संबंध बीजगणित

From Vigyanwiki

गणित और सार बीजगणित में, एक संबंध बीजगणित अवक्षेपण (गणित) के साथ अवशिष्ट द्विआधारी बीजगणित घटाव होता है जिसे कॉनवर्स, एक यूनरी ऑपरेशन कहा जाता है। किसी संबंध बीजगणित के प्रेरक उदाहरण को X समुच्चय पर सभी द्विआधारी संबंधों में 2X² बीजगणित कहते हैं, अर्थात कार्तीय वर्ग X2 के उपसमुच्चय, जिसमें R•S के साथ संबंध R और S की सामान्य संरचना के रूप में व्याख्यायित किया जाता है तथा R को अन्योन्य संबंध कहा जाता है।

संबंध बीजगणित ऑगस्टस डी मॉर्गन और चार्ल्स सैंडर्स पियर्स के 19 वीं शताब्दी के काम में उभरा, जिसका समापन अर्नस्ट श्रोडर(गणितज्ञ) के बीजगणितीय तर्क में समाप्त हुआ था। 1940 के दशक में प्रारंभ होने वाले संबंध बीजगणित के समतुल्य रूप को अल्फ्रेड टार्स्की और उनके छात्रों द्वारा विकसित किया गया था। तर्स्की और गिवंत (1987) ने संबंध बीजगणित को स्वयंसिद्ध समुच्चय सिद्धांत के चर-मुक्त उपचार के लिए लागू किया, इस निहितार्थ के साथ कि समुच्चय सिद्धांत पर स्थापित गणित स्वयं चर के बिना आयोजित किया जा सकता है।

परिभाषा

एक संबंध बीजगणित (L, ∧, ∨, , 0, 1, •, I, ˘) बीजगणितीय संरचना है जो संयोजन X∧y, वियोजन X∨y, और निषेध X के द्विआधारी संचालन से लैस है, द्विआधारी स्थिरांक 0 और 1, रचना X • y और इसका विपरीत X˘ के संबंधपरक संचालन, और संबंधपरक स्थिरांक I, जैसे कि ये संचालन और स्थिरांक कुछ समीकरणों को संतुष्ट करते हैं, जो संबंधों के एक पथरी के स्वयंसिद्धता का निर्माण करते हैं। मोटे तौर पर, संबंध बीजगणित समुच्चय पर द्विआधारी संबंधों की प्रणाली है जिसमें खाली संबंध (0), सार्वभौमिक संबंध (1), और पहचान संबंध सम्मलित हैं। (I) समूह (गणित) के रूप में इन पांच परिचालनों के अनुसार संबंध और बंद समुच्चय के क्रमपरिवर्तन की प्रणाली है जिसमें पहचान क्रमपरिवर्तन होता है और रचना और व्युत्क्रम के अनुसार बंद होता है। चूंकि, संबंध बीजगणित का प्रथम-क्रम तर्क सिद्धांत (तर्क) द्विआधारी संबंधों की ऐसी प्रणालियों के लिए पूर्णता (तर्क) नहीं है।

जॉनसन और सिनाकिस (1993) के अनुसार अतिरिक्त संक्रियाओं x◁y = x•y˘, और, दोहरे रूप से, x▷y = x˘•y को परिभाषित करना सुविधाजनक है। जॉनसन और सिनाकिस ने दिखाया कि Ix = xI, और यह कि दोनों x˘ के बराबर थे। इसलिए एक संबंध बीजगणित को समान रूप से एक बीजगणितीय संरचना (L, ∧, ∨, , 0, 1, •, I, ◁, ▷) के रूप में परिभाषित किया जा सकता है। सामान्य हस्ताक्षर पर इस हस्ताक्षर (तर्क) का लाभ यह है कि जिसके लिए Ix एक अंतर्वलन है, अर्थात, I◁(Ix) = x का एक संबंध बीजगणित को पूर्ण रूप से एक अवशिष्ट द्विआधारी बीजगणित के रूप में परिभाषित किया जा सकता है। बाद की स्थिति को साधारण अंकगणितीय पारस्परिक के लिए समीकरण 1/(1/x) = x के संबंधपरक प्रतिरूप के रूप में माना जा सकता है, और कुछ लेखक व्युत्क्रम को बातचीत के पर्याय के रूप में उपयोग करते हैं।

