होमोटोपी श्रेणी

From Vigyanwiki

गणित में, होमोटोपी श्रेणी टोपोलॉजिकल स्थान की श्रेणी से निर्मित एक श्रेणी है जो एक अर्थ में दो रिक्त स्थानों की पहचान करती है जिनका आकार समान होता है। इस प्रकार यह वाक्यांश वास्तव में दो भिन्न-भिन्न (किन्तु संबंधित) श्रेणियों के लिए उपयोग किया जाता है, जैसा कि नीचे चर्चा की गई है।

अधिक सामान्यतः, टोपोलॉजिकल रिक्त स्थान की श्रेणी से प्रारंभ करने के अतिरिक्त, कोई किसी भी मॉडल श्रेणी से प्रारंभ कर सकता है और वर्ष 1967 में डेनियल क्विलेन द्वारा प्रस्तुत किए गए निर्माण के साथ उससे संबंधित होमोटॉपी सिद्धांत को परिभाषित कर सकता है। इस तरह, होमोटॉपी सिद्धांत को ज्यामिति और बीजगणित में अनेक अन्य श्रेणियों में प्रयुक्त किया जा सकता है।

अनुभवहीन होमोटॉपी श्रेणी

टोपोलॉजिकल स्थान की श्रेणी टॉप में ऑब्जेक्ट टोपोलॉजिकल स्थान और आकारिता उनके मध्य निरंतर मानचित्र हैं। होमोटॉपी श्रेणी एचटॉप की पुरानी परिभाषा, जिसे इस लेख में स्पष्टता के लिए नैवे होमोटॉपी श्रेणी कहा जाता है[1] समान वस्तुएँ हैं, और एक रूपवाद निरंतर मानचित्रों का एक समरूप वर्ग है। अर्थात्, दो सतत मानचित्र f: 'टॉप' से 'एचटॉप' तक एक फ़नकार है इस प्रकार जो स्वयं को रिक्त स्थान और उनके होमोटॉपी वर्गों को रूपात्मकता भेजता है। एक मानचित्र f:[2]

उदाहरण: वृत्त S1, समतल R2 मूल को छोड़कर, और मोबियस पट्टी सभी होमोटॉपी समकक्ष हैं, चूंकि यह टोपोलॉजिकल स्थान होम्योमॉर्फिक नहीं हैं।

अंकन [X,Y] का प्रयोग अधिकांशतः नैवेफ होमोटॉपी श्रेणी में स्पेस X से स्पेस Y तक आकारिकी के समूह के लिए किया जाता है (किन्तु इसका उपयोग नीचे चर्चा की गई संबंधित श्रेणियों के लिए भी किया जाता है)।

क्विलेन के पश्चात् होमोटॉपी श्रेणी

क्विलेन (1967) ने एक और श्रेणी पर जोर दिया जो टोपोलॉजिकल स्थान की श्रेणी को और सरल बनाता है। इस प्रकार होमोटोपी सिद्धांतकारों को समय-समय पर दोनों श्रेणियों के साथ काम करना पड़ता है, किन्तु आम सहमति यह है कि क्विलेन का संस्करण अधिक महत्वपूर्ण है और इसलिए इसे अधिकांशतः "होमोटॉपी श्रेणी" कहा जाता है।[3]

