एक गैर-सममित सामान्यीकरण की शुरुआत की। मैकडोनाल्ड ने मूल रूप से अपने बहुपदों को परिमित के वजन λ के साथ जोड़ा। परिमित रूट प्रणाली और केवल एक वेरिएबल t का उपयोग किया, लेकिन बाद में महसूस किया कि परिमित रूट प्रणाली के बजाय उन्हें affine रूट प्रणाली के साथ जोड़ना अधिक स्वाभाविक है, जिस स्थिति में वेरिएबल t को कई अलग-अलग वेरिएबल्स t=(t) से बदला जा सकता है1,...,टीk), affine रूट प्रणाली में जड़ों की प्रत्येक k कक्षाओं के लिए एक कोटि है। मैकडोनाल्ड बहुपद n चर x = (x) में बहुपद हैं1,...,एक्सn), जहां n affine रूट सिस्टम का रैंक है। वे ऑर्थोगोनल बहुपदों के कई अन्य परिवारों को सामान्यीकरण करते हैं, जैसे कि जैक बहुपद और हॉल-लिटिलवुड बहुपद और आस्की-विल्सन बहुपद, जो विशेष मामलों के रूप में नामित 1-चर ऑर्थोगोनल बहुपदों में से अधिकांश को शामिल करते हैं। Koornwinder बहुपद कुछ गैर-कम रूट प्रणाली के Macdonald बहुपद हैं। उनके पास affine हेज बीजगणित और हिल्बर्ट योजनाओं के साथ गहरे संबंध हैं, जिनका उपयोग उनके बारे में मैकडोनाल्ड द्वारा उनके बारे में किए गए कई अनुमानों को साबित करने के लिए किया गया था।
परिभाषा
पहले कुछ अंकन ठीक करें:
- R वास्तविक सदिश समष्टि V में एक परिमित मूल तंत्र है।
- आर + सकारात्मक जड़ों का एक विकल्प है, जो एक सकारात्मक वेइल कक्ष से मेल खाती है।
- W, R का वेइल समूह है।
- क्यू आर की जड़ जाली है (जड़ों द्वारा फैली जाली)।
- P, R (Q युक्त) का भार जालक है।
- एक वजन जाली वजन के स्थान पर आदेश देना: अगर और केवल अगर रूट सिस्टम पॉजिटिव रूट्स और सिंपल रूट्स का नॉन-नेगेटिव लीनियर कॉम्बिनेशन है।
- P+ प्रमुख भारों का समूह है: धनात्मक वेइल कक्ष में P के तत्व।
- ρ वेइल वेक्टर है: धनात्मक जड़ों का आधा योग; यह सकारात्मक वेइल कक्ष के आंतरिक भाग में P+ का एक विशेष तत्व है।
- F विशेषता 0 का एक क्षेत्र है, सामान्य रूप से परिमेय संख्याएँ।
- A = F(P), P का समूह बीजगणित है, जिसमें λ ∈ P के लिए eλ लिखे गए तत्वों का आधार है।
- यदि f = eλ, तो f का अर्थ e−λ है, और इसे रैखिकता द्वारा पूरे समूह बीजगणित तक विस्तारित किया जाता है।
- mμ = Σλ ∈ Wμeλ एक कक्षा योग है; ये तत्व डब्ल्यू द्वारा निर्धारित तत्वों के सबलजेब्रा एडब्ल्यू के लिए एक आधार बनाते हैं।
- , क्यू-पोचममेर प्रतीक|अनंत क्यू-पोचममेर प्रतीक।
- ए के दो तत्वों का आंतरिक उत्पाद है, कम से कम जब टी क्यू की सकारात्मक पूर्णांक शक्ति है।
λ ∈ P+ के लिए मैकडोनाल्ड बहुपद Pλ को निम्नलिखित दो स्थितियों द्वारा विशिष्ट रूप से परिभाषित किया गया है:
- जहां तुमλμ यू के साथ क्यू और टी का एक तर्कसंगत कार्य हैλλ = 1;
- पीλ और पीμ ओर्थोगोनल हैं अगर λ<<μ।
