एकीकृत परिपथ

From Vigyanwiki
इरेज़ेबल प्रोग्रामेबल रीड-ओनली मेमोरी (EPROM) ड्यूल इन-लाइन पैकेज में एकीकृत परिपथ। इन पैकेजों में एक पारदर्शी विंडो होती है जो अंदर की डाई को प्रदर्शित करती है। चिप को पराबैंगनी प्रकाश में प्रकाशित करके मेमोरी को मिटाने के लिए विंडो का उपयोग किया जाता है।
EPROM मेमोरी माइक्रोचिप से एकीकृत परिपथ, मेमोरी ब्लॉक्स, सहायक सर्किट्री और फाइन सिल्वर तार जो एकीकृत परिपथ की डाई को पैकेजिंग के लेग्स से जोड़ते हैं, दिखाते हुए
पॉलीसिलिकॉन (गुलाबी), वेल्स (ग्रेश), और अधःस्तर (हरा) के नीचे प्लैनराइज्ड कॉपर इंटरकनेक्ट की चार परतों के माध्यम से एक एकीकृत सर्किट का आभासी विवरण।

एक एकीकृत परिपथ या अखंड एकीकृत परिपथ अर्धचालक पदार्थ (सामान्यतः सिलिकॉन) के एक छोटे समतलीय टुकड़े (या "चिप") पर विद्युतीय परिपथों का एक सुपरिभाषित समूह होता है, जिसे आईसी (IC), चिप या माइक्रोचिप भी कहा जाता है। एक छोटी-सी चिप में बड़ी संख्या में छोटे मॉस्फेट (धातु-ऑक्साइड-अर्धचालक क्षेत्र-प्रभाव ट्रांजिस्टर (MOSFET)) एकीकृत होते हैं। परिणामस्वरुप ऐसे परिपथ का निर्माण होता है जो असतत इलेक्ट्रॉनिक घटकों से निर्मित परिपथों की तुलना में छोटे, तेज और कम खर्चीले होते हैं। एकीकृत परिपथ की बनावट के लिए IC की बड़े पैमाने पर उत्पादन क्षमता, विश्वसनीयता और बिल्डिंग-ब्लॉक दृष्टिकोण ने असतत ट्रांजिस्टर का उपयोग वाले परिपथों के स्थान पर मानकीकृत IC को तीव्रता के साथ अपनाना सुनिश्चित किया है। अब लगभग सभी इलेक्ट्रॉनिक उपकरणों में IC उपयोग किया जाता है और इसने इलेक्ट्रॉनिक्स जगत में क्रांति ला दी है। कंप्यूटर, मोबाइल फोन और अन्य घरेलू उपकरण अब आधुनिक समाज की संरचना के अभिन्न अंग बन चुके हैं, जो आधुनिक कंप्यूटर प्रोसेसर और माइक्रोकंट्रोलर जैसे छोटे आकार और कम लागत के IC चिपों द्वारा संभव बनाया गया है।

धातु-ऑक्साइड-सिलिकॉन (मॉस) अर्धचालक उपकरणों के निर्माण में तकनीकी प्रगति द्वारा बहुत बड़े पैमाने पर एकीकरण को व्यावहारिक बनाया गया था। 1960 के दशक में इनकी उत्पत्ति के बाद से चिपों के आकार, गति और क्षमता में काफी प्रगति हुई है, जो एक ही आकार के चिपों पर अधिक से अधिक मॉस ट्रांजिस्टर फिट करने वाले तकनीकी विकास द्वारा संचालित है - एक आधुनिक चिप मानव नाखून के आकार जितने क्षेत्रफल में कई अरब मॉस ट्रांजिस्टर हो सकते हैं। साधारणतया मूर के नियम का पालन करते हुए इस प्रगति ने आजकल के कंप्यूटर की चिपों की क्षमता को 1970 के दशक के प्रारंभ के कंप्यूटर चिपों की क्षमता से लाखों गुना और उनकी गति से हजारों गुना अधिक कर दिया है।

लागत और प्रदर्शन, असतत परिपथ पर IC के दो मुख्य लाभ होते हैं। चिपों के उनके सभी घटकों के साथ एक समय में एक ट्रांजिस्टर के निर्माण के स्थान पर फोटोलिथोग्राफी द्वारा एक इकाई के रूप में मुद्रित होने के कारण इनकी लागत कम होती है। इसके साथ ही असतत सर्किट की तुलना में पैक किए गए IC बहुत कम सामग्री का उपयोग करते हैं। इनका प्रदर्शन उच्च होता है, क्योंकि IC के घटक शीघ्रता से स्विच करते हैं और ये छोटे आकार और सन्निनिकटता के कारण तुलनात्मक रूप से कम बिजली की खपत करते हैं। इनके चिपों के निर्माण और आवश्यक फोटोमास्क बनाने की उच्च लागत IC का मुख्य नुकसान है। इस उच्च प्रारंभिक लागत का अर्थ है कि केवल उच्च उत्पादन मात्रा की संभावना होने पर ही IC व्यावसायिक रूप से व्यवहार्य है।

शब्दावली

एक एकीकृत परिपथ को इस प्रकार किया गया है:[1]

एक ऐसा परिपथ, जिसमें कुछ या सभी परिपथ तत्व अविभाजित रूप से जुड़े होते हैं और विद्युत रूप से परस्पर संयोजित होते हैं, जिससे इसे निर्माण और व्यावसायिक उद्देश्यों की दृष्टि से अविभाज्य माना जा सके।

इस परिभाषा के साथ सम्बन्ध स्थापित करने वाले परिपथों का निर्माण पतली-फिल्म ट्रांजिस्टर, मोटी-फिल्म तकनीकों और हाइब्रिड एकीकृत परिपथ जैसी विभिन्न तकनीकों का उपयोग करके किया जा सकता है। हालांकि, सामान्य उपयोग में, मूल रूप से अखंड एकीकृत परिपथ के नाम से जाने जाने वाले एकल-खंड परिपथ निर्माण को एकीकृत परिपथ से संदर्भित किया जाता है, जिसका निर्माण प्रायः सिलिकॉन के एक टुकड़े पर किया जाता है।[2][3]

इतिहास

लोवे 3एनएफ (Loewe 3NF) निर्वात नली, एक आधुनिक IC जैसे उपकरण में कई घटकों के संयोजन का एक प्रारंभिक प्रयास था। IC के विपरीत, इसे कर से बचने के उद्देश्य से भी बनाया गया था, क्योंकि जर्मनी में, रेडियो संग्राहकों के पास एक प्रकार का कर होता था, जो एक रेडियो संग्राहक के नली धारकों की संख्या के आधार पर लगाया जाता था। इसने रेडियो संग्राहकों को एकल नली धारक रखने की अनुमति दी।

एक एकीकृत सर्किट की प्रारंभिक अवधारणा वर्ष 1949 में वापस आई, जब जर्मन अभियंता वर्नर जैकोबी[4] (सीमेंस एजी)[5] ने एक एकीकृत-परिपथ-जैसे अर्धचालक प्रवर्धक उपकरण[6] के लिए तीन चरण वाली प्रवर्धक व्यवस्था के एक सामान्य अधःस्तर पर पांच ट्रांजिस्टरों का प्रदर्शन करते हुए एक एकाधिकार (पेटेंट) दायर किया था। जैकोबी ने अपने पेटेंट के विशिष्ट औद्योगिक अनुप्रयोगों के रूप में छोटे और सस्ते श्रवण यंत्रों का प्रदर्शन किया। उनके पेटेंट के तत्काल व्यावसायिक उपयोग की सूचना नहीं प्राप्त हुई है।

जेफ्री डमर (1909-2002) इस अवधारणा के एक अन्य प्रारंभिक प्रस्तावक थे, जो ब्रिटिश रक्षा मंत्रालय के रॉयल रडार प्रतिष्ठान के लिए काम कर रहे एक रडार वैज्ञानिक थे। डमर ने 7 मई 1952 को वाशिंगटन, डी.सी. में एक संगोष्ठी में जनता के समक्ष गुणवत्तापूर्ण इलेक्ट्रॉनिक घटकों की प्रगति पर अपने विचार प्रस्तुत किये।[7] उन्होंने अपने विचारों को प्रचारित करने के लिए सार्वजनिक रूप से कई संगोष्ठियां दीं और वर्ष 1956 में इस तरह के एक परिपथ के निर्माण का प्रयास किया, जो कि असफल रहा। वर्ष 1953 और 1957 के बीच, सिडनी डार्लिंगटन और यासुओ तारुई (विद्युत्-तकनीकी प्रयोगशाला) ने समान चिप रचनाओं का प्रस्ताव रखा, जहाँ कई ट्रांजिस्टर एक सामान्य सक्रिय क्षेत्र साझा कर सकते थे, लेकिन उन्हें एक दूसरे से अलग करने के लिए वहां कोई विद्युत अलगाव नहीं था।[4]

अखण्ड एकीकृत परिपथ चिप को जीन होर्नी द्वारा प्लानर प्रक्रिया और कर्ट लेहोवेक द्वारा p-n संधि के आविष्कारों द्वारा सक्षम किया गया था। होर्नी का आविष्कार मोहम्मद एम. अटाला के सतह निष्क्रियता पर कार्य के साथ-साथ फुलर और डिट्ज़ेनबर्गर के बोरॉन और फास्फोरस की अशुद्धियों के सिलिकॉन में प्रसार के कार्य, कार्ल फ्रॉश और लिंकन डेरिक के सतह संरक्षण पर कार्य और चिह-तांग साह के ऑक्साइड द्वारा मास्किंग प्रसार पर कार्य के आधार पर हुआ था।[8]

प्रथम एकीकृत परिपथ

रॉबर्ट नॉयस ने वर्ष 1959 में पहले अखंड एकीकृत परिपथ का आविष्कार किया था। जिसमें चिप को सिलिकॉन से बनाया गया था।

IC के लिए एक पूर्ववर्ती विचार, छोटे मृत्तिका अधःस्तर (तथाकथित माइक्रोमॉड्यूल) बनाना था,[9] जिसमें प्रत्येक अधःस्तर में एक छोटा सा घटक होता है। तब घटकों को एकीकृत और एक द्वि-आयामी या त्रि-आयामी सघन जाल में तारित किया जा सकता था। वर्ष 1957 में अत्यधिक आशाजनक लगने वाला यह विचार जैक किल्बी[9] द्वारा अमेरिकी सेना को प्रस्तावित किया गया था और इसने वर्ष 1951 की परियोजना टिंकरटॉय के समान अल्पकालिक माइक्रोमॉड्यूल कार्यक्रम का नेतृत्व किया।।[9][10][11] हालांकि, जैसे-जैसे परियोजना गति प्राप्त कर रही थी, किल्बी एक नयी क्रांतिकारी रचना "एकीकृत परिपथ" के साथ प्रस्तुत हुए।

टेक्सास इंस्ट्रूमेंट्स द्वारा नव नियुक्त किल्बी ने जुलाई 1958 में एकीकृत सर्किट से संबंधित अपने प्रारंभिक विचारों को दर्ज करते हुए, 12 सितंबर 1958 को एक एकीकृत परिपथ के पहले संचालित उदाहरण को सफलतापूर्वक प्रदर्शित किया।[12] 6 फरवरी 1959 के अपने पेटेंट आवेदन में,[13] किल्बी ने अपने नए उपकरण को "अर्धचालक सामग्री का एक निकाय ... जिसमें इलेक्ट्रॉनिक परिपथ के सभी घटक पूरी तरह से एकीकृत हैं" के रूप में वर्णित किया।[14] अमेरिकी वायु सेना नए आविष्कार के लिए पहली उपभोक्ता थी।[15] किल्बी ने एकीकृत परिपथ के आविष्कार में अपनी भूमिका के लिए भौतिकी में वर्ष 2000 का नोबेल पुरस्कार जीता।[16] हालांकि, किल्बी का आविष्कार एक अखंड एकीकृत परिपथ चिप के स्थान पर एक हाइब्रिड एकीकृत परिपथ था।[17] किल्बी के IC में बाहरी तार संयोजन थे, जिससे बड़े पैमाने पर उत्पादन करना मुश्किल हो गया।[18]