सबसे पहले एक अशक्त होमोटॉपी तुल्यता को परिभाषित करता है: एक सतत मानचित्र को अशक्त होमोटॉपी तुल्यता कहा जाता है यदि यह पथ घटकों के समूह पर एक आक्षेप और इच्छानुसारआधार बिंदुओं के साथ होमोटॉपी समूहों पर एक आक्षेप उत्पन्न करता है। इस प्रकार फिर (सच्ची) होमोटॉपी श्रेणी को एक समूह के स्थानीयकरण द्वारा अशक्त होमोटॉपी समकक्षों के संबंध में टोपोलॉजिकल रिक्त स्थान की श्रेणी द्वारा परिभाषित किया जाता है। अर्थात्, वस्तुएँ अभी भी टोपोलॉजिकल स्थान हैं, किन्तु प्रत्येक अशक्त होमोटॉपी तुल्यता के लिए एक व्युत्क्रम रूपवाद जोड़ा जाता है। इस प्रकार इसका प्रभाव यह होता है कि एक सतत मानचित्र समरूपता श्रेणी में एक समरूपता बन जाता है यदि और केवल यदि यह एक अशक्त समरूप समतुल्य है। टोपोलॉजिकल स्थान की श्रेणी से लेकर अनुभवहीन होमोटॉपी श्रेणी (जैसा कि ऊपर परिभाषित किया गया है) और वहां से होमोटॉपी श्रेणी तक स्पष्ट फ़नकार हैं।

जे.एच.सी. के परिणाम व्हाइटहेड, विशेष रूप से व्हाइटहेड प्रमेय और सीडब्ल्यू सन्निकटन का अस्तित्व,[4] होमोटॉपी श्रेणी का अधिक स्पष्ट विवरण दें। अर्थात्, होमोटॉपी श्रेणी भोली होमोटॉपी श्रेणी की पूर्ण उपश्रेणी की श्रेणियों के समतुल्य है जिसमें सीडब्ल्यू कॉम्प्लेक्स सम्मिलित हैं। इस संबंध में, होमोटॉपी श्रेणी टोपोलॉजिकल स्थान की श्रेणी की अधिकांश जटिलता को दूर कर देती है।

उदाहरण: मान लीजिए कि वास्तविक रेखा से उप-स्थान टोपोलॉजी।

धनात्मक पूर्णांक n के लिए 0 से 0 और n से 1/n मानचित्र करके f: X → Y को परिभाषित करें। तब f सतत है, और वास्तव में एक अशक्त समरूप समतुल्य है, किन्तु यह एक समरूप समतुल्य नहीं है। इस प्रकार अनुभवहीन होमोटॉपी श्रेणी एक्स और वाई जैसे स्थानों को भिन्न करती है, जबकि वह होमोटॉपी श्रेणी में आइसोमोर्फिक बन जाते हैं।

ईलेनबर्ग-मैकलेन रिक्त स्थान

इन श्रेणियों के लिए एक प्रेरणा यह है कि टोपोलॉजिकल स्थान के अनेक अपरिवर्तनीयों को अनुभवहीन होमोटॉपी श्रेणी या यहां तक ​​कि वास्तविक होमोटॉपी श्रेणी पर परिभाषित किया गया है। उदाहरण के लिए, टोपोलॉजिकल स्थान f: X → Y की अशक्त समरूप समतुल्यता के लिए, संबद्ध समरूपता f*: Hi(X,Z) → Hi(Y,Z) एकवचन समरूपता समूहों का (Y,'Z') सभी प्राकृतिक संख्याओं के लिए एक समरूपता है।[5] यह इस प्रकार है कि, प्रत्येक प्राकृतिक संख्या i के लिए, एकवचन समरूपता Hi होमोटोपी श्रेणी से एबेलियन समूहों की श्रेणी तक एक फ़नकार के रूप में देखा जा सकता है। इस प्रकार विशेष रूप से, X से Y तक के दो होमोटोपिक मानचित्र एकवचन होमोलॉजी समूहों पर समान समरूपता उत्पन्न करते हैं।

एकवचन सहसंरचना में और भी उत्तम संपत्ति है: यह होमोटॉपी श्रेणी पर एक प्रतिनिधित्व योग्य फ़नकार है। अर्थात्, प्रत्येक एबेलियन समूह ए और प्राकृतिक संख्या i के लिए, एक CW कॉम्प्लेक्स K(A,i) होता है जिसे ईलेनबर्ग-मैकलेन स्पेस कहा जाता है और H में एक कोहोमोलॉजी क्लास u होता है।i(K(A,i),A) ऐसा है कि परिणामी फलन

