युग्मन स्थिरांक: Difference between revisions

From Vigyanwiki
(No difference)

Revision as of 12:05, 29 April 2023

भौतिकी में, एक युग्मन स्थिरांक या गेज युग्मन पैरामीटर (या, अधिक सरलता से, एक युग्मन), संख्या है जो मौलिक अन्योन्यक्रिया में लगाए गए बल के सामर्थ्य को निर्धारित करती है। मूल रूप से, युग्मन स्थिरांक दो स्थिर पिंडों के बीच कार्य करने वाले बल को पिंडों के आवेश (भौतिकी) से संबंधित करता है (अर्थात स्थिरवैद्युतिकी के लिए विद्युत आवेश और न्यूटन के सार्वभौमिक गुरुत्वाकर्षण के नियम के लिए द्रव्यमान) से संबंधित होते है, जो पिंडों के बीच की दूरी वर्ग, ,से विभाजित होते है; इस प्रकार: न्यूटोनियन गुरुत्वाकर्षण के लिए में और स्थिरवैद्युतिकी के लिए में । यह विवरण आधुनिक भौतिकी में स्थैतिक पिंडों और द्रव्यमान रहित बल वाहकों के साथ अध्यारोपण सिद्धांत के लिए मान्य है।

आधुनिक और अधिक सामान्य परिभाषा प्रणाली के लग्रांजी (क्षेत्र सिद्धांत) (या समकक्ष रूप से हैमिल्टनियन यांत्रिकी ) का उपयोग करती है। सामान्यतः, अन्योन्यक्रिया का वर्णन करने वाली प्रणाली के (या ) को गतिज भाग और अन्योन्यक्रिया भाग : (या ) में अलग किया जा सकता है। क्षेत्र सिद्धांत में, में सदैव 3 क्षेत्र पद या अधिक होते हैं, उदाहरण के लिए यह व्यक्त करते हुए कि प्रारंभिक इलेक्ट्रॉन (क्षेत्र 1) ने फोटॉन (क्षेत्र 2) के साथ अन्योन्यक्रिया की, जो इलेक्ट्रॉन की अंतिम स्थिति (क्षेत्र 3) का उत्पादन करती है। इसके विपरीत, गतिज भाग में सदैव मात्र दो क्षेत्र होते हैं, जो प्रारंभिक कण (क्षेत्र 1) के बाद की स्थिति (क्षेत्र 2) में मुक्त प्रसार को व्यक्त करते हैं। युग्मन स्थिरांक भाग के संबंध में भाग के परिमाण को निर्धारित करते है (या अंतःक्रियात्मक भाग के दो क्षेत्रों के बीच यदि कई क्षेत्र अलग-अलग स्थित हैं)। उदाहरण के लिए, एक कण का विद्युत आवेश युग्मन स्थिरांक है जो दो आवेश-वहन करने वाले क्षेत्रों और फोटॉन क्षेत्र (इसलिए दो तीरों और एक तरंगिल रेखा के साथ सामान्य फेनमैन आरेख) के साथ अन्योन्यक्रिया की विशेषता है। चूंकि फोटॉन विद्युत चुंबकत्व बल की मध्यस्थता करते हैं, इसलिए यह युग्मन निर्धारित करते है कि इलेक्ट्रॉनों को इस प्रकार की सामर्थ्य कितनी प्रबलता से अनुभव होती है, और इसका मान प्रयोग द्वारा निर्धारित किया जाता है। लग्रांजी (क्षेत्र सिद्धांत) को देखकर, कोई देखता है कि वस्तुतः, युग्मन गतिज पद और अन्योन्यक्रिया पद के बीच आनुपातिकता निर्धारित करते है।

