वृत्तीय गति: Difference between revisions
No edit summary |
No edit summary |
||
| Line 63: | Line 63: | ||
==== ध्रुवीय निर्देशांक में ==== | ==== ध्रुवीय निर्देशांक में ==== | ||
[[File:Vectors in polar coordinates.PNG|thumb|350px|चित्रा 4: परिपत्र प्रक्षेपवक्र के लिए ध्रुवीय निर्देशांक। बाईं ओर इकाई वृत्त है जो परिवर्तन दिखा रहा है <math>\mathbf{d\hat\mathbf{u}_R} </math> और <math>\mathbf{d\hat\mathbf{u}_\theta}</math> इकाई वैक्टर में <math>\mathbf{\hat\mathbf{u}_R} </math> और <math>\mathbf{\hat\mathbf{u}_\theta}</math> छोटी वृद्धि के लिए <math>d \theta</math> कोण में <math>\theta</math>.]]वृत्ताकार गति के समय पिंड एक वक्र पर गति करता है जिसे ध्रुवीय समन्वय प्रणाली में किसी संदर्भ दिशा से कोण {{math|''θ''(''t'')}} पर उन्मुख मूल के रूप में ली गई कक्षा के केंद्र से एक निश्चित दूरी {{math|''R''}} के रूप में वर्णित किया जा सकता है। चित्र 4 देखें। विस्थापन वेक्टर <math>\mathbf{r}</math> मूल से कण स्थान तक | [[File:Vectors in polar coordinates.PNG|thumb|350px|चित्रा 4: परिपत्र प्रक्षेपवक्र के लिए ध्रुवीय निर्देशांक। बाईं ओर इकाई वृत्त है जो परिवर्तन दिखा रहा है <math>\mathbf{d\hat\mathbf{u}_R} </math> और <math>\mathbf{d\hat\mathbf{u}_\theta}</math> इकाई वैक्टर में <math>\mathbf{\hat\mathbf{u}_R} </math> और <math>\mathbf{\hat\mathbf{u}_\theta}</math> छोटी वृद्धि के लिए <math>d \theta</math> कोण में <math>\theta</math>.]]वृत्ताकार गति के समय पिंड एक वक्र पर गति करता है जिसे ध्रुवीय समन्वय प्रणाली में किसी संदर्भ दिशा से कोण {{math|''θ''(''t'')}} पर उन्मुख मूल के रूप में ली गई कक्षा के केंद्र से एक निश्चित दूरी {{math|''R''}} के रूप में वर्णित किया जा सकता है। चित्र 4 देखें। विस्थापन वेक्टर <math>\mathbf{r}</math> मूल से कण स्थान तक त्रिज्या वेक्टर है: <math display="block">\mathbf{r}(t) = R \hat\mathbf{u}_R(t)\,,</math> | ||
| Line 71: | Line 71: | ||
वेग विस्थापन का समय व्युत्पन्न है: | वेग विस्थापन का समय व्युत्पन्न है: | ||
<math display="block">\mathbf{v}(t) = \frac{d}{dt} \mathbf{r}(t) = \frac{d R}{dt} \hat\mathbf{u}_R(t) + R \frac{d \hat\mathbf{u}_R}{dt} \, .</math> | <math display="block">\mathbf{v}(t) = \frac{d}{dt} \mathbf{r}(t) = \frac{d R}{dt} \hat\mathbf{u}_R(t) + R \frac{d \hat\mathbf{u}_R}{dt} \, .</math> | ||
क्योंकि वृत्त की त्रिज्या स्थिर है, वेग का | क्योंकि वृत्त की त्रिज्या स्थिर है, वेग का त्रिज्या घटक शून्य है। इकाई वेक्टर <math>\hat\mathbf{u}_R(t)</math> में एकता का समय-अपरिवर्तनीय परिमाण है, इसलिए जैसे-जैसे समय बदलता है इसकी टिप हमेशा इकाई त्रिज्या के एक चक्र पर स्थित होती है, जिसमें एक कोण {{mvar|θ}} <math>\mathbf{r}(t)</math> के कोण के समान है। यदि कण विस्थापन समय {{math|''dt''}} में एक कोण {{math|''dθ''}} के माध्यम से घूमता है तो <math>\hat\mathbf{u}_R(t)</math> परिमाण {{math|''dθ''}} के इकाई चक्र पर एक चाप का वर्णन करता है। चित्र 4 के बाईं ओर इकाई वृत्त देखें। इसलिए: | ||
<math display="block">\frac{d \hat\mathbf{u}_R}{dt} = \frac{d \theta}{dt} \hat\mathbf{u}_\theta(t) \, ,</math> | <math display="block">\frac{d \hat\mathbf{u}_R}{dt} = \frac{d \theta}{dt} \hat\mathbf{u}_\theta(t) \, ,</math> | ||
| Line 80: | Line 81: | ||
इसलिए वेग बन जाता है: | इसलिए वेग बन जाता है: | ||
<math display="block">\mathbf{v}(t) = \frac{d}{dt} \mathbf{r}(t) = R\frac{d \hat\mathbf{u}_R}{dt} = R \frac{d \theta}{dt} \hat\mathbf{u}_\theta(t) = R \omega \hat\mathbf{u}_\theta(t) \, .</math> | <math display="block">\mathbf{v}(t) = \frac{d}{dt} \mathbf{r}(t) = R\frac{d \hat\mathbf{u}_R}{dt} = R \frac{d \theta}{dt} \hat\mathbf{u}_\theta(t) = R \omega \hat\mathbf{u}_\theta(t) \, .</math> | ||
निकाय के त्वरण को | निकाय के त्वरण को त्रिज्या और स्पर्शरेखा घटकों में भी तोड़ा जा सकता है। त्वरण वेग का समय व्युत्पन्न है:<math display="block">\begin{align} | ||