(आपको X पर वापस खींचकर देना) सभी टोपोलॉजिकल स्थान X के लिए विशेषण है।[6] यहां [X, Y ] को वास्तविक होमोटॉपी श्रेणी में मानचित्रों के समूह के रूप में समझा जाना चाहिए, यदि कोई चाहता है कि यह कथन सभी टोपोलॉजिकल स्थान X के लिए हो। यदि X एक सीडब्ल्यू कॉम्प्लेक्स है तब यह अनुभवहीन होमोटॉपी श्रेणी में आता है।

आलोचनावादी संस्करण

एक उपयोगी प्रकार नुकीले स्थानों की होमोटॉपी श्रेणी है। एक नुकीले स्थान का अर्थ है एक जोड़ी (X,x) जिसमें X एक टोपोलॉजिकल स्थान है और x एक बिंदु है, जिसे आधार बिंदु कहा जाता है। श्रेणी 'शीर्ष'* नुकीले स्थानों की वस्तुओं में नुकीले स्थान होते हैं, और एक रूपवाद f: X → Y एक सतत मानचित्र है जो नुकीले मानचित्रों के समरूप वर्ग (जिसका अर्थ है कि आधार बिंदु संपूर्ण समरूपी में स्थिर रहता है)। इस प्रकार अंत में, नुकीले स्थानों की वास्तविक समरूपता श्रेणी 'शीर्ष' श्रेणी से प्राप्त की जाती है* नुकीले मानचित्रों को उल्टा करके जो अशक्त समरूप समतुल्य हैं।

नुकीले स्थानों X और Y के लिए, [X,Y] संदर्भ के आधार पर, नुकीले स्थानों की समरूप श्रेणी के किसी भी संस्करण में हैं।

होमोटॉपी सिद्धांत में अनेक मूलभूत निर्माण स्वाभाविक रूप से इंगित स्थानों की श्रेणी (या संबंधित होमोटॉपी श्रेणी पर) पर परिभाषित होते हैं, न कि रिक्त स्थान की श्रेणी पर हों। इस प्रकार उदाहरण के लिए, निलंबन (टोपोलॉजी) ΣX और लूप स्पेस ΩX को एक नुकीले स्थान X के लिए परिभाषित किया गया है और एक अन्य नुकीले स्थान का निर्माण किया गया है। इसके अतिरिक्त, स्मैश उत्पाद X ∧ Y नुकीले स्थानों

इस प्रकार सस्पेंशन और लूप स्पेस फ़ैक्टर एक सहायक कारक बनाते हैं, इस अर्थ में कि एक प्राकृतिक समरूपता है

सभी स्थानों X और Y के लिए।

ठोस श्रेणियाँ

जबकि एक होमोटॉपी श्रेणी की वस्तुएं समूह (अतिरिक्त संरचना के साथ) हैं, आकारिकी उनके मध्य वास्तविक कार्य नहीं हैं, किंतु कार्यों के वर्ग (निष्क्रिय होमोटॉपी श्रेणी में) या कार्यों के "ज़िगज़ैग" (होमोटॉपी श्रेणी में) हैं। मुख्य रूप से, पीटर फ्रायड ने दिखाया कि न तब नुकीले स्थानों की समरूप होमोटॉपी श्रेणी और न ही नुकीले स्थानों की होमोटोपी श्रेणी एक ठोस श्रेणी है। अर्थात्, इन श्रेणियों से लेकर समूहों की श्रेणी तक कोई भी वफादार फ़नकार नहीं है।[7]

मॉडल श्रेणियाँ

एक अधिक सामान्य अवधारणा है: एक मॉडल श्रेणी की होमोटॉपी श्रेणी

एक मॉडल श्रेणी एक श्रेणी C है जिसमें तीन विशिष्ट प्रकार के आकार होते हैं जिन्हें कंपन , सह-फाइब्रेशन और अशक्त समकक्ष (होमोटॉपी सिद्धांत) कहा जाता है, जो अनेक स्वयंसिद्धों को संतुष्ट करता है। संबंधित होमोटॉपी श्रेणी को अशक्त समकक्षों के संबंध में C को स्थानीयकृत करके परिभाषित किया गया है।