दूसरे शब्दों में, मैकडोनाल्ड बहुपद AW के स्पष्ट आधार को ऑर्थोगोनलाइज़ करके प्राप्त किए जाते हैं। इन गुणों वाले बहुपदों का अस्तित्व दिखाना आसान है (किसी भी आंतरिक उत्पाद के लिए)। मैकडोनाल्ड बहुपदों की एक प्रमुख संपत्ति यह है कि वे ओर्थोगोनल हैं: 〈Pλ, Pμ〉 = 0 जब कभी λ ≠ μ। यह परिभाषा का एक तुच्छ परिणाम नहीं है क्योंकि P+ पूरी तरह से व्यवस्थित नहीं है, और इसलिए इसमें बहुत सारे तत्व हैं जो अतुलनीय हैं। इस प्रकार किसी को यह जांचना चाहिए कि संगत बहुपद अभी भी ओर्थोगोनल हैं। ऑर्थोगोनलिटी को यह दिखा कर साबित किया जा सकता है कि मैकडोनाल्ड बहुपद 1-आयामी ईजेनस्पेस के साथ स्व-संलग्न ऑपरेटरों के आने-जाने के बीजगणित के लिए ईजेनवेक्टर हैं, और इस तथ्य का उपयोग करते हुए कि अलग-अलग ईजेनवैल्यू के लिए ईजेनस्पेस ऑर्थोगोनल होना चाहिए।
नॉन-सिंपली-लेस्ड रूट प्रणाली (बी, सी, एफ, जी) के मामले में, पैरामीटर टी को रूट की लंबाई के साथ अलग-अलग करने के लिए चुना जा सकता है, जिससे मैकडोनाल्ड बहुपदों का तीन-पैरामीटर परिवार मिलता है। परिभाषा को गैर-घटित रूट प्रणाली बीसी तक भी बढ़ाया जा सकता है, जिस स्थिति में कोई छह-पैरामीटर परिवार (जड़ों की प्रत्येक कक्षा के लिए एक टी, प्लस क्यू) प्राप्त करता है, जिसे कोर्नविंदर बहुपद के रूप में जाना जाता है। मैकडोनाल्ड बहुपदों को कभी-कभी गैर-कम किए गए एफाइन रूट प्रणाली के आधार पर मानना बेहतर होता है। इस मामले में, एफाइन रूट प्रणाली में जड़ों की प्रत्येक कक्षा से जुड़ा एक पैरामीटर टी है, साथ ही एक पैरामीटर क्यू। जड़ों की कक्षाओं की संख्या 1 से 5 तक अलग-अलग हो सकती है।
उदाहरण
- यदि q = t मैकडोनाल्ड बहुपद जड़ प्रणाली के कॉम्पैक्ट समूह के प्रतिनिधित्व के वेइल वर्ण बन जाते हैं, या टाइप ए के रूट प्रणाली के मामले में शूर कार्य करता है।
- यदि q = 0 मैकडोनाल्ड बहुपद अर्ध-सरल पी-एडिक समूह, या हॉल-लिटिलवुड बहुपदों के लिए (पुनर्वर्धित) आंचलिक गोलाकार कार्य बन जाते हैं, जब रूट प्रणाली का प्रकार ए होता है।
- यदि t = 1 मैकडोनाल्ड बहुपद W कक्षाओं पर योग बन जाते हैं, जो रूट सिस्टम के प्रकार A होने पर मोनोमियल सममित कार्य होते हैं।
- यदि हम t = q रखेंα और मान लें कि q 1 की ओर जाता है तो मैकडोनाल्ड बहुपद जैक बहुपद बन जाते हैं जब रूट सिस्टम A प्रकार का होता है, और अधिक सामान्य रूट सिस्टम के लिए हेकमैन-ऑप्डम बहुपद।
- एफ़ाइन रूट सिस्टम के लिए A1, मैकडोनाल्ड बहुपद रोजर्स बहुपद हैं।
- गैर-कम रैंक 1 के लिए प्रकार की जड़ प्रणाली (सी∨
1, सी1), मैकडोनाल्ड बहुपद आस्की-विल्सन बहुपद हैं, जो बदले में 1 चर में ऑर्थोगोनल बहुपदों के अधिकांश नामित परिवारों को विशेष मामलों के रूप में शामिल करते हैं। - गैर-कम किए गए एफाइन रूट सिस्टम के प्रकार के लिए (सी∨
n, सीn), मैकडोनाल्ड बहुपद कोर्नविंदर बहुपद हैं।
मैकडॉनल्ड कॉन्स्टेंट टर्म कंजेक्चर