फेयरचाइल्ड अर्धचालक में किल्बी और रॉबर्ट नॉयस ने 6 महीने बाद पहले सत्य अखंड एकीकृत परिपथ का आविष्कार किया।[19][18] यह एकीकृत परिपथ की एक नई किस्म थी, जो किल्बी के कार्यान्वयन से अधिक व्यावहारिक थी। नॉयस का रचना सिलिकॉन से, जबकि किल्बी की चिप जर्मेनियम से बनी थी। नॉयस के अखंड एकीकृत परिपथ ने सभी घटकों को सिलिकॉन की एक चिप पर रखा और उन्हें तांबे की रेखाओं से जोड़ा।[18] नॉयस का अखंड एकीकृत परिपथ प्लानर प्रक्रिया का उपयोग करके अर्धचालक उपकरण का एक निर्माण था, जिसे वर्ष 1959 के प्रारंभ में उनके सहयोगी जीन होर्नी ने विकसित किया था। आधुनिक IC चिपें किल्बी के हाइब्रिड IC के स्थान पर[17] नॉयस के अखंड एकीकृत परिपथ पर आधारित हैं।[19][18]

नासा का अपोलो कार्यक्रम वर्ष 1961 और 1965 के बीच एकीकृत परिपथों का सबसे बड़ा एकल उपभोक्ता था।[20]

टीटीएल एकीकृत परिपथ

ट्रांजिस्टर-ट्रांजिस्टर लॉजिक (टीटीएल/TTL) को जेम्स एल. बुई द्वारा 1960 के दशक के प्रारंभ में टीआरडब्ल्यू आईएनसी. में विकसित किया गया था। वर्ष 1970 से 1980 के दशक के दौरान ट्रांजिस्टर-ट्रांजिस्टर लॉजिक प्रमुख एकीकृत परिपथ तकनीक बन गया।[21]

दर्जनों टीटीएल एकीकृत परिपथ मिनीकंप्यूटर और मेनफ्रेम कंप्यूटर के प्रोसेसर के लिए निर्माण की एक मानक विधि थे। आईबीएम 360 मेनफ्रेम, पीडीपी-11 (PDP-11) मिनीकंप्यूटर और डेस्कटॉप डेटापॉइंट 2200 जैसे कंप्यूटर या तो टीटीएल या उससे भी तेज उत्सर्जक-युग्मित तर्क जैसे द्विध्रुवी एकीकृत परिपथों से बनाए गए थे।[22]

मॉस एकीकृत परिपथ

लगभग सभी आधुनिक IC चिप, मॉस्फेट (धातु-ऑक्साइड-सिलिकॉन फील्ड-इफेक्ट ट्रांजिस्टर) से निर्मित धातु-ऑक्साइड-अर्धचालक (मॉस) एकीकृत परिपथ होते हैं।[23] मोहम्मद एम. अटाला और डॉन कहंग द्वारा वर्ष 1959 में बेल प्रयोगशाला में अविष्कृत मॉस ट्रांजिस्टर के रूप में जाने जाने वाले मॉस्फेट[24] ने उच्च-घनत्व एकीकृत परिपथों के निर्माण को संभव बना दिया।[25] एक चिप पर ट्रांजिस्टर के पी-एन संधि अलगाव के लिए कई चरणों की आवश्यकता वाले द्विध्रुवी ट्रांजिस्टर के विपरीत, मॉस्फेट को ऐसे चरणों की आवश्यकता नहीं होती है, लेकिन इन्हें आसानी से एक दूसरे से अलग किया जा सकता है।[26] डॉन कहंग ने वर्ष 1961 में एकीकृत परिपथों के लिए इसके लाभ पर प्रकश डाला था।[27] आईईईई (IEEE) के मील के पत्थर की सूची में वर्ष 1958 में किल्बी द्वारा पहला एकीकृत परिपथ,[28] वर्ष 1959 में होर्नी की प्लानर प्रक्रिया और नॉयस का प्लानर IC, और 1959 में अटाला और कहंग द्वारा मॉस्फेट सम्मिलित हैं।[29]

फ्रेड हेमैन और स्टीवन हॉफस्टीन द्वारा वर्ष 1962 में आरसीए (RCA) में निर्मित 16-ट्रांजिस्टर चिप सबसे पहला प्रायोगिक मॉस एकीकृत परिपथ था।[30] जनरल माइक्रोइलेक्ट्रॉनिक ने बाद में वर्ष 1964 में रॉबर्ट नॉर्मन द्वारा विकसित पहला व्यावसायिक मॉस एकीकृत परिपथ,[31] 120-ट्रांजिस्टर शिफ्ट रजिस्टर[30] प्रस्तुत किया। मॉस चिप वर्ष 1964 तक द्विध्रुवीय चिपों की तुलना में उच्च ट्रांजिस्टर घनत्व और कम विनिर्माण लागत तक पहुंच गए थे। मॉस चिप मूर के नियम द्वारा अनुमानित दर से और अधिक जटिल हो गए, जिससे 1960 के दशक के अंत तक एक एकल मॉस चिप पर सैकड़ों ट्रांजिस्टर के साथ बड़े पैमाने पर एकीकरण (LSI) हो गया।[32]

बेल प्रयोगशाला में रॉबर्ट केर्विन, डोनाल्ड क्लेन और जॉन सरेस द्वारा वर्ष 1967 में स्व-संरेखित गेट (सिलिकॉन-गेट) मॉस्फेट के विकास के बाद,[33] सभी आधुनिक सीमॉस (CMOS) एकीकृत परिपथों का आधार पहला स्व-संरेखित गेटों के साथ सिलिकॉन-गेट मॉस एकीकृत परिपथ, वर्ष 1968 में फेडेरिको फागिन द्वारा फेयरचाइल्ड अर्धचालक में विकसित किया गया था।[34] गणना के लिए मॉस एलएसआई चिपों का अनुप्रयोग पहले माइक्रोप्रोसेसरों का आधार था, क्योंकि अभियंताओं ने यह पहचानना शुरू कर दिया था कि एक एकल मॉस एलएसआई चिप पर एक पूर्ण कंप्यूटर प्रोसेसर सम्मिलित हो सकता है। इसके कारण 1970 के दशक के प्रारंभ में माइक्रोप्रोसेसर और माइक्रोकंट्रोलर का आविष्कार हुआ।[32] मॉस एकीकृत परिपथ तकनीक ने 1970 के दशक के प्रारंभ में एक चिप पर 10,000 से अधिक ट्रांजिस्टर के बहुत बड़े पैमाने पर एकीकरण (VLSI) को सक्षम किया।[35]

सर्वप्रथम अन्तरिक्षीय और पॉकेट कैलकुलेटर जैसे मॉस-आधारित कंप्यूटर केवल उच्च घनत्व की आवश्यकता पर ही उचित होते थे। 1980 के दशक के प्रारंभ तक, 1970 डेटाप्वाइंट 2200 जैसे पूर्णतः टीटीएल (TTL) से निर्मित कंप्यूटर, वर्ष 1972 के इंटेल 8008 जैसे एकल-चिप मॉस माइक्रोप्रोसेसरों की तुलना में अधिक तेज और शक्तिशाली थे।[22]

IC प्रौद्योगिकी में मुख्य रूप से छोटी विशेषताओं और बड़े चिपों की प्रगति ने एक एकीकृत परिपथ में मॉस ट्रांजिस्टर की संख्या को हर दो साल में दोगुना करने की अनुमति दी है, जिसे मूर के नियम नामक एक प्रवृत्ति के नाम से जाना जाता है। मूर ने मूल रूप से कहा था कि यह दोगुना हो जाएगा, लेकिन उन्होंने हर साल के दावे को वर्ष 1975 में हर दो साल के दावे में बदल दिया।[36] इस बढ़ी हुई क्षमता का उपयोग लागत कम करने और कार्यक्षमता बढ़ाने के लिए किया गया है। सामान्य तौर पर, जैसे-जैसे सुविधा का आकार सिकुड़ता जाता है, IC के संचालन के लगभग हर पहलू में सुधार होता है। प्रति ट्रांजिस्टर लागत और प्रति ट्रांजिस्टर स्विचिंग बिजली की खपत कम हो जाती है, जबकि मेमोरी क्षमता और गति बढ़ जाती है, डेनार्ड स्केलिंग (एमओएसएफईटी स्केलिंग) द्वारा परिभाषित संबंधों के माध्यम से।[37] गति, क्षमता और बिजली की खपत का लाभ अंतिम उपयोगकर्ता तक के लिए स्पष्ट होने के कारण निर्माताओं में बारीक ज्यामिति का उपयोग करने के लिए उग्र प्रतिस्पर्धा होती है। इन वर्षों में ट्रांजिस्टर का आकार 1970 के दशक के प्रारंभ में कई दस माइक्रोन से घटकर प्रति यूनिट क्षेत्र में ट्रांजिस्टर में कई मिलियन गुना वृद्धि के साथ वर्ष 2017 में 10 नैनोमीटर हो गया है।[38] वर्ष 2016 तक विशिष्ट चिप का क्षेत्रफल कुछ वर्ग मिलीमीटर से लेकर 25 मिलियन ट्रांजिस्टर प्रति वर्ग मिमी के साथ लगभग 600 वर्ग मिमी तक होते हैं[36]

इंटरनेशनल टेक्नोलॉजी रोडमैप फॉर सेमीकंडक्टर्स (ITRS) द्वारा विशेषता के आकार में अपेक्षित सिकुड़न और संबंधित क्षेत्रों में आवश्यक प्रगति का अनुमान कई वर्षों में लगाया गया था। अंतिम आईटीआरएस वर्ष 2016 में जारी किया गया था, और इसे उपकरणों और प्रणालियों के लिए अंतर्राष्ट्रीय रोडमैप द्वारा प्रतिस्थापित किया जा रहा है।[37]

प्रारंभ में, IC मुख्य रूप से इलेक्ट्रॉनिक उपकरण थे। छोटे आकार और कम लागत के समान लाभ प्राप्त करने के प्रयास में IC की सफलता ने अन्य प्रौद्योगिकियों के एकीकरण को प्रेरित किया है। इन तकनीकों में यांत्रिक उपकरण, प्रकाशिकी और संवेदक सम्मिलित हैं।