\mathbf{a}(t) &= \frac{d}{dt} \mathbf{v}(t) = \frac{d}{dt} \left(R \omega \hat\mathbf{u}_\theta(t) \right) \\ | \mathbf{a}(t) &= \frac{d}{dt} \mathbf{v}(t) = \frac{d}{dt} \left(R \omega \hat\mathbf{u}_\theta(t) \right) \\ | ||
&= R \left( \frac{d \omega}{dt} \hat\mathbf{u}_\theta(t) + \omega \frac{d \hat\mathbf{u}_\theta}{dt} \right) \, . | &= R \left( \frac{d \omega}{dt} \hat\mathbf{u}_\theta(t) + \omega \frac{d \hat\mathbf{u}_\theta}{dt} \right) \, . | ||
\end{align}</math> | \end{align}</math> | ||
<math>\hat\mathbf{u}_\theta(t)</math> का समय व्युत्पन्न उसी तरह पाया जाता है जैसे <math>\hat\mathbf{u}_R(t)</math> के लिए। फिर से, <math>\hat\mathbf{u}_\theta(t)</math> एक इकाई सदिश है और इसकी नोक {{math|''π''/2 + ''θ''}} कोण के साथ एक इकाई वृत्त का पता लगाती है। इसलिए कोण {{math|''dθ''}} में <math>\mathbf{r}(t)</math> की वृद्धि का अर्थ है <math>\hat\mathbf{u}_\theta(t)</math> परिमाण {{math|''dθ''}} के एक चाप का पता लगाता है और चूंकि <math>\hat\mathbf{u}_\theta(t)</math> <math>\hat\mathbf{u}_R(t)</math> के लिए ओर्थोगोनल है, हमारे पास: | |||
<math display="block">\frac{d \hat\mathbf{u}_\theta}{dt} = -\frac{d \theta}{dt} \hat\mathbf{u}_R(t) = -\omega \hat\mathbf{u}_R(t) \, ,</math> | <math display="block">\frac{d \hat\mathbf{u}_\theta}{dt} = -\frac{d \theta}{dt} \hat\mathbf{u}_R(t) = -\omega \hat\mathbf{u}_R(t) \, ,</math> | ||
जहाँ <math>\hat\mathbf{u}_\theta(t)</math> ओर्थोगोनल को <math>\hat\mathbf{u}_R(t)</math> पर रखने के लिए एक ऋणात्मक चिह्न आवश्यक है। (अन्यथा, <math>\hat\mathbf{u}_\theta(t)</math> और <math>\hat\mathbf{u}_R(t)</math> के बीच का कोण {{math|''dθ''}} में वृद्धि के साथ घट जाएगा।) चित्र 4 के बाईं ओर इकाई वृत्त देखें। परिणामस्वरुप त्वरण है: | |||
<math display="block">\begin{align} | <math display="block">\begin{align} | ||
\mathbf{a}(t) &= R \left( \frac{d \omega}{dt} \hat\mathbf{u}_\theta(t) + \omega \frac{d \hat\mathbf{u}_\theta}{dt} \right) \\ | \mathbf{a}(t) &= R \left( \frac{d \omega}{dt} \hat\mathbf{u}_\theta(t) + \omega \frac{d \hat\mathbf{u}_\theta}{dt} \right) \\ | ||
&= R \frac{d \omega}{dt} \hat\mathbf{u}_\theta(t) - \omega^2 R \hat\mathbf{u}_R(t) \,. | &= R \frac{d \omega}{dt} \hat\mathbf{u}_\theta(t) - \omega^2 R \hat\mathbf{u}_R(t) \,. | ||
\end{align}</math> | \end{align}</math> | ||
केन्द्रापसारक बल | केन्द्रापसारक बल त्रिज्या घटक है, जो अंदर की ओर त्रिज्या रूप से निर्देशित होता है: | ||
<math display="block">\mathbf{a}_R(t) = -\omega^2 R \hat\mathbf{u}_R(t) \, ,</math> | <math display="block">\mathbf{a}_R(t) = -\omega^2 R \hat\mathbf{u}_R(t) \, ,</math> | ||
जबकि स्पर्शरेखा घटक वेक्टर (ज्यामिति) वेग की लंबाई को बदलता है: | जबकि स्पर्शरेखा घटक वेक्टर (ज्यामिति) वेग की लंबाई को बदलता है: | ||
| Line 100: | Line 100: | ||
==== [[जटिल संख्या]]ओं का उपयोग करना ==== | ==== [[जटिल संख्या]]ओं का उपयोग करना ==== | ||
जटिल संख्याओं का उपयोग करके परिपत्र गति का वर्णन किया जा सकता है। | जटिल संख्याओं का उपयोग करके परिपत्र गति का वर्णन किया जा सकता है। बता दें कि {{mvar|x}} अक्ष वास्तविक अक्ष है और <math>y</math> अक्ष काल्पनिक अक्ष है। तब निकाय की स्थिति <math>z</math> जटिल "वेक्टर" के रूप में दी जा सकती है: | ||
<math display="block">z = x + iy = R\left(\cos[\theta(t)] + i \sin[\theta(t)]\right) = Re^{i\theta(t)}\,,</math> | <math display="block">z = x + iy = R\left(\cos[\theta(t)] + i \sin[\theta(t)]\right) = Re^{i\theta(t)}\,,</math> | ||
जहाँ {{math|''i''}} [[काल्पनिक इकाई]] है, और <math>\theta(t)</math> समय के फलन के रूप में सम्मिश्र संख्या का {{mvar|t}} तर्क है, . | जहाँ {{math|''i''}} [[काल्पनिक इकाई]] है, और <math>\theta(t)</math> समय के फलन के रूप में सम्मिश्र संख्या का {{mvar|t}} तर्क है, . | ||
| Line 125: | Line 125: | ||
==== वेग ==== | ==== वेग ==== | ||