अगर टी = क्यूk किसी धनात्मक पूर्णांक k के लिए, तब मैकडोनाल्ड बहुपदों का मान दिया जाता है
यह मैकडोनाल्ड (1982) द्वारा डायसन अनुमान के सामान्यीकरण के रूप में अनुमान लगाया गया था, और चेरेडनिक (1995) द्वारा सभी (कम) रूट सिस्टम के लिए साबित किया गया था, जिसमें डबल एफाइन हेके बीजगणित के गुणों का उपयोग किया गया था। अनुमान पहले प्रकार ई को छोड़कर सभी जड़ प्रणालियों के लिए मामला-दर-मामला साबित हुआ थाn कई लेखकों द्वारा।
दो अन्य अनुमान हैं जो मानक अनुमान के साथ सामूहिक रूप से इस संदर्भ में मैकडोनाल्ड अनुमान के रूप में संदर्भित होते हैं: मानदंड के सूत्र के अतिरिक्त, मैकडोनाल्ड ने पी के मूल्य के लिए एक सूत्र का अनुमान लगायाλ बिंदु पर टीρ, और एक सममिति
फिर से, ये सामान्य रूप से कम रूट सिस्टम के लिए सिद्ध हुए Cherednik (1995), वैन डायजेन, नौमी और साही के काम के माध्यम से शीघ्र ही बाद में बीसी मामले के विस्तार के साथ डबल एफाइन हेके बीजगणित का उपयोग करते हुए।
मैकडोनाल्ड सकारात्मकता अनुमान
प्रकार ए की जड़ प्रणालियों के मामले मेंn−1 मैकडोनाल्ड बहुपद गुणांक वाले n चरों में केवल सममित बहुपद हैं जो q और t के परिमेय फलन हैं। एक निश्चित रूपांतरित संस्करण मैकडोनाल्ड बहुपदों के (नीचे मैकडोनाल्ड बहुपदों के लिए #combinatorial सूत्र देखें) सममित कार्यों के स्थान का एक ऑर्थोगोनल आधार बनाते हैं , और इसलिए शूर बहुपद के संदर्भ में व्यक्त किया जा सकता है . गुणांक केλμ(q,t) इन संबंधों को 'कोस्तका-मैकडोनाल्ड गुणांक' या qt-कोस्तका गुणांक कहा जाता है। मैकडोनाल्ड ने अनुमान लगाया कि कोस्तका-मैकडोनाल्ड गुणांक गैर-नकारात्मक पूर्णांक गुणांक वाले क्यू और टी में बहुपद थे। ये अनुमान अब सिद्ध हो गए हैं; सबसे कठिन और अंतिम कदम सकारात्मकता को साबित करना था, जो मार्क हाईमन (2001) द्वारा किया गया था, एन साबित करके! अनुमान|एन! अनुमान।
क्यूटी-कोस्टका गुणांक के लिए एक संयोजक सूत्र खोजने के लिए यह अभी भी बीजगणितीय संयोजक में एक केंद्रीय खुली समस्या है।
एन! अनुमान
तब! अनुमान|एन! एड्रियन गार्सिया और मार्क हैमैन के अनुमान में कहा गया है कि प्रत्येक विभाजन के लिए n स्थान का μ है
के सभी उच्च आंशिक डेरिवेटिव द्वारा फैलाया गया
इसका आयाम n है !, जहाँ (pj, क्यूj) विभाजन μ के आरेख के n तत्वों के माध्यम से चलाया जाता है, जिसे गैर-ऋणात्मक पूर्णांकों के जोड़े के सबसेट के रूप में माना जाता है। उदाहरण के लिए, यदि μ n = 3 का विभाजन 3 = 2 + 1 है तो जोड़े (pj, क्यूj) हैं (0, 0), (0, 1), (1, 0), और स्पेस डीμ द्वारा फैलाया जाता है
जिसका आयाम 6 = 3! है।