चूंकि अवशिष्ट द्विआधारी बीजगणित परिमित रूप से अनेक सर्वसमिकाओं के साथ अभिगृहीत होते हैं, इसलिए संबंध बीजगणित होते हैं। आरऐ उत्तरार्द्ध विविधता (सार्वभौमिक बीजगणित) के विभिन्न प्रकारों का समुच्चय बनाता है। उपर्युक्त परिभाषा को समीकरणों के रूप में विस्तारित करने से निम्नलिखित परिमित स्वयंसिद्धता प्राप्त होती है।

अभिगृहीत

नीचे दिए गए अभिगृहीत B1-B10 जीवांत (2006: 283) से अनुकूलित हैं, और पहली बार 1948 में टार्स्की द्वारा निर्धारित किए गए थे।[1]

L बाइनरी अलगाव के अनुसार एकद्विआधारी बीजगणित (संरचना) है, ∨, और एकात्मक पूरकता ()-:

B1: AB = BA
B2: A ∨ (BC) = (AB) ∨ C
B3: (AB) ∨ (AB) = A

द्विआधारी बीजगणित का यह स्वसिद्धीकरण एडवर्ड वर्मिली हंटिंगटन (1933) के कारण है। ध्यान दें कि निहित द्विआधारी बीजगणित का मिलन • ऑपरेटर नहीं है, (यदि यह ∨ पर वितरित करता है जैसे एक मिलन करता है) न ही द्विआधारी बीजगणित का 1 I स्थिरांक है।

L द्विआधारी संरचना (•) और अशक्त पहचान I के अनुसार एक मोनोइड है:

B4: A•(BC) = (AB)•C
B5: AI = A

यूनरी कन्वर्स ()˘ रचना के संबंध में एक अंतर्वलन है:

B6: A˘˘ = A
B7: (AB)˘ = B˘•A˘

अभिगृहीत B6 रूपांतरण को एक समावेशन(गणित) के रूप में परिभाषित करता है, जबकि B7 रचना के सापेक्ष रूपांतरण के प्रतिपक्षी गुण को व्यक्त करता है।[2]

संयोजन पर बातचीत और संरचना वितरण:

B8: (AB)˘ = A˘∨B˘
B9: (AB)•C = (AC)∨(BC)

B10 ऑगस्टस डी मॉर्गन द्वारा खोजे गए तथ्य का टार्स्की का समीकरण रूप है ABCA˘•CBCB˘ ≤ A

B10: (A˘•(AB))∨B = B

ये अभिगृहीत ज़ैडएफसी प्रमेय हैं; विशुद्ध रूप से द्विआधारी B1-B3 के लिए, यह तथ्य तुच्छ है। निम्नलिखित में से प्रत्येक स्वयंसिद्ध के बाद सपेस (1960) के अध्याय 3 में संबंधित प्रमेय की संख्या दिखाई गई है, ज़ैडएफसी की एक प्रदर्शनी: B4 27, B5 45, B6 14, B7 26, B8 16, B9 23 है।

आरए में द्विआधारी संबंधों के गुण व्यक्त करना

निम्न तालिका दर्शाती है कि द्विआधारी संबंधों के कितने सामान्य गुणों को संक्षिप्त आरए समानता या असमानता के रूप में व्यक्त किया जा सकता है। नीचे, A ≤ B फ़ॉर्म की असमानता द्विआधारी समीकरण के लिए शॉर्टहैंड है AB = B.

इस प्रकृति के परिणामों का सबसे पूर्ण समुच्चय कार्नाप (1958) का अध्याय C है, जहां संकेतन इस प्रविष्टि से अधिक दूर है। सपेस (1960) के अध्याय 3.2 में कम परिणाम सम्मलित हैं, जो ZFC प्रमेय के रूप में प्रस्तुत किए गए हैं और एक नोटेशन का उपयोग कर रहे हैं जो इस प्रविष्टि के समान है। इस प्रविष्टि के आरए का उपयोग करके या एक समान तरीके से न तो कार्नैप और न ही सपेस ने अपने परिणाम तैयार किए थे।

