सत्य फलन
तर्क में, सत्य फलन[1] एक ऐसा फलन (गणित) है जो सत्य मानों को इनपुट के रूप में स्वीकार करता है और आउटपुट के रूप में अद्वितीय सत्य मान उत्पन्न करता है। दूसरे शब्दों में: सत्य फलन के इनपुट और आउटपुट सभी सत्य मान हैं; सत्य फलन हमेशा सत्य मान का उत्पादन करेगा; और समान सत्य मान (ओं) को इनपुट करने से हमेशा समान सत्य मान का उत्पादन होगा। विशिष्ट उदाहरण प्रस्ताविक कलन में है, जिसमें तार्किक संयोजकों द्वारा जुड़े अलग-अलग कथनों का उपयोग करके यौगिक कथन का निर्माण किया जाता है; यदि मिश्रित कथन का सत्य मान घटक कथन(नों) के सत्य मान द्वारा पूरी तरह से निर्धारित किया जाता है, तो मिश्रित कथन को सत्य फलन कहा जाता है, और उपयोग किए गए किसी भी तार्किक संयोजक को सत्य कार्यात्मक कहा जाता है।[2]
शास्त्रीय तर्क सत्य-कार्यात्मक तर्क है,[3] इसमें प्रत्येक कथन का सत्य मान होता है जो या तो सत्य या असत्य होता है, और प्रत्येक तार्किक संयोजक सत्य कार्यात्मक होता है ( संगत सत्य तालिका के साथ), इस प्रकार प्रत्येक यौगिक कथन सत्य फलन है।[4] दूसरी ओर, मॉडल तर्क गैर-सत्य-कार्यात्मक है।
अवलोकन
एक तार्किक संयोजक सत्य-कार्यात्मक होता है यदि एक यौगिक वाक्य का सत्य-मूल्य उसके उप-वाक्यों के सत्य-मूल्य का एक कार्य है। संयोजकों का एक वर्ग सत्य-कार्यात्मक होता है यदि उसका प्रत्येक सदस्य है। उदाहरण के लिए संयोजी "और" सत्य-कार्यात्मक है क्योंकि "सेब फल हैं और गाजर सब्जियां हैं" जैसे वाक्य सत्य हैं, और केवल यदि इसके प्रत्येक उप-वाक्य "सेब फल हैं" और "गाजर सब्जियां हैं" सत्य हैं , और यह अन्यथा झूठा है। एक प्राकृतिक भाषा के कुछ संयोजक, जैसे अंग्रेजी, सत्य-कार्यात्मक नहीं हैं।
"x का मानना है कि ..." स्वरूप के संयोजक उन संयोजकों के विशिष्ट उदाहरण हैं जो सत्य-कार्यात्मक नहीं हैं। यदि उदा. मैरी गलती से मानती है कि अल गोर 20 अप्रैल 2000 को अमेरिका के राष्ट्रपति थे, लेकिन वह नहीं मानती कि चांद हरे पनीर से बना है, तो वाक्य
- मैरी का मानना है कि अल गोर 20 अप्रैल 2000 को अमेरिका के राष्ट्रपति थे
जबकि सत्य है
- मैरी का मानना है कि चांद हरी चीज से बना है
गलत है। दोनों ही मामलों में, प्रत्येक घटक वाक्य (अर्थात अल गोर 20 अप्रैल, 2000 को संयुक्त राज्य अमेरिका के राष्ट्रपति थे और चंद्रमा हरे पनीर से बना है) झूठा है, लेकिन वाक्यांश मैरी के उपसर्ग द्वारा गठित प्रत्येक यौगिक वाक्य का मानना है कि सत्य-मान में भिन्न है . यही है, फॉर्म के वाक्य का सत्य-मान मैरी का मानना है कि ... केवल इसके घटक वाक्य के सत्य-मान से निर्धारित नहीं होता है, और इसलिए (ात्मक) तार्किक संयोजक (या केवल संकारक क्योंकि यह एकात्मक है) गैर-सत्य-कार्यात्मक है।
