ब्लॉक डिजाइन

From Vigyanwiki

साहचर्य गणित में, ब्लॉक संरचना घटना संरचना है जिसमें उपसमुच्चय के परिवार के साथ मिलकर समुच्चय होता है जिसे 'ब्लॉक' के रूप में जाना जाता है, इस तरह चुना जाता है कि तत्वों की आवृत्ति कुछ शर्तों को पूरा करती है जिससे ब्लॉक का संग्रह समरूपता (संतुलन) प्रदर्शित करता है। ब्लॉक संरचनाों में प्रयोगात्मक संरचना, परिमित ज्यामिति, भौतिक रसायन शास्त्र, सॉफ़्टवेयर परीक्षण, क्रिप्टोग्राफी और बीजगणितीय ज्यामिति सहित कई क्षेत्रों में अनुप्रयोग हैं।

आगे विशिष्टताओं के बिना 'ब्लॉक संरचना' शब्द सामान्यतः संतुलित अपूर्ण ब्लॉक संरचना (बीआईबीडी) को संदर्भित करता है, विशेष रूप से (और समानार्थक रूप से) 2-संरचना, जो संरचना में इसके अनुप्रयोग के कारण ऐतिहासिक रूप से सबसे गहन अध्ययन प्रकार रहा है।[1][2] इसके प्रयोगों का सामान्यीकरण को t-संरचना के रूप में जाना जाता है।

अवलोकन

संरचना को संतुलित (t तक) कहा जाता है यदि मूल समुच्चय के सभी t-उपसमुच्चय समान रूप से कई (यानी, λ) ब्लॉकों में होते हैं। जब t निर्दिष्ट नहीं होता है, तो इसे सामान्यतः 2 माना जा सकता है, जिसका अर्थ है कि तत्वों की प्रत्येक जोड़ी समान संख्या में ब्लॉक में पाई जाती है और संरचना जोड़ीदार संतुलित है। t = 1 के लिए, प्रत्येक तत्व समान संख्या में ब्लॉक (प्रतिकृति संख्या, निरूपित r) में होता है और संरचना को नियमित कहा जाता है। t तक संतुलित कोई भी संरचना t के सभी निचले मूल्यों (चूंकि विभिन्न λ-मानों के साथ) में भी संतुलित है, इसलिए उदाहरण के लिए जोड़ीदार संतुलित (t = 2) संरचना भी नियमित (t = 1) है। जब संतुलन की आवश्यकता विफल हो जाती है, तब भी संरचना आंशिक रूप से संतुलित हो सकता है यदि t-उपसमुच्चय को n वर्गों में विभाजित किया जा सकता है, प्रत्येक का अपना (अलग) λ-मूल्य है। t = 2 के लिए इन्हें 'पीबीआईबीडी (n) संरचना' के रूप में जाना जाता है, जिनकी कक्षाएं संघ योजना बनाती हैं।

संरचना को सामान्यतः अधूरा कहा जाता है (या माना जाता है), जिसका अर्थ है कि किसी भी ब्लॉक में समुच्चय के सभी तत्व नहीं होते हैं, इस प्रकार तुच्छ संरचना को निष्फल कर दिया जाता है।

ब्लॉक संरचना जिसमें सभी ब्लॉकों का आकार समान होता है (सामान्यतः k को निरूपित किया जाता है) को समान या उचित कहा जाता है। इस आलेख में चर्चा की गई संरचना सभी समान हैं। ब्लॉक संरचना जो आवश्यक रूप से एक समान नहीं हैं, का भी अध्ययन किया गया है; t = 2 के लिए वे साहित्य में सामान्य नाम कॉम्बिनेटरियल संरचना जोड़ीदार संतुलित संरचना (पीबीडी) के अंतर्गत जाने जाते हैं।

ब्लॉक संरचना में बार-बार ब्लॉक हो भी सकते हैं और नहीं भी दोहराए गए ब्लॉक के बिना संरचना सरल कहलाते हैं,[3] इस स्थितियों में ब्लॉक का परिवार बहु-समुच्चय के अतिरिक्त समुच्चय (गणित) है।

आँकड़ों में, ब्लॉक संरचना की अवधारणा को गैर-बाइनरी ब्लॉक संरचनाों तक बढ़ाया जा सकता है, जिसमें ब्लॉक में तत्व की कई प्रतियां हो सकती हैं (ब्लॉकिंग (आँकड़े) देखें)। वहां, संरचना जिसमें प्रत्येक तत्व एक ही कुल संख्या में होता है, उसे समकक्ष कहा जाता है, जिसका अर्थ केवल नियमित संरचना होता है, जब संरचना भी द्विआधारी होता है। गैर-बाइनरी संरचना की घटना मैट्रिक्स प्रत्येक ब्लॉक में प्रत्येक तत्व के दोहराए जाने की संख्या को सूचीबद्ध करती है।

नियमित यूनिफार्म संरचना (विन्यास)