R is If and only if:
प्रकायाणत्मक R˘•RI
वाचिक-योग IRR˘ (R˘ कर्तृपदीय है)
फलन प्रकायाणत्मक और वाचिक-योग
एकैकी RR˘ ≤ I (R˘ प्रकायाणत्मक है)
कर्तृपदीय IR˘•R (R˘ वाचिक-योग है)
द्विभाजित R˘•R = RR˘ = I (एकैकी कर्तृपदीय फलन)
संक्रामी RRR
स्वतुल्य IR
सहस्वतुल्य RI
अपरावर्ती RI = 0
सममिति R˘ = R
प्रतिसममित RR˘ ≤ I
असममिति RR˘ = 0
दृढ़ संबद्ध RR˘ = 1
संबद्ध IRR˘ = 1
इडैम्पोटेन्ट RR = R
पूर्व आदेश R सकर्मक और स्वतुल्य है।
समतुल्यता R सममित प्रीऑर्डर है।
आंशिक क्रम R एंटीसिमेट्रिक प्रीऑर्डर है।
कुल क्रम R दृढ़ता से जुड़ा हुआ है और आंशिक क्रम है।
पूर्णतः आंशिक क्रम R सकर्मक और अकाट्य है।
पूर्णतः कुल क्रम R जुड़ा हुआ है और सख्त आंशिक क्रम है।
सघन RI ≤ (RI)•(RI).


अभिव्यंजक घात

गिवंत (2006) के अधिक संक्षेप में आरए के मेटामैथमैटिक्स पर तार्स्की और गिवंत (1987) में विस्तार से चर्चा की गई है।

आरए में पूरी प्रकार से समान प्रतिस्थापन और समान के लिए समान के प्रतिस्थापन से अधिक कुछ नहीं का उपयोग करके हेरफेर किए गए समीकरण सम्मलित हैं। दोनों नियम स्कूली गणित और अमूर्त बीजगणित से पूरी प्रकार परिचित हैं, इसलिए सामान्यतः गणितीय तर्क के स्थितिे के विपरीत आरए प्रमाणों को सभी गणितज्ञों से परिचित तरीके से किया जाता है।

आरए किसी भी (और तार्किक तुल्यता तक, बिल्कुल) प्रथम-क्रम तर्क (एफओएल) सूत्रों को व्यक्त कर सकता है जिसमें तीन से अधिक चर नहीं होते हैं। (एक दिए गए चर को कई बार परिमाणित किया जा सकता है और इसलिए परिमाणकों को "पुन: उपयोग" चर द्वारा मनमाने ढंग से गहराई से नेस्ट किया जा सकता है।)[citation needed] हैरानी की बात है कि एफओएल का यह टुकड़ा पियानो अंकगणित और लगभग सभी स्वयंसिद्ध समुच्चय सिद्धांतों को कभी भी प्रस्तावित करने के लिए पर्याप्त है, इसलिए आरए वास्तव में लगभग सभी गणित को बीजगणित करने का विधि है, जबकि एफओएल और इसके तार्किक संयोजक, परिमाणक (तर्क) एस, घूमने वाला दरवाज़ा (प्रतीक), और मूड समुच्चय करना के साथ वितरण करता है, क्योंकि आरए पीनो अंकगणित और समुच्चय सिद्धांत को व्यक्त कर सकता है, गोडेल की अपूर्णता प्रमेय इस पर लागू होती है; आरए गोडेल की अपूर्णता प्रमेय, अपूर्ण और अनिर्णीत समस्या है।[citation needed] (एन.बी. आरए का द्विआधारी बीजगणित अंश पूर्ण और निर्णायक है।)

प्रतिनिधित्व करने योग्य संबंध बीजगणित, वर्ग आरआरए का निर्माण करते हैं, वे संबंध बीजगणित हैं जो कुछ समुच्चय पर द्विआधारी संबंधों से युक्त कुछ संबंध बीजगणित के समरूप होते हैं, और आरए संचालन की इच्छित व्याख्या के अनुसार बंद हो जाते हैं। यह आसानी से दिखाया जाता है, उदाहरण के लिए छद्मप्राथमिक वर्गों की विधि का उपयोग करते हुए, कि आरआरए अर्धविविधता है, जो कि सार्वभौमिक हॉर्न सिद्धांत द्वारा स्वयंसिद्ध है। 1950 में, रोजर लिंडन ने आरआरए में धारण करने वाले समीकरणों के अस्तित्व को सिद्ध किया जो आरए में नहीं था, इसलिए आरआरए द्वारा सृजित विविधता आरए किस्म की उचित उप-किस्म है। 1955 में, अल्फ्रेड टार्स्की ने दिखाया कि आरआरए अपने आप में किस्म है। 1964 में, डोनाल्ड मोंक ने दिखाया कि आरआरए के पास आरए के विपरीत कोई परिमित स्वयंसिद्ध नहीं है, जो कि परिभाषा के अनुसार अंतिम रूप से स्वयंसिद्ध है।