सूत्रों के निर्माण में उपयोग किए जाने वाले क्लासिकल तार्किक संयोजक (जैसे & (तार्किक), और → (मटेरियल कंडीशनल)) का वर्ग सत्य-कार्यात्मक है। तर्क के रूप में विभिन्न सत्य-मानों के लिए उनके मान सामान्यतः सत्य तालिकाओं द्वारा दिए जाते हैं। सत्य-कार्यात्मक प्रोपोज़िशनल कैलकुलस औपचारिक प्रणाली है जिसके सूत्रों की व्याख्या सत्य या असत्य के रूप में की जा सकती है।
द्विआधारी सत्य फलनों की तालिका
दो-मूल्यवान तर्क में, दो इनपुट P और Q के सोलह संभावित सत्य फलन हैं, जिन्हें बूलियन फलन भी कहा जाता है। इनमें से कोई भी कार्य शास्त्रीय तर्क में निश्चित तार्किक संयोजक की सत्य तालिका से मेल खाता है, जिसमें कई अध: पतन (गणित) मामले शामिल हैं। जैसे फलन जो इसके या दोनों तर्कों पर निर्भर नहीं करता है। संक्षिप्तता के लिए निम्नलिखित सत्य तालिकाओं में सत्य और असत्य को क्रमशः 1 और 0 के रूप में दर्शाया गया है।
|
| ||||||||||||||||||||||||||||||||||||||||||
|
| ||||||||||||||||||||||||||||||||||||||||||
|
| ||||||||||||||||||||||||||||||||||||||||||
|
| ||||||||||||||||||||||||||||||||||||||||||
|
| ||||||||||||||||||||||||||||||||||||||||||
|
| ||||||||||||||||||||||||||||||||||||||||||
|
| ||||||||||||||||||||||||||||||||||||||||||
|
| ||||||||||||||||||||||||||||||||||||||||||
कार्यात्मक पूर्णता
क्योंकि फलन को कार्यों की संरचना के रूप में व्यक्त किया जा सकता है, सत्य-कार्यात्मक तार्किक कलन को उपरोक्त सभी कार्यों के लिए कार्यात्मक पूर्णता होने के लिए समर्पित प्रतीकों की आवश्यकता नहीं है। यह कुछ यौगिक कथनों की तार्किक तुल्यता के रूप में प्रस्तावपरक कलन में व्यक्त किया गया है। उदाहरण के लिए, शास्त्रीय तर्क ¬P ∨ Q , P → Q के बराबर है। सशर्त ऑपरेटर → शास्त्रीय-आधारित तार्किक प्रणाली के लिए आवश्यक नहीं है यदि ¬ (नहीं) और ∨ (या) पहले से ही उपयोग में हैं।
ऑपरेटरों का न्यूनतम तत्व सेट जो प्रत्येक कथन को व्यक्त कर सकता है जो प्रस्ताविक कलन में अभिव्यक्त होता है, न्यूनतम कार्यात्मक रूप से पूर्ण सेट कहलाता है। अकेले नैण्ड {↑} और नोर अकेले {↓} द्वारा ऑपरेटरों का न्यूनतम पूर्ण सेट प्राप्त किया जाता है।
निम्नलिखित ऑपरेटरों के न्यूनतम कार्यात्मक रूप से पूर्ण सेट हैं जिनकी संख्या 2 से अधिक नहीं है:[5]
- एक तत्व
- {↑}, {↓}।
दो तत्व:
, , , , , , , , , , , , , , , , , .
तीन तत्व:
, , , , , .