सबसे सरल प्रकार की संतुलित संरचना (t = 1) को 'सामरिक विन्यास' या '1-संरचना' के रूप में जाना जाता है। ज्यामिति में संबंधित घटना संरचना को 'विन्यास' के रूप में जाना जाता है, विन्यास (ज्यामिति) देखें। ऐसा संरचना एक समान और नियमित है: प्रत्येक ब्लॉक में k तत्व होते हैं और प्रत्येक तत्व r ब्लॉक में समाहित होता है। समुच्चय तत्वों की संख्या v और ब्लॉकों की संख्या b से संबंधित हैं , जो तत्वों की घटनाओं की कुल संख्या है।

निरंतर पंक्ति और स्तंभ योगों वाला प्रत्येक बाइनरी मैट्रिक्स नियमित यूनिफार्म ब्लॉक संरचना का घटना मैट्रिक्स है। इसके अतिरिक्त, प्रत्येक विन्यास में संबंधित बिरेगुलर ग्राफ द्विपक्षीय ग्राफ ग्राफ (असतत गणित) होता है जिसे इसकी घटना या v ग्राफ के रूप में जाना जाता है।

जोड़ीदार संतुलित यूनिफार्म संरचना (2-संरचना या बीआईबीडी)

परिमित समुच्चय X (बिंदु कहे जाने वाले तत्वों का) और पूर्णांक k, r, λ ≥ 1 को देखते हुए, हम 2-संरचना (या बीआईबीडी, संतुलित अपूर्ण ब्लॉक संरचना के लिए खड़े) B को परिभाषित करते हैं, जो कि X के k-तत्व उपसमुचय का परिवार है। , ब्लॉक कहा जाता है, जैसे कि X में कोई भी x r ब्लॉक में समाहित है, और X में अलग-अलग बिंदु x और y की कोई भी जोड़ी λ ब्लॉक में समाहित है। यहां, शर्त यह है कि x में कोई भी x r ब्लॉक में निहित है, जैसा कि नीचे दिखाया गया है।

यहाँ v (X के तत्वों की संख्या, जिसे बिंदु कहा जाता है), b (ब्लॉक की संख्या), k, r, और λ संरचना के पैरामीटर हैं। (पतित उदाहरणों से बचने के लिए, यह भी माना जाता है कि v > k, यद्यपि किसी भी ब्लॉक में समुच्चय के सभी तत्व सम्मिलित न हों। इन संरचनाों के नाम में अपूर्णता का यही अर्थ है।) तालिका में:

v अंक, x के तत्वों की संख्या
b ब्लॉक की संख्या
r दिए गए बिंदु वाले ब्लॉकों की संख्या
k ब्लॉक में अंकों की संख्या
λ किसी भी 2 (या अधिक सामान्यतः t) अलग-अलग बिंदुओं वाले ब्लॉक की संख्या

संरचना को a (v, k, λ)-संरचना या a (v, b, r, k, λ)-संरचना कहा जाता है। पैरामीटर सभी स्वतंत्र नहीं हैं; v, k, और λ b और r निर्धारित करते हैं, और v, k, और λ के सभी संयोजन संभव नहीं हैं। इन मापदंडों को जोड़ने वाले दो मूलभूत समीकरण हैं।

जोड़े (B, p) की संख्या की गणना करके प्राप्त किया गया जहां b ब्लॉक है और p उस ब्लॉक में बिंदु है। और

निश्चित x के लिए गिनने से प्राप्त ट्रिपल (x, y, B) जहां x और y अलग-अलग बिंदु हैं और B ऐसा ब्लॉक है जिसमें ये दोनों सम्मिलित हैं। प्रत्येक x के लिए यह समीकरण यह भी सिद्ध करता है कि r स्थिर है (x से स्वतंत्र) भले ही इसे स्पष्ट रूप से ग्रहण न किया गया हो, इस प्रकार यह सिद्ध होता है कि x में कोई भी x r ब्लॉक में समाहित है, यह निरर्थक है और r की गणना अन्य मापदंडों से की जा सकती है।

ये शर्तें पर्याप्त नहीं हैं, उदाहरण के लिए, (43,7,1)-संरचना उपस्थित नहीं है।[4]

2-संरचना का क्रम n = r − λ के रूप में परिभाषित किया गया है। 2-संरचना का 'पूरक' बिंदु समुच्चय X में प्रत्येक ब्लॉक को इसके पूरक के साथ बदलकर प्राप्त किया जाता है। यह 2-संरचना भी है और इसके पैरामीटर v′ = v, b′ = b, r′ = b − r हैं , k′ = v − k, λ′ = λ + b − 2r। 2-संरचना और उसके पूरक का एक ही क्रम है।

मौलिक प्रमेय, फिशर की असमानता, जिसका नाम सांख्यिकीविद् रोनाल्ड फिशर के नाम पर रखा गया है, वह किसी भी 2-संरचना में b ≥ v है।

उदाहरण

अद्वितीय (6,3,2)-संरचना (v = 6, k = 3, λ = 2) में 10 ब्लॉक (b = 10) हैं और प्रत्येक तत्व को 5 बार (r = 5) दोहराया जाता है।[5] प्रतीकों 0 − 5 का उपयोग करते हुए, ब्लॉक निम्नलिखित त्रिगुण हैं।