गतिकी में एक युग्मन महत्वपूर्ण भूमिका निभाता है। उदाहरण के लिए, प्रायः विभिन्न युग्मन स्थिरांक के महत्व के आधार पर सन्निकटन के पदानुक्रम स्थापित करते है। चुंबकीय लोहे की बड़ी गांठ की गति में, युग्मन स्थिरांक के सापेक्ष परिमाण के कारण चुंबकीय बल गुरुत्वाकर्षण बल से अधिक महत्वपूर्ण हो सकते हैं। यद्यपि, चिरसम्मत यांत्रिकी में, सामान्यतः इन निर्णयों को सीधे बलों की तुलना करके किया जाता है। युग्मन स्थिरांक द्वारा निभाई गई केंद्रीय भूमिका का अन्य महत्वपूर्ण उदाहरण यह है कि वे प्रक्षोभ सिद्धांत पर आधारित प्रथम-सिद्धांत गणना के लिए विस्तार पैरामीटर हैं, जो भौतिकी की कई शाखाओं में गणना की मुख्य विधि है।

सूक्ष्म संरचना स्थिरांक

क्वांटम क्षेत्र सिद्धांत में युग्मन स्वाभाविक रूप से उत्पन्न होते हैं। आयामहीन युग्मन द्वारा सापेक्षतावादी क्वांटम सिद्धांतों में विशेष भूमिका निभाई जाती है; अर्थात्, शुद्ध संख्याएँ हैं। एक आयाम रहित स्थिरांक का उदाहरण सूक्ष्म संरचना स्थिरांक है,

जहां e एक इलेक्ट्रॉन का आवेश है, मुक्त स्थान की पारगम्यता है, ℏ समानीत प्लैंक स्थिरांक है और c प्रकाश की गति है। यह स्थिरांक विद्युत चुम्बकीय क्षेत्र में इलेक्ट्रॉन के आवेश की युग्मन सामर्थ्य के वर्ग के समानुपाती होते है।

गेज युग्मन

गैर-एबेलियन गेज सिद्धांत में, गेज युग्मन पैरामीटर, , लग्रांजी (क्षेत्र सिद्धांत) में

(जहाँ G गेज क्षेत्र (भौतिकी) प्रदिश है) के रूप में कुछ परिपाटी में प्रकट होते है। अन्य व्यापक रूप से उपयोग किए जाने वाले परिपाटी में, G पुनर्निर्धारित किया जाता है ताकि गतिज पद का गुणांक 1/4 हो औरसहपरिवर्ती व्युत्पन्न में प्रकट हो। इसे

के रूप में परिभाषित मूल आवेश के एक आयाम रहित संस्करण के समान समझा जाना चाहिए


शिथिल और प्रबल युग्मन

युग्मन g के साथ क्वांटम क्षेत्र सिद्धांत में, यदि g 1 से बहुत कम है, तो सिद्धांत को शिथिल युग्मित कहा जाता है। इस स्थिति में, यह g के सामर्थ्य में विस्तार से वर्णित है, जिसे प्रक्षोभ सिद्धांत (क्वांटम यांत्रिकी) कहा जाता है। यदि युग्मन स्थिरांक एक या अधिक क्रम का है, तो सिद्धांत को प्रबलता से युग्मित कहा जाता है। उत्तरार्द्ध का उदाहरण प्रबल अंतःक्रियाओं का हैड्रोनिक सिद्धांत है (यही कारण है कि इसे पहले स्थान पर प्रबल कहा जाता है)। ऐसी स्थिति में, सिद्धांत की जांच के लिए गैर-उत्तेजित करने वाली विधियों का उपयोग किया जाना चाहिए।