बीजगणितीय गुण
कुछ सत्य फलनों में ऐसे गुण होते हैं जिन्हें संगत संयोजक वाले प्रमेयों में अभिव्यक्त किया जा सकता है। उन गुणों में से कुछ जो द्विआधारी सत्य फलन (या संबंधित तार्किक संयोजक) हो सकते हैं:
- साहचर्य: पंक्ति में ही साहचर्य संयोजकों के दो या दो से अधिक अभिव्यक्ति के भीतर, संचालन का क्रम तब तक मायने नहीं रखता जब तक कि संचालन का क्रम नहीं बदला जाता है।
- क्रमविनिमेयता : अभिव्यक्ति के सत्य-मान को प्रभावित किए बिना संयोजी के संचालन की अदला-बदली की जा सकती है।
- वितरण: संयोजी द्वारा निरूपित · वितरित अन्य संयोजक पर + द्वारा निरूपित किया जाता है, यदि a · (b + c) = (a · b) + (a · c) सभी ऑपरेंड a, b, c के लिए।
- इडेमपोटेंस: जब भी ऑपरेशन के ऑपरेंड समान होते हैं, तो संयोजी परिणाम के रूप में ऑपरेंड देता है। दूसरे शब्दों में, ऑपरेशन सत्य-संरक्षण और असत्य-संरक्षण (नीचे देखें) दोनों है।
- अवशोषण कानून: संयोजकों की जोड़ी अवशोषण कानून को संतुष्ट करता है यदि सभी ऑपरेंड ए, बी के लिए।
सत्य फलनों का सेट कार्यात्मक पूर्णता है यदि और केवल यदि निम्नलिखित पांच गुणों में से प्रत्येक के लिए इसमें कम से कम सदस्य की कमी है:
- 'मोनोटोनिक': यदि f(a1, ..., एn) ≤ च (बी1, ..., बीn) सभी के लिए ए1, ..., एn, बी1, ..., बीn ∈ {0,1} जैसे कि ए1 ≤ बी1, ए2 ≤ बी2, ..., एn ≤ बीn. जैसे, .
- एफ़िन परिवर्तन: प्रत्येक चर के लिए, अन्य सभी चर के सभी निश्चित मानों के लिए, इसके मान को बदलने से या तो हमेशा या कभी भी संचालन का सत्य-मान नहीं बदलता है। जैसे, , .
- स्वयं द्वैत: इसकी सत्य तालिका पर ऊपर से नीचे तक संचालन के लिए सत्य-मान असाइनमेंट को पढ़ने के लिए इसे नीचे से ऊपर तक पढ़ने के पूरक के समान है; दूसरे शब्दों में, f(¬a1, ..., ¬an) = ¬f(a1, ..., an). जैसे, .
- सत्य-संरक्षण: व्याख्या जिसके तहत सभी चरों को 'सत्य' का सत्य मान दिया जाता है, इन परिचालनों के परिणामस्वरूप 'सत्य' का सत्य मान उत्पन्न करता है। जैसे, . (देखें वैधता (तर्क))
- झूठ-संरक्षण: व्याख्या जिसके तहत सभी चरों को 'गलत' का सत्य मान दिया जाता है, इन परिचालनों के परिणामस्वरूप 'गलत' का सत्य मान पैदा करता है। जैसे, . (देखें वैधता (तर्क))
आरती
ठोस कार्य को ऑपरेटर के रूप में भी संदर्भित किया जा सकता है। दो-मूल्यवान तार्किक में 2 नलरी ऑपरेटर (स्थिरांक), 4 एकात्मक ऑपरेशन , 16 बाइनरी ऑपरेशन, 256 टर्नरी ऑपरेशन और एन-आरी ऑपरेटर होते हैं। तीन-मूल्यवान तार्किक में 3 नलरी ऑपरेटर (स्थिरांक), 27 यूनरी ऑपरेशन, 19683 बाइनरी ऑपरेशन, 7625597484987 टर्नरी ऑपरेशन और एन-आरी ऑपरेटर होते हैं। के-मानों तार्किक में, के न्यूलरी ऑपरेटर्स होते हैं, यूनरी ऑपरेटर्स, बाइनरी ऑपरेटर्स, त्रिगुट ऑपरेटरों, और एन-आरी ऑपरेटर होते हैं। के-मूल्यवान तर्क में एन-आरी ऑपरेटर कार्य हैं। इसलिए, ऐसे ऑपरेटरों की संख्या है, जिससे उपरोक्त संख्याएँ प्राप्त हुईं।