  • आवेश-युग्मित उपकरण, और निकटता से संबंधित सक्रिय-पिक्सेल संवेदक, ऐसे चिप हैं जो प्रकाश के प्रति संवेदनशील होते हैं। उन्होंने बड़े पैमाने पर वैज्ञानिक, चिकित्सा और उपभोक्ता अनुप्रयोगों में फोटोग्राफिक झिल्ली (फिल्म) को प्रतिस्थापित कर दिया है। ये उपकरण अब हर साल सेलफोन, टैबलेट और डिजिटल कैमरों जैसे अनुप्रयोगों के लिए अरबों की संख्या में उत्पादित किए जाते हैं। IC के इस उप-क्षेत्र ने वर्ष 2009 में नोबेल पुरस्कार जीता।[38]
  • बिजली द्वारा संचालित बहुत छोटे यांत्रिक उपकरणों को चिपों पर एकीकृत किया जा सकता है, इस तकनीक को सूक्ष्म विद्युत् यांत्रिकी तंत्र के रूप में जाना जाता है। इन उपकरणों को 1980 के दशक के अंत में विकसित किया गया था[39] और इनका उपयोग विभिन्न प्रकार के वाणिज्यिक और सैन्य अनुप्रयोगों में किया जाता है। उदाहरणों में डीएलपी प्रोजेक्टर, इंकजेट प्रिंटर, और एक्सेलेरोमीटर और एमईएमएस गायरोस्कोप सम्मिलित हैं जिनका उपयोग ऑटोमोबाइल एयरबैग को तैनात करने के लिए किया जाता है।
  • 2000 के दशक की शुरुआत से, सिलिकॉन चिपों में प्रकाशिक कार्यक्षमता (optical computing) के एकीकरण को शैक्षणिक अनुसंधान और उद्योग दोनों में सक्रिय रूप से आगे बढ़ाया गया है, जिसके परिणामस्वरूप अधिमिश्रक, संसूचक और अनुमार्गण जैसे प्रकाशिक उपकरणों के संयोजन वाले सिलिकॉन आधारित एकीकृत प्रकाशिक संप्रेसी-अभिग्राही का सीमॉस आधारित इलेक्ट्रॉनिक्स के साथ सफल व्यावसायीकरण हुआ है।[40] प्रकाश का उपयोग करने वाले फोटोनिक एकीकृत परिपथों को भी भौतिकी के उभरते हुए क्षेत्र का उपयोग करके विकसित किया जा रहा है, जो फोटोनिक्स के रूप में जाने जाते हैं।
  • चिकित्सा प्रत्यारोपण या अन्य बायोइलेक्ट्रॉनिक उपकरणों में संवेदकों के अनुप्रयोग के लिए एकीकृत परिपथ भी विकसित किए जा रहे हैं।[41] ऐसे जीवजनित वातावरण में विशेष सीलिंग तकनीकों को प्रयुक्त किया जाना चाहिए जिससे प्रकाशित अर्धचालक पदार्थों के क्षरण या जैव-अवक्रमण से बचा जा सके।[42]

वर्ष 2018 तक, मॉस्फेट सभी ट्रांजिस्टरों में बहुसंख्यक हैं जो एक समतल द्वि-आयामी प्लानर प्रक्रिया में सिलिकॉन की एक चिप के एक तरफ एक परत में निर्मित होते हैं। शोधकर्ताओं ने कई आशाजनक विकल्पों के प्रोटोटाइप तैयार किए हैं, जैसे कि:

  • त्रि-आयामी एकीकृत परिपथ (3DIC) बनाने के लिए ट्रांजिस्टर की कई परतों को एकत्रित करने के लिए विभिन्न दृष्टिकोण, जैसे कि थ्रू-सिलिकॉन वाया, "अखंड 3डी",[43] एकत्रित तार बंधन,[44] और अन्य तरीके।
  • अन्य सामग्रियों से निर्मित ट्रांजिस्टर: ग्रेफीन ट्रांजिस्टर, मोलिब्डेनाइट ट्रांजिस्टर, कार्बन नैनोट्यूब फील्ड-इफेक्ट ट्रांजिस्टर, गैलियम नाइट्राइड ट्रांजिस्टर, ट्रांजिस्टर जैसे नैनोवायर इलेक्ट्रॉनिक उपकरण, ऑर्गेनिक फील्ड-इफेक्ट ट्रांजिस्टर आदि।
  • सिलिकॉन के एक छोटे से गोले की पूरी सतह पर ट्रांजिस्टर बनाना।[45][46]
  • अधःस्तर में संशोधन, सामान्यतः एक लचीले डिस्प्ले या अन्य लचीले इलेक्ट्रॉनिक्स के लिए "लचीला ट्रांजिस्टर" बनाने के लिए, संभवतः एक कंप्यूटर की ओर गमन को प्रेरित करता है।

जैसे कि कभी छोटे ट्रांजिस्टर का निर्माण करना अधिक कठिन हो जाता है, तो कंपनियां बहु-चिप मॉड्यूल, त्रि-आयामी एकीकृत परिपथ, पैकेज पर पैकेज, उच्च बैंडविड्थ (bandwidth) मेमोरी और थ्रू-सिलिकॉन वाया का उपयोग ट्रांजिस्टर के आकार को बिना कम किये प्रदर्शन को बढ़ाने और आकार को कम करने के लिए करती हैं। ऐसी तकनीकों को सामूहिक रूप से उन्नत पैकेजिंग के रूप में जाना जाता है।[47] उन्नत पैकेजिंग को मुख्य रूप से 2.5D और 3D पैकेजिंग में विभाजित किया गया है। 2.5D बहु-चिप मॉड्यूल जैसे दृष्टिकोणों का वर्णन करता है जबकि 3D उन दृष्टिकोणों का वर्णन करता है जहां एक तरह या किसी अन्य तरीके से डाई एकत्र हो जाते हैं, जैसे पैकेज पर पैकेज और उच्च बैंडविड्थ मेमोरी। सभी दृष्टिकोणों में एक पैकेज में 2 या अधिक डाई सम्मिलित किये जाते हैं।[48][49][50][51][52] वैकल्पिक रूप से, 3डी नैंड जैसे दृष्टिकोण एक ही डाई पर कई परतों को एकत्र कर देते हैं।

बनावट

एक जटिल एकीकृत परिपथ को बनाने और विकसित करने की लागत काफी अधिक होती है, जो कई दस मिलियन डॉलर में होती है।[53][54] अतः, एकीकृत परिपथ उत्पादों का केवल उच्च उत्पादन मात्रा के साथ उत्पादन ही आर्थिक दृष्टि से लाभकारी होता है, इसलिए उत्पादित इकाइयों की गैर-आवर्ती अभियांत्रिकी (एनआरई) लागत सामान्यतः लाखों में फैली हुई है।

आधुनिक अर्धचालक चिपों में अरबों की संख्या में घटक होते हैं, और हाथ से बनाये जाने के लिए बहुत जटिल होते हैं। सॉफ़्टवेयर उपकरण डिज़ाइनर की सहायता के लिए आवश्यक होते हैं। इलेक्ट्रॉनिक कंप्यूटर एडेड डिज़ाइन (ईकैड) के नाम से प्रचलित इलेक्ट्रॉनिक डिज़ाइन ऑटोमेशन (ईडीए)[55] एकीकृत परिपथ सहित इलेक्ट्रॉनिक तंत्र को बनाने के लिए सॉफ़्टवेयर टूल की एक श्रेणी है। ये उपकरण अभियंताओं द्वारा संपूर्ण अर्धचालक चिपों को डिजाइन और विश्लेषण करने के लिए उपयोग की जाने वाली एक निर्माण प्रक्रिया में एक साथ काम करते हैं।

प्रकार

दोहरी इन-लाइन पैकेज में A-टू-D परिवर्तक IC

एकीकृत परिपथ को सामान्यतः अनुरूप (एनालॉग) परिपथ[56], अंकीय (डिजिटल) परिपथ[57] और एक ही IC पर अनुरूप और अंकीय संकेतों से मिलकर बने मिश्रित-संकेत एकीकृत परिपथों[58] में वर्गीकृत किया जा सकता है, ।

अंकीय एकीकृत परिपथ में कुछ वर्ग मिलीमीटर में अरबों[36] तर्कद्वार, फ्लिप-फ्लॉप, बहुसंकेतक और अन्य परिपथ हो सकते हैं। इन परिपथों का छोटा आकार बोर्ड-स्तरीय एकीकरण की तुलना में उच्च गति, कम बिजली अपव्यय और कम विनिर्माण लागत की सुविधा प्रदान करता है। ये अंकीय IC (digital IC), सामान्यतः माइक्रोप्रोसेसर, डीएसपी (DSP) और माइक्रोकंट्रोलर, "एक" और "शून्य" संकेतों को संसाधित करने के लिए बूलियन बीजगणित का उपयोग करते हैं।

Intel 8742 द्वारा एक डाई, एक 8-बिट NMOS माइक्रोकंट्रोलर जिसमें 12 MHz पर चलने वाला CPU, 128 बाइट्स RAM, EPROM के 2048 बाइट्स और एक ही चिप में I/O सम्मिलित है।

माइक्रोप्रोसेसर या "कोर" सबसे उन्नत एकीकृत परिपथ हैं, जिनका उपयोग निजी कंप्यूटर, सेल-फोन, माइक्रोवेव ओवन आदि में किया जाता है। एक IC या चिप में कई कोर को एक साथ एकीकृत किया जा सकता है। अंकीय मेमोरी चिपों औरअनुप्रयोग-विशिष्ट एकीकृत सर्किट एकीकृत परिपथ के अन्य वर्गों के उदाहरण हैं।

प्रोग्राम करने योग्य तार्किक उपकरणों को 1980 के दशक में विकसित किया गया था। इन उपकरणों में ऐसे परिपथ होते हैं जिनके तार्किक कार्य और संयोजन को एकीकृत परिपथ निर्माता द्वारा तय किए जाने के स्थान पर उपयोगकर्ता द्वारा प्रोग्राम किया जा सकता है। यह एक चिप को तर्क द्वारों, योजकों और रजिस्टर जैसे विभिन्न एलएसआई-प्रकार के कार्यों को करने के लिए प्रोग्राम करने की सुविधा प्रदान करता है। प्रोग्राम-योग्यता विभिन्न प्रकार की होती है - ऐसे उपकरण जिन्हें केवल एक बार प्रोग्राम किया जा सकता है, ऐसे उपकरण जिन्हें मिटाकर पुनः UV प्रकाश का उपयोग करके से प्रोग्राम किया जा सकता है, ऐसे उपकरण जिन्हें फ्लैश मेमोरी का उपयोग करके (पुनः) प्रोग्राम किया जा सकता है, और फील्ड-प्रोग्रामेबल गेट एरेज़ जो संचालन के दौरान सहित किसी भी समय पर प्रोग्राम किया जा सकता है। 2016 तक के एफजीपीए (FPGA) कई दस लाख के समकक्ष गेट प्रयुक्त कर सकते हैं और 1 गीगाहर्ट्ज़ (GHz) तक की आवृत्ति पर काम कर सकते हैं।[59]

अनुरूप IC, संवेदक, सामर्थ्य प्रबंधक परिपथ, और परिचालन प्रवर्धक, जैसे निरंतर संकेतों को संसाधित करते हैं, और प्रवर्धन, सक्रिय निस्पंदन, विमॉडुलन और मिश्रण जैसे प्रक्रमों का संचालन करते हैं।

IC, अनुरूप-से-अंकीय परिवर्तक और अंकीय-से-अनुरूप परिवर्तक जैसे संचालनों को बनाने के लिए एक चिप पर साद्रश्य और अंकीय परिपथों को जोड़ सकते हैं। ऐसे मिश्रित संकेत परिपथ छोटे आकार और कम लागत की पेशकश करते हैं, लेकिन इन्हें संकेत हस्तक्षेप के लिए आवश्यक रूप से उत्तरदायी होना चाहिए। 1990 के दशक के उत्तरार्ध से पहले तक, माइक्रोप्रोसेसरों के समान ही कम लागत वाली सीमॉस प्रक्रियाओं में रेडियो का निर्माण नहीं किया जा सकता था। लेकिन वर्ष 1998 से आरएफ सीमॉस प्रक्रियाओं का उपयोग करके रेडियो चिपों को विकसित किया गया है। एथेरोस और अन्य कंपनियों द्वारा निर्मित 802.11 (वाई-फाई) चिप और इंटेल का डीईसीटी कॉर्डलेस फोन इसके उदाहरणों में सम्मिलित हैं ।[60]

आधुनिक इलेक्ट्रॉनिक घटक वितरक प्रायः एकीकृत परिपथों को उप-वर्गीकृत करते हैं:

  • अंकीय एकीकृत परिपथ को तार्किक एकीकृत परिपथ (जैसे माइक्रोप्रोसेसर और माइक्रोकंट्रोलर), मेमोरी चिप (जैसे मॉस मेमोरी और फ्लोटिंग-गेट मेमोरी), अंतर्प्रष्ठ एकीकृत परिपथ (स्तर परिवर्तक, अनुक्रमक / अनअनुक्रमक, आदि), सामर्थ्य प्रबंधक एकीकृत परिपथ और पप्रोग्रामयोग्य तार्किक उपकरणों के रूप में वर्गीकृत किया जाता है।
  • साद्रश्य एकीकृत परिपथ को रैखिक एकीकृत परिपथ और रेडियो आवृत्ति परिपथ (आरएफ परिपथ) के रूप में वर्गीकृत किया जाता है।
  • मिश्रित-संकेत एकीकृत परिपथ को डेटा अधिग्रहण एकीकृत परिपथ (ए/डी परिवर्तक, डी/ए परिवर्तक, अंकीय विभवमापी सहित), घडी या समय एकीकृत परिपथ, पारस्परिक परिवर्तित संधारित्र परिपथ और आरएफ सीमॉस परिपथ के रूप में वर्गीकृत किया जाता है।
  • त्रि-आयामी एकीकृत परिपथ को थ्रू-सिलिकॉन वाया (टीएसवी) एकीकृत परिपथ और Cu-Cu संयोजन एकीकृत परिपथ के माध्यम से वर्गीकृत किया गया है।

निर्माण

निर्माण

तीन धातु परतों के साथ एक छोटे मानक सेल का प्रतिपादन (ढांकता हुआ हटा दिया गया है)। रेत के रंग की संरचनाएं मेटल इंटरकनेक्ट होती हैं, जिसमें लंबवत खंभे सम्पर्कित होते हैं, सामान्यतः टंगस्टन के प्लग होते हैं। लाल रंग की संरचनाएं पॉलीसिलिकॉन गेट हैं, और तल पर ठोस क्रिस्टलीय सिलिकॉन बल्क है।
सीमॉस चिप (CMOS chip) की योजनाबद्ध संरचना, जैसा कि 2000 के दशक की शुरुआत में बनाया गया था। ग्राफिक LDD-MISFET को SOI अधःस्तर पर पांच धातुकरण परतों और फ्लिप-चिप बॉन्डिंग के लिए सोल्डर बंप के साथ दिखाता है। यह FEOL (फ्रंट-एंड ऑफ लाइन), BEOL (बैक-एंड ऑफ लाइन) और बैक-एंड प्रक्रिया के पहले भाग के लिए अनुभाग भी दिखाता है।

रासायनिक तत्वों की आवर्त सारणी के अर्धचालकों को एक ठोस-अवस्था वाली निर्वात नली के लिए सबसे संभावित सामग्री के रूप में पहचाना गया। 1940 और 1950 के दशक में कॉपर ऑक्साइड से शुरू होकर जर्मेनियम, फिर सिलिकॉन तक, सामग्री का व्यवस्थित रूप से अध्ययन किया गया था। आज, मोनोक्रिस्टलाइन सिलिकॉन एकीकृत परिपथ के लिए उपयोग किया जाने वाला मुख्य अधः स्तर है, हालांकि आवर्त सारणी के कुछ III-V यौगिकों जैसे गैलियम आर्सेनाइड का उपयोग एलईडी (LED), लेजर, सौर कोशिकाओं और उच्चतम गति वाले एकीकृत परिपथ जैसे विशेष अनुप्रयोगों के लिए किया जाता है। अर्धचालक सामग्री की क्रिस्टल संरचना में न्यूनतम दोषों के साथ क्रिस्टल बनाने के सही तरीकों में दशकों का समय लग गया।

अर्धचालक एकीकृत परिपथ एक समतलीय प्रक्रिया में गढ़े जाते हैं जिसमें तीन प्रमुख प्रक्रिया चरण सम्मिलित होते हैं - फोटोलिथोग्राफी, निक्षेप (जैसे रासायनिक वाष्प जमाव), और निक्षारण। प्रक्रिया के मुख्य चरण डोपिंग और सफाई द्वारा पूरक हैं। हाल ही के या उच्च-प्रदर्शन वाले एकीकृत परिपथ समतलीय वाले के स्थान पर बहु-द्वार फिनफेट या जीएएएफईटी (GAAFET) ट्रांजिस्टर का उपयोग कर सकते हैं, जो 22 एनएम नोड (इंटेल) या 16/14 एनएम नोड से शुरू होते हैं।[61]

अधिकांश अनुप्रयोगों में मोनो-क्रिस्टल सिलिकॉन वेफरों का या विशेष अनुप्रयोगों के लिए, गैलियम आर्सेनाइड जैसे अन्य अर्धचालकों का उपयोग किया जाता है। वेफर पूरी तरह से सिलिकॉन नहीं होना चाहिए। फोटोलिथोग्राफी का उपयोग अधःस्तर के विभिन्न क्षेत्रों को डोप किए जाने के लिए या उन पर जमा पॉलीसिलिकॉन, विसंवाहक या धातु (सामान्यतः एल्यूमीनियम या तांबा) ट्रैक प्राप्त करने के लिए किया जाता है। डोपेंट एक अर्धचालक को जानबूझकर उसके इलेक्ट्रॉनिक गुणों को संशोधित करने के लिए प्रस्तुत की गई अशुद्धियाँ हैं। डोपिंग एक अर्धचालक पदार्थ में डोपेंट जोड़ने की प्रक्रिया है।

  • एकीकृत परिपथ कई अतिव्यापी परतों से बने होते हैं, जिनमें से प्रत्येक को फोटोलिथोग्राफी द्वारा परिभाषित किया जाता है, और सामान्य रूप से विभिन्न रंगों में दिखाया जाता है। विसरण परतें उस स्थान को चिह्नित करती हैं जहां विभिन्न डोपेंट अधःस्तर में विसरित होते हैं;प्रत्यारोपण परतें यह परिभाषित करती हैं कि अतिरिक्त आयन कहाँ लगाए गए हैं; डोप्ड पॉलीसिलिकॉन या धात्विक परतें चालक को परिभाषित करती हैं, और वाया या संपर्क परतें संवाहक परतों के बीच संयोजन को परिभाषित करती हैं। इन परतों के एक विशिष्ट संयोजन से सभी घटकों का निर्माण किया जाता है।
  • एक स्व-संरेखित सीमॉस प्रक्रिया में एक ट्रांजिस्टर का निर्माण होता है जहां द्वार परत (पॉलीसिलिकॉन या धातु) एक विसरण परत को पार करती है।[62]: p.1 (see Fig. 1.1) 
  • संधारित संरचनाएँ, एक पारंपरिक विद्युत संधारित्र के समानांतर संवाहक प्लेटों की तरह, प्लेटों के बीच इन्सुलेट सामग्री के साथ, "प्लेटों" के क्षेत्र के अनुसार बनाई जाती हैं। एकीकृत परिपथ पर आकार की एक विस्तृत श्रृंखला वाले संधारित्र सामान्य होते हैं।
  • अलग-अलग लंबाई की घुमावदार वाली धारियों का उपयोग कभी-कभी ऑन-चिप प्रतिरोधक बनाने के लिए किया जाता है, हालांकि अधिकांश तार्किक परिपथ को किसी भी प्रतिरोधक की आवश्यकता नहीं होती है। प्रतिरोधक संरचना की लंबाई और चौड़ाई का अनुपात, इसकी तल प्रतिरोधकता के साथ मिलकर प्रतिरोध को निर्धारित करता है।
  • शायद ही कभी, आगमनात्मक संरचनाओं को छोटे ऑन-चिप कुंडल के रूप में बनाया जा सकता है, या परिभ्रमित्र द्वारा साइम्युलेट किया जा सकता है।

चूँकि सीमॉस उपकरण केवल तार्किक अवस्थाओं के बीच संक्रमण पर धारा खींचता है, सीमॉस उपकरण द्विध्रुवी जंक्शन ट्रांजिस्टर उपकरण की तुलना में बहुत कम धारा की खपत करते हैं।

रैंडम-एक्सेस मेमोरी (रैम) एकीकृत परिपथ का सबसे नियमित प्रकार है; इस प्रकार उच्चतम घनत्व वाले उपकरण मेमोरी हैं; लेकिन एक माइक्रोप्रोसेसर में भी चिप पर मेमोरी होती है। (पहली छवि के नीचे नियमित सरणी संरचना देखें।[which?]) हालांकि दशकों से सिकुड़ती चौड़ाई के साथ संरचनाएं जटिल हैं। ये परतें उपकरण की चौड़ाई की तुलना में बहुत पतली रहती हैं। सामग्री की परतें एक फोटोग्राफिक प्रक्रिया की तरह गढ़ी जाती हैं, हालांकि दृश्य स्पेक्ट्रम में प्रकाश तरंगों का उपयोग सामग्री की एक परत को "प्रकट" करने के लिए नहीं किया जा सकता है, क्योंकि वे सुविधाओं के लिए बहुत बड़े होते हैं। इस प्रकार प्रत्येक परत के लिए पैटर्न बनाने के लिए उच्च आवृत्तियों (सामान्यतः पराबैंगनी) के फोटॉन का उपयोग किया जाता है। प्रत्येक विशेषता के अत्यंत सूक्ष्म होने के कारण इलेक्ट्रॉन सूक्ष्मदर्शी, एक प्रक्रिया अभियंता के लिए आवश्यक उपकरण हैं जो एक निर्माण प्रक्रिया को दोषमार्जित कर सकते हैं।

वेफर परीक्षण या वेफर जांच के रूप में जानी जाने वाली प्रक्रिया में स्वचालित परीक्षण उपकरण (ATE) का उपयोग करके पैकेजिंग से पहले प्रत्येक उपकरण का परीक्षण किया जाता है। फिर वेफर को आयताकार खण्डों में काटा जाता है, जिनमें से प्रत्येक को डाई (die) कहा जाता है। फिर प्रत्येक अच्छी डाई को एल्यूमीनियम (या सोना) तार बंधन का उपयोग करके एक पैकेज में जोड़ा जाता है जो पैड के साथ थर्मोसोनिक रूप से बंधित होते हैं[63] , जो सामान्यतः डाई के किनारे के आसपास पाया जाता है। थर्मोसोनिक बंधन की शुरुआत सबसे पहले ए. कौकुलस ने की थी, जिन्होंने बाहरी दुनिया को ऐसे महत्वपूर्ण विद्युत संयोजनों को बनाने का एक विश्वसनीय साधन प्रदान किया। पैकेजिंग के बाद, वेफर जांच के दौरान उपयोग किए जाने वाले समान या समान ATE पर उपकरणों का अंतिम परीक्षण किया जाता है। इसमें औद्योगिक सीटी स्कैनिंग का भी उपयोग किया जा सकता है। इनकी परीक्षण लागत, कम लागत वाले उत्पादों पर निर्माण की लागत के 25% से अधिक हो सकती है, लेकिन कम उपज, बड़े या उच्च लागत वाले उपकरणों पर नगण्य भी हो सकती है।

एक निर्माण सुविधा (जिसे आमतौर पर सेमीकंडक्टर फैब के रूप में जाना जाता है) के निर्माण में वर्ष 2016 तक 8 बिलियन अमेरिकी डॉलर से अधिक की लागत आ सकती थी।[64] नए उत्पादों की बढ़ती जटिलता के कारण एक निर्माण सुविधा की लागत समय के साथ बढ़ती जाती है; इसे रॉक के नियम के रूप में जाना जाता है। ऐसी विशेषताएं निम्न हैं:

  • वेफर (इलेक्ट्रॉनिक्स) 300 मिमी व्यास तक (एक सामान्य डिशवेयर प्लेट से अधिक चौड़ा)।
  • Template:वर्ष 2016 तक, 14 एनएम ट्रांजिस्टर.[65][needs update]
  • कॉपर अंतर्संयोजित करता है जहां कॉपर वायरिंग अंतर्संयोजन के लिए एल्युमीनियम की जगह लेती है।
  • Low-κ परावैद्युत विसंवाहक।
  • विसंवाहक पर सिलिकॉन (SOI)।
  • आईबीएम द्वारा उपयोग की जाने वाली प्रक्रिया में तनावपूर्ण सिलिकॉन, स्ट्रेंड सिलिकॉन डाइरेक्टली ऑन इन्सुलेटर (एसएसडीओआई) के रूप में जाना जाता है।
  • बहु-द्वारता उपकरण जैसे त्रि-द्वार ट्रांजिस्टर।

एकीकृत परिपथ का निर्माण या तो एकीकृत उपकरण निर्माताओं (आइडीएम) का उपयोग करके घर में या फाउंड्री मॉडल का उपयोग करके किया जा सकता है। आईडीएम (IDM) ऊर्ध्वाधर रूप से एकीकृत ऐसी कंपनियाँ (जैसे इन्टेल और सैमसंग) हैं जो अपने स्वयं के एकीकृत परिपथ की रचना, निर्माण और बिक्री करती हैं, और प्रायः कल्पित कंपनियों को रचना या निर्माण सेवाएँ प्रदान कर सकती हैं। फाउंड्री मॉडल में, एनवीडिया जैसी कल्पित कंपनियां केवल IC को डिजाइन करती और बेचती हैं और सभी विनिर्माणों को टीएसएमसी (TSMC) जैसे शुद्ध प्ले फाउंड्री को आउटसोर्स करती हैं। ये फाउंड्री, IC डिजाइन सेवाएं प्रदान कर सकती हैं।

संवेष्टन (Packaging)

1977 में बनी सोवियत MSI nMOS तार्किक चिप, वर्ष 1970 में डिज़ाइन किए गए चार-चिप कैलकुलेटर सेट का हिस्सा है[66]

प्रारंभिक एकीकृत परिपथ मृत्तिका समतलीय संकुलों में पैक किए गए थे, जो कि कई वर्षों तक सेना द्वारा उनकी विश्वसनीयता और छोटे आकार के लिए उपयोग किया जाता रहा। वाणिज्यिक परिपथ संवेष्टन (packaging) तीव्र गति से दोहरी इन-लाइन पैकेज (डीआईपी) में प्रतिस्थापित हो गया, जिसमें पहले मृत्तिका (ceramic) में और बाद में प्लास्टिक में पैक किया जाने लगा, जिसे सामान्यतः क्रेसोल-फॉर्मेल्डिहाइड-नोवोलैक कहते हैं। 1980 के दशक में वीएलएसआई (VLSI) परिपथ की पिन संख्या डीआईपी संवेष्टन के लिए व्यावहारिक सीमा से अधिक हो गए, जिससे पिन ग्रिड एरे और लीडलेस चिप संवाहक (एलसीसी) पैकेज का उपयोग होने लगा। 1980 के दशक प्रारंभ में सतह आरूढ़ संवेष्टन का प्रदर्शन हुआ और जो कि 1980 के दशक के अंत में लोकप्रिय हो गई, जिसमें गल-विंग या जे-लीड के रूप में बनाई गई लीड के साथ बारीक लीड पिच का उपयोग किया गया, जैसा कि छोटे-आउटलाइन एकीकृत परिपथ (एसओIC) पैकेज द्वारा उदाहरण दिया गया था - एक वाहक जो एक समकक्ष डीआईपी की तुलना में लगभग 30-50% कम क्षेत्र का अधिग्रहण करता है और सामान्यतः 70% तक पतला होता है। इस पैकेज में "गल विंग" होते हैं, जो दो लंबी तरफ से फैला हुआ होता है और 0.050 इंच की लीड स्पेसिंग होती है।

1990 के दशक के उत्तरार्ध में, प्लास्टिक क्वाड फ्लैट पैक (पीक्यूएफपी) और पतले छोटे-आउटलाइन पैकेज (टीएसओपी) उच्च पिन संख्या उपकरणों के लिए सबसे ज्यादा प्रचलित हो गए, हालांकि पीजीए (PGA) पैकेज अभी भी उच्च-सिरे माइक्रोप्रोसेसरों के लिए उपयोग किए जाते हैं।

बॉल ग्रिड ऐरे (बीजीए) पैकेज 1970 के दशक से उपयोग के लिए उपस्थित है। अन्य प्रकार के पैकेजों की तुलना में बहुत अधिक पिन संख्या की सुविधा देने वाले फ्लिप-चिप बॉल ग्रिड ऐरे पैकेज 1990 के दशक में विकसित किए गए थे। एक एफसीबीजीए (FCBGA) पैकेज में डाई को उल्टा (फ़्लिप) लगाया जाता है और पैकेज बॉल्स को एक पैकेज अधःस्तर के माध्यम से जोड़ता है जो तारों के स्थान पर एक मुद्रित-परिपथ बोर्ड के समान होता है। एफसीबीजीए पैकेज डाई परिधि तक सीमित होने के स्थान पर इनपुट-आउटपुट संकेत (I/O क्षेत्र कहा जाता है) की एक सरणी को संपूर्ण डाई पर वितरित करने की अनुमति देता है। बीजीए (BGA) उपकरणों को एक समर्पित परिपथ की आवश्यकता नहीं होने का लाभ होता है, लेकिन उपकरण की विफलता के सम्बन्ध में इसे बदलना बहुत मुश्किल होता है।

इंटेल ने मोबाइल प्लेटफॉर्म के लिए वर्ष 2014 में जारी आखिरी पीजीए (PGA) परिपथ के साथ वर्ष 2004 के प्रारंभ में पीजीए (PGA) से लैंड ग्रिड ऐरे (LGA) और बीजीए (BGA) में प्रतिस्थापन किया । एएमडी (AMD) वर्ष 2018 तक मुख्यधारा के डेस्कटॉप प्रोसेसर पर पीजीए पैकेज[67] और मोबाइल प्रोसेसर पर बीजीए (BGA) पैकेज,[68] उपयोग करता है, और उच्च-सिरे डेस्कटॉप और सर्वर माइक्रोप्रोसेसर एलजीए (LGA) पैकेज का उपयोग करते हैं।[69]

डाई से निकलने वाले विद्युत संकेतों को डाई को पैकेज से विद्युत् रूप से जोड़ने वाले पदार्थ, पैकेज में प्रवाहकीय निशान (पथ) और मुद्रित परिपथ बोर्ड पर प्रवाहकीय निशान से पैकेज को जोड़ने वाली लीडों से होकर अवश्य ही गुजरना चाहिए। इन विद्युत संकेतों के मार्ग में उपयोग की जाने वाली सामग्रियों और संरचनाओं में एक ही डाई के विभिन्न हिस्सों की यात्रा करने वाले तत्वों की तुलना में बहुत भिन्न विद्युतीय गुण होते हैं। फलस्वरूप, उन्हें संकेतों के भ्रष्ट न होने के सुनिश्चितीकरण करने के लिए विशेष रचना तकनीकों और डाई तक ही सीमित संकेतों की तुलना में बहुत अधिक विद्युत शक्ति की आवश्यकता होती है।

जब एक पैकेज में कई डाई रखे जाते हैं, तो परिणामस्वरुप पैकेज में एक तंत्र प्राप्त होता है, जिसे संक्षिप्त रूप से एसआईपी (SiP) कहा जाता है। प्रायः मृत्तिका (ceramic) से बने एक छोटे अधःस्तर पर कई डाई को मिलाकर एक बहु-चिप मॉड्यूल बनाया जाता है। एक बड़े बहु-चिप मॉड्यूल और एक छोटे मुद्रित परिपथ बोर्ड के बीच का अंतर कभी-कभी अस्पष्ट होता है।

पैकेज्ड एकीकृत परिपथ सामान्यतः काफी बड़े होते हैं, जिनमें पहचान की सूचना सम्मिलित होती है। यह पहचानने के लिए कि चिप का निर्माण कब किया गया था, इसमें चार सामान्य खंड होते हैं - निर्माता का नाम या प्रतीक चिन्ह, भाग संख्या, एक भाग उत्पादन बैच संख्या और क्रम संख्या, और चार अंकों का दिनांक-कोड। अत्यधिक छोटे सतह-आरूढ़ प्रौद्योगिकी भागों में प्रायः एकीकृत परिपथ की विशेषताओं को खोजने के लिए निर्माता की खोज तालिका में उपयोग की जाने वाली संख्या ही होती है।

इसमें निर्माण की तारीख को सामान्यतः दो अंकों के वर्ष के रूप में दर्शाया जाता है, जिसके बाद दो अंकों का सप्ताह कोड होता है, जैसे कि कोड 8341 वाला एक भाग का निर्माण वर्ष 1983 के 41वें सप्ताह में या लगभग अक्टूबर, 1983 में किया गया था।

बौद्धिक संपदा

एक एकीकृत परिपथ की प्रत्येक परत की तस्वीर खींचकर और प्राप्त तस्वीरों के आधार पर इसके उत्पादन के लिए फोटोमास्क तैयार करने की संभावना रचना विन्यासों (layout designs) की सुरक्षा के लिए कानून बनाने का एक कारण है। वर्ष 1984 के संयुक्त राज्य अर्धचालक सुरक्षा कानून ने एकीकृत परिपथ का उत्पादन करने के लिए उपयोग किए जाने वाले फोटोमास्क के लिए बौद्धिक संपदा संरक्षण की स्थापना की।[70]

वर्ष 1989 में वाशिंगटन, डीसी में आयोजित एक राजनयिक सम्मेलन ने एकीकृत परिपथ के संबंध में बौद्धिक संपदा पर एक संधि को अपनाया,[71] जिसे वाशिंगटन संधि या आईपीIC संधि (IPIC Treaty) भी कहा जाता है। यह संधि वर्तमान में लागू नहीं है, परन्तु इसे आंशिक रूप से ट्रिप्स समझौते (TRIPS एग्रीमेंट) में एकीकृत किया गया था।[72]

एकीकृत परिपथ से जुड़े कई संयुक्त राज्य पेटेंट हैं, जिनमें जे.एस. किल्बी US3,138,743, US3,261,081, US3,434,015 और आर.एफ. स्टीवर्ट US3,138,747. द्वारा पेटेंट शामिल हैं |

IC रचना विन्यासों की रक्षा करने वाले राष्ट्रीय कानूनों को जापान,[73] यूरोपीय आर्थिक समुदाय (EC),[74] यूके, ऑस्ट्रेलिया और कोरिया सहित कई देशों में अपनाया गया है। यूके ने कॉपीराइट, डिजाइन और पेटेंट अधिनियम, 1988, c. 48, § 213 अधिनियमित किया, जिसका कॉपीराइट कानून प्रारंभ में स्थापित होने के बाद पूरी तरह से चिप स्थलाकृतियों की रक्षा करता है। ब्रिटिश लीलैंड मोटर कार्पोरेशन बनाम आर्मस्ट्रांग पेटेंट कंपनी देखें।

यूके के कॉपीराइट दृष्टिकोण की यूएस चिप उद्योग द्वारा अपर्याप्तता की आलोचना को इसके बाद के चिप अधिकारों के विकास में संक्षेपित किया गया है।[75]

ऑस्ट्रेलिया ने परिपथ रचना विन्यास अधिनियम 1989 को चिप संरक्षण के एक स्वजातिक रूप (sui generis form) में पारित किया।[citation needed] कोरिया ने अर्धचालक एकीकृत परिपथ के रचना विन्यास के संबंध में अधिनियम पारित किया।