क्वांटम क्षेत्र सिद्धांत में, युग्मन का आयाम सिद्धांत के पुनर्सामान्यीकरण में महत्वपूर्ण भूमिका निभाते है,[1] और इसलिए प्रक्षोभ सिद्धांत की प्रयोज्यता पर। यदि युग्मन प्राकृतिक इकाइयों में आयामहीन है (अर्थात , ), क्यूईडी, क्यूसीडी, और शिथिल अन्योन्यक्रिया के जैसे, सिद्धांत पुनर्सामान्यीकरण योग्य है और विस्तार श्रृंखला के सभी प्रतिबन्ध परिमित हैं (पुनर्नवीनीकरण के बाद)। यदि युग्मन विमीय है, उदा. गुरुत्वाकर्षण () में, फर्मी की अन्योन्यक्रिया () या प्रबल बल () का चिराल प्रक्षोभ सिद्धांत, तो सिद्धांत सामान्यतः पुन: सामान्य नहीं होता है। युग्मन में प्रक्षोभ का विस्तार अभी भी संभव हो सकता है, यद्यपि सीमाओं के भीतर,[2][3] क्योंकि श्रृंखला के अधिकांश उच्च क्रम के पद अनंत होंगे।

संचालन युग्मन

चित्र। 1 आभासी कण युग्मन को फिर से सामान्य करते हैं

उपयोग की गई जांच के तरंग दैर्ध्य या संवेग, k को बदलकर कम समय या दूरी पर क्वांटम क्षेत्र सिद्धांत की जांच की जा सकती है। उच्च आवृत्ति (अर्थात, कम समय) जांच के साथ, आभासी कण प्रत्येक प्रक्रिया में भाग लेते हुए देखते हैं। ऊर्जा के संरक्षण के इस स्पष्ट उल्लंघन को अनिश्चितता संबंध

की जांच करके अनुमान के रूप से समझा जा सकता है जो वस्तुतः कम समय में ऐसे उल्लंघनों की अनुमति देते है। पूर्वगामी टिप्पणी मात्र क्वांटम क्षेत्र सिद्धांत के कुछ योगों पर लागू होती है, विशेष रूप से, अंतःक्रिया चित्र में विहित परिमाणीकरण

अन्य योगों में, समान घटना का वर्णन आभासी कणों द्वारा द्रव्यमान कोश से बाहर जाने के द्वारा वर्णित किया गया है। ऐसी प्रक्रियाएं युग्मन का पुनर्सामान्यीकरण करती हैं और इसे ऊर्जा पैमाने, μ पर निर्भर करती हैं, जिस पर युग्मन की जांच की जाती है। ऊर्जा-पैमाने पर युग्मन g (μ) की निर्भरता को युग्मन के संचालन के रूप में जाना जाता है। युग्मन के संचालन का सिद्धांत पुनर्सामान्यीकरण समूह द्वारा दिया गया है, यद्यपि यह ध्यान में रखा जाना चाहिए कि पुनर्सामान्यीकरण समूह अधिक सामान्य अवधारणा है जो भौतिक प्रणाली में किसी भी प्रकार के पैमाने भिन्नता का वर्णन करते है (विवरण के लिए पूरा लेख देखें)।