मैकडोनाल्ड सकारात्मकता अनुमान और n का हैमन का प्रमाण! अनुमान में शामिल है कि एक विमान में n बिंदुओं की आइसोस्पेक्ट्रल हिल्बर्ट योजना कोहेन-मैकाले (और यहां तक कि गोरेंस्टीन की अंगूठी) थी। हैमन और गार्सिया के पहले के परिणाम पहले ही दिखा चुके थे कि इसका मतलब n! है ।अनुमान, और वह n! अनुमान का तात्पर्य है कि कोस्तका-मैकडोनाल्ड गुणांक मॉड्यूल डी के लिए चरित्र बहुगुणों को वर्गीकृत किया गया थाμ. के लिए वर्ण बहुगुणों को वर्गीकृत किया गया था। यह तुरंत मैकडोनाल्ड सकारात्मकता अनुमान का तात्पर्य है क्योंकि वर्ण गुणकों को गैर-नकारात्मक पूर्णांक होना चाहिए।
इयान ग्रोजनोव्स्की और मार्क हैमन ने एलएलटी बहुपदों के लिए सकारात्मकता अनुमान को साबित करके मैकडोनाल्ड सकारात्मकता अनुमान का एक और प्रमाण पाया।
मैकडोनाल्ड बहुपदों के लिए संयोजन सूत्र
2005 में, जे. हागलंड, एम. हैमन और एन. लोहर[1]ने मैकडोनाल्ड बहुपदों की एक संयुक्त व्याख्या का पहला प्रमाण दिया। 1988 में आई. जी. मैकडोनाल्ड[2]मैकडोनाल्ड बहुपदों (समीकरण (4.11) और (5.13)) की एक संयुक्त व्याख्या का दूसरा प्रमाण दिया। मैकडोनाल्ड का सूत्र हैगलंड, हैमन और लोहर के काम से अलग है, बहुत कम शर्तों के साथ (यह सूत्र मैकडोनाल्ड के मौलिक कार्य,[3]अध्याय VI (7.13) में भी सिद्ध हुआ है)। संगणना के लिए बहुत उपयोगी और अपने आप में दिलचस्प होने के बावजूद, उनके संयोजी सूत्र कोस्तका-मैकडोनाल्ड गुणांकों की सकारात्मकता को तुरंत नहीं दर्शाते हैं। जैसा कि मैकडोनाल्ड बहुपदों के अपघटन को शूर कार्यों के बजाय मोनोमियल सममित कार्यों में दिया जाता है।
रूपांतरित मैकडोनाल्ड बहुपदों में लिखा गया सामान्य के बजाय , वे हैं
जहां σ आकार μ, inv और maj के यंग डायग्राम की फिलिंग है, फिलिंग σ पर परिभाषित कुछ कॉम्बिनेटरियल स्टैटिस्टिक्स (फंक्शंस) हैं। यह सूत्र मैकडोनाल्ड बहुपदों को अपरिमित रूप से कई चरों में व्यक्त करता है। n चरों में बहुपद प्राप्त करने के लिए, सूत्र को केवल उन भरणों तक सीमित करें जिनमें केवल पूर्णांक 1, 2, ..., n का उपयोग किया गया है। शब्द एक्सσ की व्याख्या की जानी चाहिए जहां σi सामग्री i के साथ μ के भरने में बक्से की संख्या है।
रूपांतरित मैकडोनाल्ड बहुपद उपर्युक्त सूत्र में शास्त्रीय मैकडोनाल्ड बहुपदों से संबंधित हैं परिवर्तनों के एक क्रम के माध्यम से सबसे पहले, मैकडोनाल्ड बहुपदों का अभिन्न रूप, निरूपित , का पुन: स्केलिंग है जो गुणांकों के भाजक को साफ करता है:
कहाँ के यंग आरेख में वर्गों का संग्रह है , और और वर्ग के हाथ और पैर को निरूपित करें , जैसा कि चित्र में दिखाया गया है। ध्यान दें: दाहिनी ओर का चित्र झाँकी के लिए फ्रेंच संकेतन का उपयोग करता है, जो यंग आरेखों के लिए विकिपीडिया पृष्ठ पर उपयोग किए गए अंग्रेजी अंकन से लंबवत रूप से फ़्लिप किया गया है। मैकडोनाल्ड बहुपदों के अध्ययन में फ्रांसीसी संकेतन का अधिक सामान्यतः उपयोग किया जाता है।
रूपांतरित मैकडोनाल्ड बहुपद के रूप में परिभाषित किया जा सकता है 'एस। अपने पास
कहाँ
उपरोक्त कोष्ठक संकेतन बहुतायत प्रतिस्थापन को दर्शाता है।