012 013 024 035 045 125 134 145 234 235

और संबंधित घटना मैट्रिक्स v × b बाइनरी मैट्रिक्स निरंतर पंक्ति योग r और निरंतर स्तंभ योग k के साथ) है:

चार गैर-समरूपी (8,4,3)-संरचनाों में से में 14 ब्लॉक हैं जिनमें प्रत्येक तत्व को 7 बार दोहराया गया है। प्रतीकों 0 − 7 का उपयोग करते हुए ब्लॉक निम्नलिखित 4-ट्यूपल हैं:[5]:

0123 0124 0156 0257 0345 0367 0467 1267 1346 1357 1457 2347 2356 2456

अद्वितीय (7,3,1)-संरचना सममित है और इसमें 7 ब्लॉक हैं जिनमें प्रत्येक तत्व को 3 बार दोहराया गया है। प्रतीकों 0 − 6 का उपयोग करते हुए, ब्लॉक निम्नलिखित त्रिक हैं:[5]:

013 026 045 124 156 235 346

यह संरचना फानो समतल के साथ जुड़ा हुआ है, संरचना फ़ानो समतल के तत्वों और ब्लॉकों के साथ समतल के बिंदु और रेखा के लिए ब्लॉक संरचना सिद्धांत है। इसके संबंधित घटना मैट्रिक्स भी सममित हो सकते हैं।, यदि लेबल या ब्लॉक को सही विधियों से क्रमबद्ध किया गया हो:


सममित 2-संरचना (बाइंड)

फिशर की असमानता में समानता का स्थितियों, अर्थात, समान संख्या में बिंदुओं और ब्लॉकों के साथ 2-संरचना को सममित संरचना कहा जाता है।[6] समान अंक वाले सभी 2-संरचनाों में सममित संरचनाों में सबसे कम संख्या में ब्लॉक होते हैं।

सममित संरचना में r = k साथ ही साथ b = v, और, जबकि यह सामान्यतः मनमाना 2-संरचनाों में सही नहीं है, सममित संरचना में प्रत्येक दो अलग-अलग ब्लॉक λ बिंदुओं में मिलते हैं।[7] एच जे रायसर का प्रमेय इसका विलोम प्रदान करता है। यदि x एक v-तत्व समुच्चय है, और b के-तत्व उपसमुच्चय (ब्लॉक) का v-तत्व समुच्चय है, जैसे कि किसी भी दो अलग-अलग ब्लॉकों में बिल्कुल λ अंक सामान्य हैं, तो (x, B) सममित ब्लॉक संरचना है।[8]

सममित संरचना के पैरामीटर संतुष्ट करते हैं।

यह v पर मजबूत प्रतिबंध लगाता है, इसलिए अंकों की संख्या मनमानी से दूर है। ब्रुक-रेज़र-चावला प्रमेय इन मापदंडों के संदर्भ में सममित संरचना के अस्तित्व के लिए आवश्यक, लेकिन पर्याप्त नहीं, शर्तें देता है।

निम्नलिखित सममित 2-संरचनाों के महत्वपूर्ण उदाहरण हैं:

प्रक्षेपी सतह

प्रक्षेपी प्लेन परिमित प्रक्षेपी प्लेन λ = 1 और ऑर्डर n> 1 के साथ सममित 2-संरचना हैं। इन संरचनाों के लिए सममित संरचना समीकरण बन जाता है:

चूँकि k = r हम प्रक्षेपी प्लेन के क्रम को n = k − 1 के रूप में लिख सकते हैं और, ऊपर प्रदर्शित समीकरण से, हम v = (n + 1)n + 1 = n प्राप्त करते हैं n2 + n + 1 बिंदु क्रम n के प्रक्षेपी तल में प्राप्त करते है।

प्रक्षेपी तल के रूप में सममित संरचना है, हमारे पास b = v है, जिसका अर्थ है कि b = n2 + n + 1 भी संख्या b प्रक्षेपी तल की रेखाओं की संख्या है। λ = 1 के बाद से कोई भी रेखाएँ दोहराई नहीं जा सकती हैं, इसलिए प्रक्षेपी तल सरल 2-संरचना है जिसमें रेखाओं की संख्या और बिंदुओं की संख्या हमेशा समान होती है। प्रक्षेपी तल के लिए, k प्रत्येक रेखा पर बिंदुओं की संख्या है और यह n + 1 के बराबर है। इसी प्रकार, r = n + 1 उन रेखाओं की संख्या है जिनके साथ दिया गया बिंदु घटना है।

n = 2 के लिए हमें क्रम 2 का प्रक्षेपी तल मिलता है, जिसे फ़ानो तल भी कहा जाता है, जिसमें v = 4 + 2 + 1 = 7 बिंदु और 7 रेखाएँ होती हैं। फ़ानो विमान में, प्रत्येक पंक्ति में n + 1 = 3 बिंदु होते हैं और प्रत्येक बिंदु n + 1 = 3 रेखाओं से संबंधित होता है।