चित्रा 1 कक्षा में चार अलग-अलग बिंदुओं पर समान गति के लिए वेग और त्वरण वैक्टर दिखाता है। क्योंकि वेग {{math|'''v'''}} वृत्ताकार पथ की स्पर्शरेखा है, कोई भी दो वेग ही दिशा में सूचित नहीं करते हैं। यद्यपि वस्तु की गति स्थिर होती है, उसकी दिशा सदैव बदलती रहती है। वेग में यह परिवर्तन त्वरण के कारण होता है {{math|'''a'''}}, जिसका परिमाण (वेग की तरह) स्थिर रहता है, किन्तु जिसकी दिशा भी सदैव बदलती रहती है। त्वरण | चित्रा 1 कक्षा में चार अलग-अलग बिंदुओं पर समान गति के लिए वेग और त्वरण वैक्टर दिखाता है। क्योंकि वेग {{math|'''v'''}} वृत्ताकार पथ की स्पर्शरेखा है, कोई भी दो वेग ही दिशा में सूचित नहीं करते हैं। यद्यपि वस्तु की गति स्थिर होती है, उसकी दिशा सदैव बदलती रहती है। वेग में यह परिवर्तन त्वरण के कारण होता है {{math|'''a'''}}, जिसका परिमाण (वेग की तरह) स्थिर रहता है, किन्तु जिसकी दिशा भी सदैव बदलती रहती है। त्वरण त्रिज्या रूप से अंदर की ओर (केंद्रीय रूप से) सूचित करता है और वेग के लंबवत होता है। इस त्वरण को केन्द्रापसारक त्वरण के रूप में जाना जाता है। | ||
त्रिज्या के पथ के लिए {{mvar|r}}, जब कोण {{mvar|θ}} बाहर कर दिया जाता है, तो विकट पर तय की गई दूरी: कक्षा की परिधि है {{math|1=''s'' = ''rθ''}}. इसलिए, कक्षा के चारों ओर यात्रा की गति है | त्रिज्या के पथ के लिए {{mvar|r}}, जब कोण {{mvar|θ}} बाहर कर दिया जाता है, तो विकट पर तय की गई दूरी: कक्षा की परिधि है {{math|1=''s'' = ''rθ''}}. इसलिए, कक्षा के चारों ओर यात्रा की गति है | ||
| Line 303: | Line 303: | ||
[[File:Nonuniform circular motion.svg|right|293 पीएक्स | फ्रेमलेस]]असमान वृत्तीय गति में कोई वस्तु वृत्तीय पथ में परिवर्ती गति से गति कर रही है। चूंकि गति बदल रही है, सामान्य त्वरण के अतिरिक्त [[स्पर्शरेखा त्वरण]] भी है। | [[File:Nonuniform circular motion.svg|right|293 पीएक्स | फ्रेमलेस]]असमान वृत्तीय गति में कोई वस्तु वृत्तीय पथ में परिवर्ती गति से गति कर रही है। चूंकि गति बदल रही है, सामान्य त्वरण के अतिरिक्त [[स्पर्शरेखा त्वरण]] भी है। | ||
असमान वृत्तीय गति में शुद्ध त्वरण (a) की दिशा में होता है {{math|Δ''v''}}, जो वृत्त के अंदर निर्देशित है किन्तु इसके केंद्र से नहीं गुजरती है (आंकड़ा देखें)। शुद्ध त्वरण को दो घटकों में हल किया जा सकता है: स्पर्शरेखा त्वरण और सामान्य त्वरण जिसे केन्द्रापसारक या | असमान वृत्तीय गति में शुद्ध त्वरण (a) की दिशा में होता है {{math|Δ''v''}}, जो वृत्त के अंदर निर्देशित है किन्तु इसके केंद्र से नहीं गुजरती है (आंकड़ा देखें)। शुद्ध त्वरण को दो घटकों में हल किया जा सकता है: स्पर्शरेखा त्वरण और सामान्य त्वरण जिसे केन्द्रापसारक या त्रिज्या त्वरण भी कहा जाता है। स्पर्शरेखा त्वरण के विपरीत, केन्द्रापसारक त्वरण समान और गैर-समान परिपत्र गति दोनों में उपस्थित है। | ||
[[File:Freebody circular.svg|left|frameकम]]असमान वृत्तीय गति में, [[सामान्य बल]] सदैव भार की विपरीत दिशा में नहीं होता है। यहाँ उदाहरण है जिसमें वस्तु सीधे रास्ते में यात्रा करती है और फिर लूप को फिर से सीधे रास्ते में घुमाती है। | [[File:Freebody circular.svg|left|frameकम]]असमान वृत्तीय गति में, [[सामान्य बल]] सदैव भार की विपरीत दिशा में नहीं होता है। यहाँ उदाहरण है जिसमें वस्तु सीधे रास्ते में यात्रा करती है और फिर लूप को फिर से सीधे रास्ते में घुमाती है। | ||
[[File:Freebody object.svg|right|frameकम]]यह आरेख भार बल के विपरीत के अतिरिक्त अन्य दिशाओं में सूचित करने वाले सामान्य बल को दर्शाता है। सामान्य बल वास्तव में | [[File:Freebody object.svg|right|frameकम]]यह आरेख भार बल के विपरीत के अतिरिक्त अन्य दिशाओं में सूचित करने वाले सामान्य बल को दर्शाता है। सामान्य बल वास्तव में त्रिज्या और स्पर्शरेखा बलों का योग है। भार बल का घटक यहाँ स्पर्शरेखा बल के लिए उत्तरदायी है (हमने घर्षण बल की उपेक्षा की है)। त्रिज्या बल (केन्द्रीय बल) वेग की दिशा में परिवर्तन के कारण होता है जैसा कि पहले चर्चा की गई थी। | ||