जैक फलन के लिए नोप और साही के सूत्र को सिद्ध करने के लिए इस सूत्र का उपयोग किया जा सकता है।
गैर-सममित मैकडोनाल्ड बहुपद
1995 में, मैकडोनाल्ड ने सममित मैकडोनाल्ड बहुपदों का एक गैर-सममितीय एनालॉग पेश किया, और सममित मैकडोनाल्ड बहुपदों को आसानी से गैर-सममित समकक्ष से पुनर्प्राप्त किया जा सकता है। अपनी मूल परिभाषा में, वह दर्शाता है कि गैर-सममित मैकडोनाल्ड बहुपद एक निश्चित आंतरिक उत्पाद के लिए बहुपद ऑर्थोगोनल का एक अनूठा परिवार है, साथ ही साथ एक त्रिकोणीय संपत्ति को संतुष्ट करता है जब मोनोमियल आधार में विस्तारित किया जाता है।
2007 में, हाग्लंड, हैमन और लोहर ने गैर-सममित मैकडोनाल्ड बहुपदों के लिए एक संयुक्त सूत्र दिया।
गैर-सममित मैकडोनाल्ड बहुपद q = t = 0, और प्रमुख बहुपदों के लिए जब q = t = ∞ लेते हैं, तो डीमेज़र वर्णों के विशेषज्ञ होते हैं।
बहिष्करण प्रक्रिया के आधार पर मिश्रित सूत्र
2018 में, एस. कॉर्टील, ओ. मेंडेलश्टम, और एल. विलियम्स ने सममित और गैर-सममित मैकडोनाल्ड बहुपद दोनों का प्रत्यक्ष संयोजक लक्षण वर्णन करने के लिए अपवर्जन प्रक्रिया का उपयोग किया।[4]उनके परिणाम आंशिक रूप से हैगलंड के पहले के काम से भिन्न हैं क्योंकि वे मैकडोनाल्ड बहुपदों के लिए एक रूपांतरण के बजाय सीधे एक सूत्र प्रदान करते हैं। वे एक बहुपंक्ति कतार की अवधारणा विकसित करते हैं, जो गेंदों और उनके पड़ोसियों के बीच एक मानचित्रण और संयोजन लेबलिंग तंत्र के साथ गेंदों या खाली कोशिकाओं से युक्त एक मैट्रिक्स है। गैर-सममित मैकडोनाल्ड बहुपद तब संतुष्ट करता है:
जहां योग सब पर है मल्टीलाइन प्रकार की कतारें और एक वेटिंग फंक्शन है जो उन कतारों को विशिष्ट बहुपदों के लिए मैप करता है। सममित मैकडोनाल्ड बहुपद संतुष्ट करता है:
जहां बाहरी योग सभी अलग-अलग रचनाओं पर होता है जो के क्रमपरिवर्तन हैं , और आंतरिक योग पहले जैसा है।
संदर्भ
- ↑ Haglund, J.; Haiman, M.; Loehr, N. (2005), "A combinatorial formula for Macdonald polynomials", Journal of the American Mathematical Society, 18 (3): 735–761, doi:10.1090/S0894-0347-05-00485-6, ISSN 0894-0347, MR 2138143
- ↑ Macdonald, I. G. A new class of symmetric functions. Publ. I.R.M.A. Strasbourg, 1988, 372/S–20 Actes 20e Séminaire Lotharingien, p. 131–171. eudml.org
- ↑ Macdonald, I. G. Symmetric functions and Hall polynomials. Second edition. Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1995. x+475 pp. ISBN 0-19-853489-2 MR1354144
- ↑ Corteel, Sylvie; Mandelshtam, Olya; Williams, Lauren (2018), "From multiline queues to Macdonald polynomials via the exclusion process", arXiv:1811.01024 [math.CO]
ग्रन्थसूची
