पूर्णांक-मान बहुपद

From Vigyanwiki

गणित में, पूर्णांक-मान बहुपद (संख्यात्मक बहुपद के रूप में भी जाना जाता है) एक बहुपद है जिसका मान प्रत्येक पूर्णांक n के लिए एक पूर्णांक है। पूर्णांक गुणांक वाले प्रत्येक बहुपद का पूर्णांक मान होता है, लेकिन इसका व्युत्क्रम संभव नहीं होता है। उदाहरण के लिए, बहुपद

जब भी t एक पूर्णांक होता है तो पूर्णांक मान लेता है। ऐसा इसलिए है क्योंकि t और में से एक एक सम संख्या होनी चाहिए। (इस बहुपद के मान त्रिकोणीय संख्या हैं।)

पूर्णांक-मान बहुपद बीजगणित में अपने आप में अध्ययन की वस्तुएं हैं, और प्रायः बीजगणितीय टोपोलॉजी में दिखाई देते हैं।[1]


वर्गीकरण

पूर्णांक-मान बहुपदों के वर्ग को पूरी तरह से वर्णित किया गया था, जॉर्ज पोल्या (1915) बहुपद रिंग के अंदर परिमेय संख्या गुणांक वाले बहुपदों की, पूर्णांक-मान बहुपदों का उपवलय एक मुक्त एबेलियन समूह है। इसका आधार (रैखिक बीजगणित) बहुपद है

के लिए , अर्थात द्विपद गुणांक दूसरे शब्दों में, प्रत्येक पूर्णांक-मान बहुपद को एक तरह से द्विपद गुणांकों के पूर्णांक रैखिक संयोजन के रूप में लिखा जा सकता है। अंतर ऑपरेटर की विधि द्वारा प्रमाण है, द्विपद गुणांक पूर्णांक-मान वाले बहुपद हैं, और इसके विपरीत, पूर्णांक श्रृंखला का असतत अंतर एक पूर्णांक श्रृंखला है, इसलिए बहुपद द्वारा उत्पन्न पूर्णांक श्रृंखला की असतत टेलर श्रृंखला में पूर्णांक गुणांक होते हैं (और एक परिमित श्रृंखला है)। अधिक विशेष रूप से, जब a अनिश्चित x है, तो इस फलन द्वारा x की छवि बहुपद P ही है (x के लिए x को प्रतिस्थापित करने से कुछ भी नहीं बदलता है)।

अचल अभाज्य भाजक

बहुपदों के निश्चित विभाजकों के बारे में प्रश्नों को हल करने के लिए पूर्णांक-मान वाले बहुपदों का प्रभावी ढंग से उपयोग किया जा सकता है। उदाहरण के लिए, पूर्णांक गुणांक वाले बहुपद P, जो सदैव सम संख्या वाले मान लेते हैं, केवल ऐसे हैं पूर्णांक मान है। बदले में वे बहुपद हैं जिन्हें द्विपद गुणांक के पूर्णांक गुणांक वाले रैखिक संयोजन के रूप में व्यक्त किया जा सकता है।

अभाज्य संख्या सिद्धांत के प्रश्नों में, जैसे कि शिंजेल की परिकल्पना एच और बेटमैन-हॉर्न अनुमान, प्रकरण को समझना बुनियादी महत्व का विषय है, जब P के पास कोई निश्चित अभाज्य भाजक नहीं है (इसे बनीकोवस्की की विशेषताएं कहा गया है)[citation needed], विक्टर बनीकोवस्की के बाद)। द्विपद गुणांकों के संदर्भ में P लिखने से, हम देखते हैं कि इस तरह के प्रतिनिधित्व में गुणांकों का उच्चतम निश्चित प्रधान भाजक भी उच्चतम प्रमुख सामान्य कारक है। अतः बनीकोवस्की की विशेषताएं कोप्राइम गुणांक के बराबर है।

उदाहरण के तौर पर, बहुपदों की जोड़ी और पर इस शर्त का उल्लंघन करता है : हर एक के लिए उत्पाद

3 से विभाज्य है, जो प्रतिनिधित्व से अनुसरण करता है

द्विपद आधार के संबंध में, जहां गुणांकों का उच्चतम सामान्य विभाजक - इसलिए उच्चतम निश्चित विभाजक —3 है।

अन्य रिंग्स

संख्यात्मक बहुपदों को अन्य रिंग्स और क्षेत्रों पर परिभाषित किया जा सकता है, इस प्रकरण में उपरोक्त पूर्णांक-मान वाले बहुपदों को चिरसम्मत संख्यात्मक बहुपद कहा जाता है।[citation needed]

अनुप्रयोग

यू(एन), बीयू(एन) के लिए टोपोलॉजिकल के-थ्योरी ऑफ क्लासिफाइंग स्पेस संख्यात्मक (सममित) बहुपद है।

k+1 चरों में बहुपद वलय का हिल्बर्ट बहुपद संख्यात्मक बहुपद है .

संदर्भ

  1. Johnson, Keith (2014), "Stable homotopy theory, formal group laws, and integer-valued polynomials", in Fontana, Marco; Frisch, Sophie; Glaz, Sarah (eds.), Commutative Algebra: Recent Advances in Commutative Rings, Integer-Valued Polynomials, and Polynomial Functions, Springer, pp. 213–224, ISBN 9781493909254. See in particular pp. 213–214.



बीजगणित

बीजगणितीय टोपोलॉजी

अग्रिम पठन