प्रक्षेपी विमानों को सभी आदेशों के लिए जाना जाता है जो अभाज्य संख्याएँ या अभाज्य की शक्तियाँ हैं। वे सममित ब्लॉक संरचनाों के एकमात्र ज्ञात अनंत परिवार (स्थिर λ मान होने के संबंध में) बनाते हैं।[9]


बाइप्लेन

बाइप्लेन या बाइप्लेन ज्योमेट्री λ = 2 के साथ सममित 2-संरचना है; अर्थात्, दो बिंदुओं का प्रत्येक समुच्चय दो ब्लॉकों (रेखाओं) में समाहित होता है, जबकि कोई भी दो रेखाएँ दो बिंदुओं में प्रतिच्छेद करती हैं।[9] वे परिमित प्रक्षेपी विमानों के समान हैं, दूसरा इसके लिए रेखा (और बिंदु को निर्धारित करने वाली दो रेखाएं) निर्धारित करने वाले दो बिंदुओं के अतिरिक्त, दो बिंदु दो रेखाओं (क्रमशः, अंक) का निर्धारण करते हैं। क्रम n का बाइप्लेन वह है जिसके ब्लॉक में k = n + 2 बिंदु होते हैं; इसमें v = 1 + (n + 2)(n + 1)/2 अंक हैं। (r = k के बाद से)

18 ज्ञात उदाहरण[10] नीचे सूचीबद्ध हैं।

  • (निरर्थक) ऑर्डर 0 बाइप्लेन में 2 बिंदु हैं (और आकार 2 की रेखाएँ; 2- (2,2,2) संरचना); यह दो बिंदु हैं, दो ब्लॉक के साथ, प्रत्येक में दोनों बिंदु होते हैं। ज्यामितीय रूप से, यह डिगॉन है।
  • ऑर्डर 1 बाइप्लेन में 4 बिंदु होते हैं (और आकार 3 की रेखाएँ; 2- (4,3,2) संरचना); यह v = 4 और k = 3 के साथ पूर्ण संरचना है। ज्यामितीय रूप से, बिंदु चतुष्फलक के शीर्ष हैं और ब्लॉक इसके फलक हैं।
  • ऑर्डर 2 बाइप्लेन फ़ानो प्लेन का पूरक है: इसके 7 बिंदु हैं (और आकार 4 की रेखाएँ; 2-(7,4,2)), जहाँ रेखाएँ (3-बिंदु) के पूरक के रूप में दी गई हैं ) फ़ानो विमान में लाइनें है।[11]
  • ऑर्डर 3 बाइप्लेन में 11 बिंदु हैं (और आकार 5 की रेखाएं; 2-(11,5,2)), और इसे के रूप में भी जाना जाता है पाले बाइप्लेन रेमंड पाले के बाद; यह ऑर्डर 11 के पाले डिग्राफ से जुड़ा है, जो 11 तत्वों के साथ क्षेत्र का उपयोग करके बनाया गया है, और हैडमार्ड 2-संरचना 12 हैडमार्ड मैट्रिक्स से जुड़ा है; पाले निर्माण देखें
बीजगणितीय रूप से यह 'पीएसएल' (2,11) में प्रक्षेपी विशेष रैखिक समूह पीएसएल (2,5) के असाधारण एम्बेडिंग से मेल खाता है प्रक्षेपी लीनियर ग्रुप: विवरण के लिए p बिंदुओं पर कार्रवाई है।[12]
  • ऑर्डर 4 (और 16 अंक, आकार 6 की रेखाएं; 2- (16,6,2)) के तीन बाइप्लेन हैं। कुमेर विन्यास है। ये तीन संरचना नियमित हैडमार्ड मैट्रिक्स भी हैं।
  • ऑर्डर 7 (और 37 अंक, आकार 9 की रेखाएं; 2-(37,9,2)) के चार बाइप्लेन हैं।[13]
  • ऑर्डर 9 के पांच बाइप्लेन हैं (और 56 अंक, आकार 11 की रेखाएं; 2- (56,11,2)[14]
  • दो बाइप्लेन ऑर्डर 11 (और 79 अंक, आकार 13 की रेखाएं; 2- (79,13,2)) के लिए जाने जाते हैं।[15]

ऑर्डर 5, 6, 8 और 10 के बाइप्लेन उपस्थित नहीं हैं, जैसा कि ब्रुक-रायसर-चावला प्रमेय द्वारा दिखाया गया है।

हैडमार्ड 2-संरचना

m आकार का हैडमार्ड मैट्रिक्स m × m मैट्रिक्स 'H' है जिसकी प्रविष्टियाँ ±1 ऐसी हैं कि 'HH' = mim, जहां H H और Im का स्थानान्तरण है m × m पहचान मैट्रिक्स है। हैडमार्ड मैट्रिक्स को मानकीकृत रूप में रखा जा सकता है (अर्थात, समकक्ष हैडमार्ड मैट्रिक्स में परिवर्तित) जहां पहली पंक्ति और पहली कॉलम प्रविष्टियां सभी +1 हैं। यदि आकार m > 2 है तो m 4 का गुणक होना चाहिए।