हालांकि, विशेष एरिटी के कुछ ऑपरेटर वास्तव में पतित रूप हैं जो कुछ इनपुट पर लोअर-एरिटी ऑपरेशन करते हैं और बाकी इनपुट को अनदेखा करते हैं। ऊपर उद्धृत 256 टर्नरी बूलियन ऑपरेटरों में से, उनमें से बाइनरी या लोअर-एरिटी ऑपरेटरों के ऐसे पतित रूप हैं, जो समावेशन-बहिष्करण सिद्धांत का उपयोग करते हैं। टर्नरी ऑपरेटर ऐसा ऑपरेटर है जो वास्तव में इनपुट पर लागू यूनरी ऑपरेटर है, और अन्य दो इनपुट को अनदेखा कर रहा है।
निषेध| नहीं ल संक्रिया है, इसमें शब्द (¬P) लगता है। बाकी बाइनरी ऑपरेशन हैं, मिश्रित कथन (पी ∧ क्यू, पी ∨ क्यू, पी → क्यू, पी ↔ क्यू) बनाने के लिए दो शब्द लेते हैं।
तार्किक ऑपरेटरों का सेट Ω किसी सेट का असंयुक्त उपसमुच्चय में निम्नानुसार विभाजन हो सकता है:
इस विभाजन में, एरिटी के ऑपरेटर प्रतीकों का सेट है j.
अधिक परिचित प्रस्तावात्मक गणना में, सामान्यतः निम्नानुसार विभाजित किया जाता है:
- अशक्त संचालक:
- यूनरी ऑपरेटर्स:
- बाइनरी ऑपरेटर्स:
रचना का सिद्धांत
सत्य तालिकाओं का उपयोग करने के अतिरिक्त, तार्किक संयोजी प्रतीकों की व्याख्या व्याख्या फलन और सत्य-कार्यों के कार्यात्मक रूप से पूर्ण सेट (गैमट 1991) के माध्यम से की जा सकती है, जैसा कि अर्थ की संरचना के सिद्धांत द्वारा विस्तृत किया गया है। चलो मैं व्याख्या कार्य करता हूं, चलो Φ, Ψ कोई भी दो वाक्य हो और सत्य को कार्य करने दें fnand के रूप में परिभाषित किया जाना चाहिए:
- fnand(t, t) = f; fnand(t, f) = fnand(f, t) = fnand(f, f) = t
फिर, सुविधा के लिए, fnot, for fand और इसी तरह fnand के माध्यम से परिभाषित किया गया है:
- fnot(x) = fnand(x, x)
- for(x, y) = fnand(fnot(x), fnot(y))
- fand(x, y) = fnot(fnand(x, y))
या, वैकल्पिक रूप से fnot, for fand और इसी तरह सीधे परिभाषित हैं:
- fnot(t) = f; fnot(f) = t;
- for(t, t) = for(t, f) = for(f, t) = t; for(f, f) = f
- fand(t, t) = t; fand(t, f) = fand(f, t) = fand(f, f) = f
तब
- I(~) = I() = fnot
- I(&) = I() = fand
- I(v) = I() = for
- I(~Φ) = I(Φ) = I()(I(Φ)) = fnot(I(Φ))
- I(ΦΨ) = I()(I(Φ), I(Ψ)) = fand(I(Φ), I(Ψ))
आदि।
इस प्रकार यदि S वाक्य है जो तार्किक प्रतीकों v1..vn से युक्त प्रतीकों की स्ट्रिंग है जो तार्किक संयोजकों और गैर-तार्किक प्रतीकों का प्रतिनिधित्व करता है, और गैर-तार्किक प्रतीकों c1...cn, तो यदि और केवल यदि I(v1)...I(vn) को (या कार्यात्मक पूर्ण सत्य-कार्यों का कोई अन्य सेट) के माध्यम से v1 से vn की व्याख्या प्रदान की गई है, तो का सत्य-मूल्य पूरी तरह से c1...cn के सत्य-मानों द्वारा निर्धारित होता है, अर्थात् I(c1)...I(cn). दूसरे शब्दों में, अपेक्षित और आवश्यक के रूप में, S अपने सभी गैर-तार्किक प्रतीकों की व्याख्या के तहत ही सही या गलत है।