एक युग्मन के संचालन की घटना

पुनर्सामान्यीकरण समूह युग्मन के संचालन को प्राप्त करने के लिए रूपात्मक विधि प्रदान करती है, फिर भी संचालन वाली घटनाओं को सहज रूप से समझा जा सकता है।[4] जैसा कि परिचय में समझाया गया है, युग्मन स्थिरांक एक बल का परिमाण निर्धारित करता है जो दूरी के साथ के रूप में व्यवहार करता है। -निर्भरता को पहली बार माइकल फैराडे द्वारा बल प्रवाह की कमी के रूप में समझाया गया था: निकाय A से द्वारा दूर एक बिंदु B पर बल उत्पन्न होता है, यह क्षेत्र के प्रवाह के समानुपाती होता है जो रेखा AB के लिए जाने वाले क्षेत्र प्रवाह के समानुपाती होता है। चूंकि प्रवाह समष्टि के माध्यम से समान रूप से फैलते है, यह सतह S को बनाए रखने वाले ठोस कोण के अनुसार घटते है। क्वांटम क्षेत्र सिद्धांत के आधुनिक दृष्टिकोण में, बल वाहकों के प्रचारक की स्थिति और संवेग स्थान में अभिव्यक्ति से आता है। अपेक्षाकृत शिथिल रूप से परस्पर क्रिया करने वाले पिंडों के लिए, जैसा कि सामान्यतः विद्युत चुंबकत्व या गुरुत्वाकर्षण या कम दूरी पर परमाणु अन्योन्यक्रिया में होता है, बोर्न सन्निकटन पिंडों के बीच परस्पर क्रिया का एक ठीक पहला सन्निकटन है, और चिरसम्मत रूप से अंतःक्रिया एक -नियम का पालन करेगी (ध्यान दें कि यदि बल वाहक भारी है, तो अतिरिक्त निर्भरता है)। जब अन्योन्य क्रियाएं अधिक तीव्र होती हैं (उदाहरण के लिए आवेश या द्रव्यमान बड़ा होता है, या छोटा होता है) या कम समय अवधि (छोटे ) पर होता है, तो अधिक बल वाहक सम्मिलित होते हैं या जोड़ी उत्पादन बनते हैं, चित्र 1 देखें, जिसके परिणामस्वरूप व्यवहार में भंजन हो जाता है। चिरसम्मत समकक्ष यह है कि क्षेत्र प्रवाह अब समष्टि में स्वतंत्र रूप से प्रसार नहीं करते है, परन्तु उदा. अतिरिक्त आभासी कणों के आवेशों, या इन आभासी कणों के बीच अन्योन्यक्रिया से विद्युत-क्षेत्र आवरण से गुजरता है। प्रथम-क्रम नियम को इस अतिरिक्त -निर्भरता से अलग करना सुविधाजनक है। इसके बाद इस बाद को युग्मन में सम्मिलित किया जाता है, जो तब -निर्भर, (या समकक्ष μ-निर्भर) बन जाता है। चूँकि एकल बल वाहक सन्निकटन से परे सम्मिलित अतिरिक्त कण सदैव आभासी कण होते हैं, अर्थात क्षणिक क्वांटम क्षेत्र में उच्चावचन, कोई यह समझता है कि युग्मन का संचालन वास्तविक क्वांटम और सापेक्षतावादी घटना क्यों है, अर्थात् बल के सामर्थ्य पर उच्च-क्रम फेनमैन आरेखों का प्रभाव है।

चूंकि चल रहे युग्मन सूक्ष्म क्वांटम प्रभावों के लिए प्रभावी रूप से लेखा है, इसलिए इसे लैग्रैंगियन या हैमिल्टनियन में स्थित अनावृत युग्मन (स्थिर) के विपरीत प्रायः एक प्रभावी युग्मन कहा जाता है।

बीटा फलन

क्वांटम क्षेत्र सिद्धांत में, एक बीटा फलन, β (g), युग्मन पैरामीटर, g के संचालन को कूटबद्ध करता है। इसे संबंध

द्वारा परिभाषित किया जाता है, जहाँ μ दी गई भौतिक प्रक्रिया का ऊर्जा पैमाना है। यदि क्वांटम क्षेत्र सिद्धांत के बीटा फलन लुप्त हो जाते हैं, तो सिद्धांत अनुरूप क्षेत्र सिद्धांत है।

क्वांटम क्षेत्र सिद्धांत के युग्मन पैरामीटर प्रवाहित हो सकते हैं, भले ही संबंधित चिरसम्मत क्षेत्र (भौतिकी) सिद्धांत निश्चरता क्षेत्र हो। इस स्थिति में, गैर-शून्य बीटा फलन हमें बताता है कि चिरसम्मत पैमाना -निश्चरता अनुरूप विसंगति है।

क्यूईडी और लैंडौ ध्रुव

यदि कोई बीटा फलन धनात्मक है, तो बढ़ती ऊर्जा के साथ संबंधित युग्मन बढ़ता है। एक उदाहरण क्वांटम विद्युत् गतिकी (क्यूईडी) है, जहां कोई प्रक्षोभ सिद्धांत (क्वांटम यांत्रिकी) का उपयोग करके पाते है कि बीटा फलन (भौतिकी) उदाहरण धनात्मक है। विशेष रूप से, कम ऊर्जा पर, α ≈ 1/137, जबकि Z बोसॉन के पैमाने पर, लगभग 90 GeV, α ≈ 1/127 को मापते है।