असमान वृत्तीय गति में, सामान्य बल और भार ही दिशा में हो सकते हैं। दोनों बल नीचे की ओर संकेत कर सकते हैं, फिर भी वस्तु सीधे नीचे गिरे बिना गोलाकार पथ में बनी रहेगी। आइए पहले देखें कि सामान्य बल पहले स्थान पर नीचे की ओर क्यों सूचित कर सकता है। पहले आरेख में, मान लें कि वस्तु स्तर के अंदर बैठा व्यक्ति है, दो बल तभी नीचे की ओर संकेत करते हैं जब वह वृत्त के शीर्ष पर पहुँचता है। इसका कारण यह है कि सामान्य बल स्पर्शरेखा बल और अभिकेन्द्र बल का योग होता है। शीर्ष पर स्पर्शरेखा बल शून्य है (चूंकि गति प्रयुक्त बल की दिशा के लंबवत होने पर कोई कार्य नहीं किया जाता है। यहां भार बल वृत्त के शीर्ष पर वस्तु की गति की दिशा के लंबवत होता है) और केन्द्रापसारक बल बिंदु नीचे, इस प्रकार सामान्य बल भी नीचे की ओर सूचित करता है तार्किक दृष्टिकोण से, व्यक्ति जो स्तर में यात्रा कर रहा है वह चक्र के शीर्ष पर उल्टा होगा। उस समय, व्यक्ति का आसन वास्तव में व्यक्ति को नीचे धकेल रहा होता है, जो कि सामान्य बल है। | असमान वृत्तीय गति में, सामान्य बल और भार ही दिशा में हो सकते हैं। दोनों बल नीचे की ओर संकेत कर सकते हैं, फिर भी वस्तु सीधे नीचे गिरे बिना गोलाकार पथ में बनी रहेगी। आइए पहले देखें कि सामान्य बल पहले स्थान पर नीचे की ओर क्यों सूचित कर सकता है। पहले आरेख में, मान लें कि वस्तु स्तर के अंदर बैठा व्यक्ति है, दो बल तभी नीचे की ओर संकेत करते हैं जब वह वृत्त के शीर्ष पर पहुँचता है। इसका कारण यह है कि सामान्य बल स्पर्शरेखा बल और अभिकेन्द्र बल का योग होता है। शीर्ष पर स्पर्शरेखा बल शून्य है (चूंकि गति प्रयुक्त बल की दिशा के लंबवत होने पर कोई कार्य नहीं किया जाता है। यहां भार बल वृत्त के शीर्ष पर वस्तु की गति की दिशा के लंबवत होता है) और केन्द्रापसारक बल बिंदु नीचे, इस प्रकार सामान्य बल भी नीचे की ओर सूचित करता है तार्किक दृष्टिकोण से, व्यक्ति जो स्तर में यात्रा कर रहा है वह चक्र के शीर्ष पर उल्टा होगा। उस समय, व्यक्ति का आसन वास्तव में व्यक्ति को नीचे धकेल रहा होता है, जो कि सामान्य बल है। | ||
| Line 324: | Line 324: | ||
&= F_c | &= F_c | ||
\end{align}</math> | \end{align}</math> | ||
कुल बल की गणना करते समय | कुल बल की गणना करते समय त्रिज्या त्वरण का उपयोग किया जाता है। कुल बल की गणना में स्पर्शरेखा त्वरण का उपयोग नहीं किया जाता है क्योंकि यह वस्तु को वृत्ताकार पथ में रखने के लिए उत्तरदाई नहीं है। किसी वस्तु को वृत्त में गतिमान रखने के लिए उत्तरदाई एकमात्र त्वरण त्रिज्या त्वरण है। चूँकि सभी बलों का योग केन्द्रापसारक बल है, मुक्त निकाय आरेख में केन्द्रापसारक बल खींचना आवश्यक नहीं है और सामान्यतः इसकी अनुशंसा नहीं की जाती है। | ||
<math>F_\text{net} = F_c</math> का उपयोग करके, हम किसी वस्तु पर कार्य करने वाली सभी शक्तियों को सूचीबद्ध करने के लिए मुक्त | <math>F_\text{net} = F_c</math> का उपयोग करके, हम किसी वस्तु पर कार्य करने वाली सभी शक्तियों को सूचीबद्ध करने के लिए मुक्त निकाय आरेख बना सकते हैं, फिर इसे <math>F_c</math> के सामान्य स्थित कर सकते हैं। बाद में, हम अज्ञात के लिए हल कर सकते हैं (यह द्रव्यमान, वेग, वक्रता की त्रिज्या, घर्षण का गुणांक, सामान्य बल, आदि हो सकता है)। उदाहरण के लिए, एक अर्धवृत्त के शीर्ष पर एक वस्तु दिखाने वाला ऊपर का दृश्य <math>F_c = n + mg</math> के रूप में व्यक्त किया जाएगा। | ||
एकसमान वृत्तीय गति में, वृत्ताकार पथ में किसी वस्तु का कुल त्वरण | एकसमान वृत्तीय गति में, वृत्ताकार पथ में किसी वस्तु का कुल त्वरण त्रिज्या त्वरण के सामान्य होता है। असमान वृत्तीय गति में स्पर्शरेखा त्वरण की उपस्थिति के कारण, यह अब सत्य नहीं है। असमान वृत्ताकार में किसी वस्तु का कुल त्वरण ज्ञात करने के लिए, स्पर्शरेखा त्वरण और त्रिज्या त्वरण का सदिश योग ज्ञात करें। | ||
<math display="block">\sqrt{a_r^2 + a_t^2} = a</math> | <math display="block">\sqrt{a_r^2 + a_t^2} = a</math> | ||
त्रिज्या त्वरण अभी भी <math display="inline">\frac{v^2}{r}</math> के सामान्य है। स्पर्शरेखा त्वरण बस किसी दिए गए बिंदु पर गति का व्युत्पन्न है:<math display="inline">a_t = \frac{dv}{dt} </math> अलग-अलग त्रिज्या और स्पर्शरेखा त्वरणों के वर्गों का यह मूल योग केवल वृत्ताकार गति के लिए सही है; ध्रुवीय निर्देशांक <math>(r, \theta)</math> के साथ एक स्तर के अंदर सामान्य गति के लिए, कोरिओलिस शब्द<math display="inline">a_c = 2 \left(\frac{dr}{dt}\right)\left(\frac{d\theta}{dt}\right)</math>जोड़ा जाना चाहिए <math>a_t</math> जबकि त्रिज्या त्वरण तब <math display="inline">a_r = \frac{-v^2}{r} + \frac{d^2 r}{dt^2}</math> बन जाता है। | |||