पीढ़ियाँ

प्रौद्योगिकी के बड़े पैमाने ने सरल एकीकृत परिपथों के प्रारम्भिक दिनों में प्रत्येक चिप को केवल कुछ ट्रांजिस्टर तक सीमित कर दिया था, और एकीकरण की निम्न कोटि का अर्थ था कि रचना प्रक्रिया अपेक्षाकृत सरल थी। इसका उत्पादन भी आज के मानकों से काफी निम्न था। जैसे-जैसे धातु-ऑक्साइड-अर्धचालक (मॉस) तकनीक का विकास हुआ, तो लाखों और फिर अरबों मॉस ट्रांजिस्टरों को एक चिप पर रखा जा सकता था,[76] और इलेक्ट्रॉनिक रचना स्वचालन (ईडीए) के क्षेत्र को जन्म देते हुए अच्छी रचनाओं के लिए गहन योजना की आवश्यकता थी। असतत ट्रांजिस्टर जैसे कुछ एसएसआई (SSI) और एमएसआई (MSI) चिपों का उत्पादन आज भी बड़े पैमाने पर होता है, जो पुराने उपकरणों को बनाए रखने और केवल कुछ द्वारों की आवश्यकता वाले नए उपकरणों का निर्माण करने का कार्य करता है। उदाहरण के लिए, टीटीएल चिप की 7400 श्रृंखला एक वास्तविक मानक बनने के साथ उत्पादन में बनी हुई है।

संक्षिप्त रूप नाम वर्ष ट्रांजिस्टरों की संख्या [77] तर्क द्वारों की संख्या[78]
एसएसआई (SSI) छोटे पैमाने पर एकीकरण 1964 1 से 10 1 से 12
एमएसआई (MSI) मध्यम पैमाने पर एकीकरण 1968 10 से 500 13 से 99
एलएसआई (LSI) बड़े पैमाने पर एकीकरण 1971 500 से 20 000 100 से 9999
वीएलएसआई (VLSI) अधिक बड़े पैमाने पर एकीकरण 1980 20 000 से 1 000 000 10 000 से 99 999
यूएलएसआई (ULSI) अत्यधिक बड़े पैमाने पर एकीकरण 1984 1 000 000 और अधिक 100 000 और अधिक

छोटे पैमाने पर एकीकरण

पहले एकीकृत परिपथों में केवल कुछ ट्रांजिस्टर होते थे। कई दस ट्रांजिस्टर वाले प्रारंभिक अंकीय परिपथ में कुछ तर्क द्वार होते थे, और प्लेसी एसएल201 या फिलिप्स टीएए320 जैसे प्रारम्भिक रैखिक एकीकृत परिपथों में दो ट्रांजिस्टर थे। तब से एक एकीकृत परिपथ में ट्रांजिस्टर की संख्या में नाटकीय रूप से वृद्धि हुई है। सैद्धांतिक अवधारणा का वर्णन करते समय बड़े पैमाने पर एकीकरण (एलएसआई) शब्द का प्रयोग पहली बार आईबीएम वैज्ञानिक रॉल्फ लैंडौअर द्वारा किया गया था;[79] उस शब्द ने छोटे पैमाने के एकीकरण (एसएसआई), मध्यम पैमाने के एकीकरण (एमएसआई), बहुत बड़े पैमाने पर एकीकरण (वीएलएसआई) और अत्यधिक बड़े पैमाने पर एकीकरण (यूएलएसआई) को जन्म दिया। प्रारंभिक एकीकृत परिपथ छोटे पैमाने के एकीकरण (एसएसआई) थे।

प्रारंभिक अन्तरिक्षीय परियोजनाओं के लिए एसएसआई (SSI) परिपथ महत्वपूर्ण थे, और इन परियोजनाओं ने प्रौद्योगिकी के विकास को प्रेरित करने में सहायता प्रदान की। एलजीएम-30 मिनटमैन और अपोलो दोनों कार्यक्रमों को अपने जड़त्वीय मार्गदर्शन प्रणालियों के लिए हल्के अंकीय कंप्यूटरों की आवश्यकता थी। हालांकि अपोलो मार्गदर्शन कंप्यूटर ने एकीकृत-परिपथ प्रौद्योगिकी का नेतृत्व और प्रेरण किया,[80] जबकि मिनटमैन मिसाइल ने इसे बड़े पैमाने पर उत्पादन के लिए मजबूर किया। मिनटमैन मिसाइल कार्यक्रम और विभिन्न अन्य संयुक्त राज्य नौसेना कार्यक्रमों ने वर्ष 1962 में कुल $4 मिलियन एकीकृत परिपथ बाजार के लिए उत्तरदायी था, और नासा के बजट और संयुक्त राज्य अमेरिका के सैन्य बजट पर वर्ष 1968 तक संयुक्त राज्य सरकार का खर्च अभी भी $312 मिलियन के कुल उत्पादन के 37% था।

जब तक एकीकृत परिपथ कंपनियों को औद्योगिक बाजार और अंततः उपभोक्ता बाजार में प्रवेश करने की अनुमति देने के लिए लागत कम नहीं हुई, तब तक संयुक्त राज्य सरकार की मांग ने नवविकसित एकीकृत परिपथ बाजार का समर्थन किया। प्रति एकीकृत परिपथ का औसत मूल्य वर्ष 1962 में $50 से गिरकर वर्ष 1968 में $2.33 हो गया।[81] 1970 के दशक के अंत तक उपभोक्ता उत्पादों में एकीकृत परिपथ की पहुँच हो गई। फ़्रीक्वेंसी मॉड्यूलेशन इंटर-कैरियर साउंड प्रोसेसिंग दूरदर्शन अवशोषकों में एक विशिष्ट अनुप्रयोग था।

छोटे पैमाने पर एकीकरण (SSI) चिप, मॉस चिप का पहला अनुप्रयोग था।[82] वर्ष 1960 में मोहम्मद एम. अटाला के मॉस एकीकृत परिपथ चिप के प्रस्ताव के बाद,[83] बनाई जाने वाली सबसे पहली प्रायोगिक मॉस चिप 16-ट्रांजिस्टर चिप थी, जिसे वर्ष 1962 में आरसीए (RCA) में फ्रेड हेमैन और स्टीवन हॉफस्टीन द्वारा बनाया गया था।[30] मॉस एसएसआई चिपों का पहला व्यावहारिक अनुप्रयोग नासा के उपग्रहों के लिए था।[82]

मध्यम पैमाने पर एकीकरण (medium-scale integration)

एकीकृत परिपथों के विकास के अगले चरण में ऐसे उपकरण प्रस्तुत किए गए जिनमें प्रत्येक चिप पर सैकड़ों ट्रांजिस्टर होते हैं, जिन्हें मध्यम पैमाने पर एकीकरण (MSI) कहा जाता है।

मॉस्फेट स्केलिंग तकनीक ने उच्च-घनत्व वाले चिपों के निर्माण को संभव बना दिया है।[25] मॉस चिप वर्ष 1964 तक द्विध्रुवी जंक्शन ट्रांजिस्टर चिपों की तुलना में उच्च ट्रांजिस्टर घनत्व और कम विनिर्माण लागत तक पहुंच गए थे।[32]

फ्रैंक वानलास ने वर्ष 1964 में स्वयं द्वारा रचित एक एकल-चिप 16-बिट शिफ्ट रजिस्टर को प्रस्तुत किया, जिसमें एक चिप पर तत्कालीन-अविश्वसनीय 120 मॉस ट्रांजिस्टर थे।[82][84] उसी वर्ष जनरल माइक्रोइलेक्ट्रॉनिक ने पहला वाणिज्यिक मॉस एकीकृत परिपथ चिप प्रस्तुत किया, जिसमें 120 पी-चैनल मॉस ट्रांजिस्टर सम्मिलित था।[31] यह एक 20-बिट शिफ्ट रजिस्टर था, जिसे रॉबर्ट नॉर्मन[30] और फ्रैंक वानलास[85] द्वारा विकसित किया गया था। मूर के नियम द्वारा भविष्यवाणी की गई दर से MOS चिप और अधिक जटिल हो गए, जिससे 1960 के दशक के अंत तक एक चिप पर सैकड़ों मॉस्फेट के साथ चिपों का निर्माण होने लगा।[32]

बड़े पैमाने पर एकीकरण

समान मॉस्फेट स्केलिंग तकनीक और आर्थिक कारकों द्वारा संचालित अग्रिम विकास ने 1970 के दशक के मध्य तक "बड़े पैमाने पर एकीकरण" का नेतृत्व किया, जिसमें एक चिप पर हजारों ट्रांजिस्टर होते थे।[86]

एसएसआई (SSI), एमएसआई (MSI) और शुरुआती एलएसआई (LSI) और वीएलएसआई (VLSI) उपकरणों (जैसे कि 1970 के दशक के शुरुआती माइक्रोप्रोसेसरों) को संसाधित और निर्मित करने के लिए उपयोग किए जाने वाले मुखौटे (masks) प्रायः रूबीलिथ-टेप या इसी तरह का उपयोग मुख्यतः हाथ से बनाए जाते थे।[87] यह मेमोरी या प्रोसेसर जैसे बड़े या जटिल एकीकृत परिपथ के लिए प्रायः परिपथ विन्यास के प्रभारी विशेष रूप से किराए के पेशेवरों द्वारा किया जाता था, जिन्हें अभियंताओं की एक टीम की देखरेख में रखा जाता था, जो परिपथ रचनाकारों के साथ प्रत्येक मुखौटे की शुद्धता और पूर्णता का निरीक्षण और सत्यापन भी करते थे।

1K-बिट रैम, कैलकुलेटर चिप्स, और पहला माइक्रोप्रोसेसर जैसे एकीकृत परिपथों में 4,000 ट्रांजिस्टर होते थे , जो 1970 के दशक के प्रारंभ में मध्यम मात्रा में निर्मित होना प्रारंभ हुए थे। कंप्यूटर की मुख्य मेमोरी और दूसरी पीढ़ी के माइक्रोप्रोसेसरों के लिए लगभग 10,000 ट्रांजिस्टर वाले शुद्ध एलएसआई परिपथ का निर्माण वर्ष 1974 के आसपास प्रारंभ हो गया था।

बहुत बड़े पैमाने पर एकीकरण

Intel 80486DX2 माइक्रोप्रोसेसर डाई पर ऊपरी इंटरकनेक्ट परतें

"बहुत बड़े पैमाने पर एकीकरण (VLSI)" 1980 के दशक की शुरुआत में सैकड़ो-हजारों ट्रांजिस्टरों के साथ प्रारंभ हुआ एक विकास है, जिसमें वर्ष 2016 तक एक चिप में ट्रांजिस्टरों की संख्या दस बिलियन से अधिक पहुँच गई थी।

इस बढ़े हुए घनत्व को प्राप्त करने के लिए कई विकासों की आवश्यकता थी। निर्माता छोटे मॉस्फेट रचना विन्यास नियमों और स्वच्छ निर्माण सुविधाओं की ओर प्रतिस्थापित होते चले गए। इस प्रक्रिया में सुधार के मार्ग को अंतर्राष्ट्रीय प्रौद्योगिकी रोडमैप द्वारा अर्धचालकों (ITRS) के लिए संक्षेपित किया गया था, जो बाद में उपकरणों और प्रणालियों के लिए अंतर्राष्ट्रीय रोडमैप (IRDS) द्वारा विस्थापित किया गया था। इलेक्ट्रॉनिक रचना उपकरण में सुधार के कारण रचनाओं को उचित समय में समाप्त करना व्यावहारिक हो गया। अधिक ऊर्जा कुशल सीमॉस ने बिजली की खपत में निषेधात्मक वृद्धि से बचाने के लिए एनमॉस (NMOS) और पीमॉस (PMOS) का स्थान ले लिया। आधुनिक वीएलएसआई (VLSI) उपकरणों की जटिलता और घनत्व ने मुखौटे की जांच या हाथ से मूल रचना को असंभव बना दिया। अभियंता इसके स्थान पर सबसे कार्यात्मक सत्यापन कार्य करने के लिए ईडीए (EDA) उपकरण का उपयोग करते हैं।[88]