मानकीकृत रूप में आकार 4a के हैडमार्ड मैट्रिक्स को देखते हुए, पहली पंक्ति और पहले कॉलम को हटा दें और प्रत्येक −1 को 0 में बदलें। परिणामी 0–1 मैट्रिक्स 'M' सममित 2-(4a − 1, का आपतन मैट्रिक्स है, 2a − 1, a − 1) संरचना जिसे 'हैडमार्ड 2-संरचना' कहा जाता है।[16] इसमें है ब्लॉक अंक; प्रत्येक में सम्मिलित है इसमें निहित है अंक ब्लॉक अंकों की प्रत्येक जोड़ी बिल्कुल में समाहित है। ब्लॉक है।

यह निर्माण प्रतिवर्ती है, और इन मापदंडों के साथ सममित 2-संरचना की घटना मैट्रिक्स का उपयोग आकार 4a के हैडमार्ड मैट्रिक्स को बनाने के लिए किया जा सकता है।

हल करने योग्य 2-संरचना

हल करने योग्य 2-संरचना बीआईबीडी है जिसके ब्लॉक को समुच्चय में विभाजित किया जा सकता है (जिसे 'समानांतर वर्ग' कहा जाता है), जिनमें से प्रत्येक बीआईबीडी के बिंदु समुच्चय का विभाजन बनाता है। समांतर कक्षाओं के समुच्चय को संरचना का रिज़ॉल्यूशन कहा जाता है।

अगर 2-(v,k,λ) हल करने योग्य संरचना में c समानांतर वर्ग हैं, तो b ≥ v + c − 1 है[17]

परिणामस्वरूप, सममित संरचना में गैर-तुच्छ (एक से अधिक समांतर वर्ग) संकल्प नहीं हो सकता है।[18]

आर्किटेपिकल रिज़ॉल्वेबल 2-संरचना परिमित प्रक्षेपी प्लेन एफ़ाइन समतल हैं। प्रसिद्ध 15 छात्रा समस्या का समाधान 2-(15,3,1) संरचना का समाधान है।[19]


सामान्य संतुलित संरचना (t-संरचना)

किसी भी सकारात्मक पूर्णांक t को देखते हुए, t-संरचना B, x के के-तत्व सबसमुच्चय का वर्ग है, जिसे ब्लॉक कहा जाता है, जैसे X में प्रत्येक बिंदु x बिल्कुल r ब्लॉक में दिखाई देता है, और प्रत्येक t-तत्व सबसमुच्चय t बिल्कुल λ ब्लॉक में दिखाई देता है। . संख्या v (X के तत्वों की संख्या), b (ब्लॉक की संख्या), k, r, λ, और t संरचना के पैरामीटर हैं। संरचना को t-(v,k,λ)-संरचना कहा जा सकता है। फिर से, ये चार संख्याएँ b और r निर्धारित करती हैं और चार संख्याओं को स्वयं मनमाने ढंग से नहीं चुना जा सकता है।

समीकरण हैं

जहां λi उन ब्लॉकों की संख्या है जिनमें अंक और λ का कोई भी i-तत्व समुच्चय होता है λt= λ होता है।

ध्यान दें कि और .

प्रमेय:[20] कोई भी t-(v,k,λ)-संरचना भी s-(v,k,λ) हैs)-1 ≤ s ≤ t वाले किसी भी s के लिए संरचना करें। (ध्यान दें कि लैम्ब्डा मान ऊपर के रूप में बदलता है और s पर निर्भर करता है।)

इस प्रमेय का परिणाम यह है कि t ≥ 2 वाला प्रत्येक t-संरचना भी 2-संरचना है।

t-(v,के,1)-संरचना को स्टेनर प्रणाली कहा जाता है।

ब्लॉक संरचना शब्द का अर्थ सामान्यतः 2-संरचना होता है।

व्युत्पन्न और विस्तार योग्य t-संरचना

चलो D = (X, B) एक t-(v,k,λ) संरचना और p का बिंदु ' 'xव्युत्पन्न संरचना Dp बिंदु समुच्चय X − {p} है और ब्लॉक के रूप में 'D' के सभी ब्लॉक समुच्चय करता है जिसमें p को हटा दिया गया है। यह (t − 1)-(v − 1, k − 1, λ) संरचना है। ध्यान दें कि अलग-अलग बिंदुओं के संबंध में व्युत्पन्न संरचना तुल्याकारी नहीं हो सकते हैं। संरचना 'E' को 'D' का विस्तार कहा जाता है यदि 'E' में बिंदु p ऐसा है कि E'p D के लिए आइसोमोर्फिक है; यदि इसका विस्तार होता है तो हम D विस्तार योग्य कहते हैं।

प्रमेय:[21] यदि t-(v,k,λ) संरचना में विस्तार है, तो k +1 b(v + 1) को विभाजित करता है।

एकमात्र विस्तार योग्य प्रक्षेपी विमान (सममित 2-(n2 + n + 1, n + 1, 1) संरचना) ऑर्डर 2 और 4 के हैं।[22]