== यह भी देखें == | == यह भी देखें == | ||
| Line 355: | Line 355: | ||
*एक निश्चित अक्ष के चारों ओर घूमना | *एक निश्चित अक्ष के चारों ओर घूमना | ||
*रेस ट्रैक | *रेस ट्रैक | ||
* | *मास का केंद्र | ||
*घेरा | *घेरा | ||
*केन्द्राभिमुख शक्ति | *केन्द्राभिमुख शक्ति | ||
| Line 367: | Line 367: | ||
*अन्योन्य गुणन | *अन्योन्य गुणन | ||
*गति | *गति | ||
*न्यूटन ( | *न्यूटन (इकाई) | ||
*निष्क्रियता के पल | *निष्क्रियता के पल | ||
*कोनेदार गति | *कोनेदार गति | ||
Revision as of 14:49, 17 April 2023
| Part of a series on |
| चिरसम्मत यांत्रिकी |
|---|
भौतिकी में, वृत्ताकार गति वृत्त की परिधि के साथ किसी वस्तु की गति या वृत्ताकार पथ के साथ घूमना है। यह नियमित आवर्तन की निरंतर कोणीय दर और निरंतर गति के साथ या नियमित आवर्तन की बदलती दर के साथ गैर-समान हो सकता है। त्रि-आयामी निकाय के निश्चित अक्ष के चारों ओर घूमने में इसके भागों की गोलाकार गति सम्मिलित होती है। गति के समीकरण किसी पिंड के द्रव्यमान के केंद्र की गति का वर्णन करते हैं। वृत्ताकार गति में, पिंड और सतह पर निश्चित बिंदु के बीच की दूरी समान रहती है।
वृत्ताकार गति के उदाहरणों में सम्मिलित हैं: कृत्रिम उपग्रह जो स्थिर ऊंचाई पर पृथ्वी की परिक्रमा कर रहा है, छत के पंखे के ब्लेड हब के चारों ओर घूम रहे हैं, पत्थर जो रस्सी से बंधा हुआ है और हलकों में घुमाया जा रहा है, एक कार रेस ट्रैक में वक्र के माध्यम से घूम रही है एक इलेक्ट्रॉन एकसमान चुंबकीय क्षेत्र के लम्बवत् गति करना और तंत्र के अंदर गियर का घूमना होता है।
चूँकि वस्तु का वेग सदिश लगातार दिशा बदल रहा है, गतिमान वस्तु केन्द्रापसारक बल द्वारा घूर्णन के केंद्र की दिशा में त्वरण से गुजर रही है। इस त्वरण के बिना, वस्तु न्यूटन के गति के नियमों के अनुसार सीधी रेखा में गति करती है।
एक समान वृत्तीय गति
भौतिकी में, एकसमान वृत्तीय गति वृत्त पथ पर स्थिर गति से चलने वाले पिंड की गति का वर्णन करती है। चूंकि पिंड वृत्तीय गति का वर्णन करता है, घूर्णन के अक्ष से इसकी दूरी हर समय स्थिर रहती है। चूंकि निकाय की गति स्थिर है, इसका वेग स्थिर नहीं है: वेग, यूक्लिडियन वेक्टर मात्रा, निकाय की गति और इसकी यात्रा की दिशा दोनों पर निर्भर करती है। यह बदलता वेग त्वरण की उपस्थिति को सूचित करता है; यह केन्द्रापसारक त्वरण निरंतर परिमाण का है और हर समय नियमित आवर्तन के अक्ष की ओर निर्देशित होता है। यह त्वरण, बदले में, अभिकेन्द्र बल द्वारा निर्मित होता है जो परिमाण में भी स्थिर होता है और घूर्णन के अक्ष की ओर निर्देशित होता है।
एक कठोर पिंड के निश्चित अक्ष के चारों ओर घूमने की स्थिति में, जो पथ की त्रिज्या की तुलना में नगण्य रूप से छोटा नहीं है, पिंड का प्रत्येक कण समान कोणीय वेग के साथ समान गोलाकार गति का वर्णन करता है, किन्तु वेग और त्वरण के साथ भिन्न होता है। अक्ष के संबंध में स्थिति है ।
सूत्र
त्रिज्या के चक्र में गति के लिए r, वृत्त की परिधि है C = 2πr. यदि घूर्णन की अवधि है T, घूर्णन की कोणीय दर, जिसे कोणीय वेग के रूप में भी जाना जाता है, ω है:
और मात्रक रेडियन/सेकंड हैं।वृत्त में यात्रा करने वाली वस्तु की गति है:
समय t में निकाला गया कोण θ है: कण का कोणीय त्वरण α है:
दिशा में परिवर्तन के कारण त्वरण है:
अभिकेन्द्री बल और केन्द्रापसारक बल (घूर्णन संदर्भ फ्रेम) बल भी त्वरण का उपयोग करके पाया जा सकता है: सदिश संबंध चित्र 1 में दिखाए गए हैं। घूर्णन की धुरी को सदिश ω के रूप में कक्षा के तल के लंबवत और ω = dθ / dt परिमाण के साथ दिखाया गया है। ω की दिशा को दाहिने हाथ के नियम का उपयोग करके चुना जाता है। रोटेशन को दर्शाने के लिए इस सम्मेलन के साथ वेग वेक्टर क्रॉस उत्पाद द्वारा दिया जाता है
जो ω और r(t) दोनों के लिए एक सदिश लंबवत है, जो कक्षा के लिए स्पर्शरेखा है और परिमाण ω r है। इसी प्रकार त्वरण द्वारा दिया जाता है
सबसे सरल स्थितियों में गति, द्रव्यमान और त्रिज्या स्थिर होती है।
एक किलोग्राम के निकाय पर विचार करें, कांति प्रति दूसरा के कोणीय वेग के साथ, मीटर त्रिज्या के चक्र में घूम रहा है।
- गति 1 मीटर प्रति सेकंड है।
- आवक त्वरण 1 मीटर प्रति वर्ग सेकंड है, v2/r.