क्यू-संबंध बीजगणित

आरए, Q-संबंध बीजगणित (क्यूआरए) है, यदि B1-B10 के अतिरिक्त, कुछ A और B उपलब्ध हैं, जैसे कि (टार्स्की और गिवंत 1987: §8.4):

Q0: A˘•AI
Q1: B˘•BI
Q2: A˘•B = 1

अनिवार्य रूप से इन स्वयंसिद्धों का अर्थ है कि ब्रह्मांड में एक (गैर-प्रत्यक्ष) युग्म संबंध है जिसका प्रक्षेपण ए और बी हैं। यह एक प्रमेय है कि (मैडक्स द्वारा प्रमाण, टार्स्की और गिवेंट 1987 देखें: 8.4 (iii)) प्रत्येक क्यूआरए एक आरआरए है।

प्रत्येक क्यूआरए प्रतिनिधित्व योग्य (तर्स्की और गिवंत 1987) है। यह कि प्रत्येक संबंध बीजगणित प्रतिनिधित्व योग्य नहीं है, एक मौलिक विधि है आरए, क्यूआरए और द्विआधारी बीजगणित से भिन्न है, जो द्विआधारी बीजगणित के लिए स्टोन के प्रतिनिधित्व प्रमेय द्वारा, निरंतर कुछ समुच्चय के उपसमुच्चय के समुच्चय के रूप में प्रतिनिधित्व योग्य होते हैं, संघ, चौराहे और पूरक के अनुसार बंद होते हैं।

उदाहरण

  1. किसी भी द्विआधारी बीजगणित को संयोजन (मोनॉयड गुणा •) के रूप में संयोजन की व्याख्या करके आरए में बदला जा सकता है, अर्थात x•y को x∧y के रूप में परिभाषित किया गया है, इस व्याख्या के लिए आवश्यक है कि विपरीत व्याख्या पहचान (ў = y), और दोनों अवशिष्ट y\x और x/y सशर्त y→x (अर्थात, ¬y∨x) की व्याख्या की जा सकती है।
  2. एक संबंध बीजगणित का प्रेरक उदाहरण किसी भी उपसमुच्चय के रूप में समुच्चय 'एक्स' पर द्विआधारी संबंध 'आर' की परिभाषा पर निर्भर करता है RX², जहाँ X² X का कार्टेशियन वर्ग है। घात समुच्चय 2 जिसमें X पर सभी द्विआधारी संबंध सम्मलित हैं, द्विआधारी बीजगणित है। जबकि 2X² लेकर संबंध बीजगणित बनाया जा सकता है RS = RS ऊपर उदाहरण (1) के अनुसार, • की मानक व्याख्या इसके अतिरिक्त है x(RS)z = ∃y:xRy.ySz. अर्थात्, क्रमित युग्म (x, z) संबंध R•S से संबंधित है, जब वहाँ उपलब्ध है yX ऐसा है कि (x,y) ∈ R और (y,z) ∈ S. यह व्याख्या विशिष्ट रूप से R\S को सभी जोड़े (y, z) से मिलकर निर्धारित करती है जैसे कि सभी के लिए xX, यदि xRy तो xSz वास्तव में, S/R में सभी जोड़े (x,y) होते हैं जैसे कि सभी z ∈ X के लिए, यदि yRz तो xSz अनुवाद ў = ¬(y\¬I) फिर R के विलोम R˘ को सभी जोड़े (y,x) से मिलकर स्थापित करता है जैसे कि (x,y) ∈ R को स्थापित किया जाता है।
  3. पिछले उदाहरण का एक महत्वपूर्ण सामान्यीकरण घात समुच्चय 2E है जहां E ⊆ X² समुच्चय X पर कोई तुल्यता संबंध है। यह एक सामान्यीकरण है क्योंकि X² अपने आप में एक तुल्यता संबंध है, अर्थात् सभी जोड़ियों से युक्त पूर्ण संबंध, जबकि 2E, 2X² का एक सबलजेब्रा नहीं है, जब E ≠ X² (चूंकि उस स्थितिे में इसमें संबंध X² नहीं है, शीर्ष तत्व 1 X² के अतिरिक्त E है), फिर भी इसे समान परिभाषाओं का उपयोग करके संबंध बीजगणित में बदल दिया जाता है। इसका महत्व एक प्रतिनिधित्व योग्य संबंध बीजगणित की परिभाषा में रहता है क्योंकि किसी भी समुच्चय पर कुछ समतुल्य संबंध ई के लिए संबंध बीजगणित 2E के एक सबलजेब्रा के लिए कोई संबंध बीजगणित समसामयिक है। पिछला खंड प्रासंगिक मेटामैथमेटिक्स के बारे में अधिक बताता है।
  4. माना G एक समूह है। फिर बिजली समुच्चय स्पष्ट द्विआधारी बीजगणित संचालन के साथ संबंध बीजगणित है, समूह उपसमुच्चय के उत्पाद द्वारा दी गई संरचना, व्युत्क्रम उपसमुच्चय द्वारा विलोम (), और सिंगलटन सबसमुच्चय द्वारा पहचान , संबंध बीजगणित समरूपता एम्बेडिंग है में जो प्रत्येक सबसमुच्चय भेजता है संबंध के लिए , इस समरूपता की छवि G पर सभी सही-अपरिवर्तनीय संबंधों का समुच्चय है।
  5. यदि समूह योग या गुणनफल रचना की व्याख्या करता है, समूह प्रतिलोम विलोम की व्याख्या करता है, समूह पहचान I की व्याख्या करता है, और यदि R एक-से-एक पत्राचार है, जिससे की R˘•R = R•R˘ = I,[3] तो L एक समूह होने के साथ-साथ एक मोनोइड भी है। B4-B7 समूह सिद्धांत के प्रसिद्ध प्रमेय बन जाते हैं, जिससे आरए समूह सिद्धांत के साथ-साथ द्विआधारी बीजगणित का एक उचित विस्तार बन जाता है।