प्रत्येक हैडमार्ड 2-संरचना विस्तार योग्य है ( हैडमार्ड 3-संरचना के लिए)।[23]

प्रमेय[24]

यदि d, सममित 2-(v,k,λ) संरचना, विस्तार योग्य है, तो निम्न में से धारण करता है।

  1. D हैडमार्ड 2-संरचना है।,
  2. v = (λ + 2)(λ2 + 4λ + 2), K = λ2 + 3λ + 1,
  3. v = 495, के = 39, λ = 3।

ध्यान दें कि क्रम दो का प्रक्षेपी तल हैडमार्ड 2-संरचना है; क्रम चार के प्रक्षेपी तल में पैरामीटर हैं जो स्थिति 2 में आते हैं; स्थितियों 2 में मापदंडों के साथ केवल अन्य ज्ञात सममित 2-संरचना ऑर्डर 9 बाइप्लेन हैं, लेकिन उनमें से कोई भी विस्तार योग्य नहीं है; और केस 3 के पैरामीटर के साथ कोई ज्ञात सममित 2-संरचना नहीं है।[25]


उल्टा समतल

एफाइन समतल (इंसिडेंस ज्योमेट्री) के विस्तार के मापदंडों के साथ संरचना फिनिट एफाइन समतल, यानी, एक 3-(n)2 + 1, n + 1, 1) संरचना, को क्रम n का परिमित 'इनवर्सिव समतल' या मोबियस समतल कहा जाता है।

वास्तव में, सभी ज्ञात उल्टे समतल के कुछ उल्टे समतल का ज्यामितीय विवरण देना संभव है। PG(3,q) में ओवॉइड (प्रक्षेपी ज्योमेट्री) q का समुच्चय है q2 + 1 अंक, कोई तीन संरेख नहीं। यह दिखाया जा सकता है कि PG(3,q) का प्रत्येक तल (जो हाइपरप्लेन है क्योंकि ज्यामितीय आयाम 3 है) या तो 1 या q + 1 बिंदुओं में अंडाकार O से मिलता है। O के आकार q + 1 के समतल खंड क्रम q के व्युत्क्रम तल के ब्लॉक हैं। इस तरह से उठने वाले किसी भी उल्टे समतल को अंडे जैसा कहा जाता है। सभी ज्ञात उत्क्रमणीय तल अंडे के समान होते हैं।

अंडाकार का उदाहरण द्विघात (प्रक्षेपी ज्यामिति) है, द्विघात रूप के शून्यों का समूह

x1x2 + f(x3, x4),,

जहाँ f GF(q) से अधिक दो चरों में अलघुकरणीय द्विघात रूप है। [GF(q). [f(x,y) = x2 + xy + y2 उदाहरण के लिए

यदि q 2 की विषम पॉवर है, तो अन्य प्रकार का अंडाकार ज्ञात होता है - ओवॉइड (प्रक्षेपी ज्योमेट्री) उन्हें सुजुकी-टिट ओवॉइड कहते है।

'प्रमेय'। q को सकारात्मक पूर्णांक होने दें, कम से कम 2. (a) यदि q विषम है, तो कोई भी ओवॉइड प्रक्षेप्य ज्यामिति पीजी (3, q) में दीर्घवृत्त चतुर्भुज के समतुल्य है; इसलिए q प्रमुख शक्ति है और ऑर्डर q का अद्वितीय अंडे जैसा उल्टा समतल है। (लेकिन यह ज्ञात नहीं है कि क्या गैर-अंडाकार वाले उपस्थित हैं।) (b) यदि q सम है, तो q 2 की शक्ति है और q कोटि का कोई भी व्युत्क्रम तल अंडे जैसा है (लेकिन कुछ अज्ञात अंडाकार हो सकते हैं।)

आंशिक रूप से संतुलित संरचना (पीबीआईबीडीएस)

n-क्लास एसोसिएशन स्कीम में आकार v का समुच्चय (गणित) X होता है, साथ में X × X के समुच्चय S के विभाजन के साथ n + 1 बाइनरी संबंध, R0, R1, ..., Rn. संबंध R में तत्वों की जोड़ी Ri-सहयोगी कहा जाता है। X के प्रत्येक अवयव में ni वासहयोगी कहते है।

  • और इसे पहचान संबंध कहा जाता है।
  • परिभाषित करना , यदि S में R है, तो S में R है।
  • अगर , की संख्या ऐसा है कि और स्थिरांक है i, j, k पर निर्भर करता है लेकिन x और y की विशेष पसंद पर है या नहीं।

संघ योजना क्रमविनिमेय है अगर सभी i, j और k के लिए। अधिकांश लेखक इस संपत्ति को मानते हैं।

n संबद्ध वर्गों (पीबीआईबीडीएस(n)) के साथ 'आंशिक रूप से संतुलित अपूर्ण ब्लॉक संरचना' ब्लॉक संरचना है जो v-समुच्चय X पर आधारित है जिसमें b ब्लॉक प्रत्येक आकार k का है और प्रत्येक तत्व r ब्लॉक में प्रदर्शित होता है, जैसे कि x पर परिभाषित n वर्गों के साथ संबंध योजना जहां, यदि तत्व x और y itवा सहयोगी हैं, 1 ≤ i ≤ n, तो वे ठीक λi में एक साथ हैं।