- यह 1 किलोग्राम मीटर प्रति वर्ग सेकंड के अभिकेन्द्र बल के अधीन है, जो 1 न्यूटन (इकाई) है।
- पिंड का संवेग 1 kg·m·s−1 होता है.
- जड़त्व आघूर्ण 1 kg·m2
- कोणीय संवेग 1 किग्रा · m2 s-1.है
- गतिज ऊर्जा 1 जूल होती है।
- कक्षा की परिधि 2π (~6.283) मीटर है।
- गति की अवधि 2π सेकंड प्रति मोड़ (ज्यामिति) है।
- आवृत्ति (2π)-1 हेटर्स है।
ध्रुवीय निर्देशांक में
वृत्ताकार गति के समय पिंड एक वक्र पर गति करता है जिसे ध्रुवीय समन्वय प्रणाली में किसी संदर्भ दिशा से कोण θ(t) पर उन्मुख मूल के रूप में ली गई कक्षा के केंद्र से एक निश्चित दूरी R के रूप में वर्णित किया जा सकता है। चित्र 4 देखें। विस्थापन वेक्टर मूल से कण स्थान तक त्रिज्या वेक्टर है:
जहां समय t पर त्रिज्या वेक्टर के समानांतर इकाई वेक्टर है और मूल से दूर की ओर इशारा करता है। इकाई वेक्टर ऑर्थोगोनल को के साथ-साथ से परिचित कराना सुविधाजनक है। यह कक्षा के साथ-साथ यात्रा की दिशा को इंगित करने के लिए को उन्मुख करने के लिए प्रथागत है।
वेग विस्थापन का समय व्युत्पन्न है:
जहां परिवर्तन की दिशा के लंबवत होनी चाहिए (या, दूसरे शब्दों में क्योंकि कोई भी परिवर्तन की दिशा में यह संकेत धनात्मक है क्योंकि dθ में वृद्धि का मतलब वस्तु है और इसलिए वेग बन जाता है:
इसलिए वेग बन जाता है:
का समय व्युत्पन्न उसी तरह पाया जाता है जैसे के लिए। फिर से, एक इकाई सदिश है और इसकी नोक π/2 + θ कोण के साथ एक इकाई वृत्त का पता लगाती है। इसलिए कोण dθ में की वृद्धि का अर्थ है परिमाण dθ के एक चाप का पता लगाता है और चूंकि के लिए ओर्थोगोनल है, हमारे पास:
जटिल संख्याओं का उपयोग करना
जटिल संख्याओं का उपयोग करके परिपत्र गति का वर्णन किया जा सकता है। बता दें कि x अक्ष वास्तविक अक्ष है और अक्ष काल्पनिक अक्ष है। तब निकाय की स्थिति जटिल "वेक्टर" के रूप में दी जा सकती है:
चूंकि त्रिज्या स्थिर है:
इस अंकन के साथ वेग बन जाता है:
वेग
चित्रा 1 कक्षा में चार अलग-अलग बिंदुओं पर समान गति के लिए वेग और त्वरण वैक्टर दिखाता है। क्योंकि वेग v वृत्ताकार पथ की स्पर्शरेखा है, कोई भी दो वेग ही दिशा में सूचित नहीं करते हैं। यद्यपि वस्तु की गति स्थिर होती है, उसकी दिशा सदैव बदलती रहती है। वेग में यह परिवर्तन त्वरण के कारण होता है a, जिसका परिमाण (वेग की तरह) स्थिर रहता है, किन्तु जिसकी दिशा भी सदैव बदलती रहती है। त्वरण त्रिज्या रूप से अंदर की ओर (केंद्रीय रूप से) सूचित करता है और वेग के लंबवत होता है। इस त्वरण को केन्द्रापसारक त्वरण के रूप में जाना जाता है।
त्रिज्या के पथ के लिए r, जब कोण θ बाहर कर दिया जाता है, तो विकट पर तय की गई दूरी: कक्षा की परिधि है s = rθ. इसलिए, कक्षा के चारों ओर यात्रा की गति है
सापेक्षिक परिपत्र गति
इस स्थितियों में तीन-त्वरण वेक्टर तीन-वेग वेक्टर के लंबवत है,
त्वरण
चित्र 2 में बाएँ हाथ का वृत्त वह कक्षा है जो दो निकटवर्ती समयों पर वेग सदिशों को दर्शाती है। दाईं ओर, इन दो वेगों को स्थानांतरित किया जाता है, इसलिए उनकी पूंछ मेल खाती है। क्योंकि गति स्थिर है, दाहिनी ओर वेग सदिश समय बढ़ने के साथ-साथ वृत्त को पार कर जाते हैं। स्वेप्ट एंगल के लिए dθ = ω dt में परिवर्तन v के समकोण पर सदिश है v और परिमाण का v dθ, जिसका अर्थ है कि त्वरण का परिमाण द्वारा दिया गया है
|v| r
|
1 m/s 3.6 km/h 2.2 mph |
2 m/s 7.2 km/h 4.5 mph |
5 m/s 18 km/h 11 mph |
10 m/s 36 km/h 22 mph |
20 m/s 72 km/h 45 mph |
50 m/s 180 km/h 110 mph |
100 m/s 360 km/h 220 mph | |
|---|---|---|---|---|---|---|---|---|
| धीरे चलना | साइकिल | शहर की गाड़ी | एयरोबेटिक्स | |||||
| 10 cm 3.9 in |
प्रयोगशाला | 10 m/s2 1.0 g |
40 m/s2 4.1 g |
250 m/s2 25 g |
1.0 km/s2 100 g |
4.0 km/s2 410 g |
25 km/s2 2500 g |
100 km/s2 10000 g |
| 20 cm 7.9 in |
5.0 m/s2 0.51 g |
20 m/s2 2.0 g |
130 m/s2 13 g |
500 m/s2 51 g |
2.0 km/s2 200 g |
13 km/s2 1300 g |
50 km/s2 5100 g | |
| 50 cm 1.6 ft |
2.0 m/s2 0.20 g |
8.0 m/s2 0.82 g |