ऐतिहासिक टिप्पणी

डी मॉर्गन ने 1860 में आरए की स्थापना की, लेकिन सी. एस. पियर्स ने इसे और आगे बढ़ाया और इसकी दार्शनिक शक्ति से मोहित हो गए थे। डी मॉर्गन और पियर्स के काम को मुख्य रूप से विस्तारित और निश्चित रूप में जाना जाता है, जिसे अर्नस्ट श्रोडर ने उनके वोरलेसुंगेन के वॉल्यूम 3 (1890-1905) में दिया था। प्रिंसिपिया मैथेमेटिका ने श्रोडर के आरए पर दृढ़ता से आकर्षित किया, लेकिन उसे सिर्फ संकेतन के आविष्कारक के रूप में स्वीकार किया था। 1912 में, एल्विन कोर्सेल्ट ने सिद्ध किया कि एक विशेष सूत्र जिसमें क्वांटिफायर को चार गहरे में नेस्टेड किया गया था, उसका कोई आरए समतुल्य नहीं था।[4] इस तथ्य के कारण आरए में रोचकी कम हो गई जब तक कि टार्स्की (1941) ने इसके बारे में लिखना प्रारंभ नहीं किया था। उनके छात्रों ने आज तक आरए को विकसित करना जारी रखा है। टार्स्की 1970 के दशक में स्टीवन गिवेंट की मदद से आरए में लौट आए; इस सहयोग के परिणामस्वरूप टार्स्की और गिवंत (1987) द्वारा मोनोग्राफ तैयार किया गया, जो इस विषय के लिए निश्चित संदर्भ था। आरए के इतिहास पर अधिक जानकारी के लिए, मैडक्स (1991, 2006) देख सकते है।

सॉफ्टवेयर

यह भी देखें


फुटनोट्स

  1. Alfred Tarski (1948) "Abstract: Representation Problems for Relation Algebras," Bulletin of the AMS 54: 80.
  2. Chris Brink; Wolfram Kahl; Gunther Schmidt (1997). Relational Methods in Computer Science. Springer. pp. 4 and 8. ISBN 978-3-211-82971-4.
  3. Tarski, A. (1941), p. 87.
  4. Korselt did not publish his finding. It was first published in Leopold Loewenheim (1915) "Über Möglichkeiten im Relativkalkül," Mathematische Annalen 76: 447–470. Translated as "On possibilities in the calculus of relatives" in Jean van Heijenoort, 1967. A Source Book in Mathematical Logic, 1879–1931. Harvard Univ. Press: 228–251.


संदर्भ


बाहरी संबंध