यह निर्माण, अपने मानक मॉडल संरचना (कभी-कभी क्विलेन मॉडल संरचना कहा जाता है) के साथ टोपोलॉजिकल रिक्त स्थान की मॉडल श्रेणी पर प्रयुक्त होता है, ऊपर परिभाषित होमोटॉपी श्रेणी देता है। टोपोलॉजिकल स्थान की श्रेणी में अनेक अन्य मॉडल संरचनाओं पर विचार किया गया है, यह इस बात पर निर्भर करता है कि कोई श्रेणी को कितना सरल बनाना चाहता है। उदाहरण के लिए, टोपोलॉजिकल स्थान पर ह्यूरविक्ज़ मॉडल संरचना में, संबंधित होमोटॉपी श्रेणी ऊपर परिभाषित अनुभवहीन होमोटॉपी श्रेणी है।[8]

एक ही होमोटॉपी श्रेणी अनेक भिन्न-भिन्न मॉडल श्रेणियों से उत्पन्न हो सकती है। एक महत्वपूर्ण उदाहरण सरल समूहों पर मानक मॉडल संरचना है: संबंधित होमोटॉपी श्रेणी, टोपोलॉजिकल रिक्त स्थान की होमोटॉपी श्रेणी की श्रेणियों के समतुल्य है, यदि सरल समूह संयुक्त रूप से परिभाषित ऑब्जेक्ट हैं जिनमें किसी भी टोपोलॉजी का अभाव है। कुछ टोपोलॉजिस्ट इसके अतिरिक्त कॉम्पैक्ट रूप से उत्पन्न अंतरिक्ष अशक्त हॉसडॉर्फ रिक्त स्थान के साथ काम करना पसंद करते हैं; फिर से, मानक मॉडल संरचना के साथ, संबंधित होमोटॉपी श्रेणी सभी टोपोलॉजिकल स्थान की होमोटॉपी श्रेणी के सामान्तर है।[9]

मॉडल श्रेणी के अधिक बीजगणितीय उदाहरण के लिए, ए को ग्रोथेंडिक श्रेणी होने दें, उदाहरण के लिए एक रिंग (गणित) पर मॉड्यूल (गणित) की श्रेणी या टोपोलॉजिकल स्थान पर एबेलियन समूहों के शीफ (गणित) की श्रेणी‚ फिर ए में वस्तुओं के श्रृंखला परिसरों की श्रेणी पर एक मॉडल संरचना है, जिसमें अशक्त समकक्ष अर्ध-समरूपताएं हैं।[10] परिणामी समरूप श्रेणी को व्युत्पन्न श्रेणी D(A) कहा जाता है।

अंत में, स्थिर होमोटॉपी श्रेणी को स्पेक्ट्रम (टोपोलॉजी) की श्रेणी पर एक मॉडल संरचना से जुड़ी होमोटॉपी श्रेणी के रूप में परिभाषित किया गया है। स्पेक्ट्रा की विभिन्न श्रेणियों पर विचार किया गया है, किन्तु सभी स्वीकृत परिभाषाओं से एक ही समरूपता श्रेणी प्राप्त होती है।

टिप्पणियाँ

  1. May & Ponto 2012, p. 395
  2. Hatcher 2001, p. 3
  3. May & Ponto 2012, pp. xxi–xxii
  4. Hatcher 2001, Theorem 4.5 and Proposition 4.13
  5. Hatcher 2001, Proposition 4.21
  6. Hatcher 2001, Theorem 4.57
  7. Freyd 1970
  8. May & Ponto 2012, section 17.1
  9. Hovey 1999, Theorems 2.4.23 and 2.4.25
  10. Beke 2000, Proposition 3.13

संदर्भ