50 m/s2 5.1 g |
200 m/s2 20 g |
800 m/s2 82 g |
5.0 km/s2 510 g |
20 km/s2 2000 g | |
| 1 m 3.3 ft |
खेल का मैदान हिंडोला |
1.0 m/s2 0.10 g |
4.0 m/s2 0.41 g |
25 m/s2 2.5 g |
100 m/s2 10 g |
400 m/s2 41 g |
2.5 km/s2 250 g |
10 km/s2 1000 g |
| 2 m 6.6 ft |
500 mm/s2 0.051 g |
2.0 m/s2 0.20 g |
13 m/s2 1.3 g |
50 m/s2 5.1 g |
200 m/s2 20 g |
1.3 km/s2 130 g |
5.0 km/s2 510 g | |
| 5 m 16 ft |
200 mm/s2 0.020 g |
800 mm/s2 0.082 g |
5.0 m/s2 0.51 g |
20 m/s2 2.0 g |
80 m/s2 8.2 g |
500 m/s2 51 g |
2.0 km/s2 200 g | |
| 10 m 33 ft |
रोलर कॉस्टर ऊर्ध्वाधर पाश |
100 mm/s2 0.010 g |
400 mm/s2 0.041 g |
2.5 m/s2 0.25 g |
10 m/s2 1.0 g |
40 m/s2 4.1 g |
250 m/s2 25 g |
1.0 km/s2 100 g |
| 20 m 66 ft |
50 mm/s2 0.0051 g |
200 mm/s2 0.020 g |
1.3 m/s2 0.13 g |
5.0 m/s2 0.51 g |
20 m/s2 2 g |
130 m/s2 13 g |
500 m/s2 51 g | |
| 50 m 160 ft |
20 mm/s2 0.0020 g |
80 mm/s2 0.0082 g |
500 mm/s2 0.051 g |
2.0 m/s2 0.20 g |
8.0 m/s2 0.82 g |
50 m/s2 5.1 g |
200 m/s2 20 g | |
| 100 m 330 ft |
फ़्रीवे ऑन रैंप |
10 mm/s2 0.0010 g |
40 mm/s2 0.0041 g |
250 mm/s2 0.025 g |
1.0 m/s2 0.10 g |
4.0 m/s2 0.41 g |
25 m/s2 2.5 g |
100 m/s2 10 g |
| 200 m 660 ft |
5.0 mm/s2 0.00051 g |
20 mm/s2 0.0020 g |
130 m/s2 0.013 g |
500 mm/s2 0.051 g |
2.0 m/s2 0.20 g |
13 m/s2 1.3 g |
50 m/s2 5.1 g | |
| 500 m 1600 ft |
2.0 mm/s2 0.00020 g |
8.0 mm/s2 0.00082 g |
50 mm/s2 0.0051 g |
200 mm/s2 0.020 g |
800 mm/s2 0.082 g |
5.0 m/s2 0.51 g |
20 m/s2 2.0 g | |
| 1 km 3300 ft |
उच्च गति रेल-मार्ग |
1.0 mm/s2 0.00010 g |
4.0 mm/s2 0.00041 g |
25 mm/s2 0.0025 g |
100 mm/s2 0.010 g |
400 mm/s2 0.041 g |
2.5 m/s2 0.25 g |
10 m/s2 1.0 g |
गैर-वर्दी
असमान वृत्तीय गति में कोई वस्तु वृत्तीय पथ में परिवर्ती गति से गति कर रही है। चूंकि गति बदल रही है, सामान्य त्वरण के अतिरिक्त स्पर्शरेखा त्वरण भी है।
असमान वृत्तीय गति में शुद्ध त्वरण (a) की दिशा में होता है Δv, जो वृत्त के अंदर निर्देशित है किन्तु इसके केंद्र से नहीं गुजरती है (आंकड़ा देखें)। शुद्ध त्वरण को दो घटकों में हल किया जा सकता है: स्पर्शरेखा त्वरण और सामान्य त्वरण जिसे केन्द्रापसारक या त्रिज्या त्वरण भी कहा जाता है। स्पर्शरेखा त्वरण के विपरीत, केन्द्रापसारक त्वरण समान और गैर-समान परिपत्र गति दोनों में उपस्थित है।
असमान वृत्तीय गति में, सामान्य बल सदैव भार की विपरीत दिशा में नहीं होता है। यहाँ उदाहरण है जिसमें वस्तु सीधे रास्ते में यात्रा करती है और फिर लूप को फिर से सीधे रास्ते में घुमाती है।
यह आरेख भार बल के विपरीत के अतिरिक्त अन्य दिशाओं में सूचित करने वाले सामान्य बल को दर्शाता है। सामान्य बल वास्तव में त्रिज्या और स्पर्शरेखा बलों का योग है। भार बल का घटक यहाँ स्पर्शरेखा बल के लिए उत्तरदायी है (हमने घर्षण बल की उपेक्षा की है)। त्रिज्या बल (केन्द्रीय बल) वेग की दिशा में परिवर्तन के कारण होता है जैसा कि पहले चर्चा की गई थी।
असमान वृत्तीय गति में, सामान्य बल और भार ही दिशा में हो सकते हैं। दोनों बल नीचे की ओर संकेत कर सकते हैं, फिर भी वस्तु सीधे नीचे गिरे बिना गोलाकार पथ में बनी रहेगी। आइए पहले देखें कि सामान्य बल पहले स्थान पर नीचे की ओर क्यों सूचित कर सकता है। पहले आरेख में, मान लें कि वस्तु स्तर के अंदर बैठा व्यक्ति है, दो बल तभी नीचे की ओर संकेत करते हैं जब वह वृत्त के शीर्ष पर पहुँचता है। इसका कारण यह है कि सामान्य बल स्पर्शरेखा बल और अभिकेन्द्र बल का योग होता है। शीर्ष पर स्पर्शरेखा बल शून्य है (चूंकि गति प्रयुक्त बल की दिशा के लंबवत होने पर कोई कार्य नहीं किया जाता है। यहां भार बल वृत्त के शीर्ष पर वस्तु की गति की दिशा के लंबवत होता है) और केन्द्रापसारक बल बिंदु नीचे, इस प्रकार सामान्य बल भी नीचे की ओर सूचित करता है तार्किक दृष्टिकोण से, व्यक्ति जो स्तर में यात्रा कर रहा है वह चक्र के शीर्ष पर उल्टा होगा। उस समय, व्यक्ति का आसन वास्तव में व्यक्ति को नीचे धकेल रहा होता है, जो कि सामान्य बल है।