इसके अतिरिक्त, उत्तेजित बीटा फलन हमें बताता है कि युग्मन में वृद्धि जारी है, और क्यूईडी उच्च ऊर्जा पर प्रबलता से युग्मित हो जाता है। वस्तुतः कुछ परिमित ऊर्जा पर युग्मन स्पष्ट रूप से अनंत हो जाता है। इस घटना को सबसे पहले लेव लैंडौ ने ध्यान दिया था, और इसे लैंडौ ध्रुव कहा जाता है। यद्यपि, कोई अपेक्षा नहीं कर सकता है कि उत्तेजित बीटा फलन प्रबल युग्मन पर यथार्थ परिणाम देता है, और इसलिए यह संभावना है कि लैंडौ ध्रुव प्रक्षोभ सिद्धांत को ऐसी स्थिति में लागू करने की एक कलावस्तु है जहां यह अब मान्य नहीं है। बड़ी ऊर्जाओं पर का सही सोपानी व्यवहार ज्ञात नहीं है।

क्यूसीडी और उपगामी स्वतंत्रता

गैर-एबेलियन गेज सिद्धांतों में, बीटा फलन ऋणात्मक हो सकता है, जैसा कि पहले फ्रैंक विल्जेक, डेविड पोलिट्ज़र और डेविड ग्रॉस ने पाया था। इसका एक उदाहरण क्वांटम वर्णगतिकी (क्यूसीडी) के लिए बीटा फलन (भौतिकी) है, और परिणामस्वरूप उच्च ऊर्जा पर क्यूसीडी युग्मन कम हो जाता है।[4]

इसके अतिरिक्त, युग्मन लघुगणकीय रूप से घटता है, एक घटना जिसे उपगामी स्वतंत्रता के रूप में जाना जाता है (जिसकी खोज को 2004 में भौतिकी में नोबेल पुरस्कार से सम्मानित किया गया था)। युग्मन लगभग

के रूप में घटता है, जहाँ β0 एक स्थिरांक है जिसकी पहली बार विल्जेक, ग्रॉस और पोलित्जर द्वारा गणना की गई थी।

इसके विपरीत, घटती ऊर्जा के साथ युग्मन बढ़ता है। इसका अर्थ यह है कि युग्मन कम ऊर्जा पर बड़ा हो जाता है, और कोई भी प्रक्षोभ सिद्धांत (क्वांटम यांत्रिकी) पर विश्वास नहीं कर सकता है। इसलिए, युग्मन स्थिरांक का वास्तविक मान मात्र दिए गए ऊर्जा पैमाने पर परिभाषित किया गया है। क्यूसीडी में, Z बोसोन द्रव्यमान मापनी को सामान्यतः चुना जाता है, जो αs (MZ2) = 0.1179 ± 0.0010 के प्रबल युग्मन स्थिरांक का मान प्रदान करते है।[5] जालक क्यूसीडी गणनाओं, ताऊ-लिप्टन क्षय के अध्ययन के साथ-साथ Z बोसोन के अनुप्रस्थ गति वर्णक्रम की पुनर्व्याख्या से सबसे यथार्थ माप उत्पन्न होते हैं।[6]