वर्ष 1986 में एक-मेगाबिट रैंडम-एक्सेस मेमोरी चिप प्रस्तुत किए गए, जिसमें एक मिलियन से अधिक ट्रांजिस्टर थे। माइक्रोप्रोसेसर चिपों ने वर्ष 1989 में मिलियन-ट्रांजिस्टर का और वर्ष 2005 में बिलियन-ट्रांजिस्टर का लक्ष्य प्राप्त किया।[89] यह प्रवृत्ति काफी हद तक 2007 में प्रस्तुत चिपों में दसियों अरबों मेमोरी ट्रांजिस्टर के साथ बिना अवरोध के जारी है।[90]

यूएलएसआई (ULSI), (WSI), एसओसी (SoC) और 3डी-IC (3D-IC)

यूएलएसआई (ULSI) शब्द, जिसका पूर्ण रूप "अत्यधिक बड़े पैमाने पर एकीकरण" है, को जटिलता के अग्रिम विकास को प्रतिबिंबित करने के लिए 1 मिलियन से अधिक ट्रांजिस्टर के चिपों के लिए प्रस्तावित किया गया था।[91]

वेफर-स्तर एकीकरण (WSI) बहुत बड़े एकीकृत परिपथों के निर्माण का एक साधन है जो एक एकल "सुपर-चिप" का उत्पादन करने के लिए पूरे सिलिकॉन वेफर का उपयोग करता है। डब्ल्यूएसआई (WSI), बड़े आकार और कम पैकेजिंग के संयोजन के माध्यम से कुछ प्रणालियों, विशेष रूप से बड़े पैमाने पर समानांतर सुपर कंप्यूटर, के लिए नाटकीय रूप से कम लागत का कारण बन सकता है। यह नाम "बड़े पैमाने पर एकीकरण" शब्द से लिया गया है, जो तब कला की वर्तमान स्थिति को प्रदर्शित करता था, जब डब्ल्यूएसआई (WSI) को विकसित किया जा रहा था।[92]

एक सिस्टम-ऑन-ए-चिप एक एकीकृत परिपथ होता है, जिसमें कंप्यूटर या अन्य सिस्टम के लिए आवश्यक सभी घटकों को एक चिप पर सम्मिलित किया जाता है। इस तरह के एक उपकरण का रचना जटिल और महंगी हो सकती है, और जबकि प्रदर्शन लाभ एक ही बार में सभी आवश्यक घटकों को एकीकृत करने से हो सकते हैं, लाइसेंस की लागत और एक-डाई मशीन विकसित करने की लागत अभी भी अलग-अलग उपकरणों से अधिक है। इन कमियों को कम विनिर्माण और एकत्रण लागत और बहुत कम बिजली बजट द्वारा उपयुक्त लाइसेंस के साथ ऑफसेट किया जाता है, क्योंकि घटकों के बीच सिग्नल ऑन-डाई रखे जाते हैं, जिसमें बहुत कम बिजली की आवश्यकता होती है (पैकेजिंग देखें)।[93] इसके अलावा, संकेत स्रोत और गंतव्य भौतिक रूप से डाई के करीब होते हैं, जो तारों की लंबाई, और इसलिए विलंबता, हस्तांतरण सामर्थ्य लागत और एक ही चिप पर मॉड्यूलों के बीच संचार से अपशिष्ट ऊष्मा को कम करते हैं। इसने तथाकथित नेटवर्क-ऑन-चिप (एनओसी) उपकरणों की खोज का नेतृत्व किया है, जो पारंपरिक बस निर्माणकला के विपरीत अंकीय संचार नेटवर्क के लिए सिस्टम-ऑन-चिप रचना पद्धति को प्रयुक्त करते हैं।

एक त्रि-आयामी एकीकृत परिपथ में सक्रिय इलेक्ट्रॉनिक घटकों की दो या दो से अधिक परतें होती हैं जो एक एकल परिपथ में लंबवत और क्षैतिज रूप से एकीकृत होती हैं। परतों के बीच संचार ऑन-डाई संकेतन का उपयोग करता है, इसलिए बिजली की खपत समकक्ष अन्य परिपथों की तुलना में बहुत कम होती है। छोटे ऊर्ध्वाधर तारों का विवेकपूर्ण उपयोग तेजी से संचालन के लिए समग्र तार की लंबाई को काफी हद तक कम कर सकता है।[94]

सिलिकॉन लेबलिंग और भित्तिचित्र

अधिकांश सिलिकॉन चिपों के एक कोने में एक क्रम संख्या होती है, जो उत्पादन के दौरान उनकी पहचान करने के काम आती है। कुछ निर्माता इसमें अपना प्रतीक चिन्ह लगा देते हैं। जब से IC का निर्माण हुआ है, कुछ चिप निर्माताओं ने गुप्त, गैर-कार्यात्मक छवियों या शब्दों के लिए सिलिकॉन सतह वाले क्षेत्र का उपयोग किया है। इन्हें कभी-कभी चिप कला, सिलिकॉन कला, सिलिकॉन भित्तिचित्र या सिलिकॉन डूडलिंग के रूप में जाना जाता है।

IC और IC परिवार

  • 555 टाइमर IC
  • परिचालन प्रवर्धक
  • 7400-श्रृंखला एकीकृत परिपथ
  • 4000-श्रृंखला एकीकृत परिपथ, 7400 श्रृंखला के लिए सीमॉस समकक्ष (यह भी देखें: HCMOS)
  • इंटेल 4004, जिसे सामान्यतः व्यावसायिक रूप से उपलब्ध पहला माइक्रोप्रोसेसर माना जाता है, जिसके कारण प्रसिद्ध 8080 सीपीयू (CPU) और फिर आईबीएम (IBM) के व्यक्तिगत कंप्यूटर 8088, 80286 और 486 आदिका विकास हुआ।
  • मॉस तकनीक 6502 और ज़ीलॉग Z80 माइक्रोप्रोसेसर, जिनका उपयोग 1980 के दशक की शुरुआत में कई घरेलू कंप्यूटरों में किया गया था
  • कंप्यूटर से संबंधित चिपों की मोटोरोला 6800 श्रृंखला, और इसके विकास के साथ 68000 और 88000 श्रृंखला (कुछ एप्पल कंप्यूटरों में और 1980 के दशक में कमोडोर अमीगा श्रृंखला में प्रयुक्त)
  • अनुरूप एकीकृत परिपथों की एलएम-श्रृंखला|

यह भी देखें

  • चिपसेट
  • चिप और विज्ञान अधिनियम
  • एकीकृत इंजेक्शन तर्क
  • आयन आरोपण
  • माइक्रोइलेक्ट्रॉनिक्स
  • अखंड माइक्रोवेव एकीकृत परिपथ
  • बहु-द्वार सीमॉस
  • सिलिकॉन-जर्मेनियम*
  • साउंड चिप
  • स्पाइस (SPICE)
  • चिप वाहक
  • डार्क सिलिकॉन
  • एकीकृत निष्क्रिय उपकरण
  • उच्च तापमान परिचालन जीवनकाल
  • एकीकृत परिपथ के लिए ऊष्मीय सिमुलेशन
  • एकीकृत परिपथों में ऊष्मा उत्पन्न करना