पीबीआईबीडी (n) संघ योजना निर्धारित करता है लेकिन विपरीत गलत है।[26]


उदाहरण

माना A (3) समुच्चय x = {1,2,3,4,5,6} पर तीन सहयोगी वर्गों के साथ निम्नलिखित एसोसिएशन योजना बनें। (i,j) प्रविष्टि s है यदि तत्व i और j संबंध Rs. में हैं।

  1 2 3 4 5 6
1  0   1   1   2   3   3 
2  1   0   1   3   2   3 
3  1   1   0   3   3   2 
4  2   3   3   0   1   1 
5  3   2   3   1   0   1 
6  3   3   2   1   1   0 

A(3) पर आधारित पीबीआईबीडी(3) के ब्लॉक हैं:

 124   134   235   456 
 125   136   236   456 

इस पीबीआईबीडी(3) के पैरामीटर हैं: v = 6, b = 8, k = 3, r = 4 और λ1 = λ2 = 2 और λ3= 1. साथ ही, संबद्धता योजना के लिए हमारे पास n है n0 = n2 = 1 और n1 = n3 = 2..[27] घटना मैट्रिक्स M है।

<डिव वर्ग = केंद्र>

और सहमति मैट्रिक्स MMT है।

<डिव वर्ग = केंद्र>

जिससे हम λ और r मान पुनर्प्राप्त कर सकते हैं।

गुण

पीबीआईबीडी(m) के पैरामीटर संतुष्ट करते हैं:[28]

पीबीआईबीडी(1) बीआईबीडी और पीबीआईबीडी(2) है जिसमें λ1 = λ2 बीआईबीडी है।[29]


दो सहयोगी वर्ग पीबीआईबीडीएस

पीबीआईबीडी (2) का सबसे अधिक अध्ययन किया गया है क्योंकि वे पीबीआईबीडीएस में सबसे सरल और सबसे उपयोगी हैं।[30] वे छह प्रकार में आते हैं[31] तत्कालीन ज्ञात पीबीआईबीडी(2)s के वर्गीकरण के आधार पर बोस & शिमामोटो (1952) द्वारा:[32]

  1. समूह विभाज्य;
  2. त्रिकोणीय;
  3. लैटिन वर्ग प्रकार;
  4. चक्रीय;
  5. आंशिक ज्यामिति प्रकार;
  6. मिश्रित।

अनुप्रयोग

ब्लॉक संरचनाों का गणितीय विषय प्रयोगों के संरचना के सांख्यिकीय ढांचे में उत्पन्न हुआ। ये संरचना विचरण के विश्लेषण | विचरण के विश्लेषण (एनोवा) की तकनीक के अनुप्रयोगों में विशेष रूप से उपयोगी थे। ब्लॉक संरचनाों के उपयोग के लिए यह महत्वपूर्ण क्षेत्र बना हुआ है।

जबकि विषय की उत्पत्ति जैविक अनुप्रयोगों (जैसा कि कुछ उपस्थिता शब्दावली में है) पर आधारित है, संरचना का उपयोग कई अनुप्रयोगों में किया जाता है जहाँ व्यवस्थित तुलना की जा रही है, जैसे कि सॉफ्टवेयर परीक्षण में ब्लॉक संरचनाों का घटना मैट्रिक्स रोचक ब्लॉक कोड का प्राकृतिक स्रोत प्रदान करता है जो त्रुटि सुधार कोड के रूप में उपयोग किया जाता है। पल्स-पोजिशन मॉड्यूलेशन के रूप में उनकी घटना मैट्रिसेस की पंक्तियों को प्रतीकों के रूप में भी उपयोग किया जाता है।[33]


सांख्यिकीय अनुप्रयोग

मान लीजिए कि त्वचा कैंसर के शोधकर्ता तीन अलग-अलग सनस्क्रीन का परीक्षण करना चाहते हैं। वे परीक्षण व्यक्ति के हाथों के ऊपरी किनारों पर दो अलग-अलग सनस्क्रीन लगाते हैं। UV विकिरण के बाद वे सनबर्न के स्थितियों में त्वचा की जलन को रिकॉर्ड करते हैं। उपचार की संख्या 3 (सनस्क्रीन) है और ब्लॉक आकार 2 (प्रति व्यक्ति हाथ) है।

R-package agricolae के R (प्रोग्रामिंग भाषा)-फलन संरचना.बिब द्वारा संबंधित बीआईबीडी उत्पन्न किया जा सकता है और इसे निम्नलिखित तालिका में निर्दिष्ट किया गया है:

प्लाट ब्लॉक ट्रीटमेंट
101 1 3
102 1 2
201 2 1
202 2 3
301 3 2
302 3 1

अन्वेषक मापदंडों का चयन करता है v = 3, k = 2 और λ = 1 ब्लॉक संरचना के लिए जो फिर आर-फलन में डाले जाते हैं। इसके बाद, शेष पैरामीटर b और r स्वचालित रूप से निर्धारित होते हैं।

मूलभूत संबंधों का उपयोग करके हम गणना करते हैं कि हमें क्या चाहिए b = 3 ब्लॉक, यानी 3 लोगों को संतुलित अधूरा ब्लॉक संरचना प्राप्त करने के लिए परीक्षण करें। ब्लॉकों को लेबल करना A, B और C, भ्रम से बचने के लिए, हमारे पास ब्लॉक संरचना है।,

A = {2, 3}, B = {1, 3} और C = {1, 2}.