कंप्यूटर विज्ञान
तार्किक ऑपरेटर्स को डिजिटल परिपथ में तर्क द्वार x के रूप में लागू किया जाता है। व्यावहारिक रूप से सभी डिजिटल परिपथ (प्रमुख अपवाद ड्रम है) तार्किक नंद , तार्किक न ही, नकार और तार्किक गेट से निर्मित होते हैं। सामान्य 2 इनपुट के अतिरिक्त 3 या अधिक इनपुट वाले नैण्ड और नोर गेट काफी सामान्य हैं, हालांकि वे तार्किक रूप से 2-इनपुट गेट के कैस्केड के बराबर हैं। अन्य सभी ऑपरेटरों को उपरोक्त तार्किक गेट्स के 2 या अधिक के तार्किक समकक्ष संयोजन में तोड़कर कार्यान्वित किया जाता है।
नैण्ड अकेले, नोर अकेले, और नॉट और एंड की तार्किक तुल्यता ट्यूरिंग तुल्यता (गणना का सिद्धांत) के समान है।
तथ्य यह है कि सभी सत्य फलनों को अकेले नोर के साथ व्यक्त किया जा सकता है, अपोलो मार्गदर्शन कंप्यूटर द्वारा प्रदर्शित किया गया है।
यह भी देखें
- बर्ट्रेंड रसेल और अल्फ्रेड नॉर्थ व्हाइटहेड,
Principia Mathematica, दूसरा संस्करण - लुडविग विट्गेन्स्टाइन,
ट्रैक्टेटस लोगिको-फिलोसोफिकस, प्रस्ताव 5.101 - बिटवाइज़ ऑपरेशन
- बाइनरी फ़ंक्शन
- बूलियन डोमेन
- बूलियन फ़ंक्शन
- बूलियन तर्क
- बूलियन-मूल्यवान फ़ंक्शन
- बूलियन बीजगणित विषयों की सूची
- तार्किक संयोजक
- तार्किक स्थिरांक
- मोडल ऑपरेटर
- प्रस्तावक कलन
- प्रस्ताव समारोह
- सत्य-कार्यात्मक प्रस्तावपरक तर्क
- ट्रुथ टेबल
- सत्य मान
टिप्पणियाँ
- ↑ Roy T. Cook (2009). A Dictionary of Philosophical Logic, p. 294: Truth Function. Edinburgh University Press.
- ↑ Roy T. Cook (2009). A Dictionary of Philosophical Logic, p. 295: Truth Functional. Edinburgh University Press.
- ↑ Internet Encyclopedia of Philosophy: Propositional Logic, by Kevin C. Klement
- ↑ Roy T. Cook (2009). A Dictionary of Philosophical Logic, p. 47: Classical Logic. Edinburgh University Press.
- ↑ Wernick, William (1942) "Complete Sets of Logical Functions," Transactions of the American Mathematical Society 51: 117–32. In his list on the last page of the article, Wernick does not distinguish between ← and →, or between and .
संदर्भ
- This article incorporates material from TruthFunction on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.
अग्रिम पठन
- Józef Maria Bocheński (1959), A Précis of Mathematical Logic, translated from the French and German versions by Otto Bird, Dordrecht, South Holland: D. Reidel.
- Alonzo Church (1944), Introduction to Mathematical Logic, Princeton, NJ: Princeton University Press. See the Introduction for a history of the truth function concept.