संदर्भ

  1. "Integrated circuit (IC)". JEDEC.
  2. Wylie, Andrew (2009). "The first monolithic integrated circuits". Retrieved 14 March 2011. Nowadays when people say 'integrated circuit' they usually mean a monolithic IC, where the entire circuit is constructed in a single piece of silicon.
  3. Horowitz, Paul; Hill, Winfield (1989). The Art of Electronics (2nd ed.). Cambridge University Press. p. 61. ISBN 978-0-521-37095-0. Integrated circuits, which have largely replaced circuits constructed from discrete transistors, are themselves merely arrays of transistors and other components built from a single chip of semiconductor material.
  4. 4.0 4.1 "Who Invented the IC?". @CHM Blog. Computer History Museum. 20 August 2014.
  5. "Integrated circuits help Invention". Integratedcircuithelp.com. Retrieved 2012-08-13.
  6. DE 833366  W. Jacobi/SIEMENS AG: "Halbleiterverstärker" priority filing on 14 April 1949, published on 15 May 1952.
  7. "The Hapless Tale of Geoffrey Dummer" Archived 11 May 2013 at the Wayback Machine (n.d.) (HTML), Electronic Product News, accessed 8 July 2008.
  8. Saxena, Arjum (2009). Invention of Integrated Circuits: Untold Important Facts. World Scientific. pp. 95–103.
  9. 9.0 9.1 9.2 Rostky, George. "Micromodules: the ultimate package". EE Times. Archived from the original on 2010-01-07. Retrieved 2018-04-23.
  10. "The RCA Micromodule". Vintage Computer Chip Collectibles, Memorabilia & Jewelry. Retrieved 2018-04-23.
  11. Dummer, G.W.A.; Robertson, J. Mackenzie (2014-05-16). American Microelectronics Data Annual 1964–65. Elsevier. pp. 392–397, 405–406. ISBN 978-1-4831-8549-1.
  12. The Chip that Jack Built, (c. 2008), (HTML), Texas Instruments, Retrieved 29 May 2008.
  13. Kilby, Jack S. "Miniaturized Electronic Circuits", U.S. Patent 3,138,743, filed 6 February 1959, issued 23 June 1964.
  14. Winston, Brian (1998). Media Technology and Society: A History: From the Telegraph to the Internet. Routledge. p. 221. ISBN 978-0-415-14230-4.
  15. "Texas Instruments – 1961 First IC-based computer". Ti.com. Retrieved 2012-08-13.
  16. "The Nobel Prize in Physics 2000", nobelprize.org (10 October 2000)
  17. 17.0 17.1 Saxena, Arjun N. (2009). Invention of Integrated Circuits: Untold Important Facts. World Scientific. p. 140. ISBN 9789812814456.
  18. 18.0 18.1 18.2 18.3 "Integrated circuits". NASA. Retrieved 13 August 2019.
  19. 19.0 19.1 "1959: Practical Monolithic Integrated Circuit Concept Patented". Computer History Museum. Retrieved 13 August 2019.
  20. Hall, Eldon C. (1996). "Journey to the Moon: The History of the Apollo Guidance Computer". American Institute of Aeronautics and Astronautics. pp. 18–19. ISBN 9781563471858
  21. "Computer Pioneers – James L. Buie". IEEE Computer Society. Retrieved 25 May 2020.
  22. 22.0 22.1 केन शिरिफ। टेक्सास इंस्ट्रूमेंट्स टीएमएक्स 1795: (लगभग) पहले, भूल गए माइक्रोप्रोसेसर। 2015.
  23. Kuo, Yue (1 January 2013). "Thin Film Transistor Technology—Past, Present, and Future" (PDF). The Electrochemical Society Interface. 22 (1): 55–61. Bibcode:2013ECSIn..22a..55K. doi:10.1149/2.F06131if.
  24. "1960: Metal Oxide Semiconductor (MOS) Transistor Demonstrated". Computer History Museum.
  25. 25.0 25.1 Laws, David (4 December 2013). "Who Invented the Transistor?". Computer History Museum.
  26. Bassett, Ross Knox (2002). To the Digital Age: Research Labs, Start-up Companies, and the Rise of MOS Technology. Johns Hopkins University Press. pp. 53–4. ISBN 978-0-8018-6809-2.
  27. Bassett, Ross Knox (2007). To the Digital Age: Research Labs, Start-up Companies, and the Rise of MOS Technology. Johns Hopkins University Press. pp. 22–25. ISBN 9780801886393.
  28. "Milestones:First Semiconductor Integrated Circuit (IC), 1958". IEEE Global History Network. IEEE. Retrieved 3 August 2011.
  29. "Milestones:List of IEEE Milestones – Engineering and Technology History Wiki". ethw.org. 9 December 2020.
  30. 30.0 30.1 30.2 30.3 "Tortoise of Transistors Wins the Race – CHM Revolution". Computer History Museum. Retrieved 22 July 2019.
  31. 31.0 31.1 "1964 – First Commercial MOS IC Introduced". Computer History Museum.
  32. 32.0 32.1 32.2 32.3 Shirriff, Ken (30 August 2016). "The Surprising Story of the First Microprocessors". IEEE Spectrum. Institute of Electrical and Electronics Engineers. 53 (9): 48–54. doi:10.1109/MSPEC.2016.7551353. S2CID 32003640.
  33. "1968: Silicon Gate Technology Developed for ICs". Computer History Museum. Retrieved 22 July 2019.
  34. "1968: Silicon Gate Technology Developed for ICs". The Silicon Engine. Computer History Museum. Retrieved 13 October 2019.
  35. Hittinger, William C. (1973). "Metal–Oxide–Semiconductor Technology". Scientific American. 229 (2): 48–59. Bibcode:1973SciAm.229b..48H. doi:10.1038/scientificamerican0873-48. JSTOR 24923169.
  36. 36.0 36.1 "Inside Pascal: NVIDIA's Newest Computing Platform". 2016-04-05.. 15,300,000,000 transistors in 610 mm2.
  37. "International Roadmap for Devices and Systems" (PDF). IEEE. 2016.
  38. The Nobel Prize in Physics 2009, Nobel Foundation, 2009-10-06, retrieved 2009-10-06.
  39. Fujita, H. (1997). A decade of MEMS and its future. Tenth Annual International Workshop on Micro Electro Mechanical Systems. doi:10.1109/MEMSYS.1997.581729.
  40. Narasimha, A.; et al. (2008). "A 40-Gb/s QSFP optoelectronic transceiver in a 0.13 µm CMOS silicon-on-insulator technology". Proceedings of the Optical Fiber Communication Conference (OFC): OMK7.
  41. Birkholz, M.; Mai, A.; Wenger, C.; Meliani, C.; Scholz, R. (2016). "Technology modules from micro- and nano-electronics for the life sciences". WIREs Nanomed. Nanobiotech. 8 (3): 355–377. doi:10.1002/wnan.1367. PMID 26391194.
  42. Graham, Anthony H. D.; Robbins, Jon; Bowen, Chris R.; Taylor, John (2011). "Commercialisation of CMOS Integrated Circuit Technology in Multi-Electrode Arrays for Neuroscience and Cell-Based Biosensors". Sensors. 11 (5): 4943–4971. Bibcode:2011Senso..11.4943G. doi:10.3390/s110504943. PMC 3231360. PMID 22163884.
  43. Or-Bach, Zvi (December 23, 2013). "Why SOI is the Future Technology of Semiconductors". semimd.com Archived 29 November 2014 at the Wayback Machine. 2013.
  44. "Samsung’s Eight-Stack Flash Shows up in Apple’s iPhone 4". sst.semiconductor-digest.com. September 13, 2010.
  45. Yamatake Corporation (2002). "Spherical semiconductor radio temperature sensor". Nature Interface. 7: 58–59. Archived from the original on 7 January 2009.
  46. Takeda, Nobuo, MEMS applications of Ball Semiconductor Technology (PDF), archived from the original (PDF) on 2015-01-01
  47. "Advanced Packaging".
  48. "2.5D". Semiconductor Engineering.
  49. "3D ICs". Semiconductor Engineering.
  50. Wikichip (2018) Chiplet. wikichip.org cites IEDM 2017, Dr. Lisa Su accessdate=2019-05-26
  51. "To Keep Pace With Moore's Law, Chipmakers Turn to 'Chiplets'". Wired. 11 June 2018.
  52. Schodt, Christopher (April 16, 2019) Upscaled: This is the year of the CPU ‘chiplet’. End Gadget
  53. LaPedus, Mark (16 April 2015). "FinFET Rollout Slower Than Expected". Semiconductor Engineering.
  54. Basu, Joydeep (2019-10-09). "From Design to Tape-out in SCL 180 nm CMOS Integrated Circuit Fabrication Technology". IETE Journal of Education. 60 (2): 51–64. arXiv:1908.10674. doi:10.1080/09747338.2019.1657787. S2CID 201657819.
  55. "About the EDA Industry". Electronic Design Automation Consortium. Archived from the original on 2 August 2015. Retrieved 29 July 2015.
  56. Gray, Paul R.; Hurst, Paul J.; Lewis, Stephen H.; Meyer, Robert G. (2009). Analysis and Design of Analog Integrated Circuits. Wiley. ISBN 978-0-470-24599-6.
  57. Rabaey, Jan M.; Chandrakasan, Anantha; Nikolic, Borivoje (2003). Digital Integrated Circuits (2nd ed.). Pearson. ISBN 978-0-13-090996-1.
  58. Baker, Jacob (2008). CMOS: Mixed-Signal Circuit Design. Wiley. ISBN 978-0-470-29026-2.
  59. "Stratix 10 Device Overview" (PDF). Altera. 12 December 2015.
  60. Nathawad, L.; Zargari, M.; Samavati, H.; Mehta, S.; Kheirkhaki, A.; Chen, P.; Gong, K.; Vakili-Amini, B.; Hwang, J.; Chen, M.; Terrovitis, M.; Kaczynski, B.; Limotyrakis, S.; Mack, M.; Gan, H.; Lee, M.; Abdollahi-Alibeik, B.; Baytekin, B.; Onodera, K.; Mendis, S.; Chang, A.; Jen, S.; Su, D.; Wooley, B. "20.2: A Dual-band CMOS MIMO Radio SoC for IEEE 802.11n Wireless LAN" (PDF). IEEE Entity Web Hosting. IEEE. Retrieved 22 October 2016.
  61. Hsu, Chi-Ping (January 17, 2013). 16nm/14nm FinFETs: Enabling The New Electronics Frontier. Electronic Design
  62. Mead, Carver A.; Conway, Lynn (1980) Introduction to VLSI Systems Reading, Mass.: Addison-Wesley: ISBN 2-201-04358-0
  63. "Hot Work Ultrasonic Bonding – A Method Of Facilitating Metal Flow By Restoration Processes", Proc. 20th IEEE Electronic Components Conf. Washington, D.C., May 1970, pp. 549–556.]
  64. Chafkin, Max; King, Ian (9 June 2016). "How Intel Makes a Chip". Bloomburg Businessweek.
  65. Lapedus, Mark (21 May 2015). "10 nm Fab Watch". Semiconductor Engineering.
  66. "145 series ICs (in Russian)". Retrieved 22 April 2012.
  67. Moammer, Khalid (2016-09-16). "AMD Zen CPU & AM4 Socket Pictured, Launching February 2017 – PGA Design With 1331 Pins Confirmed". Wccftech. Retrieved 2018-05-20.
  68. "Ryzen 5 2500U – AMD – WikiChip". wikichip.org. Retrieved 2018-05-20.
  69. Ung, Gordon Mah (May 30, 2017). "AMD's 'TR4' Threadripper CPU socket is gigantic". PCWorld. Retrieved 2018-05-20.
  70. "Federal Statutory Protection for Mask Works" (PDF). United States Copyright Office. United States Copyright Office. Retrieved 22 October 2016.
  71. "Washington Treaty on Intellectual Property in Respect of Integrated Circuits". www.wipo.int.
  72. On 1 January 1995, the Agreement on Trade-Related Aspects of Intellectual Property Rights (TRIPs) (Annex 1C to the World Trade Organization (WTO) Agreement), went into force. Part II, section 6 of TRIPs protects semiconductor chip products and was the basis for Presidential Proclamation No. 6780, 23 March 1995, under SCPA § 902(a)(2), extending protection to all present and future WTO members.
  73. Japan was the first country to enact its own version of the SCPA, the Japanese "Act Concerning the Circuit Layout of a Semiconductor Integrated Circuit" of 1985.
  74. In 1986 the EC promulgated a directive requiring its members to adopt national legislation for the protection of semiconductor topographies. Council Directive 1987/54/EEC of 16 December 1986 on the Legal Protection of Topographies of Semiconductor Products, art. 1(1)(b), 1987 O.J. (L 24) 36.
  75. Stern, Richard (1985). "MicroLaw". IEEE Micro. 5 (4): 90–92. doi:10.1109/MM.1985.304489.
  76. Peter Clarke, Intel enters billion-transistor processor era, EE Times, 14 October 2005 Archived 10 May 2013 at the Wayback Machine
  77. Dalmau, M. Les Microprocesseurs. IUT de Bayonne
  78. Bulletin de la Société fribourgeoise des sciences naturelles, Volumes 62 à 63 (in français). 1973.
  79. Safir, Ruben (March 2015). "System on Chip – Integrated Circuits". NYLXS Journal. ISBN 9781312995512.
  80. Mindell, David A. (2008). Digital Apollo: Human and Machine in Spaceflight. The MIT Press. ISBN 978-0-262-13497-2.
  81. Ginzberg, Eli (1976). Economic impact of large public programs: the NASA Experience. Olympus Publishing Company. p. 57. ISBN 978-0-913420-68-3.
  82. 82.0 82.1 82.2 Johnstone, Bob (1999). We were burning: Japanese entrepreneurs and the forging of the electronic age. Basic Books. pp. 47–48. ISBN 978-0-465-09118-8.
  83. Moskowitz, Sanford L. (2016). Advanced Materials Innovation: Managing Global Technology in the 21st century. John Wiley & Sons. pp. 165–167. ISBN 9780470508923.
  84. Boysel, Lee (2007-10-12). "Making Your First Million (and other tips for aspiring entrepreneurs)". U. Mich. EECS Presentation / ECE Recordings.
  85. Kilby, J. S. (2007). "Miniaturized electronic circuits [US Patent No. 3,138, 743]". IEEE Solid-State Circuits Society Newsletter. 12 (2): 44–54. doi:10.1109/N-SSC.2007.4785580.
  86. Hittinger, William C. (1973). "Metal-Oxide-Semiconductor Technology". Scientific American. 229 (2): 48–59. Bibcode:1973SciAm.229b..48H. doi:10.1038/scientificamerican0873-48. JSTOR 24923169.
  87. Kanellos, Michael (January 16, 2002). "Intel's Accidental Revolution". CNET.
  88. O'Donnell, C.F. (1968). "Engineering for systems using large scale integration" (PDF). Afips 1968: 870. doi:10.1109/AFIPS.1968.93.
  89. Clarke, Peter (14 October 2005). "Intel enters billion-transistor processor era". EETimes.com. Retrieved May 23, 2022.
  90. "Samsung First to Mass Produce 16Gb NAND Flash Memory". phys.org. April 30, 2007. Retrieved May 23, 2022.
  91. Meindl, J.D. (1984). "Ultra-large scale integration". IEEE Transactions on Electron Devices. 31 (11): 1555–1561. Bibcode:1984ITED...31.1555M. doi:10.1109/T-ED.1984.21752. S2CID 19237178.
  92. Shanefield, Daniel (1985). "Wafer scale integration". google.com/patents. Retrieved 21 September 2014.
  93. Klaas, Jeff (2000). "System-on-a-chip". google.com/patents. Retrieved 21 September 2014.
  94. Topol, A.W.; Tulipe, D.C.La; Shi, L; et., al (2006). "Three-dimensional integrated circuits". IBM Journal of Research and Development. 50 (4.5): 491–506. doi:10.1147/rd.504.0491. S2CID 18432328.

अग्रिम पठन


बाहरी संबंध