- Cherednik, Ivan (1995), "Double Affine Hecke Algebras and Macdonald's Conjectures", Annals of Mathematics, Second Series, Annals of Mathematics, 141 (1): 191–216, doi:10.2307/2118632, ISSN 0003-486X, JSTOR 2118632
- Garsia, Adriano; Remmel, Jeffrey B. (March 15, 2005), "Breakthroughs in the theory of Macdonald polynomials", PNAS, 102 (11): 3891–3894, Bibcode:2005PNAS..102.3891G, doi:10.1073/pnas.0409705102, PMC 554818, PMID 15753285
- Mark Haiman Combinatorics, symmetric functions, and Hilbert schemes Current Developments in Mathematics 2002, no. 1 (2002), 39–111.
- Haiman, Mark Notes on Macdonald polynomials and the geometry of Hilbert schemes. Symmetric functions 2001: surveys of developments and perspectives, 1–64, NATO Sci. Ser. II Math. Phys. Chem., 74, Kluwer Acad. Publ., Dordrecht, 2002.MR2059359
- Haiman, Mark (2001), "Hilbert schemes, polygraphs, and the Macdonald positivity conjecture", J. Amer. Math. Soc., 14 (4): 941–1006, arXiv:math.AG/0010246, doi:10.1090/S0894-0347-01-00373-3, S2CID 9253880
- Kirillov, A. A. (1997), "Lectures on affine Hecke algebras and Macdonald's conjectures", Bull. Amer. Math. Soc., 34 (3): 251–292, doi:10.1090/S0273-0979-97-00727-1
- Macdonald, I. G. (1982), "Some conjectures for root systems", SIAM Journal on Mathematical Analysis, 13 (6): 988–1007, doi:10.1137/0513070, ISSN 0036-1410, MR 0674768
- Macdonald, I. G. Symmetric functions and Hall polynomials. Second edition. Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1995. x+475 pp. ISBN 0-19-853489-2 MR1354144
- Macdonald, I. G. Symmetric functions and orthogonal polynomials. Dean Jacqueline B. Lewis Memorial Lectures presented at Rutgers University, New Brunswick, NJ. University Lecture Series, 12. American Mathematical Society, Providence, RI, 1998. xvi+53 pp. ISBN 0-8218-0770-6 MR1488699
- Macdonald, I. G. Affine Hecke algebras and orthogonal polynomials. Séminaire Bourbaki 797 (1995).
- Macdonald, I. G. (2000–2001), "Orthogonal polynomials associated with root systems", Séminaire Lotharingien de Combinatoire, 45: Art. B45a, arXiv:math.QA/0011046, MR 1817334
- Macdonald, I. G. (2003), Affine Hecke algebras and orthogonal polynomials, Cambridge Tracts in Mathematics, vol. 157, Cambridge: Cambridge University Press, pp. x+175, ISBN 978-0-521-82472-9, MR 1976581
बाहरी संबंध
- Mike Zabrocki's page about Macdonald polynomials.
- Some of Haiman's papers about Macdonald polynomials.