क्यूसीडी पैमाना

प्रमात्रा वर्णगतिकी (क्यूसीडी) में, मात्रा Λ को क्यूसीडी पैमाना कहा जाता है। मान तीन सक्रिय क्वार्क सुरुचि के लिए [4] है, अर्थात जब प्रक्रिया में सम्मिलित ऊर्जा-संवेग मात्र ऊपर, नीचे और असामान्य क्वार्क उत्पन्न करने की अनुमति देता है, परन्तु भारी क्वार्क नहीं। यह 1.275 GeV से कम ऊर्जा के अनुरूप है। उच्च ऊर्जा पर, Λ छोटा होता है, उदा. एमईवी[7] लगभग 5 GeV के निचले क्वार्क द्रव्यमान से ऊपर है। न्यूनतम घटाव योजना (एमएस) योजना पैमाने का अर्थ ΛMS आयामी प्रसारण पर लेख में दिया गया है। प्रोटॉन-से-इलेक्ट्रॉन जन अनुपात मुख्य रूप से क्यूसीडी पैमाने द्वारा निर्धारित किया जाता है।

स्ट्रिंग सिद्धांत

स्ट्रिंग सिद्धांत में एक उल्लेखनीय भिन्न स्थिति स्थित है क्योंकि इसमें एक डाईलेटॉन सम्मिलित है। स्ट्रिंग वर्णक्रम के एक विश्लेषण से पता चलता है कि यह क्षेत्र या तो बोसोनिक स्ट्रिंग या सुपरस्ट्रिंग के सुपर विरासोरो बीजगणित क्षेत्र में स्थित होना चाहिए।। शीर्ष प्रचालक का उपयोग करते हुए, यह देखा जा सकता है कि उत्तेजक यह क्षेत्र क्रिया में एक पद जोड़ने के बराबर है जहां अदिश क्षेत्र रिक्की अदिश से जुड़ता है। इसलिए यह क्षेत्र युग्मन स्थिरांक का संपूर्ण फलन है। ये युग्मन स्थिरांक पूर्व-निर्धारित, समायोज्य, या सार्वभौमिक पैरामीटर नहीं हैं; वे समष्टि और समय पर एक प्रकार से निर्भर करते हैं जो गतिशील रूप से निर्धारित होता है। स्रोत जो स्ट्रिंग युग्मन का वर्णन करते हैं जैसे कि यह निर्धारित किया गया था, सामान्यतः निर्वात अपेक्षा मान का चर्चा कर रहे हैं। यह बोसोनिक सिद्धांत में कोई मान रखने के लिए स्वतंत्र है जहां कोई उत्कृष्टक्षमता नहीं है।

यह भी देखें

संदर्भ

  1. A. Zee. Quantum Field Theory in a Nutshell, Princeton University Press, ISBN 0691140340
  2. Leutwyler, Heinrich (2012). "चिरल गड़बड़ी सिद्धांत". Scholarpedia. 7 (10): 8708. Bibcode:2012SchpJ...7.8708L. doi:10.4249/scholarpedia.8708.
  3. Donoghue, John F. (1995). "Introduction to the Effective Field Theory Description of Gravity". In Cornet, Fernando (ed.). Effective Theories: Proceedings of the Advanced School, Almunecar, Spain, 26 June – 1 July 1995. Singapore: World Scientific. arXiv:gr-qc/9512024. Bibcode:1995gr.qc....12024D. ISBN 978-981-02-2908-5.
  4. 4.0 4.1 4.2 {{cite journal | arxiv=1604.08082 | doi=10.1016/j.ppnp.2016.04.003 | title=QCD रनिंग कपलिंग| year=2016 | last1=Deur | first1=Alexandre | last2=Brodsky | first2=Stanley J. | last3=De Téramond | first3=Guy F. | journal=Progress in Particle and Nuclear Physics | volume=90 | pages=1–74 | bibcode=2016PrPNP..90....1D | s2cid=118854278 }
  5. Particle Data Group, "Review of Particle Physics, Chapter 9. Quantum Chromodynamics", 2022, https://pdg.lbl.gov/2021/reviews/rpp2021-rev-qcd.pdf
  6. Camarda, Stefano; Ferrera, Giancarlo; Schott, Matthias (2022-03-10). "Z-बोसोन अनुप्रस्थ-संवेग वितरण से प्रबल-युग्मन स्थिरांक का निर्धारण". arXiv:2203.05394 [hep-ph].
  7. C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016)


बाहरी संबंध