संबंधित घटना मैट्रिक्स निम्न तालिका में निर्दिष्ट है:

ट्रीटमेंट ब्लॉक ए ब्लॉक बी ब्लॉक सी
1 0 1 1
2 1 0 1
3 1 1 0

प्रत्येक उपचार 2 ब्लॉकों में होता है, इसलिए r = 2.

केवल ब्लॉक (C) में साथ उपचार 1 और 2 सम्मिलित हैं और यह उपचार के जोड़े (1,3) और (2,3) पर लागू होता है। इसलिए, λ = 1.

इस उदाहरण में पूर्ण संरचना (प्रत्येक ब्लॉक में सभी उपचार) का उपयोग करना असंभव है क्योंकि परीक्षण के लिए 3 सनस्क्रीन हैं, लेकिन प्रत्येक व्यक्ति पर केवल 2 हाथ हैं।

यह भी देखें

टिप्पणियाँ

  1. Colbourn & Dinitz 2007, pp.17−19
  2. Stinson 2003, p.1
  3. P. Dobcsányi, D.A. Preece. L.H. Soicher (2007-10-01). "दोहराए गए ब्लॉकों के साथ संतुलित अपूर्ण-ब्लॉक डिज़ाइनों पर". European Journal of Combinatorics (in English). 28 (7): 1955–1970. doi:10.1016/j.ejc.2006.08.007. ISSN 0195-6698.
  4. Proved by Tarry in 1900 who showed that there was no pair of orthogonal Latin squares of order six. The 2-design with the indicated parameters is equivalent to the existence of five mutually orthogonal Latin squares of order six.
  5. 5.0 5.1 5.2 Colbourn & Dinitz 2007, p. 27
  6. They have also been referred to as projective designs or square designs. These alternatives have been used in an attempt to replace the term "symmetric", since there is nothing symmetric (in the usual meaning of the term) about these designs. The use of projective is due to P.Dembowski (Finite Geometries, Springer, 1968), in analogy with the most common example, projective planes, while square is due to P. Cameron (Designs, Graphs, Codes and their Links, Cambridge, 1991) and captures the implication of v = b on the incidence matrix. Neither term has caught on as a replacement and these designs are still universally referred to as symmetric.
  7. Stinson 2003, pg.23, Theorem 2.2
  8. Ryser 1963, pp. 102–104
  9. 9.0 9.1 Hughes & Piper 1985, pg.109
  10. Hall 1986, pp.320-335
  11. Assmus & Key 1992, pg.55
  12. Martin, Pablo; Singerman, David (April 17, 2008), From Biplanes to the Klein quartic and the Buckyball (PDF), p. 4
  13. Salwach & Mezzaroba 1978
  14. Kaski & Östergård 2008
  15. Aschbacher 1971, pp. 279–281
  16. Stinson 2003, pg. 74, Theorem 4.5
  17. Hughes & Piper 1985, pg. 156, Theorem 5.4
  18. Hughes & Piper 1985, pg. 158, Corollary 5.5
  19. Beth, Jungnickel & Lenz 1986, pg. 40 Example 5.8
  20. Stinson 2003, pg.203, Corollary 9.6
  21. Hughes & Piper 1985, pg.29
  22. Cameron & van Lint 1991, pg. 11, Proposition 1.34
  23. Hughes & Piper 1985, pg. 132, Theorem 4.5
  24. Cameron & van Lint 1991, pg. 11, Theorem 1.35
  25. Colbourn & Dinitz 2007, pg. 114, Remarks 6.35
  26. Street & Street 1987, pg. 237
  27. Street & Street 1987, pg. 238
  28. Street & Street 1987, pg. 240, Lemma 4
  29. Colbourn & Dinitz 2007, pg. 562, Remark 42.3 (4)
  30. Street & Street 1987, pg. 242
  31. Not a mathematical classification since one of the types is a catch-all "and everything else".
  32. Raghavarao 1988, pg. 127
  33. Noshad, Mohammad; Brandt-Pearce, Maite (Jul 2012). "सममित संतुलित अपूर्ण ब्लॉक अभिकल्पनाओं का उपयोग करते हुए निष्कासित पीपीएम". IEEE Communications Letters. 16 (7): 968–971. arXiv:1203.5378. Bibcode:2012arXiv1203.5378N. doi:10.1109/LCOMM.2012.042512.120457. S2CID 7586742.


संदर्भ

  • van Lint, J.H.; Wilson, R.M. (1992). A Course in Combinatorics. Cambridge University Press. ISBN 978-0-521-41057-1.


बाहरी संबंध