केवल नीचे की ओर बलों के अधीन होने पर वस्तु नीचे क्यों नहीं गिरती इसका कारण साधारण है। इस बारे में सोचें कि किसी वस्तु को फेंकने के बाद क्या ऊपर रखता है। बार जब किसी वस्तु को हवा में फेंका जाता है, तो पृथ्वी के गुरुत्वाकर्षण का केवल नीचे की ओर बल होता है जो वस्तु पर कार्य करता है। इसका कारण यह नहीं है कि बार किसी वस्तु को हवा में फेंके जाने पर वह तुरंत गिर जाएगी। जो चीज उस वस्तु को हवा में ऊपर रखती है, वह उसका वेग है। न्यूटन के गति के नियमों में से पहला कहता है कि किसी वस्तु की जड़ता उसे गति में रखती है, और चूंकि हवा में वस्तु का वेग होता है, इसलिए वह उस दिशा में चलती रहती है।
एक वृत्ताकार पथ में गतिमान वस्तु के लिए भिन्न-भिन्न कोणीय गति भी प्राप्त की जा सकती है यदि घूर्णन करने वाले पिंड में समरूप द्रव्यमान वितरण न हो। विषम वस्तुओं के लिए, समस्या के रूप में संपर्क करना आवश्यक है।[2]
अनुप्रयोग
असमान वृत्तीय गति से संबंधित अनुप्रयोगों को हल करने में बल विश्लेषण सम्मिलित है। समान वृत्तीय गति के साथ, वृत्त में यात्रा करने वाली वस्तु पर लगने वाला एकमात्र बल अभिकेन्द्र बल है। गैर-समान परिपत्र गति में, गैर-शून्य स्पर्शरेखा त्वरण के कारण वस्तु पर अतिरिक्त बल कार्य करते हैं। चूँकि वस्तु पर अतिरिक्त बल कार्य कर रहे हैं, वस्तु पर कार्य करने वाले सभी बलों का योग अभिकेन्द्र बल के सामान्य होना चाहिए।
का उपयोग करके, हम किसी वस्तु पर कार्य करने वाली सभी शक्तियों को सूचीबद्ध करने के लिए मुक्त निकाय आरेख बना सकते हैं, फिर इसे के सामान्य स्थित कर सकते हैं। बाद में, हम अज्ञात के लिए हल कर सकते हैं (यह द्रव्यमान, वेग, वक्रता की त्रिज्या, घर्षण का गुणांक, सामान्य बल, आदि हो सकता है)। उदाहरण के लिए, एक अर्धवृत्त के शीर्ष पर एक वस्तु दिखाने वाला ऊपर का दृश्य के रूप में व्यक्त किया जाएगा।
एकसमान वृत्तीय गति में, वृत्ताकार पथ में किसी वस्तु का कुल त्वरण त्रिज्या त्वरण के सामान्य होता है। असमान वृत्तीय गति में स्पर्शरेखा त्वरण की उपस्थिति के कारण, यह अब सत्य नहीं है। असमान वृत्ताकार में किसी वस्तु का कुल त्वरण ज्ञात करने के लिए, स्पर्शरेखा त्वरण और त्रिज्या त्वरण का सदिश योग ज्ञात करें।
यह भी देखें
- कोनेदार गति
- गति के समीकरण निरंतर वर्तुल त्वरण
- समय व्युत्पन्न उदाहरण: परिपत्र गति § Notes
- बनावटी बल
- भूस्थैतिक कक्षा
- भू-समकालिक कक्षा
- पेंडुलम (गणित)
- प्रतिक्रियाशील केन्द्रापसारक बल
- प्रत्यागामी गति
- सरल आवर्त गति एकसमान वर्तुल गति § Notes
- गोफन (हथियार)
संदर्भ
- ↑ Knudsen, Jens M.; Hjorth, Poul G. (2000). न्यूटोनियन यांत्रिकी के तत्व: अरैखिक गतिकी सहित (3 ed.). Springer. p. 96. ISBN 3-540-67652-X.
- ↑ Gomez, R W; Hernandez-Gomez, J J; Marquina, V (25 July 2012). "झुके हुए तल पर उछलता हुआ बेलन". Eur. J. Phys. IOP. 33 (5): 1359–1365. arXiv:1204.0600. Bibcode:2012EJPh...33.1359G. doi:10.1088/0143-0807/33/5/1359. S2CID 55442794. Retrieved 25 April 2016.
इस पेज में लापता आंतरिक लिंक की सूची
- पंखा
- एक निश्चित अक्ष के चारों ओर घूमना
- रेस ट्रैक
- मास का केंद्र
- घेरा
- केन्द्राभिमुख शक्ति
- भौतिक विज्ञान
- सख्त शरीर
- केन्द्राभिमुख त्वरण
- रफ़्तार
- त्रिज्या
- कोणीय गति
- दाहिने हाथ का नियम
- अन्योन्य गुणन
- गति
- न्यूटन (इकाई)
- निष्क्रियता के पल
- कोनेदार गति
- जौल
- की परिक्रमा
- केंद्र की ओर जानेवाला
- वजन
- पारस्परिक गति
बाहरी कड़ियाँ
- Physclips: Mechanics with animations and video clips from the University of New South Wales
- Circular Motion – a chapter from an online textbook
- Circular Motion Lecture – a video lecture on CM
- [1] – an online textbook with different analysis for circular motion
श्रेणी:रोटेशन श्रेणी:शास्त्रीय यांत्रिकी श्रेणी: गति (भौतिकी)